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Abstract. European directives and strategies, such as the 'European Green Deal' and the 'Ren- 
ovation Wave', point out the importance of the building sector in achieving the climate goals set 
by the European Union for 2050. However, a higher renovation rate for the existing buildings is 
required to achieve these goals. Many barriers prevent the renovation rate from growing. 
Regarding financial barriers, the long payback times of renovation interventions and the high 
risk perceived by the potential investors make the renovation rate remain low. Based on data 
from energy performance certificates, this research proposes a data-driven method to create 
economic retrofit scenarios for residential buildings using Artificial Intelligence techniques and 
Monte Carlo simulations. Namely, energy savings have been predicted using an Artificial Neural 
Network on clusters of residential buildings and the Life Cycle Costs forecasted by Monte Carlo 
simulations taking into account the uncertainty in many of the inputs. Results obtained by 
applying the method to a region in northern Italy illustrate two scenarios for the energy retrofit 
of the built environment, one assuming a payback time of fifteen years and the other of twenty-
five years. In both cases, the maximum allowable investment, which varies according to the 
specific characteristics of the buildings, is much lower than the retrofit costs recorded in the same 
area in recent years.  

1.  Introduction 
The effects of climate change on our planet have created a worldwide consensus on the need for 
sustainable development. In this context, the European Union (EU) has shown great interest in pointing 
to drastic pollution cuts. This includes formulating and achieving new and consolidated strategies and 
directives for net-zero emissions by 2050 [1]. Changes in energy use in the residential sector represent 
a significant segment of the ongoing low-carbon energy transition process in a multi-dimensional and 
multi-level process comprising multiple actors [2]. Researchers proved that upgrading building fixtures, 
equipment, and envelope components could achieve savings beyond 45% in energy and water 
consumption [2]. Noteworthy, households or the residential sector represents about 26% of final energy 
consumption or nearly 17% of gross inland energy consumption in the EU [3] 

Achieving a low energy standard while being cost-efficient in the existing building is challenging as 
it is crucial to assess the whole lifecycle in terms of costs and environmental impact [4]. Moreover, the 
lack of open data about the existing buildings makes it difficult to analyze the building's actual state, 
measure progress in building decarbonization, and raise public awareness about the importance of 
refurbishment, design renovation, and maintenance strategies [5]. 

There are many obstacles hindering the design of the energy retrofit of an existing building. Among 
them is the need for a deeper and more accurate energy audit process to precisely know the "as-built" 
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situation in terms of envelope and equipment features and building user behavior [6]. Another critical 
issue preventing a higher building stock renovation rate is the economic one. Barriers such as high 
investments, long payback periods, and perceived credit risk hamper buildings' energy renovation [6]. 

Making informed choices about the most suitable energy retrofit policy requires detailed scenarios 
that specify the buildings to be renovated within certain constraints, e.g., on the total annual budget, 
renovation rate, or energy savings [7]. Several studies explored approaches and pathways toward low 
energy consumption for housing stocks without including the energy efficiency costs in the analysis [8]–
[11]. Few studies have been undertaken to conduct an economic assessment of energy retrofit on existing 
buildings. By examining the costs and benefits associated with the retrofit and using economic 
evaluation methods, such as Net Present Value (NPV), Internal Rate of Return (IRR), and discounted 
payback period (PB), an assessment of the cost-effectiveness of retrofit investment is performed [12]. 

Current research methods show the high potential of top-down approaches for retrofitting buildings. 
These approaches utilize large datasets maintained by public authorities, such as datasets on energy 
performance certificates that provide a lot of building variables for analysis [13]. Examples of such 
datasets are the GEAK (Gebäudeenergieausweis der Kantone) in Switzerland and the CENED 
(Certificazione Energetica degli Edifici) in Italy. These datasets are generated by records of energy 
certification reports of buildings. These reports are submitted by certified energy consulting firms [13]. 
The significant challenges for stakeholders using these datasets are reliability, completeness, accuracy, 
and data consistency [14]. 

Large-scale identification of the potential of energy efficiency measures would enable mapping of 
the building stock, revealing cases were economically driven retrofitting is viable [15]. Thus, the main 
aim of this study is to develop a generalized methodology to optimize regional-scale energy retrofit 
decisions for residential buildings using data-driven approaches. The methodology will provide 
information to decision-makers and legislators, facilitating the introduction of new policies supporting 
the retrofitting market. This paper contributes to the literature on data-driven building energy modeling 
by introducing the combined use of machine learning (ML) and Monte Carlo (MC) simulations to 
forecast costs associated with a building energy retrofit. This paper is structured as follows: Section 2 
describes a novel methodology; Section 3 evaluates the proposed methodology using an Italian case 
study; Section 4 concludes this research study and discusses the results. 

