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Abstract—In mission-critical verticals such as automated driv-
ing, 5G-advanced networks must provide centimeter-level dy-
namic positioning along with ultra-reliable low-latency com-
munication services. Massive Multiple-Input Multiple-Output
(mMIMO) and millimeter waves (mmWave) are the key en-
ablers, allowing high accuracy angle and delay estimation. Still,
extracting such information from highly-dimensional Channel
Impulse Responses (CIRs) results in a complex task, due to
channel sparsity and intermittent blockage. In this paper we
focus on non-line-of-sight (NLOS) identification from CIR data,
proposing a Deep Autoencoding Kernel Density Model (DAKDM)
to characterize the statistics of the channel latent features. We
formulate the problem as a semi-supervised anomaly detection
task in which only LOS samples, i.e., normal data, are adopted for
training. DAKDM is a single-stage training model that takes as
input the full CIR thanks to an AutoEncoder (AE) structure. The
proposed method is able to learn the latent distribution by means
of a Kernel Density Estimator (KDE) in combination with a deep
learning likelihood network. We validate the proposed solution in
a 5G Urban micro (UMi) vehicular scenario. Results show that
the proposed model can significantly outperform conventional
algorithms and obtain similar performances to variational Bayes
algorithms at one tenth of the inference time.

Index Terms—Deep autoencoding kernel density model,
anomaly detection, CIR, 5G, deep learning, NLOS identification.

I. INTRODUCTION

The newest release of the 5th generation (5G) of cellular

communication systems, namely the 3rd generation partner-

ship project (3GPP) Release 16, also known as new ra-

dio (NR), introduces for the first time high-precision posi-

tioning functionalities into cellular networks. Location ser-

vices (LCS) are extended from regulatory services to roam-

ing and commercial capabilities [1]–[4]. Higher frequencies,

bandwidth improvements and massive-multiple-input multiple-

output (MIMO) technologies are the key feature enablers for
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radio access technology (RAT)-dependent dynamic position-

ing [2]–[5] and location awareness of connected nodes [6]–

[11]. The major fields of application can be found in target

tracking [12]–[14], internet-of-things (IoT) [15]–[17], crowd

sensing [18], [19], smart environments [20] and industrial

automation [21]. Strict requirements are foreseen for the most

critical services such as automated driving [22], [23]. These

include a lateral and longitudinal positioning error of 10 and

50 cm [24], respectively, and a latency down to 5 ms for

fully autonomous driving vehicles [25]. Next 5G releases,

also known as 5G-Advanced and beyond, will have to meet

such challenging localization requirements while coping with

complex propagation conditions, due to the extreme path-loss

and frequent blockage conditions experienced by millimeter

waves (mmWave).

These problems have been widely studied in the field of

localization and navigation focusing on fundamental perfor-

mance limits [26]–[31], algorithm design [32]–[38], network

operation [39]–[42], and network experimentation [43]–[48].

It is clear that legacy solutions for positioning, based on

conventional approaches for multi-lateration/angulation, will

struggle to deal with rapidly fading channels and intermittent

blockage. Geometrical approaches rely in fact on line-of-sight

(LOS) condition for estimating directions and ranges of the

positioning reference signals. Real-time detection and predic-

tion of non-LOS (NLOS) links is mandatory to mitigate the

false localization due to biased range/angle estimates. Since

the environment significantly impacts on the propagation, data-

driven techniques have so far produced very encouraging

outcomes in NLOS detection [48], [49]. Therefore, machine

learning (ML) is expected to play a crucial role in future gen-

eration networks [50], [51] and standard compliant solutions

are foreseen already from Release 17-18 [52].

Solutions for blockage detection should exploit the whole

power-delay-angle profile of the channel impulse response

(CIR) as this embeds a wide range of geographical data and

propagation characteristics [53]. In 5G industrial use-cases,

e.g., automated driving, historical CIR data are largely avail-

able in roadside units that receive continuous information from

geolocalized vehicles [54]–[57]. ML algorithms could easily

exploit these data for automatic NLOS detection. However,

since such signals are highly dependent on the environment,

ML approaches for detecting NLOS using CIRs frequently

fail to generalize to varied contexts [58]. Moreover, massive

MIMO and very high frequencies of advanced-5G networks

will produce high dimensional channel responses which may

be complex to handle. An example of channel power-delay-

angle-profile is shown in Fig. 1, for a 5G urban scenario with
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Fig. 1. Sparse channel representation in azimuth φ, elevation θ and delay τ
domain.

carrier frequency 30 GHz, bandwidth 400 MHz and uniform

planar antenna array receiver of 64 elements. The sparse

power delay-angle profile of the channel is a signature of the

user location and should be exploited to infer the visibility

conditions of the base station.

In this paper, we propose an innovative strategy to char-

acterize the sparsity of the mmWave MIMO channel and

approximate whatever high-dimensional distribution in a fast

and compact way. To demonstrate the efficacy of the method,

we address the problem of NLOS identification, exclusively

employing LOS CIRs for training. This is done because LOS

CIRs are easier to extract in training procedures and present

more peculiar distributions, i.e., usually the direct path is the

dominant factor in a Rician fading channel. In addition, this

facilitates the deployment and results in higher generalization

compared to other systems that require both classes for training

(i.e., LOS and NLOS). Therefore, we treat the problem as an

anomaly detection case in which LOS samples are considered

as normal samples, while NLOS samples are anomalous.

II. RELATED WORKS

In this section, we first review the literature starting from

early works on ultra wide-band (UWB) systems (Sec. II-A)

and then we extend the analysis to ML-based algorithms (Sec.

II-B). Next, we review the state of the art on anomaly detection

focusing on neural network (NN) approaches (Sec. II-C) and

we discuss the original contributions provided in the paper

(Sec. II-D).

A. NLOS Identification

Existing techniques for NLOS identification/detection prob-

lem can be mainly divided into three major categories: based

on range estimates, based on position estimates and based on

channel statistics. The first group of methods, i.e., based on

range estimates, measures the running variance of the ranges

and applies a threshold using pre-computed variance statistics

[59]. The techniques based on position estimates are mainly

map-based, i.e., they observe the user equipment (UE) position

in relation to the geometry of the environment [60], [61].

These first two categories are either too oversimplified or

require perfect knowledge of the UE’s position and of the

map geometry.

