IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 1

Audio Splicing Detection and Localization
Based on Acquisition Device Traces

Daniele Ugo Leonzio, Student Member, IEEE, Luca Cuccovillo, Paolo Bestagini, Member, IEEE,
Marco Marcon, Member, IEEE, Patrick Aichroth, and Stefano Tubaro, Senior Member, IEEE

Abstract—In recent years, the multimedia forensic commu-
nity has put a great effort in developing solutions to assess
the integrity and authenticity of multimedia objects, focusing
especially on manipulations applied by means of advanced deep
learning techniques. However, in addition to complex forgeries as
the deepfakes, very simple yet effective manipulation techniques
not involving any use of state-of-the-art editing tools still exist
and prove dangerous. This is the case of audio splicing for
speech signals, i.e., to concatenate and combine multiple speech
segments obtained from different recordings of a person in
order to cast a new fake speech. Indeed, by simply adding a
few words to an existing speech we can completely alter its
meaning. In this work, we address the overlooked problem of
detection and localization of audio splicing from different models
of acquisition devices. Our goal is to determine whether an audio
track under analysis is pristine, or it has been manipulated by
splicing one or multiple segments obtained from different device
models. Moreover, if a recording is detected as spliced, we identify
where the modification has been introduced in the temporal
dimension. The proposed method is based on a Convolutional
Neural Network (CNN) that extracts model-specific features from
the audio recording. After extracting the features, we determine
whether there has been a manipulation through a clustering
algorithm. Finally, we identify the point where the modification
has been introduced through a distance-measuring technique.
The proposed method allows to detect and localize multiple
splicing points within a recording.

Index Terms—Audio forensics, audio authentication, micro-
phone fingerprints, splicing detection, splicing localization

I. INTRODUCTION

HE rapid developments in technology and the increas-
ingly widespread availability of advanced processing

This material is based on research sponsored by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL) under agreement number FA8750-20-2-1004. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed
or implied, of DARPA and AFRL or the U.S. Government. This work has also
received funding by the European Union under the Horizon 2020 Al4Media
project, Grant Agreement number 951911. This work was partially supported
by the European Union under the Italian National Recovery and Resilience
Plan (NRRP) of NextGenerationEU, partnership on “"Telecommunications of
the Future” (PE00000001 - program "RESTART”).

D. U. Leonzio, P. Bestaginii, M. Marcon and S. Tubaro
are with the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, 20133 Milan, Italy (e-
mail: danieleugo.leonzio @polimi.it, paolo.bestagini @polimi.it,

marco.marcon@polimi.it, stefano.tubaro@polimi.it).

L. Cuccovillo and P. Aichroth are with the Fraunhofer Insti-
tute for Digital Media Technology, 98693 Ilmenau, Germany (e-mail:
luca.cuccovillo@idmt.fraunhofer.de, patrick.aichroth@idmt.fraunhofer.de)

Manuscript received Month XX, 20XX; revised Month XX, 20XX.

techniques have made the creation and distribution of multi-
media content more accessible to everyone. It has also become
much easier to create synthetic content or modify existing
one making indistinguishable to everybody the difference
between originals and copies anymore. This is especially true
in the field of audio recordings, where the latest developed
technologies can synthesize very realistic voices [1], clone
voices with few training samples [2], or fill in small audio
gaps controlling the synthesized words [3].

Despite these techniques offer a great potential in many
fields, they can also be used for malicious purpose (e.g.,
creating fake speech for fake news spreading, defamation,
etc.). If such a forged audio recording is shared online or is
presented as evidence in a court of law, it becomes crucial
to determine if it presents traces of manipulation or not. For
this reason, the forensic community is pushing toward the
development of forensic detectors tailored to identify advanced
audio editing techniques [4]-[10].

Despite these new possibilities in audio forgery, classical
and simple tampering approaches still prove valid and danger-
ous. This is the case of audio splicing, i.e., to create an audio
recording as a composition of multiple concatenated audio
pieces obtained from one or more audio tracks. Creating a
spliced audio track is as easy as to perform some copy-paste
operations. However, if applied to speech, the results can be
worrisome and detrimental. For instance, think at how easy it
is to twist the meaning of a speech by simply adding a negation
(e.g., a spoken “not”) at some point of the recording. For this
reason, we believe that it is necessary not to overlook the
development of forensic detectors for more classical forgery
operations.

In the light of this, in this paper we propose a novel tech-
nique for detection and localization of speech audio splicing.
This means, given a speech audio recording under analysis,
to determine if it has been manipulated through splicing (i.e.,
detection) and identify all time instants in which a splicing
has possibly been operated (i.e., localization). The method we
propose is based on the assumption that each different audio
piece that is concatenated with the others contains specific
characteristics that differentiate it from the other pieces. It
is therefore possible to estimate if these characteristics of
the audio recording change over time in order to detect and
localize splicings.

This idea has been exploited in the literature by techniques
focusing on estimating changes in specific parameters like
noise level [11], bit depths [12], Electric Network Frequency
(ENF) [13] or reverberation times [5]. In our work, we follow

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 2

the same principle as [5], but we exploit traces left by the
recording device (i.e., smartphone model in our case). This
means that we detect and localize splicing whenever the
spliced audio pieces have been recorded with different acqui-
sition pipelines belonging to different models of acquisition
device. The reason behind this choice is twofold:

e Due to the widespread use of social platforms and
messaging apps, it is nowadays easy to collect several
speech tracks from the same person obtained from multi-
ple recording sessions characterized by different devices
(e.g., interviews from different news channels, personal
social network pages, etc.). This makes multi-device
splicing more and more popular, hence the need to deal
with it from a forensic point of view.

o The literature on detecting and characterizing audio
recording devices is rich and deep. This provides us
with well-established methods to extract device traces,
which increase the robustness of our splicing detection
and localization technique.

Concerning the last statement, several methods that investi-
gate the task of microphone identification have been proposed
in the literature. There are methods based on some audio
features such as [14]. This uses descriptors extracted from
the audio recording and then cluster them with K-Means.
Alternatively, in [15] the authors use Mel Frequency Cepstrum
coefficients (MFCCs) and a Support Vector Machine (SVM)
to identify different microphones. More advanced methods
are based on Convolutional Neural Networks (CNNs) and
extract some features directly from the audio recording. It
is worth noting that CNN-based techniques are nowadays
considered the most accurate methods in the literature to
solve audio device classification problems. An example in this
direction is [16] in which the authors adopt a CNN to extract
the microphone characteristics from the Short-Time Fourier
Transform (STFT) of the recorded signal.

Despite microphone identification is a topic deeply studied
and different methodologies have been proposed, the task of
determining the location of an editing point by exploiting mi-
crophone characteristics has not been thoroughly investigated.
To the best of our knowledge, the only work that investigates
the use of microphone cues to detect spliced traces is [17].
However, this method works under strong assumptions, i.e.,
the splicing point position must be known a-priori and the
technique verifies it.

The method we propose for speech splicing detection and
localization works as follows. Given a recording under anal-
ysis, we first adapt a well-established CNN-based method
[16] to extract audio embeddings relative to different models
of acquisition device from different time windows. We then
apply a clustering step to possibly detect inconsistencies
among the embeddings, which is sign that traces of multiple
devices are present. If splicing is detected, we localize the
splicing point by measuring embedding distances, and refine
detection results. Finally, we perform additional iterations of
the technique until all splicing points have been detected.
The method is tested on a dataset built on purpose starting
from the MOBIPHONE database [18]. Results show a 96%

Source é
I I I * Microphone ? D

o

Fig. 1. Schematic interpretation of the device attribution problem. Given an
audio recording, the goal is to detect which device has been used to acquire
it.

balanced accuracy on detection, and an average error on
splicing localization of 0.012 second.