2.  Building retrofit scenarios 
The following Figure 1 shows the pipeline of the research project. There are three main steps and two 
main inputs. The latter are: a) an open data collection of information about the energy performances of 
buildings, described in the next paragraph, and b) some assumptions on buildings' retrofit costs 
illustrated in paragraph 2.3.   

The first main step of the research is to obtain reliable data for input in the data-driven method. 
Detecting and repairing dirty data is one of the perennial challenges in data analytics, and failure to do 
so can result in inaccurate analytics and unreliable decisions [16]. A by-product of this step is the 
clusterization of assets, allowing to group together of buildings built with similar components and 
systems. 

The second step is constructing a predictive model to compute the energy demand of buildings after 
the retrofit. In recent years, much research has successfully dealt with the prediction of building 
consumption using artificial intelligence. Most of the works in the literature use artificial neural 
networks (ANNs), an artificial intelligence technique also adopted in the present research. 

The last step of the research is the creation of economic retrofit scenarios. Many of the inputs required 
for this step are characterized by high uncertainty. This necessitated the use of statistical techniques to 
work with uncertainty. The most common of such techniques is Monte Carlo simulations [17]. The 
remaining parts of this paragraph give more details about the research's three steps. 
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Figure 1. research schema 

2.1.  Cleaning energy performance certificate data 
Some data on the energy certifications of buildings in the Regione Lombardia are available as open data 
on a portal set up by the Regione itself [18]. The open DB on energy labels includes data on the energy 
performance of buildings (both primary energy and net energy) and geometric information (e.g., volume, 
gross and net floor area, window area, etc.) [19]. It contains 1.52 million records, i.e., energy labels, of 
assets differing in intended use and type. Some residential, industrial, and commercial buildings focus 
on residential assets, flats, single-family buildings, villas, etc.  

The different preparation of individuals who created the energy certificates and the absence of control 
over the input data resulted in several inaccuracies in the database. Therefore, data must be cleaned 
before being used. Data cleaning is a standard process when large volumes of data have to be used. In 
this research, the data cleaning process, described in detail by [11], reduced the database by almost 75%. 
After that, data from single-family buildings investigated in this research were extracted, resulting in 
slightly more than 161,000 labels. 

The data from the CENED DB were exploited in the subsequent stages of the research using two 
different artificial intelligence technologies, as in Figure 1. The first of the two techniques used is 
unsupervised learning, in particular clustering, which is the process of grouping similar objects into 
different groups, or more precisely, the partitioning of a data set into subsets, so that the data in each 
subset according to some defined distance measure [20]. Using only some of the asset properties 
recorded in the CENED DB, those related to technological performance and primary energy demand, it 
was possible to identify eight clusters of similar assets. These are groups of assets characterized by 
similar technological performance of building envelope components and similar heating energy demand. 
As a result, it can be reasonably assumed that the building technologies used are similar. The next energy 
retrofit scenarios will be based on this subdivision into clusters of similar buildings. 

2.2.  Predicting post-retrofit energy performances 
Fundamentally, building energy prediction belongs to the time series forecasting or regression problem, 
and data-driven methods have drawn more attention recently due to their powerful ability to model 
complex relationships without expert knowledge. Among those methods, ANNs have proven to be one 
of the most suitable and potential approaches [21], [22]. ANNs are a subset of Machine Learning (ML) 
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techniques inspired by the biological neural network, which is advantageous in the strong ability to 
represent and model the nonlinear relationships between inputs and outputs.  