The third class relies on channel statistics, such as ampli-

tude, mean and root-mean-square delay. In case these statistics

are known at-priori, a joint-likelihood ratio test can be adopted

for hypothesis selection [62], [63] or as soft information in

weighted least squares (WLS) algorithms. The limitations of

this last class of existing techniques include experiencing

delays while gathering channel statistics to create a database

and determining the complex combined probability distribu-

tions of necessary features for statistical methods. ML-based

approaches overcome these drawbacks by avoiding statistical

modeling of the input features.

B. ML for NLOS Identification

ML approaches to NLOS identification can be divided into:

supervised, unsupervised and semi-supervised learning. First

works (i.e., supervised learning) use hand-crafted channel

state information (CSI) features such as energy, maximum

rise time, kurtosis, root-mean-square-delay spread, maximum

amplitude, time of flight (ToF), Ricean-K-factor and mean

excess delay [48], [64]–[66]. These deterministic features have

a solid theoretical basis and capture the differences between

LOS and NLOS conditions in terms of power and delay

attributes, as well as the strength of the dominant signal

component relative to the multipath components. The most

popular adopted ML models are support vector machines

(SVMs), relevance vector machines (RVMs), random forests

(RFs) and Gaussian processes (GP). These methods can also

be used to directly mitigate the range bias by applying a

regression problem to the ranging-error estimates [49], [67].

Despite achieving good results, these methods highly de-

pend on the pre-selected features which limit their potential.

On the other hand, deep learning (DL) approaches can directly

learn the most suitable combination of features (typically non-

linear) using as input the full CIR and producing as output

the desired classification. First works in this direction can be

found in [68]–[70] using convolutional neural networks (CNN)

to perform feature extractions in grid-like data where local

patterns and structures are critical. Some recent studies [71],

[72] directly exploit the automatic feature extraction of the

CNN in order to locate a target by performing a fingerprint

training. A main limit is the need of extensive measurement

campaigns and time-consuming labeling of data. Moreover,

supervised learning approaches require updating the training

database when conditions are changed and need representative

samples of all the possible NLOS anomalies.

A solution could be permitting not to have labels at all and

manage the problem as an unsupervised one. Authors in [73]

fit a Gaussian mixture model (GMM) with two components

(one for LOS and one for NLOS) using some key hand-

crafted features of the channel and output the classification
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according to the magnitude of the membership weights. While

unsupervised techniques are very promising, unfortunately

they do not achieve very high performances, due to lack of

knowledge or lack of structured data.

The third class of semi-supervised approaches has the

advantage of not needing examples of all the possible anoma-

lies as supervised learning. Moreover, powerful DL semi-

supervised methods focus on learning one single distribution

which, in many cases, is easier than a separating boundary

between two distributions [74]. Works that adopt this strategy

can be found in [58], [75] which adopt the Pearson correlation

coefficient and one-class SVM to perform NLOS classifica-

tion, respectively. A very recent work [76] employs variational

autoencoder (VAE) to perform feature extraction and imposes

a Gaussian distribution to the latent features in order to ease

learning of distribution of normal samples. The score adopted

to define the probability of NLOS is then used to estimate

the bias and variance of time-based measurements. Although

the idea of using an autoencoder (AE) to have a compact

representation of the channel can give very good results, the

usage of sampling-based methods to perform the prediction

has the main drawback of not being suitable for real-time

applications.

C. Neural Networks for Anomaly Detection

Anomaly detection is frequently employed in problems

where we have a large amount of data from normal circum-

stances but little data from abnormal ones. Here, on the other

hand, we consider the setting of semi-supervised learning in

which normal training data only are provided. In this case,

the problem turns out to be locating those samples that do

not conform to the normal ones or a model explaining normal

ones. Thus, the objective is to learn in a finer way as possible

the distribution related to the normal samples.

To this aim, many works focus on end-to-end models to

directly produce the classification using one-class neural net-

works (OC-NN) [77]. On the other hand, generative models are

increasing in popularity with generative adversarial network

(GAN) and VAE [78]. However, GANs are problematic to

control in the training phase [79] and VAEs have the downside

of requiring sampling, which is unfeasible under certain use

cases, and furthermore experiments have shown that they tend

to perform worse than AE [80], [81].

Reconstruction methods, as AE, are the most widely used

DL techniques for anomaly detection in images [82]. Usually,

they are used in combination with density-based methods, as

kernel density estimation (KDE) [83], for score estimation by

first performing dimensionality reduction, and then applying

density estimation to the latent low-dimensional space. How-

ever, these two-steps methods restrict the modification to the

dimensionality reduction since fine-tuning is difficult in well-

trained AE. To solve this problem, authors in [84] propose

a deep autoencoding Gaussian mixture model (DAGMM) to

mutually learn the latent feature representations and their

density under the GMM framework by mixture membership

estimation. Even though their approach is direct and does not

require two step-training, GMM may not be able to fully

represent the latent distribution of normal samples and are

subject to singularity problems. On the other hand, KDE are

perfect to represent complex distributions, but they are very

slow in evaluation and require storing the whole dataset for

inference.

D. Contributions

In this paper, we address the problem of NLOS identifi-

cation in 5G-advanced cellular systems using an innovative

approach that allows to overcome the aforementioned limita-

tions. The main contributions are the following:

• We propose a feature extraction method that exploits the

angle-delay channel power matrix (ADCPM) as input data

and allows to characterize the distributions of the latent

features of the sparse space-time channel in massive MIMO

cellular systems using orthogonal frequency division multi-

plexing (OFDM).

• We design NLOS identification as a semi-supervised

anomaly-detection problem by exploiting a deep autoen-

coding kernel density model (DAKDM). The DL model

allows to identify the few key parameters that describe

the sparse space-time channel response and to learn the

distributions of such latent features from training data. The

proposed approach is able to jointly learn the sparse channel

representation and approximate the KDE likelihood in a

single training stage without storing the dataset.

• We simulate a realistic 5G-advanced MIMO-OFDM vehic-

ular scenario, according to the standard specifications [85],

using a Matlab ray-tracing software [86]. The scenario is

composed of multiple vehicular UEs created with simulation

of urban mobility (SUMO) software [87].

The paper is organized as follows: Sec. III introduces the

channel model for a multi-user MIMO-OFDM system and

its extracted fingerprinting. Sec. IV provides the context of

anomaly detection applied to the NLOS identification and de-

fines the proposed DAKDM solution. Sec. V is devoted to the

description of the simulated 5G scenario and to the comparison

with state-of-the-art anomaly detection DL methods. Finally,

Sec. VI draws the conclusion.

Notation

Random variables are displayed in sans serif, upright fonts;

their realizations in serif, italic fonts. Vectors and matrices are

denoted by bold lowercase and uppercase letters, respectively.