To summarize, the contributions of this paper are the
following:

e We propose a splicing detection and localization al-
gorithm for audio speech recordings, which is a task
overlooked in the literature.

o This work is the first to explore the problem of splicing
localization making use of traces left by different models
of acquisition devices.

« This is one of the first attempts in detecting and localizing
multiple splicing points, rather than stopping at just one
splicing.

o We consider the challenging situation in which our anal-
ysis window may not be aligned with the actual splicing
point, as in a realistic situation.

The paper is organized as follow. Section II reviews the state
of the art on audio device attribution and splicing detection
and localization techniques. Section III reports the formal
description of the problem addressed in this work. Section IV
describes the main steps of the proposed technique when
applied to detect and localize a single splicing. This provides
the reader information about the proposed pipeline. Section V
highlights the advanced aspects of the proposed method in
order to better deal with audio windowing and extend the tech-
nique to the case of multiple splicings. Section VI presents the
used datasets. Section VII describes how we select the feature
extractor CNN and the parameters of our method. Section VIII
presents the performance results on splicing detection and
localization. Section IX shows a test of the presented method
on a real case. Section X reports an experiment conducted to
broaden the concept of traces left by an acquisition device.
Finally, Section XI concludes the paper.

II. STATE OF THE ART AND BACKGROUND

Audio forensics is a branch of the broad field of forensic
science. It refers to the acquisition, analysis, and interpretation
of audio recordings as part of an official investigation [19].
Several audio forensic methods have been proposed in the
literature for many different problems.

In this section we provide an overview of audio forensic
methods related to the audio device attribution and splicing
detection and localization problems faced in this work.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 3

A. Audio Device Attribution

The goal of audio device attribution is to associate a given
audio track to the device used for its acquisition (see Figure 1).
Some works refer to this problem as microphone classification
task, even if the classification is done on the complete acqui-
sition pipeline and not only on the microphone. The initial
works on audio source attribution used microphones as source
devices. However, due to the increasing amount of available
mobile devices, most recordings are nowadays obtained with
smartphones. Therefore, also the source attribution domain
evolved, and the most recent studies focus on associating an
audio recording to the mobile phone used to record it [20].

In the literature, there are several methods to solve the
problem of audio source attribution. One of the first method
has been proposed by Kraetzer et al. in [14]. In this work, the
authors suggest a set of audio steganalysis-based features to
cluster, with K-means, or to predict, with Naive Bayes classi-
fiers, both the microphone and the environment. Buchholz et
al. [21] instead propose to use features extracted from Fourier
coefficients from the near-silence segments to solve the micro-
phone classification task. Both works have been improved by
Kraetzer et al. in [22], where it is demonstrated that with the
combination of statistical features and unweighted information
fusion, it is possible to improve the classification accuracy.
Another method has been proposed by Garcia-Romero and
Wilson in [23]. In this paper, the classification is performed us-
ing Gaussian Support Vectors (GSVs), derived from the means
of a trained Gaussian Mixture Model (GMM). A new study
by Jiang and Leung [24] added a kernel-based transformation
from the original GSV feature vector to another projected
space, resulting in a better performance for the microphone
recognition task. In [25] Panagakis and Kotropoulos propose
random spectral features and classifiers based on the sparse
representation. The same authors improved this study in [26]
with labeled spectral features and SVM as a classifier.

Given that the most commonly used devices nowadays are
mobile devices, many novel solutions have been proposed to
classify the acquisition smartphone. The first study focusing on
mobile phones is [15], in which Hanilci et al. use MFCC and
a SVM to classify 14 different mobiles. In another study [27],
they make a comparison among different acoustic features
for mobile phone classification. The study concludes that in
general, MFCCs perform better compared to other cepstral
based features such as Linear Frequency Cepstrum coefficients
(LFCCs), Bark Frequency Cepstrum coefficients (BFCCs) and
Linear Prediction Cepstrum coefficients (LPCCs). Neverthe-
less, with mean and variance normalization, LPCCs provide
the best classification results. Moreover, the authors observed
that adding corresponding delta features (i.e., derivatives of
order one and two) to the original cepstral features results in
better performances.

Non-speech regions of the recorded audio were used in [28]
for the cell-phone recognition task. Pandey et al. [20] use the
estimate of power spectral density of the speech-free regions
of the audio recording for source cell-phone classification
tasks. Noisy part of the speech is utilized in [29] to extract
MFCC feature vectors. In [18], intrinsic traces of cell-phone

left on the recorded audio are captured by first extracting the
MEFCC feature vector at the frame level, then training a GMM.
Finally, GSVs are taken as a template for each of the devices.
Maximum classification accuracy of 97.6% is achieved on 21
cell-phones of seven different brands. GSVs have also been
used for cell-phone verification [30].

Li et al. in [31] proposed an unsupervised method for
cell-phone clustering. Deep auto-encoder networks are used
to extract intrinsic signatures of a recording device. Spectral
clustering is used to form a single cluster for the audio
recordings of the same cell-phone. Concatenation of MFCC
and inverted MFCC (IMFCC) feature vectors are used in [32]
to capture device-specific traces. Additionally, Luo et al. [33]
proved that the frequency response curve computed from the
recorded audio could represent a robust device signature. A
feature vector named BED (Band Energy Difference) has been
derived to capture device-specific signatures. Qin et al. in
[34] have explored the problem of cell-phone classification
in the presence of five different types of noises. Cell-phone
attribution in the presence of AWGN noise has been faced in
[16], and [35]. However, these two systems use synthetic tones
compared to real-world recorded audio signals. The method in
[35] requires the suspected cell-phone to be available during
the identification or authentication phase.

A channel attention mechanism based on subband awareness
was used in [36] to recognise different cell-phone models. This
approach utilizes a multi-stream network that leverages the
distinctions between frequency bands, which contain crucial
information for identifying the unique characteristics of built-
in microphones. As a result, this method is capable of accu-
rately recognizing cell phones from various manufacturers, as
well as different models from the same manufacturer. Baldini
et al. in [37] propose microphone identification method based
on the combination of a CNN with spectral entropy features.
A dimensionality reduction technique is proposed for spectral
representation of audio signals captured from distinct micro-
phones. The proposed method uses spectral features derived
from Shannon entropy and Renyi entropy, in conjunction with
the ReliefF algorithm. However, also this work as [16] use
synthetic tones.

Despite multiple techniques have been proposed in the
years, the use of Deep Learning (DL)-based methods seems
to be the de facto standard in the modern literature. For this
reason, in our work we start from the CNN proposed in [16]
to extract device-related features.

B. Splicing Detection and Localization

Another problem of interest in audio forensics is the detec-
tion and localization of splicing forgeries. Detecting a splicing
means to be able to tell if an audio recording is a composition
or not. Localizing a splicing means to identify the point where
a manipulated track has been altered.

To our knowledge, localization has not been still profoundly
explored in the literature. Furthermore, the existing works on
tampering localization are not based on microphone analysis.

An example is the study in [13] where the authors propose
an audio forensic tool to assess audio authenticity. Their tool

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 4

is based on the ENF. This is a signal embedded in audio files
when the recording is taken with the device connected to an
electrical outlet or when specific microphones are affected by a
magnetic field. The authors analyze discontinuity in the phase
of the power grid signal and then localize the splicing point
at the discontinuities.