 
Table 1. The statistical description of the numerical features of the dataset used to train the ANN  

CENED DB 
Gross 

Volume 
[m3] 

Dispersing 
surface 

[m2] 

Glass 
over 
walls 

surface 
ratio 

Walls 
average 

transmittance 
[W/m2 K] 

Roofs 
average 

transmittance 
[W/m2 K] 

Windows 
average 

transmittance 
[W/m2 K] 

EPH 
[kWh 
/ m2y] 

Mean 708.71 413.86 0.073 0.873 0.840 3.043 168.24 
Standard 
Deviation 1’090.00 485.00 0.034 0.455 0.508 0.989 78.36 

Min 58.60 21.38 0.001 0.010 0.001 0.629 0.02 

Q
ua

nt
ile

 

5% 174.90 106.04 0.035 0.244 0.205 1.385 40.69 
25% 292.68 187.16 0.052 0.503 0.389 2.302 106.01 
50% 424.00 280.51 0.066 0.810 0.700 3.230 169.46 
75% 642.91 438.66 0.085 1.197 1.300 3.382 235.37 
95% 2’284.02 1’213.87 0.131 1.634 1.700 4.920 287.35 

Max 9’999.00 11’330.62 0.540 2.604 6.897 6.478 300.00 
 
The first step in the implementation of an ANN model is the selection of meaningful features. These 

features must be a logical input set for the model; therefore, knowledge domain is a fundamental skill 
in this phase. In the CENED DB there are 44 other features, including the proposed ANN output, EPH. 
Many of them are not necessary to reliably predict the primary energy demand of the building. 
Describing the feature selection process is not in the scope of this article; here are the ones chosen: a) 
city name; b) year of construction; c) gross heated volume; d) dispersing surface; e) glass over walls 
surface ratio; f) walls average transmittance; g) roofs average transmittance; h) windows average 
transmittance. The first and the second are categorical variables, while the others are numerical variables 
whose statistical description is given in Table 1. 

The definition of the ANN architecture is the second step, and it consists of an iterative process in 
which an attempt is made to optimize the depth and density of the network layers while monitoring 
performance. Moreover, the model's performance depends on a set of hyper-parameters (optimizer, 
activation function, batch size) that were tuned to reach the minimum error level. Overall, the model 
used in this research consists of 6 layers and is described in Table 2. 

 
Table 2. ANN architecture. 

Layer (type) Output shape Parameters 
Normalization (None, 8) 17 

Dense (None, 256) 2304 
Dense (None, 128) 32896 
Dense (None, 128) 16512 
Dense (None, 64) 8256 
Dense (None, 1) 65 

2.3.  Simulating economic retrofit scenarios 
The ANN described in the previous paragraph provides the potential savings in terms of lower EPH that 
can be obtained from an energy retrofit intervention. This is the first but not the only data needed to 
create economic scenarios. These were created using the Life Cycle Costs (LCC) method as described 
in ASTM [23], [24], ISO [25], and EN [26] standards. The ASTM standards, in particular, provide the 
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formulae for calculating the LCC and other economic Key Performance Indicators (KPIs), including the 
one used in this research: the payback period (PB), i.e., the period required for the annual savings 
produced by the retrofit to equal the initial costs. 

LCC analysis is an economical method for evaluating a project or alternatives over a designated 
study period. A considerable amount of research uses LCC methods to assess the economic impacts of 
several energy efficiency measures for building design and renovation [6]. The method entails 
computing the LCC for alternative building designs or system specifications having the same purpose 
and then comparing them to determine which has the lowest LCC over the study period [23]. The LCC 
of an asset may be computed according to the following equation (1): 

 
𝑝𝑣𝐿𝐶𝐶 = 𝑝𝑣𝐼𝐶 + 𝑝𝑣𝑀 + 𝑝𝑣𝑅 + 𝑝𝑣𝐹 − 𝑝𝑣𝑆   (1) 

 
Where: 

𝑝𝑣𝐿𝐶𝐶 is the present value of the Life Cycle Costs LCC 
𝑝𝑣𝐼𝐶 is the present value of the Initial Cost IC  
𝑝𝑣𝑀  is the present value of maintenance and repairs (M) costs 
 𝑝𝑣𝑅  is the present value of the replacement (R) costs 
𝑝𝑣𝐹  is the present value of the fuel (F) costs  
𝑝𝑣𝑆  is the present value of the resale value (S) 

In Equation (1) all costs are discounted to the base time, i.e., their present value is used to compare 
similar objects. Two project alternatives, such as the pre and post-retrofit situation of a building, may 
also be compared through the payback period (PB), i.e., the time required for the cumulative benefits 
from an investment to pay back the investment cost and other accrued costs considering the time value 
of money [27]. The PB may be computed by solving equation (2): 

 
∑ ("!#$%!)