For example, a random variable and its realization are denoted

by x and x; a random vector and its realization are denoted by

x and x; a random matrix and its realization are denoted by X

and X , respectively. Random sets and their realizations are de-

noted by up-right sans serif and calligraphic font, respectively.

For example, a random set and its realization are denoted by

X and X , respectively. The function px(x), and simply p(x)
when there is no ambiguity, denotes the probability density

function (PDF) of x. j =
√
−1 denotes the imaginary unit.

The notation X
T, X∗ and X

H indicate the matrix transposition,

conjugation and conjugate transposition. The Kronecker and

the Hadamard product between two matrices are denoted
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Fig. 2. Uniform planar array with M and N antennas in x and z direc-
tions, respectively. The DoA is highlighted and decomposed into azimuth
0 ⩽ φk,p < π and elevation 0 ⩽ θk,p < π.

with the symbols ⊗ and ⊙, respectively. With the notation

x ∼ CN (µ, σ2) we indicate a complex Gaussian random

variable x with mean µ and standard deviation σ. We use E{·}
and V{·} to denote the expectation and the variance of random

variable, respectively. R and C stand for the set of real and

complex numbers, respectively. Re(x) and Im(x) are the real

and complex part of the complex number x, respectively. ⌊x⌋
indicates the largest integer not greater than x, while δ(·) and

δ[·] are the Dirac delta and Kronecker functions, respectively.

III. SYSTEM MODEL

A. Channel Model

We consider a multi-user mmWave MIMO-OFDM system

in which K UEs transmit in uplink direction over a bandwidth

B at carrier wavelength λc. The base station (BS)’s cell panel

is equipped with an uniform planar array (UPA) with N ×M
isotropic antennas. The antenna spacings are dh and dv, over

the horizontal and vertical dimension, respectively. We assume

that the UE transmits using only one logical port and a number

of physical antennas unknown at the BS. Between the UE

k = 1, . . . ,K and the BS, we consider a multipath channel

with Nk paths with ToF τk,p for path p = 1, . . . , Nk. The

DoAs from the k-th UE and of the p-th path are divided into

azimuth 0 ⩽ φk,p < π and elevation 0 ⩽ θk,p < π. A picture

of the panel array can be found in Fig. 2. We restrict the

azimuth up to π since we consider an UPA antenna. For tri-

sectorial BSs the angular coverage is reduced to 2π/3.

The OFDM modulation is performed over Nc sub-carriers,

sampling interval Ts and symbol duration Tc = NcTs. Con-

sidering a baseband representation of the signal, we define the

frequency at the ℓ-th sub-carrier as fℓ =
ℓ
Tc

, ℓ = 0, . . . , Nc−1.

The cyclic-prefix duration is Tg = NgTs and it is assumed

to be larger than the maximum channel delay for all UEs

τMAX = max
k,p
τk,p. Consequently, we define with rk,p = ⌊ τk,p

Ts
⌋

the temporally resolvable propagation delay of the p-th path

with respect to the k-th UE. Thus, the baseband CIR of user

k is modelled as [88]:

hk(τ) =

Nk
∑

p=1

ak,p βk,p e(θk,p,φk,p)e
−j2π dk,p

λc δ(τ − τk,p), (1)

where the p-th path is characterized by a complex path gain

αk,p = ak,pe
−j2π dk,p

λc βk,p with βk,p = ej2πνk,pt due to the

Doppler frequency shift, a traveled distance dk,p = cτk,p,

a pulse waveform approximated with a Dirac delta function

δ(τ − τk,p) and an array response vector e(θk,p,φk,p) ∈
C
MN . For p > 1, the p-th path is αk,p = ak,pe

jψk,p ,

with ψk,p = 2πνk,pt− 2π
dk,p

λc
and αk,p ∼ CN (0, σ2

k,p). The

first path p = 0 is αk,0 ∼ CN (s0ak,0e
jψk,0 , σ2

k,0) where

it is s0 = 1 for LOS (i.e., with a deterministic direct

path contribution and Rician fading) and s0 = 0 for NLOS

(i.e., Rayleigh fading). Additionally, we consider the Doppler-

related rotation to be almost constant over time interval τMAX

and that the complex amplitudes αk,p associated to different

paths as uncorrelated, according to the wide-sense stationary

uncorrelated scattering model. At the BS, the array response

vector can be decomposed into [89]:

e(θk,p,φk,p) = ev(θk,p)⊗ eh(θk,p,φk,p), (2)

where the M × 1 response vector to the elevation angle is:

ev(θk,p) = [e−j2π(m−1) dv
λc

cos(θk,p)]Mm=1 (3)

and the N × 1 response vector to the azimuth angle is:

eh(θk,p,φk,p) = [e−j2π(n−1)
dh
λc

sin(θk,p)cos(φk,p)]Nn=1. (4)

Adopting an OFDM modulation with sampling at t = nTs,
the channel frequency response (CFR) at the ℓ-th sub-carrier

can be written as the discrete Fourier transform (DFT) of the

CIR of the different paths [90], [91]:

Hk,ℓ ≈
Ng−1
∑

n=0

Nk
∑

p=1

αk,pe(θk,p,φk,p)δ[n− rk,p]e
−j2πτk,pfℓ

=

Nk
∑

p=1

αk,pe(θk,p,φk,p)e
−j2π ℓrk,p

Nc , (5)

where the approximation holds for ToFs multiple of the

sampling interval Ts or equivalently for Ng → ∞. Finally,

the space-frequency channel response matrix (SFCRM) Hk ∈
C
MN×Nc of the k-th UE is obtained as:

Hk = [Hk,0 Hk,1 . . . Hk,Nc−1], (6)

which will be used in the next section to extract the channel

fingerprints.

B. Channel Fingerprints

To detect the propagation conditions that generated the

response (5), classifying them in LOS or NLOS, we propose

to analyze the CFR in the angle-delay domain, which eases the

recognition of the clustered multipath components associated

to the direct (LOS) or secondary (NLOS) macro-paths. We

thereby convert the SFCRM (6) into the domain of the angle

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2023.3273769

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Camajori Tedeschini et al.: ON THE LATENT SPACE OF MMWAVE MIMO CHANNELS FOR NLOS IDENTIFICATION IN 5G-ADVANCED SYSTEMS 5

of arrival (AoA) and the ToF, by introducing the angle-delay

channel response matrix (ADCRM). We define with VM ∈
C
M×M and VN ∈ C

N×N the phase-shifted DFT matrices

[92] where [VM ]u,v = 1√
M
e−j2π

u(v−M
2

)

M and [VN ]u,v =

1√
N
e−j2π

u(v−N
2

)

N . Then, we denote by F ∈ C
Nc×Ng the

matrix formed by the first Ng columns of Nc dimensional

unitary DFT matrix where [F ]u,v = 1√
Nc
e−j2π

uv
Nc . ADCRM

is computed as [93]:

Gk =
1√

MNNc

(V H
M ⊗ V

H
N )HkF

∗ ∈ C
MN×Ng , (7)

where (V H
M ⊗V

H
N ) and F

∗ project the SFCRM into the angle

and delay domain, respectively.