Another approach was used by Grigoras and Smith in [12],
based on quantization level analysis to detect tampering in
audio signals. The authors underline that PCM recording with
low bit-depth, whenever processed by classic editing software,
exhibit 16-bit of quantization instead of the original 8-bit or
12-bit only in correspondence of the tampering borders, or
whenever external 16-bit content is spliced in the file.

In [38] Gartner et al., the method proposed to detect
manipulation inside an audio signal is based on the analysis
of discontinuities in the framing grid. Also here, when a
discontinuity is found, tampering is detected and localized at
the corresponding time instant.

Another different approach by Alan J. Cooper can be found
in [39]. In this work, the author proposes a method based on
the analysis of butt-spliced edits. Forgeries are often created
using simple editing techniques such as butt-splicing. This
can leave traces as discontinuity in the audio waveform. The
method is time domain-based, uses a high pass filter on the
audio data, and models the discontinuity at higher frequencies.
The method then adopts a template to discover potential edits
in the filtered signal.

Some other approaches detect splicing by analyzing noise
levels in the audio signal. For instance, Pan et al. compute
global and local noise levels of audio data and identify
abnormal changes in the noise level [11]. Meng et al. compute
local noise levels with respect to each syllable in the speech
signal [40]. Yan et al. [41] address the problem of composite
audio with signals from different sources but with similar or
equal Signal to Noise Ratio (SNR). This work locates splicing
points from the variances of MFCCs.

Zhang et al. introduced a splicing detection technique in
their study [42], which relies on detecting high-frequency sin-
gularities. Splicing operations often create singularities in the
waveform, and the authors took advantage of this characteristic
to develop a method that identifies high-frequency singularities
in the wavelet transform. The method is based on the combi-
nation of a CNN plus a Long Short-Term Memory (LSTM),
that has the objective to learn the sequence information.

Jadhav et al. [43] use the short-term Fourier transform
of spliced audio signals directly as input to a CNN. They
propose a solution based on a DL technique, and the method
they propose is robust under added white Gaussian noise and
dynamic range compression. However, this work does not
consider the highly relevant case of splices from recordings
of the same speaker.

A different process was used by Capoferri et al. [5]. They
explore in this paper the use of reverberation cues as a
feature to detect and localize the point of splicing in an
audio recording. In fact, distinct recordings may be recorded
in different environments that are typically characterized by
different reverberation cues. This method can be explained in
three steps. They first apply a time-frequency transform on

the time domain signal, then estimate the reverberation time
in the free decay region, and finally, analyze the estimated
reverberation times to determine the splicing location.

The authors got successful results, but the approach pre-
sented some intrinsic problems that affected the localization
results. The main problem is that the reverberation time can
be estimated only in the free decay region, so they could not
localize the correct time instant of the splicing.

A new approach to solve both the detection and the local-
ization was proposed in [9]. In this work the authors used
a transformer architecture to solve this task. They simulated
various types of post processing operations that can hide
splicing, and trained a seq2seq architecture for detect and
localize the splicing points. The results achieved are promising
but also in this case there are intrinsic problems connected to
the model proposed. The first one is on the vocabulary used
to train the transformer that limits the localization precision.
The second one is that this kind of architecture needs a large
number of samples to be trained properly and achieve good
results.

To the best of our knowledge, the possibility of exploiting
device traces to assess the integrity of an audio recording and
detect splicing has been seldom studied in the literature. A
study in this direction can be found in [17]. In this work, the
authors proposed a method of audio tampering based on the
microphone classification but without providing any algorithm
for localization. The authors assumed that the location of the
splicing borders was known beforehand to simulate a setup
similar to the one often asked in court cases. This setup is,
of course, not applicable if the splicing location is unknown,
which is often the case and that we are going to address in
the following pages. The microphone classification algorithm
is based on the work [44], but in this case, the channel
models the frequency response of the microphone instead of
the environment. On top of that, they build the tampering
algorithm that relies on a SVM with a Radial Basis Function
(RBF) kernel. They test the method on different encoding
types and bitrates, reaching an overall accuracy of 95% on
detection.

III. PROBLEM FORMULATION

In this work we focus on the problem of speech audio
splicing detection and localization. This is a problem of
interest because it is reasonably easy to create fake speech
audio recordings and completely change their original meaning
by simply cutting and pasting a few words. This can lead to
serious problem if we think, e.g., to a politician speech.

For a splicing operation to be effective from a semantic
point of view, it is necessary that the attacker has a large
enough library of speeches from the person of interest, in order
to properly select words and sentences to be combined. In this
context, it is possible that the audio tracks used for the splicing
were recorded using different models of acquisition devices.
Therefore, we can expect that a spliced recording exhibits
traces from multiple recording devices. Our technique exploits
these traces to detect and localize splicing.

Formally, let us take into account M audio pieces (i.e.,
portions of audio recordings) X1, X2, ..., X3 acquired with the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 5

same sampling frequency. Each piece x,, is a vector of N,,
samples, which depends on the length of the single recording.
Moreover, each piece x,, has an associated label [,,, which
indicates the model of the used recording device. A spliced
recording Xgpliced Can be built by concatenating x1,Xs, ..., Xps
as

» XM (D

If all M pieces have been acquired with the same model (i.e.,
I = lmy1 for m € [1,..., M — 1]), we cannot expect any
change in device footprints over time. However, if at least
two of the M slices belong to different classes (i.e., 3 m :
lm # lm+1), then the device characteristics of Xgpiicea should
change at the different devices concatenation samples.

Given a recording x with a length of N samples, we can
associate to it a label ¢ € [0,1], where 0 means that the
recording is pristine, whereas 1 means that the recording
results from a splicing operation. In our device-based context
this translates to

Xspliced = [X1,X2, ...

oo 1, ifﬂm.: I, # g1, @)
0, otherwise.
Detecting a splicing means to be able to compute a label ¢
that is an estimate of c.

If we detect tampering in the audio recording (i.e., ¢ = 1),
we also estimate the splicing points, i.e., an approximation of
the sample indexes where the concatenations took place. This
means to compute all sample positions 7,,, estimates of the
samples n,, corresponding to a change in device model.

Formally, the m-th splicing point is defined as

=3 N, 3)

i<m

Localizing the splicing points means estimating the set A/ of
samples that represent the change point from one model to
another defined as

N = {nm i # L1, m € [17 oy M — 1]} 4

Figure 2 shows a visual representation of a spliced audio
waveform. The recording x is composed by four pieces x;,
X3, X3 and x4. The color of each x,, piece denotes its class
in terms of device model (i.e., [,,). In red we highlight the
n,, belonging to the set N. For instance, we do consider ng
as a splicing point, as the device used to acquire x2 and x3
is the same. However, we can localize n; and ns.

IV. PROPOSED METHOD (MAIN PIPELINE)

In this section we provide all the details behind the main
pipeline of the proposed method for audio splicing detection

X

X1 X2 X3 X4
o|||II|o||||||"|I|||||II|o||||||||||||I||I|Io||||||||l|”|||||||
@ . &

Iof

Fig. 2. Splicing concatenation example with four audio pieces and three
different classes. Each color represents a recording device model. Splicing
points that we consider for localization are highlighted in red.

and localization based on traces left by the acquisition device
model. In order to better focus on the overall pipeline and
clearly explain the role of each block, in this section we
consider the case of a single splicing. We leave to the next
section the discussion on how to improve the method to
deal with multiple splicing and to exploit a better windowing
approach.

The idea behind our method is to use an audio device
classification algorithm to extract significant audio descriptors
in time, and explore them to build an identification and local-
ization algorithm that searches for possible inconsistencies.