('())!
*"
+,' = 𝐶-    (2) 

 
Where: 

.𝐵+ − 𝐶0+1 is the net cash flow in year t computed as the difference between the dollar value 
of benefits in year t 𝐵+ minus the dollar value of costs in year t 𝐶0+. 
𝑖     is the discount rate per time period 
𝐶-     are the initial project investment costs 
 

Some simplifying assumptions can be adopted in calculating LCC and PB, given the goal of creating 
economic scenarios. The first simplification is to assume that the annual maintenance and repair costs 
𝑝𝑣𝑀 of the building in the post-retrofit condition are not very dissimilar to the pre-retrofit condition. 
This can be justified by considering that the higher costs of new systems maintenance are compensated 
by the decrease in maintenance costs of the building parts and the repairs of wear and tear damage of 
the old systems. A second simplification is obtained by considering the replacement costs 𝑝𝑣𝑅 equal in 
the two configurations, pre-, and post-retrofit. Finally, the residual value 𝑝𝑣𝑆 is always considered zero.  

The above assumptions allow the annual net cash flow to be computed as the difference between the 
pre-retrofit fuel cost minus the post-retrofit fuel cost. The fuel cost can be calculated as the product of 
EPH and the cost of fuel per kWh. Calculating the annual net cash flow and assumed values for the 
necessary economic and financial parameters needed (discount rate and inflation rate), it is possible to 
derive from equation (2) the maximum value of the initial investment (MI) such that the PB is as long 
as desired. If the actual retrofit cost for an asset is more than the computed MI the savings will be lower 
than the costs in the desired PB; otherwise, the benefit will pay back the retrofit cost during the PB. For 
each asset in the CENED DB, the maximum investments resulting in a PB of 15 or 25 years were 
computed to create the reference scenarios. 
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All inputs required to calculate MI are characterized by uncertainty, and many examples of 
representations of such inputs with probability distributions instead of deterministic values can be found 
in the literature. Monte Carlo (MC) simulations [28] can calculate MI by accounting for the effects of 
uncertainty in the input data. MC simulations may compute a probability distribution of MI; thus, a 
reliability value may be given for a predicted MI value. 

The economic retrofit scenarios may be defined by choosing a type of energy retrofit intervention 
and a PB. In this article, a retrofit intervention was chosen to bring all buildings to the best level in the 
CENED DB, i.e., energy class A, and MI was calculated for a PB of 15 years and one of 25 years. The 
following section details the results obtained. 

3.  Results 
This section presents the results obtained in the second and third steps that form the research method, as 
detailed in the previous section. The step of training and testing the ANN for post-retrofit EPH 
calculation is, at least in this context, insignificant since the results are the input for the next step and do 
not allow to derive useful information for the retrofit economic scenarios directly; here, the step is 
merely reported in very synthetic terms.  

 
Table 3. Clusters' description 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 
Uwalls Mean 1.296 0.943 0.683 0.343 1.148 1.211 1.205 1.186 
Uwalls Std 
Deviation 0.434 0.341 0.280 0.152 0.333 0.432 0.377 0.379 

Uroofs Mean 1.065 0.970 0.654 0.307 1.162 1.071 1.130 1.226 
Uroofs Std 
Deviation 0.519 0.433 0.330 0.177 0.450 0.520 0.473 0.490 

Uwindows Mean 3.529 3.335 2.831 1.708 3.738 3.495 3.665 3.715 

Uwindows Std 
Deviation 0.724 0.653 0.599 0.498 0.781 0.830 0.739 1.001 

EPH pre-
retrofit Mean 214.961 194.420 143.757 62.828 230.946 210.282 223.055 170.851 

EPH pre-
retrofit Std 
Deviation 

56.813 56.766 52.160 32.479 48.765 65.212 55.475 60.230 

EPH post-
retrofit Mean 41.254 35.689 35.212 35.670 36.592 39.902 38.438 25.248 

EPH post-
retrofit Std 
Deviation 

5.519 4.454 4.562 6.544 5.063 5.458 5.564 4.222 

 
The economic scenario creation is based on the convenience of a similar building cluster partitioning 

of the entire CENED DB. Each cluster, obtained with an unsupervised ML algorithm, represents a group 
of buildings with similar technological characteristics and performances. Table 3 shows, for each cluster, 
the average values and standard deviation of: a) average transmittance of the opaque envelope (W/m2K); 
b) average transmittance of roofs (W/m2K); c) average transmittance of windows and doors (W/m2K); 
d) pre-retrofit EPH (kWh/m2y); e) post-retrofit EPH (kWh/m2y) computed using the trained ANN. In 
Table 3, the considerable reduction in primary energy demand achieved by the retrofit can be seen. 