For NLOS identification, we propose to use the ADCRM

to compute the average power of the channel components that

are collected into the ADCPM defined as:

Pk = E{Gk ⊙ G
∗
k} ∈ C

MN×Ng , (8)

where [Pk]i,r = E
{

|[Gk]i,r|2
}

. We recall here that the

ADCPM holds some important asymptotic properties, as for

N , M and Ng → ∞, it tends to be a sparse matrix with

elements [Pk]i,r matching the i-th AoA and the r-th ToF [93]:

lim
M,N,Ng→∞

[Pk]i,r =

Nk
∑

p=1

σ2
k,pδ[i−mk,pN − nk,p]δ[r − rk,p],

(9)

where mk,pN + nk,p denotes the index of the i-th AoA and

rk,p the index of the r-th ToF. Note that the angle and delay

indexes mk,pN + nk,p and rk,p, are two distinct and discrete

quantities which relates to the physical AoA and ToF in the

following way. The ToF can be approximated as τk,p = rk,pTs,
while the azimuth φk,p and elevation θk,p can be written as

φk,p = arccos (
mk,p−M

2

M
λc

dh
) and θk,p = arccos (

nk,p−N
2

N
λc

dv
),

respectively. Consequently, working in the transformed angle-

delay domain allows the DL model to learn the location-

dependent features and, therefore, the statistics of LOS data

to be used for blockage prediction.

Regarding the complexity overhead due to the ADCPM

computation, we observe that Pk is obtained from the chan-

nel matrix Hk which is always estimated for communica-

tions purposes. Therefore the only overhead is the compu-

tation of (7), which can be efficiently performed using the

2D-Inverse Fast FT (IFFT), with an overall complexity of

O(MNNg · log(MNNg)).

IV. BLOCKAGE DETECTION METHODOLOGY

In this section, we first introduce the problem formulation

of the semi-supervised setting which serves for the proposed

DL model’s foundation. Then, we describe the network input,

i.e., the ADCPM fingerprint, followed by the definition of the

DAKDM. Finally, we define the loss function used to train the

model.
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Fig. 3. Example of a sparse ADCPM with M = N = 8 antennas at the
BS and Ng = 352 cyclic prefix duration in terms of sampling intervals Ts,
simulated in an urban road environment with ray-tracing software.

A. Problem Formulation

We consider a semi-supervised setting in which we are

given a training dataset S train comprising only normal data,

i.e., Xi sampled from pX, and a smaller testing data S test

comprising normal (label yi = 0) and anomalous data (label

yi = 1). Here, we refer to LOS samples as normal, while

we consider NLOS samples as anomalous. Nevertheless, the

choice of normal/anomalous condition is arbitrary and could

be customized to the specific scenario, as the proposed model

would still be valid in both cases, i.e., LOS or NLOS samples

as normal data. Usually, the high-dimensional distribution

of normal samples pX is complex and unknown. Thus, the

objective is to first elaborate S train such that we can learn

its manifold distribution and, subsequently, during inference

time, identify the anomalous samples in S test as outliers. The

mapping of the high-dimensional data is carried out using a

DL model f(·) that learns the normal data distribution while

also attempting to reduce an anomaly score A(Xi) given as

output. The higher the anomaly score of A(Xi) for a test

sample Xi, the higher probability that Xi is anomalous. For

evaluation, a threshold (η) criterion is applied, i.e., A(Xi) > η
denotes an anomaly, based on a predefined false positive rate

(FPR).

B. DL Input

We employ (9) as input to the neural network for NLOS

identification, as this matrix represents the clustered multipath

structure of the channel and embeds the information on

LOS/NLOS propagation conditions that we are interested to

extract. Moreover, the sparsity of the matrix helps the CNN

in features extraction since the first layers of CNN are usually

sparse and they gather the more discriminant features [94]. In

Fig. 3 we can see the ADCPM Pk composed by MN angle

directions and Ng delay samples. The sparsity of the matrix

is well-visible even without a huge number of antennas or
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Fig. 4. Structure of the proposed deep autoencoding kernel density model
(DAKDM) composed by an autoencoder (AE), a kernel density estimation
(KDE) and a likelihood network.

sample’s resolution. From now on, for simplicity of notation,

we drop the index k related to user k and we denote the i-th
input sample as Xi = Pi.

C. Deep Autoencoding Kernel Density Model

The proposed DAKDM system for NLOS identification

involves three main elements: an AE, a KDE model and a

likelihood network. The model can be seen in Fig. 4. The

AE comprises an encoder E(·), that elaborates the i-th input

Xi ∈ R
MN×Ng into a latent representation zi ∈ R

m, and

a decoder D(·), that carries out an inverse transformation to

return to the original high-dimensional distribution, obtaining

X̂i. The latent distribution pz may have any form, i.e., it is not

constrained to belong to any specific PDF family. This makes

the proposed approach general enough to be applied to any

channel environment.

The distribution pz is automatically learned by the KDE

block of the system (see Fig. 4). The KDE is a non-parametric

method to estimate any distribution directly from a set of

samples drawn from it. Given a set of samples {zj}Ns
j=1 from

pz, we define the KDE K(·) applied to sample zi as [95]:

K(zi|{zj}Ns
j=1) =

1

Ns

Ns
∑

j=1

kh(zi − zj), (10)

where kh : Rm → R is a kernel function with bandwidth h
which regulates the balance between the estimator’s variance

and bias. The kernel employed in this paper is the widely

known Gaussian kernel:

kh(x) = e−
|x|2

2h2 . (11)

The output of a KDE, trained only with normal latent samples

{zj}Ns
j=1, can be seen as the likelihood of the test sample to

belong to the normal distribution. Thus, the derived anomaly

score can be obtained as AK(zi) = −log(K(zi|{zj}Ns
j=1)).

However, the downsides of KDE lie in the fact that it requires

Algorithm 1 Mini-batch training procedure.