With reference to Figure 3, given an audio recording under
analysis, we first pre-process it to obtain a time-frequency
representation. Then, we use a modified version of a CNN
architecture originally devised for microphone identification
[16] to extract a time-series of feature vectors. These vectors,
which supposedly contain the intrinsic characteristics of the
input microphone, are used as input to a clustering technique to
decide if the analyzed recording is a composition of different
device models or not. If we detect a tampering in the recording,
we apply a localization procedure to localize a candidate
splicing cut point. Localization information is used to further
refine detection results.

In the following we better detail each block of the pipeline.

A. Time-Frequency Transform

The first block of our pipeline is the time-frequency trans-
formation, which is necessary to prepare the input data for
further feature extraction.

Formally, let us consider we have an audio recording x.
The first operation to apply to the signal is windowing. The
x signal is divided into W non-overlapping windows of L
samples, with the w-th window defined as x". The output of
the pre-processing step is a matrix X,;, which contains the log
magnitude of the STFT of each w-th window defined as

X" = log(|STFT(x")]), 5)

with w € [1, ..., W] denoting the window index.

B. Features Extraction

The second step of the pipeline consists in extracting a
series of feature vectors by means of a CNN. This CNN is
based on the work presented in [16], in which the authors
illustrate a possible approach to solve a smartphone classifica-
tion problem. The results they achieved were very successful,
thus motivating us in using this network as a feature extractor
for our algorithm. In particular, we train this CNN to solve
a smartphone classification task as shown in [16], but we use
the features extracted at an intermediate layer of the network
as an embedding characterizing the acquisition device. Note
that different feature extractors than [16] can in principle be
used. The better the feature extractor, the better the splicing
detection and localization capabilities.

The network architecture is shown in Figure 4. It is com-
posed by a series of convolutional layers with ReLu activation
interleaved by MaxPooling layers and batch normalization.
After these blocks, two dense layers reduce the dimensionality

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 6

X {Xw}we[l ,,,,, W] F

(F; Core) (F,7)

Time-Frequency Feature
3 q y R
Transform Extraction

E Detection

Localization

Detection n
Refinement F
ref

Fig. 3. Proposed method pipeline for solving one splicing point detection and localization.

of the data up to the number of considered device classes. The
first convolutional layer has a kernel size of (24,24), stride
equal to (2,2) and the padding option is set to “same”. The
second convolutional layer has a kernel size of (4,4) with
same stride and padding used before. The last convolutional
layer has a kernel size of (1,1). In the first Dense layer we
add also a kernel regularizer, in particular an L2 regularizer
with a penalty of 0.01.

Y (5015,16) (5015,16)
W™ batch norm conv2
(1025,32,1)
convl

Fig. 4. CNN proposed in [16] used for feature extraction with an input of
size 1025 x 32. The numbers are referred to the input size of each layer.

We train the CNN as multi-class classifier for microphone
identification using sparse categorical cross-entropy as loss
measure as shown in [16]. In doing so, the last layer of
the network can be considered a one-hot encoding of the
microphone labels. After training, we extract model-related
features from the output of the first dense layer as commonly
done in the literature. Indeed, this provides us with a higher
dimensional feature vector with respect to the number of
classes used in training, and does not depend on the number
of classes.

Formally, we can say that when the CNN is fed with the
input X, it returns as output the model label estimate

[= argmax CNNy, (X"), (6)
and the feature vector of interest as
£ = CNNpeno(X®). 7

The feature vector £* is composed by F' elements. So for each
spectrogram X" we extract a feature vector f* having a fixed
length F'. The set of feature vectors extracted for all the W
windows is defined as

F={f"%Yven,..,w] 8)

This is used in the next step.

C. Detection

The next step is to detect if the audio recording has been
tampered with by means of splicing operations. To do this, we
apply a clustering technique to the set of features vectors f*
extracted by the CNN from each window of the input audio
recording under analysis.

The idea is that a pristine recording is composed of win-
dows that all share very similar device model information,
hence feature vectors. Conversely, if an audio recording is a
composition from multiple device models, the feature vectors
extracted in time should change at some point.

In our method, we propose to use a procedure based on the
K-Means algorithm [45]. We use the K-Means to divide the
extracted feature vectors into two groups. If the two groups
are far apart enough we can say that the initial recording was
manipulated, otherwise we can conclude that no manipulation
is detected. The detection pipeline can be summarized in the
following steps:

o Apply the K-Means clustering algorithm.

o Compute the centroids of the corresponding clusters.

o Compute the distance between cluster centroids.

o Label the input recording as being tampered or not
according to this distance.

In the first step, we apply a K-Means algorithm to the
feature vectors f*. From the K-Means we obtain as many
clusters as we asked for (two in our case). For each cluster
we compute the centroid. Let us consider F}, as the set of all
features belonging to the cluster number k. The k-th cluster
centroid is computed as

1
e = > £ ©)
|]:k)‘ :fveFy
where | - | indicates the cardinality of a set, and the sum is

performed element-wise on each element of the vectors f* so
that 1y, shares the same dimensionality of a feature vector f*.

In the second step we compute the distance between the
found centroids. In our study, we empirically decided from
preliminary experiments to use the Euclidean distance as
a distance measure. The distance between two centroids is
defined as

d=|lp1 — pa2ll2 (10)
with the [|-||2 operator computing the ¢? norm.

The final decision is taken based on a threshold mechanism.
We set a threshold, and if the distance computed between the
two centroids is higher than the threshold, we state that the
recording has been modified, as we can see features belonging
to more than one model.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 7

Formally, we assign the preliminary tampering class label
as

. {Oifdgvpm, an

C =
pre Lif d > Ypre,

where vy is tuned based on a validation set of data.

D. Localization

If the analyzed signal is labeled as fake, i.e., formed by
different model recordings as in Equation (1), the localization
algorithm is applied to find the samples in which there is the
change of model. Now we illustrate the proposed localization
algorithm, in the basic scenario of one splicing point.

The main idea is that we can compute the distance between
feature vectors belonging to neighboring windows from the
audio recording. Distances should be small as long as we
analyze windows recorded with the same model. Conversely,
if the model change at some point, we should observe a high
distance. The time instant in which we observe a high feature
distance indicates the splicing point location.

Formally, let us consider an input recording Xgpiiced defined
as in Equation (1) (i.e., by concatenating M sources of
different lengths). We can compute the cosine distance y[w]
between consecutive features extracted from the w-th and
w + 1-th window of the signals Xgpjiceq under analysis as

fw . fw+1

L — (12)
[[£]] - [[f L]

ylw =1~
The splicing point is identified in the position in which y[w]
shows its maximum. Formally,

W = arg max y[w] (13)
corresponds to the detected splicing window index, that can
be mapped into an audio sample index as
n=wL+1, (14)
where L is the length of a window in sample.
Figure 5 shows an example of y[w] where a clear maximum
can be detected.

Fig. 5. Example of y[w] computed with Equation (12). The maximum
obtained for w = 10 indicates a splicing point.

E. Detection Refinement

After estimating the splicing point, we perform a refinement
on the detection step based on the value of the maximum
associated to the splicing point. This prediction is based on a
threshold mechanism. We set a threshold and if the maximum
value is below the threshold we conclude that the audio
recording is pristine and was wrongly detected as spliced by
K-means. Formally,

5)

) 0 if maxy[w] < Yref,
Cref = .
Lif maXy{w] > Yrefs

where ~.r is a selected threshold tuned empirically on a set
of validation data.