The second step is a practical application of LCC methodologies and relies on data quality and long-
term forecasts. Data uncertainty is a well-recognized matter associated with LCC methods [29]–[31] 
and affects both the data coming from the CENED DB and the saving forecasts made by the ANN in 
the previous step. Focusing on EPH forecasts, if the error terms (difference between observed and 
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predicted) are normally distributed, the standard deviation of ANN prediction is related to the MAE 
measured in the training phase as in Equation (3). 

𝜎 = 𝑀𝐴𝐸	 × 8.
/
    (3) 

 
The intrinsic uncertainty in the other economic parameters was modeled with probability 

distributions chosen according to the criteria set out in [6]. Fuel cost has been modeled by a Weibull 
distribution described with two parameters assumed as follows: scale = 0.12; shape = 1.5. The discount 
rate has been described using a triangular distribution as follows: min = 1%; mode = 4%; max = 7%. 
The inflation has been modeled by a Gaussian distribution with the following parameters: mean = 3%; 
standard deviation 1%. 

With the assumptions illustrated above regarding the input variables and using Equation (2) as 
described in section 2.3, an MC simulation was carried out for each asset in the eight clusters providing 
a statistical distribution of maximum investment values for the retrofit intervention in two payback 
period cases, 15 and 25 years. This MI value represents the maximum expenditure threshold for the 
energy retrofit intervention on a building to break even after 15 or 25 years. The statistical distributions 
of MI allow for the construction of economic scenarios for retrofit interventions. The number of assets 
for which the intervention is profitable—that is, whose payback period is at most 15 or 25 years—can 
be calculated for various thresholds of the cost of the energy retrofit intervention by selecting from the 
statistical distribution of MI a value with a probability of error equal to a specific threshold (in the 
research, this threshold is 15%, i.e., a value of MI such that the reliability is 85%). 

The result of this analysis that led to the definition of economic scenarios is illustrated in Figure 2 
for a payback period of 15 years and in Figure 3 for a payback period of 25 years. Both figures are 
divided into two parts. In part a) the X-axis shows the value of MI, and the Y-axis the number of assets 
for which energy retrofit is worthwhile for each value of MI. Eight curves are represented in the graph, 
one for each building cluster. Part b) shows for each cluster (X-axis) the number of assets that it is 
convenient to retrofit set ten MI thresholds. Thresholds are identified with a color that changes from the 
blue for the lowest threshold to red for the threshold with the highest MI value through green and yellow 
for intermediate thresholds. The threshold values are: A – MI < 21.9 Euro/m2; B – MI < 43.8 Euro/m2; 
C – MI < 65.7 Euro/m2; D – MI < 87.6 Euro/m2; E – MI < 109.5 Euro/m2; F – MI < 131.4 Euro/m2; G 
– MI < 153.3 Euro/m2; H – MI < 175.2 Euro/m2; I – MI < 197.1 Euro/m2; L – MI <= 219 Euro/m2. It is 
noticeable that for an MI greater than 219 Euro/m2, no energy retrofit intervention on a building in the 
Regione Lombardia building stock has a payback period of fewer than 25 years. 