1: procedure TRAINING(batch size Ns) ▷ Batch number j
2: for i = 1, 2, ..., Ns do

3: Encode incoming signal Xi: zi = E(Xi).
4: Compute anomaly score: AL(zi) = −log(L(zi)).
5: Compute KDE prediction:

AK(zi) = −log(K(zji |{zj−1
l }Ns

l=1)).
6: end for

7: Compute loss function L
j
tot.

8: Perform backward-pass.

9: end procedure

storing all the training dataset to estimate the density function

at inference time.

The idea to solve this issue is to first reduce the number

of samples Ns used to estimate the distribution, and then

approximate the output of the KDE with a NN that is much

faster in the prediction. We call the NN to estimate the output

of the KDE as likelihood network and denote it with L(·).
The logical steps for the training procedure with a batch of

Ns samples are described in Algorithm 1. First, we encode the

input with the encoder. Then, we extract the anomaly score

as A(Xi) ≜ AL(zi) = −log(L(zi)) and we compute the

KDE prediction AK(zi). Finally, we compute the loss function

which is described in Sec. IV-D and perform the backward

pass. The key aspect here is that the KDE output is computed

using the previous mini-batch, i.e., K(zji |{zj−1
l }Ns

l=1). This

permits to avoid storing all the training dataset to estimate the

density function. The underlying assumption is that the batch

size Ns is able to give a good representation of the likelihood

through the KDE. Formally:

KL(K(zi|{zj}Ns
j=1)∥p(zi)) ⋍ 0, (12)

where KL(·∥·) is the Kullback-Leibler divergence. On the

contrary, at inference time, we just check if the anomaly score

AL(zi) > η. This implies that, during deployment, we can

completely discard both the decoder D(·) and the KDE K(·),
just relying on the faster prediction of the encoder E(·) and

likelihood network L(·).

D. Loss Function

The objective of the loss function is to first induce the

DAKDM to learn the latent representation of normal data

and then to approximate AK(zi) with AL(zi). To this aim,

we consider the training dataset S train = {Bj}Nb
j=1, where

Nb is the number of batches in the training dataset and

Bj = {Xj
i }Ns
i=1 is the j-th mini-batch with Ns samples. We

define the total loss related to mini-batch j as follows:

L
j
tot =

1

Ns

Ns
∑

i=1

Lrec(X
j
i , X̂

j
i ) (13)

+
wKL

Ns

Ns
∑

i=1

KLpoint(L(zji )∥K(zji |{zj−1
l }Ns

l=1))

+
wlik

Ns

Ns
∑

i=1

(−logK(zji |{zj−1
l }Ns

l=1)),
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where Lrec(X
j
i , X̂

j
i ) = ∥Xj

i − X̂
j
i ∥2 is the loss function

that describes the reconstruction error given by the AE, wKL

and wlik are the weighting parameters that control how much

the single losses affect the objective function as a whole and

KLpoint is the pointwise KL-divergence defined as:

KLpoint(x∥y) = y log
(y

x

)

. (14)

With the second right-hand side of (13), we exploit the power

of the likelihood network to learn the KDE output trained

with the previous mini-batch. The choice of the loss function

is motivated by the fact that, if assumption (12) holds, then

we can write the contribution of zi to the anomaly score with

the following upper-bound [96]:

−log p(zi) ⩽ −logK(zi|{zj}Ns
j=1) (15)

+ KL(L(p(zi)|zi)∥p(K(zi|{zj}Ns
j=1)|zi)),

where L(p(zi)|zi) is the likelihood network that provides the

probability of zi given zi. For the proof of the upper-bound

(15), please refer to Appendix A. We directly insert the first

right-hand side of (15) in the loss function to induce the AE

to decrease the anomaly score, thus increasing the likelihood.

On the other hand, we do not have a KDE that provides

the probability of its predictions, therefore we consider the

p(K(zi|{zj}Ns
j=1)|zi) as a single deterministic value that we

approximate through the likelihood network.

V. SIMULATION EXPERIMENTS

A. 5G NR Network Simulation

To evaluate the proposed DAKDM method for NLOS

identification, we simulate realistic CSI data based on the 5G

NR clustered delay line (CDL) channel model [97] which

is characterized by a maximum bandwidth of 2 GHz over

the whole frequency range of 0.5 GHz to 100 GHz. We

simulate the wave propagation using a ray-tracing method

[98]–[100] provided by Antenna Toolbox Matlab package

where the propagation pathways from the UE to the BSs are

computed based on the surface geometry from a map file.

Ray-tracing uses the shooting and bouncing ray (SBR) method

[101], accounting for up to 10 path reflections. The method

does not take into account buildings’ windows and possible

foliage, which would require a high-definition 3D mapping

of the environment or a complex simulation with artificially

created maps. The channel model is then produced by coupling

all the paths taking into account the small-scale fading due

to the UE’s movement, angle spread and cluster properties.

This permits to achieve spatial consistency, meaning that two

adjacent positions present similar channel characteristics due

to comparable scattered environments.

B. Urban Mobility Scenario

For the experiments, we simulate a 3GPP urban micro

(UMi) scenario in an area of 1000 m × 1000 m, near the

Leonardo Campus of Politecnico di Milano, with specific

parameters described in [85]. As shown in Fig. 5, the scenario

comprises 19 urban sites, placed in an hexagonal layout with

Inter-Site Distance (ISD) of 200 m, each equipped with 3 cells.

The BS antennas are characterized by an UPA configuration

with M = N = 8 elements and a downtilt of 15°. The

transmission power is 44 dBm and each antenna element was

defined using the specifications in [102], providing a front-to-

back ratio of about 30 dB and a maximum gain of 8 dBi.

The vehicular UEs move in the area traveling along different

trajectories generated with SUMO software which replicates

actual traffic patterns on a particular route network. We gen-

erate up to 50 trajectories sampled every second, for a total

simulation time of 170 s. Each UE is equipped with an omni-

directional antenna and transmits the 5G standard compliant

sounding reference signals (SRSs) to all the BSs in the area

using a carrier frequency fc = 30 GHz and a transmission

bandwidth B = 400 MHz. The BSs, which can be in either

LOS or NLOS condition due to occlusions and reflections,

demodulate the OFDM signal and estimate the channel using

a least squares (LS) estimator. Subsequently, they obtain the

channel fingerprint using the estimated channel response to

compute the angle-delay channel structure (7) and then the

associated power structure (8).