In Section III we defined the goal of the detection phase as
the computation of ¢. After refinement, we set ¢ = Cret.

V. PROPOSED METHOD (ENHANCED)

In the previous section, we described our general proposed
pipeline in a simplified case. We considered the presence of a
single splicing, and we did not take into account the fact that
the real splicing point may fall within a window of signal,
rather than between two windows.

In a realistic scenario, we have to assume that:

o More than one splicing point in an audio recording can
be present.
« The splicing point is not always in between two windows.

For these reasons, we created an advanced pipeline, adding
some blocks to the basic one. This section explains which
blocks we added and how they make the method applicable
to realistic scenarios.

A. Multi-shift

The localization pipeline described in Section IV-D works
with the assumption that the splicing point occurs in the
correspondence of the window change point. This means that
if we use the localization pipeline described in Section IV-D
we suffer from two major issues:

o We feed the feature extractor a window containing sam-
ples coming from two device models, which is a situation
for which the CNN has not been trained.

e We introduce a localization error since we estimate the
splicing point in the window change point.

In Figure 6 we show a visual representation of the first major
issue described above. The figure depicts a splicing between
two recordings x; and x,. It also reports two scenarios
(case (a) and case (b)) of signal windowing. In case (a),
the splicing point falls within the analyzed window x“, so
the window x" contains samples from two different models.
Instead, case (b) represents the ideal case in which the splicing
point falls between two consecutive windows. To solve these
problems, we propose to enhance the proposed method with an
analysis technique called multi-shift. This procedure analyzes
the audio recording multiple times, each time starting from a
shifted starting point. We consider each shift as a single audio
recording and follow the pipeline explained in Section IV.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 8

X1 X2
||||||||--|||||-||||||||||||||||'-|||||--||||||||||-|||||--||I|Il|
w—1

. X X K+l
o —= o

b e — .

Fig. 6. Visual representation of the issue present in the localization pipeline
described in Section IV-D. In case (a), the window x" contains samples from
multiple models. In case (b), the splicing point falls between the windows x*
and x¥~1,

The main idea is that we should be able to find one good
shift that ensures that the splicing point is in a good position
with respect to the window borders. At the end, we merge
the results from the different runs to achieve a more precise
splicing point localization prediction.

Let us assume that the feature extraction CNN works
correctly given that the input X" is obtained from a L samples
window containing the vast majority of samples from a single
model. Only a fraction of p samples (i.e., pL samples) can
belong to a different model. We run the proposed pipeline)
times. Each time, we run it on a version of the input x to
which we remove an amount of pL samples at the beginning
with respect to the previous run (see Figure 7). Formally, the
g-th run is performed on the signal x, corresponding to x
deprived by its first (¢ — 1)pL samples. Q is set to a value so
that we skip at most one window of L samples in the last run
(e, (Q—1)pL < L < QpL).

According to this procedure, there exist one x, for which
the splicing point falls within a window with a margin of
at most pL samples from the window border. The proposed
detection and localization method should then correctly work
on this selected run, while showing more uncertain results on
the other runs. In practice, on the correct run, y[w] will exhibit
the highest maximum.

With this idea in mind, we can estimate the index of the
best run by computing

G = argmaxy,, (16)
q

where y, corresponds to y computed on the g-th run. We
then compute estimate the index of the window containing
the splicing as

W = argmax yg[w]. (17)

w

Finally, we convert the window index into a sample index by
correcting for the shift as

n=(w+gdp)L+1. (18)

This is the estimated splicing point in samples.
In Figure 8 there is an example of the distances y[w], after
applying the multi-shift operation with @ = 5.

B. Multiple Splicings

The other problem in the basic pipeline is detecting more
than one splicing point. In fact, if we use the pipeline described
in Section IV we can detect only one splicing point, but we
want to detect and localize all the splicing points inside the
analyzed audio recording.

L
X
1t on o o tonon oo ot oo o
pL,
oot ol s ol oe e foa s
2L
i e e
(@- 1)L

Fig. 7. Visual description of how the multi-shift operation is performed. Each
row represent one of the) runs. For each run we remove the first pL samples
before starting the windowing process with L sample long windows.

Fig. 8. Example of y4[w] computed @ times using the multi-shift technique.
Each yq[w] shows a maximum around w = 9 or w = 10. We estimate
W =9 as y4[w] has the highest peak.

We solve this issue by making the algorithm iterative. After
detecting and localizing the first splicing point, we split the
audio recording into two slices by cutting the recording at the
predicted splicing point. We then analyze each slice as a single
audio recording, repeating the basic pipeline.

The algorithm keeps running iteratively until one of the
following stopping conditions is reached:

« No more splicing are detected (i.e., Crer = 0)

o The minimum length of the audio file for proper analysis

is reached (the length must be greater than 2L to have at
least two windows).

Figure 9 reports a visual example of the iterative process.

X1 Xo X3 X4

a1 (TR T R e e

i, -||--|||||-||||||||-||||||||-|||||--|--||||||||-|||||--|||||||-
etiflfuojet]f| gl etpt]fatfisn]if
ny n3

Fig. 9. Example of the iterative process with three classes and two splicing
points.

VI. DATASET
In this section we explain the dataset we used in our study.
The dataset we decided to use is the MOBIPHONE dataset
[18]. This is a collection of 4800 utterances recorded with
21 mobile phone models from seven different brands. For

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 9

each phone there are tracks obtained recording 24 speakers
from TIMIT [46], 12 males and 12 females. For each speaker
we have 10 sentences. The TIMIT is a corpus designed to
provide speech data for acoustic-phonetic studies and for the
development and evaluation of automatic speech recognition
systems. We followed the same approach explained in [47]
and [48] in which they excluded the model “Samsung s5830i”
due to the short duration of its recording.

In Table I, we report the complete list of brands and cell
phone models used in this study. There is also the class label
tag associated to each mobile phone class.

To be more realistic, we decided to adopt an open-set
approach, so not all the models of the dataset have been used
for network training. This is essential to check if we can detect
and localize splicing also when models different from the ones
seen by the feature extractor are used.

We divided the dataset in the following way:

¢ Training: models from class 0 to 15, speakers from 1 to
16.

o Test: models from class O to 15, speakers from 17 to 24.

e Open-set: models from class 16 to 19, speakers from 17
to 24.

From the test set and open set audio recordings we have built
the splicing dataset. The splicing dataset has been obtained by
creating all possible pairs and triplets of recordings (with and
without smartphone model change), always considering the
same speaker within the pair or triplet. This is important so to
ensure that we only detect device model changes, and we do
not detect splicing due to different speakers. In this way we
were able to get 2560 pairs and 51200 triplets, that we used
to test the method as explained above. We will refer to this
dataset as the Clean version.

In addition to this, to check the robustness of our method
we generated additional versions of the dataset by adding
noise or compressing it, as often done in literature [16] [49].
For the noisy datasets we decided to use an Additive White
Gaussian Noise (AWGN) with different SNRs. As SNRs we
decided to use 15dB, 20dB, 30dB, 40dB. On the other hand
for the compression datasets we decided to use the Adavnced
Audio Coding (AAC) compression pipeline (a standard for
smartphones), with different bitrates. The bitrates adopted are
96 kbit/s and 128 kbit/s.