The curves illustrating the trend in the number of assets for which energy retrofit is cost-effective as 
a function of MI, part a) of Figure 2 and Figure 3, show that for some clusters, e.g., Cluster 2 and 3, the 
number of assets that can be retrofitted varies rapidly as a function of MI, i.e., the slope of the curves is 
stepping in the first part. These clusters contain buildings with high energy performance, i.e., with a low 
EPH, so with high MI values, there is no economic viability of retrofitting. For example, for Cluster 3, 
almost 90% of the assets have an MI below 60 Euro/m2 when considering a PB of 15 years. This means 
that an energy retrofit is not cost-effective if it costs more than 60 Euro/m2 for 90% of the assets in the 
cluster, i.e., more than 33'600 assets in the whole region. Conversely, part b) of Figure 2 and Figure 3 
shows that for some clusters, e.g., clusters 1, 5, and 6, even with high MIs, energy retrofit remains cost-
effective for certain buildings. In cluster 1, for example, there are 1549 buildings for which an energy 
retrofit is cost-effective up to an expenditure threshold of G, i.e., 105 Euro/m2. In part a) of the two 
figures representing economic retrofit scenarios with PB equal to 15 and 25 years, there is a grey area 
starting from an MI equal to 120 Euro/m2. This threshold value is significant for the research as it 
corresponds to 10% of the maximum eligible expenditure to benefit from the economic incentives 
granted by the Italian Government for retrofit interventions. From the figures, it can be seen that there 
is no economic advantage for any asset, regardless of the PB value, if the retrofit cost is equal to the 
maximum eligible expenditure (1,200 Euro/m2). 
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Eventually, Table 4 summarises the research results by providing the basic parameters of the 
computed economic scenarios. It shows, for each cluster and the two payback periods examined, the 
number of assets with a maximum energy retrofit cost of 120 Euro/m2, both as an absolute value and a 
percentage value. For example, it is cost-effective to retrofit 20'204 buildings, equal to 73.5% of cluster 
5 if PB is 15 years, and 10'325 equal to 33.1% if PB is 25 years. Because the cumulative value of the 
benefits, the term on the left in Equation 2, is higher at the same final performance of the building, i.e. 
at the same EPH post retrofit, the number of buildings for which an energy retrofit costing 120 Euro/m2 
is higher than for longer PBs, 25 years in the case of the table, means that the same retrofit can pay off 
higher costs, i.e. have a higher MI. 

 
Table 4. Assets worth retrofitting according to an investment of 120 Euro/m2 and a payback period of 

15 and 25 years 

 
Cluster 1 Cluster 3 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 

PBP 15 10841 33941 36986 19858 20204 4879 12667 5344 
75.6% 100.0% 100.0% 100.0% 64.7% 73.5% 100.0% 100.0% 

PBP 25 6766 20452 34824 19858 10325 3012 12617 5332 
47.2% 60.3% 94.2% 100.0% 33.1% 45.3% 99.6% 99.8% 

 

4.  Discussion and conclusions 
Data-driven methods are gaining more and more interest from scientists and practitioners in the 
construction industry as the digitization of the sector makes available a large amount of data that could 
not be obtained before. Among these, data on Energy Performance Certificates (EPC), which all 
European states are collecting, are certainly among the most interesting. The European Union is 
attempting to homogenize these data, ensuring that the suggested approach may be used in other parts 
of the EU. However, the method suffers greatly from data quality like any data-driven method; therefore, 
the data cleaning process must be strengthened to extend to other regions or countries. 

The case study showed that the proposed data-driven method works but highlighted that, especially 
in the post-retrofit EPH prediction phase, the more buildings are used to train the neural network, the 
more accurate the data must be. Large datasets such as the one in the case study put the predictive 
capabilities of ANNs to the test if the input data are unreliable. Therefore, before extending the dataset 
for training the network to other Italian regions or states, it is necessary to homogenize and improve the 
data quality; otherwise, the mean absolute error (MAE) is likely to increase disproportionately. 

In conclusion, this article describes an innovative data-driven method for generating economic 
reference scenarios for energy retrofits of the large building stock. This method is classified as Top-
Down in the scientific literature because it uses large datasets created and maintained by public 
authorities. The method is based on machine learning techniques: unsupervised learning for clustering 
buildings and supervised learning, specifically an artificial neural network, to predict the primary energy 
demand of buildings after the retrofit. The economic scenarios are generated based on life cycle cost 
and consider the uncertainty associated with the inputs using Monte Carlo simulations to calculate the 
maximum cost threshold for a retrofit intervention to have the desired payback period. The method 
proved valid when applied to a large building stock, namely single-family residential buildings in the 
Lombardy Region. 

A by-product of the case study is the proof that no energy retrofit intervention will ever have a break 
even if the investment costs are close to the cost threshold set by the Italian Government to benefit the 
economic incentives, i.e., when incentives will end the energy retrofit market in Italy will stop.  
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a) 

 
b)

 
Figure 2 retrofit scenarios assuming a payback period of 15 years. Figure shows the number of assets 

worth retrofitting according to the maximum investment as a) a cumulative line or b) a bar 
highlighting 10 investment thresholds 
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a) 
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Figure 3. Retrofit scenarios assuming a payback period of 25 years. Figure shows the number of 
assets worth retrofitting according to the maximum investment as a) a cumulative line or b) a bar 

highlighting 10 investment thresholds 
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