For the experiments, we do not consider the multi-user inter-

ference (MUI), but it is worth mentioning few considerations

for possible real implementations of the method. In practice,

the BSs can adopt various techniques to manage the inaccuracy

of channel estimation due to factors such as the MUI. One

common technique is to use channel estimation algorithms

that are robust to MUI, such as linear minimum mean-square

error (LMMSE) [103] which obtains sub-optimal performance

(sub-optimal as it does not use the knowledge of the full

CSI) with moderate computational complexity. Additionally,

other techniques may rely on non-linear pre-coding schemes

which have been found to provide near-optimal performance

[104], [105]. In the standard of 5G-NR, codebook-based

MIMO precoding techniques have been proposed and they

are described in the 3GPP technical specifications (TS) 38-

214 [106] and 38-211 [107]. With latest releases, i.e., Rel

16 and 17, MU-MIMO codebook (type II) has been improved

with the reduction of the feedback overhead. By implementing

these techniques, the MUI is highly reduced and the residual

interference resembles to background noise. Moreover, in case

the model has been trained in a channel in presence of non-null

interference, we would have an even-broader LOS distribution

characterization, which would be beneficial in case of single-

user transmission.

C. CSI Dataset

In the offline phase, each BS is assured to gather LOS only

realizations of the channel, composing a training dataset for

the blockage detection. In the online phase, on the other hand,

we create the test dataset adopting unobserved positions of the

UEs and collecting a balanced number of samples between

LOS and NLOS conditions. We saved more than 7.5 ·104 and

8.6 · 104 samples in the training and testing set, respectively.

Before the training, all the samples are standardized (i.e.,

transformed such that the mean intensity is 0 with standard

deviation of 1) and shuffled at each epoch.

MATLAB 2022a is used to create the channel fingerprints of

the data points, while the DL model for training and testing is
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Fig. 5. UMi scenario composed of 19 sites in the area of Politecnico di Milano, Italy. We show the interference between sites to highlight the three cells per
site separated by 60° in azimuth.

implemented using Pytorch [108] (v1.12 with Python 3.7.11).

We run our simulations on a workstation with an Intel(R)

Xeon(R) Silver 4210R CPU @ 2.40 GHz, 96 GB of RAM and

a Quadro RTX 6000 24 GB GPU. The testing times, described

in Sec. V-F1, only apply to the run time on Pytorch 1.12.

Unless otherwise specified, we train the model for a number

of epochs E = 30 with a batch size Ns = 64. wKL and wlik are

both empirically set to 0.1. We adopted the Adam [109] with

an initial learning rate lr = 10−4, and momentum β1 = 0.9,

β2 = 0.999.

D. DL Model Characteristics

For the AE part, we adopt the Segnet architecture [110]

with one single channel encoder and decoder. The upsampling

layers employ the encoder pool indices to create a sparse

feature mapping which is ideal for reproducing the sparse

ADCPM input. The AE is the most complex part of the model,

however, at testing time, we use only the encoder part, thus

halving the inference time if compared with VAE models or

in general solutions that adopt the reconstruction error as a

monitoring feature.

On the other hand, we develop the likelihood network using

a simpler multi-layer perceptron (MLP) which is able to learn

whatever non-linear function. The network can be found in

Table I. To cope with the overfitting we adopt the dropout

technique [111] after each activation function. Furthermore,

we insert a single batch normalization layer [112] right before

the ReLU function. This is done to avoid that the output of the

network will converge to a unique value after a long training.

E. Baselines

To evaluate the performances of the proposed model, we

compare it against a number of DL approaches proposed in

the literature to solve anomaly detection problems:

TABLE I
LIKELIHOOD NETWORK LAYER COMPOSITION.

Layer Num. Type Output Size

0 Input 8× 1

1 Linear + Tanh + Dropout 8× 1

2 Linear + Tanh + Dropout 5× 1

3 Linear 1× 1

4 BatchNorm1d 1× 1

5 ReLU 1× 1

• DAGMM [84]. Single-stage training model composed by

an AE and a GMM used for learning the latent feature

distribution. The membership weights, which represent the

probability that a given data point belongs to each com-

ponent, are usually computed with the expectation (E)-step

of the expectation-maximization (EM) algorithm used for

the GMM fitting. However, in this case, the membership

weights are produced by an estimation DL network.

• AE-KDE [83]. Double-stage training model in which first

the AE is trained and then a KDE is used to learn the

distribution of latent features from all the training dataset.

The bandwidth and the kernel are the same of DAKDM.

• VAE [76]. Auto-encoding variational Bayes applied to

NLOS identification. Here, the sampling mechanism is

mandatory since we need to sample new latent variables

from the learned probability distribution, i.e., in this case

a Gaussian distribution. The anomaly score A(Xi) is com-

puted as A(Xi) = 1
Nm

∑Nm

j=1 Lrec(Xi, X̂
j
i ), where Nm is

the number of samples. As suggested by the authors, we

draw 10 samples from the latent space representation to

derive the anomaly score.

• GANomaly [113]. Deep-generative model composed by an
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AE, a second encoder and a discriminator. The model min-

imizes simultaneously the reconstruction error, the encoder

loss given by the second encoder and the adversarial loss

yielded by the discriminator.

For a fair comparison, we give the same input to each model

and we adopt the unchanged architecture for the encoders and

decoders with respect to DAKDM. Therefore, we adopt the

same number of latent features for all architectures.

In addition to DL model baselines, we compare our method

with classical ML and statistical algorithms. In particular, we

implement:

• JLRT [63]. Joint-likelihood ratio test considering the statis-

tics of the kurtosis, mean excess delay and root-mean-square

delay spread. The PDFs of the statistics are approximated

as log-normal distributions and they are considered inde-

pendent of each other.

• RF [66]. Random forest model with 100 trees and, as

input features, the Rician K-factor, root-mean-square delay

spread, mean excess delay and dominant channel tap.

• CORR [75]. Pearson correlation coefficient computed using

a reference set of LOS ADCPM sliced in the direction

of arrival with higher received power. We gathered 100

LOS reference signals and we considered only the samples

comprising 10 points before and 100 points after the first

peak. The likelihood of a test input is obtained by averaging

the correlation coefficient with the reference LOS signals.

• OC-SVM [58]. One-class support vector machine which

computes the smallest hyper-sphere containing normal, i.e.,

LOS, samples. We use the score function as a likelihood

measure. As regards the feature selection, we adopt both

static channel characteristics as the maximum received

power, kurtosis, skewness, rising time, root-mean-square

delay spread, Rician K-factor, angular spread of arrival and

both time-varying features [114] like the angular variant of

arrival.