TABLE I
LisT oF MOBIPHONE MODELS

Class Brand and Model | Class Brand and Model
0 Apple iPhone 5 10 Samsung Galaxy GT-19100 s2
1 HTC desire ¢ 11 Samsung Galaxy Nexus S
2 LG GS290 12 Samsung GT-N7100 (galaxy note2)
3 LG L3 13 Sony Ericson ¢510i
4 LG Optimus L9 14 Sony Ericson ¢902
5 Nokia 5530 15 Vodafone joy 845
6 Nokia C5 16 HTC Sensation xe
7 Samsung e1230 17 Nokia N70
8 Samsung E2121B 18 LG Optimus L5
9 Samsung E2600 19 Samsung GT-I8190 mini

VII. PARAMETERS SELECTION

In this section we report details about the parameters we
chose in our pipeline, from the CNN feature extractor to the
different thresholds.

A. Feature Extraction CNN

In order to choose the best smartphone classification net-
works, we did some experiment on different architectures and
combinations. We compared two networks, the first one taken
by Baldini et al. [16] and the second one by Zeighidour et al.
[50]. The second CNN is slightly different from the first one as
it has more layers and a higher number of hyper-parameters,
which we set as explained in [50]. The first one is the network
we decided to use as it showed the best results for our task.

The training was done on the training set, composed as
explained before by 16 speakers per class. The optimizer used
is the RMSPprop with a learning rate set to 0.0001 [51]. The
number of epochs was set to 100, unless the training was
automatically stopped in case of overfitting on small validation
set extracted from the training one. We set a Dropout equal to
0.3. The loss function to minimize is the sparse categorical
cross-entropy function. As explained in Section IV-B the
network has been trained to solve a smartphone classification
task.

Notice that this is the only training step of our entire
pipeline. In this step we do not need to use spliced data. We
only work with original recordings from different models.

Figure 10 shows the confusion matrix that captures the
attribution performance of the network proposed in [16] on
the test set. These results show that with this network we are
able to get successful results in terms of classification, with a
final accuracy value of 95%.

This motivates us in using this network as feature extractor.

0.05

0.07 0.08 0.04

True label

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Predicted label

Fig. 10. Confusion matrix obtained with the CNN proposed in [16] on the
test set reported in Table I (i.e., classes from O to 15).

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 10

B. p selection

The p parameter is used to select the) value, so how many
time we scan the audio signal starting each time pL samples
after the previous one, as described in Section V-A. The p
value represents the portion of a different class that can be
present in a window in order to get the desired accuracy in
prediction of the original class.

We tested the CNN on the classification task for 10 different
values of p, and then we analyzed how the accuracy changed
with respect to p values. In other words, after training the
CNN, we built 10 different test sets (one per p value). Given
a certain p, we tested the CNN in classifying a window of
samples composed by pL samples from one device and (p —
1)L samples from another device, with the goal of recognizing
the second device.

Figure 11 shows the achieved results, using random combi-
nation of models in the test set reported in Table 1. The curve
shows that for p = 0 (i.e., all samples in the analysis window
come from a single device), the CNN works with an accuracy
higher than 90% (confirming the results from Figure 10). As p
increases (i.e., more samples come from a different device), the
CNN performance worsen as expected (as the CNN analyses
a mix of samples from multiple devices). When p = 1, all
samples in the window come from a different device, and the
CNN always fails as expected.

From these results we decided to use a value of p equal to
0.2. In this way, we are able to have an overlap of 80%, an
accuracy above 70% and in the same time limiting the iteration
to S.

1.0

0.8

Accuracy
o
(=}

\

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 11. Mean accuracy change with different p values.

C. Threshold for K-Means

In order to detect the presence of splicing, we threshold
the quantity d computed as in Equation (10) representing the
distance between features from different models. To do so,
we computed the value d for multiple slices pairs (belonging
or not to the same model), taken from the test and open set,
and we evaluated the results by means of Receiver Operating
Characteristic (ROC) curves and Area Under the Curve (AUC).

To perform this evaluation, we had to work with pairs of
classes, since the ROC measures a binary classifier. So we built
all the possible pairs among the various classes. Then we built
the distance signal y[w], as explained in Equation (12).

Figure 12 reports the ROC curve we used to select the
threshold 7pr. From the ROC curve we extracted the threshold
as the one that maximized the accuracy. The value we obtained
for the threshold 7y, used in Equation (11) is 0.2.

1.0+ -
,
,
< 0.8 L
z -~
£0.61 ,/’
k= JRe
< ,
~
o 041 i
&
0.2
— AUC =0.95
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Fig. 12. ROC for K-Means threshold selection.

D. Threshold for detection refinement

We adopted the same approach explained in Section VII-C,
to determine the right threshold for the detection refinement.
We build the ROC curve based on the maximum value of each
predicted splicing point (i.e., max y[w]), and the we found the
best threshold that separates the true splicing point from the
wrong ones.

In Figure 13 there is the final ROC curve we used to select
the threshold ~s. From this ROC curve we obtained a value
of et equals to 0.3.

’
’
,
’
P
et -7
E -~
o ,
=
o
[a)
L
=
—— AUC = 0.96
0.0 - . . ! !
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 13. ROC for max values threshold selection.

VIII. PERFORMANCE

This section presents the results achieved by our splicing
detection and localization method. The results are divided in
three subsections: Detection, Localization and Iterative results.

In Section VIII-A and Section VIII-B we report the results
for detection and localization, respectively. In both sections the
results have been obtained testing the method on one splicing
point, so two different models concatenated together (i.e., the
dataset composed by track pairs). The results are organized in

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 11

tables and the test were done on the clean pairs dataset, the
noise dataset and the compressed one.

In Section VIII-C we report the results achieved with the
iterative algorithm, so testing the method on multiple splicing
points as in a realistic condition. These results are obtained
considering the dataset composed by triplets of recording, in
its clean form, the noisy ones, and the compressed ones.

A. Detection

After determining the optimal threshold and verifying that
it was adequate for all the classes as explained in the pre-
vious section, we tested the clustering algorithm reported in
Section IV-C.

1) Comparison Against Baselines: The first set of exper-
iments is aimed to test our proposed method against some
baselines.

As first baseline (i.e., Baseline I), we considered the ap-
proach explained in [5]. Instead of using the K-Means, we used
the max value of the distance sequence to obtained the predic-
tion label. The second baseline (i.e., Baseline II) is obtained
using the method explained in [52]. This approach is based
on computing the correlation between features and detect the
splicing using a threshold on the minimum correlation value
obtained by and audio recording.

Concerning our method, we show the performance in two
situations: considering the preliminary estimation Cp. (i.€.,
Proposed); considering the refined result ¢.¢ as reported in
Section IV-E (i.e., Proposed Refinement). This could be inter-
preted as a sort of ablation study on the use of the multi-shift
refinement.

Figure 14 shows the ROC curves obtained for the two base-
lines (Baseline I and Baseline II) and our method (Proposed)
tested on the clean dataset (i.e., tracks not affected by noise or
compression). The ROC curves have produced by thresholding
the distance values d, i.e., the output of the detection before
computing the value ¢,e.

1.0
0.8
[}
=
~
206
o
v 0.4
ﬁ '
0.2 ’ = Baseline I — AUC = 0.80
' ot Baseline I — AUC = 0.95
// === Proposed — AUC = 0.95
0.0 T T - -
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
Fig. 14. ROC curves comparison among baselines and proposed method.

These results show that the proposed method achieves the
same AUC of the best baseline. However, this is not the only
metric of interest.

To better capture the behaviour of the method, Table II
reports the outcome of the clustering algorithm on the clean

dataset in terms of balanced accuracy when the best working
point is selected. In practice, we consider as true positives
all the spliced tracks that are correctly detected, and as true
negatives all the tracks that are correctly detected as not
containing any change.

These results show that the proposed preliminary method
outperforms both baselines. The refinement step improves the
accuracy even more, up to 96%.