Note that, while CORR and OC-SVM are semi-supervised

learning algorithms, JLRT and RF are supervised learning

methods since they require statistics/samples of both classes.

The models and algorithms are run independently by each BS,

after the UE uplink transmission. The training, if required, is

performed before the validation procedure at each BS using

the locally collected input samples.

F. Results

1) Inference timings: In this assessment, we want to mea-

sure the time required by each DL model to predict the

output of a sample. This is of particular relevance in real-

time applications where the inference time must be as low as

possible. An example is the vehicular applications where the

end-to-end latency must be contained within 100 ms or less

[115]. In Fig. 6, we show the boxplot of the inference time

for each sample over the whole testing dataset. We notice that

the proposed DAKDM is able to predict the anomaly score in

half of the time with respect to DAGMM as it does not require

the decoder part prediction. Moreover, GANomaly and AE-

KDE models require up to 4 ms for a single prediction. This

is because GANomaly holds a more complex model, while

DAGMM DAKDM VAE GANomaly AE-KDE

12

10

8

6

4

2

0

In
fe

re
n

ce
T

im
e

[m
s]

Fig. 6. Boxplot of the distribution of the inference time per sample [ms],
varying the adopted DL models.

AE-KDE has to pass through the whole training dataset for

a single prediction. Finally, VAE takes about ten times more

than DAKDM due to the sampling strategy.

2) Batch size: This assessment has the goal of verifying

how the batch size Ns affects the performances of the pro-

posed DAKDM. Theoretically, Ns should be large enough to

generate a good representation of the latent features’ distri-

bution. To verify this behaviour, in Fig. 7 we analyze the

anomaly score AL(zi) of normal (Fig. 7a) and anomalous

(Fig. 7b) samples in the testing dataset after 30 epochs for

Ns = {8, 16, 32, 64, 128}. To avoid singular issues due to

possible zeros values given as input to the logarithm, we shift

the likelihood distribution as AL(zi) = −log(L(zi)+1). The

first thing to notice is that the anomalous score of normal

data is lower than the abnormal data and this is because the

likelihood network outputs higher values for samples with

normal distributions. Second, we observe that decreasing Ns

for normal data, will produce lower mean and variances distri-

butions, thus enhancing the NLOS identification capabilities.

This is due to the fact that with a large batch size, the model

struggles to learn the pointwise KL-divergence since in the

loss function we have the contributions of many points. On

the contrary, with lower batch sizes, the likelihood network

learns exactly which value assign to each latent representation.

Reducing Ns has the benefit of being suitable for simpler

devices with low computational capabilities, in exchange for

higher training times. As a trade-off between performances

and training times, we choose Ns = 16.

3) Hyper-parameters tuning: This experiment aims of tun-

ing the main hyper-parameters related to the density models,

i.e., the bandwidth h of the KDE for DAKDM and AE-KDE

and the number of GMM components, denoted with g, for

DAGMM. In Fig. 8, we report the area under the curve (AUC)

obtained in the testing set after 30 training epochs varying

the bandwidth h ∈ {0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3, 6, 12} (Fig.

8a) for DAKDM and the number of GMM components

g ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (Fig. 8b) for DAGMM. Starting
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(a) Anomaly score of normal samples
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(b) Anomaly score of anomalous samples

Fig. 7. Comparison of the anomaly score AL(zi) after 30 epochs between normal and anomalous data, for varying batch size Ns.

from Fig. 8a, we notice that the higher AUC is reached by

h = 0.2 and that for not optimal values, the AUC can differ

significantly. This is somehow due to the range values of zi

and to the number of points that we have. Since, in practice, we

have few anomalous samples, for tuning the bandwidth we can

simply rely on maximizing the likelihood of normal samples

varying the bandwidth. Comparing the results with Fig. 8b,

we see that DAGMM is not able to achieve high peaks of

performances in average, i.e., above 90% of AUC. This means

that the latent distribution cannot be well approximated with

less than 10 Gaussian distributions. Clearly, increasing g will

improve the performance but at the cost of a higher complexity

of the DAGMM estimation network.

4) Performance comparison: In this last assessment, we

compare the performances of the proposed DAKDM with

the models described in Sec. V-E. In Table II, we report

the average AUC after 10 runs and the F-score, Accuracy,

Precision and Recall using a threshold on the anomaly score

related to 20% of FPR. We notice that the performances of

the AE-KDE (highlighted in green) are superior with respect

to all the others. The reason behind this is that the AE-

KDE represents the perfect unfeasible upper-bound, i.e., it

requires storing the whole training dataset for inference and

thus it can perfectly reconstruct the latent features distribution.

On the other hand, the lower-bound is represented by the

statistical JLRT method (highlighted in red), which obtains an

AUC of 63%. This method assumes the independence of few

hand-crafted features, which may not hold in any situation.

The second non ML-based method CORR reaches an AUC

of 64%, meaning that the LOS reference signals are not a

good representation of the LOS distribution. The OC-SVM, a

classical ML method, achieves a slightly higher AUC due to

its capabilities of projecting the original features in a higher

hyper-space (kernel trick). However, its main limitations lay

in the features-choice which, for sparse and high-dimensional

spaces, constitutes a non-trivial task. Moreover, we can notice

that the precision (94%) is much higher with respect to the

recall (60%). This means that OC-SVM tends to classify

all test samples as LOS, learning a rough, i.e., too general,

LOS distribution. Finally, among classical ML methods, the

RF achieves the highest performances by reaching an AUC

of 79%. However, we remark that this method requires the

knowledge of NLOS samples, thus it holds an advantage with

respect to semi-supervised learning methods.

Focusing now on the DL models, numerical results show

that they highly outperform the classical ML and statistical al-

gorithms. Indeed, while deterministic feature extraction might

be more suitable for low-dimensional or simple channels,

using the raw ADCPM as input to the CNN structure allows

the DL models to utilize the full potential of automatic feature

extraction, which contributes to the superior performance of

the DL methods in comparison to classical ML and statistical

algorithms. However, this does not exclude the possibility of

incorporating deterministic features in future work to further

improve the performance of the proposed model. Among the

DL methods, DAKDM (highlighted in bold) and VAE hold the

highest AUCs if compared with DAGMM and GANomaly.

In particular, DAKDM and VAE outperform DAGMM and

GANomaly of 7% and 16%, respectively. The reasons behind

this are that GANomaly is a very complex network that

requires a non-negligible effort in hyper-parameter tuning and

optimization, with additional issues in training stability [79].