In addition to these results we have tested also the method
proposed by Jadhav et al. in [43]. This work is based on a
CNN trained to detect the presence of a splicing point inside
an analyzed window. With this pipeline tested on our dataset,
we were able to achieve an overall accuracy of about 87%.
So also in this case our method is the best performing one for
the detection problem.

TABLE I
DETECTION RESULTS ON THE CLEAN DATASET OF TRACK PAIRS.

Method Balanced Accuracy
Baseline I [5] 0.765
Baseline II [52] 0.859
Proposed 0.906
Proposed Refinement 0.960

2) Robustness: As additional experiment, we tested the
behaviour of the proposed method on tracks corrupted by noise
or compression.

The choice of additive noise is to test the method under
more realistic working conditions in which attackers may de-
cide to apply some additional operations after splicing to mask
possible forensic traces. Indeed, adding noise to multimedia
data can be seen as a very simple but often effective anti-
forensic technique.

The choice of testing the methods against compressed audio
recordings also goes in the direction of working in a more
realistic case. It is indeed expected that audio recordings
are seldom uncompressed. They are rather almost always
compressed to either limit the space on the device onboard
memory, or save bandwidth during transmission. It is also well
known that compression may hinder forensic traces in multiple
scenarios.

Table III reports the results obtained with the augmented
datasets, created as explained in Section VI. In this case
we do not report the baselines anymore, as they are always
outperformed.

These results show that the proposed method is robust to
both compression and additive noise, as only a few percentage
points of accuracy are lost with respect to the clean dataset
scenario. Moreover, the boost in performance obtained by
using the refined technique are evident.

B. Localization

Once the tampering is detected we need to find the splicing
point. To do this we used the localization algorithm explained
in the Section IV-D.

To evaluate how well the localization works we set an error
measure as the difference between the predicted point and the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 12

TABLE III
DETECTION RESULTS ON THE NOISY AND COMPRESSED DATASET OF
TRACK PAIRS.

Method Dataset Balanced Accuracy
SNR 40dB 0.884
SNR 30dB 0.879
Proposed SNR 20dB 0.805
SNR 15dB 0.742
AAC 128 Kbit/s 0.886
AAC 96 Kbit/s 0.872
SNR 40dB 0.952
SNR 30dB 0.942
Proposed Refined SNR 20dB 0.879
SNR 15dB 0.808
AAC 128 Kbit/s 0.954
AAC 96 Kbit/s 0.950

true splicing cut point. The error is expressed in seconds and
is defined as:

19)

where n is the true splicing point, 7 is the predicted one and
S is the sampling rate.

1) Comparison Against Baselines: As first experiment, we
compare our method against a baseline on the clean dataset.
Also in this case we used as baseline the method explained in
[5]. Our method, in fact, can be seen as an advanced version
of this baseline because they in the work [5] considered only
one version of the signal, whereas we analyzed the signal Q-th
times. In addition we compared our method with the pipeline
proposed by Moussa et al. in [9]. In this work they propose
a transformer architecture for audio splicing localization. The
transformer is trained to detect splicing points with a minimum
error of 0.5s, so just from how the architecture is trained we
can say that our method outperforms their pipeline. Moreover
we tested their method on our dataset, and the average error
is about 4.5s. This is due, in our opinion, because the two
architectures are trained to solve a similar problem but in
two different cases. In fact the transformer architecture is not
trained to detect the splicing points if the manipulation is only
a change of the device used for the recording.

The results of the localization method are reported in
Table IV, and for each method we reported both the mean
and the standard deviation of the obtained error e. Results
show that the proposed enhancement on the) runs of the
base localization step strongly improve the results.

TABLE IV
LOCALIZATION RESULTS ON THE CLEAN DATASET OF TRACK PAIRS.

Method Error
Mean Std
Baseline I [5] 0.540 4+ 4.556
Proposed 0.012 £ 3.863

To better visualize the performance of the proposed method
we show the histogram of this error measure in Figure 15. The
horizontal axis represents the localization error e in seconds.
The vertical axis represents the occurrence over the test set of

clean pairs. Negative values show that the detected splicing
point precedes the actual splicing.

From these results we can see that the proposed method
hardly makes an error larger than 1 second in localizing a
splicing when it is detected.

1000 4

800 4

400 i |i
200 4
0 1 2 3

0 T T t =
-4 -3 -2 -1

Occurencies

600 1 I

Error
Fig. 15. Histogram of the localization error measure for the clean dataset.

2) Robustness: As we have done for the detection results,
we report in Table V the results obtained with the augmented
datasets to test the robustness of our method to editing
operations like noise addition and compression.

TABLE V
LOCALIZATION RESULTS ON THE NOISY OR COMPRESSED DATASETS OF
TRACK PAIRS.

Method Dataset Error
Mean Std
SNR 40dB 0.046 £ 4.489
SNR 30dB 0.196 £ 5.650
Proposed SNR 20dB 0218 £ 6.853
SNR 15dB 0416 £ 7.515
AAC 128 Kbit/s 0.048 £ 3.876
AAC 96 Kbit/s 0.006 =+ 3.789

C. Iterative results

This section presents the results obtained with the complete
iterative pipeline.

We built the test data with triplets of models from Table I.
As explained in Section VI we have created the dataset with
all the possible triplets for each speaker, considering both test
and open set models. This means that in an audio recording
there can be zero, one or two splicing points, depending on
the models used in the triplet.

As for the previous section the detection results are shown
in terms of balanced accuracy, consider as true positive the
true model changes and as true negative the true no changes.
In this case, we achieved 92.4% for the preliminary detection,
and 95% for the refined one.

For the localization we use the mean and the standard de-
viation of the error, computed as explained in Section VIII-B,
considering only the correct detection. For the localization the
mean error takes into account the average error on all splicing

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 13

ny = 85000

|

Mz = 358200
d=0.61

711 = 86000
d=04

Fig. 16. Case study with 2 models (classes 0 and 19), and 3 splicing points.
The colour of each waveform corresponds to the class model.

ny = 203000 nz = 353000

points per test track. We achieved an average localization error
of 0.581 seconds, with a standard deviation of 2.769.

IX. CASE STUDY

In this section we show how the proposed pipeline performs
on a realistic case. To do so, we consider a longer speech
track with more than two splicing points to evaluate how the
iteration process performs in a more challenging scenario. The
considered case is more similar to real conditions, where we
have to deal with more complex audio tracks that contain an
unknown number of forgeries.

In this example we created a spliced audio recording using
two models from the MOBIPHONE dataset, namely classes 0
and 19. We considered the same speaker for both classes, i.e.,
number 11. We merged the audio recordings of the selected
smartphones to create a new recording with 3 splicing points.

To consider the most challenging scenario possible, we
selected one device among the training set models, class O,
and the other among the open-set ones, class 19.

To better understand the example, we have reported all the
iterative steps in the Figure 16. The first row of the Figure 16
shows the spliced audio recording we built. Each color of
the audio waveform represents a model class and the splicing
points correspond to the color changes.

Each row of the figure represents a step of the iteration
process. The blue boxes report the summary values of each
iteration. In particular, we report the true splicing point n in
samples, the predicted one n in samples, and the distance value
d at the predicted splicing point.

As described in Section V-B, we have split the audio
recording into two parts at the predicted splicing point for
each step after the splicing localization. Then we repeated the
proposed method for each part until we reached one of the
stop conditions explained in Section V-B.

As can be deduced from the reported results, the proposed
method performs well also in a more complex scenario. We
were able to detect all the splicing points present in the audio
recording, with an average error about 0.1 seconds.