On the other hand, DAGMM is not able to accurately learn

the LOS latent feature representation due to its limited number

of Gaussian components. Both DAKDM and VAE achieves

the highest performances, i.e., 95% and 96% of AUC, but

with two different methods. While VAE imposes a simple

latent distribution, DAKDM automatically learns the low-

dimensional LOS distribution thanks to the KDE in training

phase. However, the main advantage of DAKDM is that it

does not require sampling procedures and necessitates only

10% of the inference time needed by VAE (see Sec. V-F1).

This makes it suitable for low-latency and mission-critical

applications such as V2X networks for automated driving.
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(b) Tuning of number of GMM components for DAGMM.

Fig. 8. Comparison of the AUC reached after 30 epochs using (a) DAKDM and (b) DAGMM, for varying bandwidth h and number of GMM components
g, respectively. The mean value (red dot) is plotted together with the associated uncertainty (error bar) computed using the maximum and minimum values
of AUC as boundaries.

TABLE II
COMPARISON ON MEAN PERFORMANCE INDICATORS AFTER 10 DIFFERENT

RUNS BETWEEN THE PROPOSED DAKDM AND THE BASELINES.

AUC F-score Accuracy Precision Recall

AE-KDE 0.9981 0.9376 0.9196 0.8845 0.9973

VAE 0.9620 0.8654 0.8491 0.9408 0.8013

DAKDM 0.9535 0.8625 0.8456 0.9406 0.7972

DAGMM 0.8919 0.8131 0.7767 0.8305 0.7964

GANomaly 0.8214 0.8337 0.8068 0.8697 0.8006

RF 0.7979 0.7753 0.7506 0.8495 0.7131

OC-SVM 0.7735 0.7419 0.7435 0.9477 0.6096

CORR 0.6449 0.7153 0.6152 0.6474 0.7992

JLRT 0.6395 0.5636 0.5962 0.7658 0.4459

VI. CONCLUSION

This paper addressed the problem of high-dimensional chan-

nel distribution characterization for next generation cellular

networks. In order to demonstrate the method, we tackle

the problem of NLOS identification in a mm-wave MIMO

system with sparse space-time channel responses. We model

the problem within the semi-supervised anomaly detection

framework where LOS samples correspond to normal data

with peculiar characteristics and distributions. We propose a

deep autoencoding kernel density model (DAKDM) where the

manifold distribution of normal data is elaborated with an

AE that takes as input the sparse ADCPM which univocally

map the position-dependent features of the channel. The AE

is jointly learned together with a likelihood network which is

trained to learn the output of a KDE that directly estimates the

distribution of the latent features. The DAKDM has the main

advantage of learning whatever latent distribution without

storing the whole training dataset.

We validated the model in a 5G standard compliant UMi

scenario simulated with Matlab ray-tracing package, permit-

ting spatial channel consistency between adjacent positions.

The UEs are vehicles which move in the area according to

dynamics simulated by the SUMO software. Compared with

DL state-of-the-art models, results showed that the proposed

DAKDM is much more efficient, both in terms of inference

time and computational requirements. In particular, DAKDM

holds a prediction time per sample which is up to one fourth

and one tenth of GANomaly and VAE, respectively. This

makes it appropriate for edge devices with strong latency

requirements for mission-critical applications. From a perfor-

mance point-of-view, DAKDM is able to achieve similar per-

formances of the top-performer VAE, outperforming GMM-

based method such as DAGMM of about 7%.

In the next years, ML and in particular DL methods are

expected to play a crucial role in next generation cellular

networks. Communication systems, but also localization tech-

niques, are required to increase performance capabilities and

types of services to accomplish increasingly high standards.

Thus, DL-based methods as the proposed DAKDM become

essential to push further the performances. A natural extension

of our work would be to integrate NLOS mitigation into the

system in order to compensate the induced error given by

lack of visibility or directly integrate DL techniques into po-

sitioning algorithms suited for high complexity environments.

A further direction of research could be the extension to a

cooperative inference framework where BSs exchange mutual-

soft information for accuracy enhancement. Moreover, more

realistic environments with simulated foliage and dynamic

obstructions should be explored. Challenges are represented

by NLOS situations, changes in the environment and lack of

possible representative samples for each feasible location.
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APPENDIX A

ANOMALY SCORE UPPER-BOUND

In this Appendix we provide a proof of the anomaly score

upper bound given by zi. From the variational inference ap-

proach [96], we can note that the likelihood network performs

the same objective of latent variable inference. To see this

parallelism, we recall the variational inference context where

we are given an observation h (i.e., latent variable) from

the prior distribution pθ
h

with parameters θ. Subsequently,

a datapoint x is generated from pθ
x|h, which is considered

intractable. The objective is to estimate the exact posterior pθ
h|x,

also intractable, with a simpler variational posterior qϕ
h|x with

parameters ϕ. For a graphical representation of the problem,

please refer to Fig. 9 [116].

Now we can see the datapoint x as our compact repre-

sentation of the channel zi and the latent variable h as the

value p(zi). Consequently, our likelihood network Lϕ(·) (with

parameters ϕ) will be acting as the variational distribution

qϕ(·). Following this parallelism, the contribution of zi to

the anomaly score, i.e., minus log-likelihood, can be upper-

bounded as follows:

−log p(zi) = −log
∑

p(zi)

p(zi, p(zi)) (16)

⋍ −log
∑

p(zi)

p(zi,K(zi|{zj}Ns
j=1)) (17)

= −log
∑

p(zi)

Lϕ(p(zi)|zi)
p(zi,K(zi|{zj}Ns

j=1))

Lϕ(p(zi)|zi)

⩽ −
∑

p(zi)

Lϕ(p(zi)|zi) log
p(zi,K(zi|{zj}Ns

j=1))

Lϕ(p(zi)|zi)
(18)

where the approximation in (17) comes from assumption (12),

while (18) derives from Jensen’s inequality. Continuing with

the demonstration, we can write:

−log p(zi) ⩽ −ELϕ{log p(zi,K(zi|{zj}Ns
j=1))

− logLϕ(p(zi)|zi)}
= −ELϕ{log p(zi|K(zi|{zj}Ns

j=1))}
+ KL(Lϕ(p(zi)|zi)∥p(p(zi))
= −log p(zi) + KL(Lϕ(p(zi)|zi)∥p(p(zi)|zi))
⋍ −logK(zi|{zj}Ns

j=1) (19)

+ KL(Lϕ(p(zi)|zi)∥p(K(zi|{zj}Ns
j=1)|zi)),

concluding the proof.
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