X. BEYOND ACQUISITION DEVICES

In this paper, we have addressed the problem of splicing
detection and localization considering the analysis of traces
left by the acquisition device. However, the concept of acqui-
sition device traces is very broad. These traces may derive
from the microphone. Alternatively, they may be due to some
specific onboard processing and equalization. In other cases,
these traces may be left by compression.

In this section, we perform a preliminary experiment to
investigate if the proposed method is capable of working
on other kinds of traces that can be compared to those of
the acquisition device. We take into account audio tracks
obtained through synthetic speech generators. We consider
tracks synthesized by different generation algorithms as if
they were acquired with different devices. Indeed, we know
from the literature that different synthetic speech algorithms
leave different traces [53]. We aim to see whether our feature
extractor is capable of capturing traces that distinguish real
speech from synthetic one, as well as to tell different synthetic
generation algorithms apart. Indeed, if this happens, it means
that we could use the proposed splicing detection and local-
ization algorithms also to spot if a speech is a composition of
real and synthetic tracks, or tracks from multiple generators.

To do so, we present an evaluation of the proposed method
on two distinct tasks: deepfake detection and attribution. To
assess the generalization ability of our CNN, we conducted
experiments on the ASVspoof 2019 dataset [53] using the
model trained on the microphone classification task. This
dataset includes various synthesis algorithms that can be
treated as different microphones. Our evaluation involved two
separate sub-tasks: first, detecting whether a track is bonafide
or spoofed, i.e., deepfake detection; and second, identifying
the specific algorithm used to generate the synthetic track,
i.e., deepfake attribution. To perform these tasks, we utilized
the CNN architecture shown in Figure 4, which was originally
trained on the MOBIPHONE dataset. To analyze whether the
extracted features can be used for both problems, detection and
attribution, we used a Random Forest classifier trained on top
of the features extracted with the MOBIPHONE pre-trained
extractor CNN.

Figure 17 shows the confusion matrix for the detection
problem, where class O stands for bonafide and class 1
represents the spoof class. It is possible to see that the pre-
trained feature extractor works nicely in distinguishing real
from synthetic speech.

Figure 18 reports the confusion matrix for the attribution
problem, where class numbers are referred to the ASVspoof
2019 notation used to differentiate the different generators,
where we consider ASVspoof 2019 voice conversion and text-
to-speech algorithms. It is possible to see that the selected four
synthesizers can be clearly separated. This is surprising given
that the feature extractor was only trained on MOBIPHONE
data, and a very simple Random Forest was used for classifi-
cation purpose.

These preliminary experiments show the effectiveness of our
proposed method in detecting and attributing deepfake audio,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 14

True label

0 1
Predicted label

Fig. 17. Confusion matrix obtained for the deepfake detection problem with
the CNN in Figure 4. Values below 4% are not reported.

o JED 0.16

True label

ot

6] 007

Predicted label

Fig. 18. Confusion matrix obtained for the deepfake attribution problem with
the CNN in Figure 4. Values below 4% are not reported.

and showcase its ability to generalize across different tasks
and datasets.

XI. CONCLUSION

This work proposes a new methodology for audio forensic
analysis exploiting traces left on a recording by acquisition
devices. Specifically, we have addressed two main tasks:

e Detecting if an audio recording comes from a single
recording or it is a splicing generated concatenating slices
from different models.

o Localizing the splicing points in order to separate the
concatenated slices from the original one.

The devised methodology is based on a CNN able to extract
suitable features from the audio recording, K-Means clustering
algorithm to recognize the presence of traces from multiple
models, and a distance measure to localize the splicing points.
We also enhance the basic pipeline with a multi-shift operation
to achieve a better precision in localization and an iterative
process to find multiple splicing points.

The method has been evaluated on a dataset built on top
of the MOBIPHONE one, that we used both for training the
CNN and to test the entire algorithm.

The proposed approach has shown promising results both in
detection and localization. In particular the pipeline described

in our work achieves outperforming accuracy. The detection
stage shows 96% accuracy, while the maximum localization
error is about 0.012 second on clean recordings. This results
highlights that the proposed method is a valid approach to
solve both detection and localization tasks.

Given the achieved promising results, future work will
be devoted to extend the method in two direction. On one
hand, we would like to deepen the study on the applicability
of the proposed technique to synthetically generated audio
tracks given the preliminary promising results. Moreover, we
would like to make the feature vector extractor capable of
capturing traces left by audio editing techniques in addition
to device ones. Finally, it could be interesting to investigate
the scenario in which the recordings have been transmitted
between smartphones or obtained through wiretapping.

REFERENCES

[11 Y. W. et al., “Tacotron: Towards end-to-end speech synthesis,” in
INTERSPEECH, 2017, pp. 4006-4010.

[2] S. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou, “Neural voice cloning
with a few samples,” in Advances in Neural Information Processing
Systems (ANIPS), 2018, pp. 1-11.

[3] Z. Borsos, M. Sharifi, and M. Tagliasacchi, “Speechpainter: Text-
conditioned speech inpainting,” ArXiv, 2022.

[4] E. A. AlBadawy, S. Lyu, and H. Farid, “Detecting ai-synthesized speech
using bispectral analysis,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, 2019.

[5] D. Capoferri, C. Borrelli, P. Bestagini, F. Antonacci, A. Sarti, and
S. Tubaro, “Speech audio splicing detection and localization exploiting
reverberation cues,” in IEEE International Workshop on Information
Forensics and Security (WIFS), 2020.

[6] D. Cozzolino, M. NieBner, and L. Verdoliva, “Audio-visual person-of-
interest deepfake detection,” arXiv preprint arXiv:2204.03083, 2022.

[7]1 D. Castan, M. H. Rahman, S. Bakst, C. Cobo-Kroenke, M. McLaren,
M. Graciarena, and A. Lawson, “Speaker-targeted synthetic speech
detection,” in Odyssey 2022: The Speaker and Language Recognition
Workshop, 2022, pp. 62-69.

[8] B. Hosler, D. Salvi, A. Murray, F. Antonacci, P. Bestagini, S. Tubaro,
and M. C. Stamm, “Do deepfakes feel emotions? A semantic approach
to detecting deepfakes via emotional inconsistencies,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[9]1 D. Moussa, G. Hirsch, and C. Riess, “Towards Unconstrained Audio
Splicing Detection and Localization with Neural Networks,” in Interna-
tional Conference on Pattern Recognition, 2022.

[10] S. Cui, E. Li, and X. Kang, “Autoregressive model based smoothing
forensics of very short speech clips,” in IEEE International Conference
on Multimedia and Expo (ICME), 2020.

[11] X. Pan, X. Zhang, and S. Lyu, “Detecting splicing in digital audios
using local noise level estimation,” in [EEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2012.

[12] C. Grigoras and J. M. Smith, “Quantization level analysis for foren-
sic media authentication,” in AES International Conference on Audio
Forensics (ICAF), 2014, pp. 71-76.

[13] D. P. N. Rodriguez, J. A. Apolindrio, and L. W. P. Biscainho, “Audio
authenticity: Detecting enf discontinuity with high precision phase
analysis,” IEEE Transactions on Information Forensics and Security
(TIFS), vol. 5, no. 3, pp. 534-543, 2010.

[14] C. Kritzer, A. Oermann, J. Dittmann, and A. Lang, “Digital audio
forensics: a first practical evaluation on microphone and environment
classification,” in Workshop on Multimedia & Security (MM &Sec), 2007,
pp. 63-74.

[15] C. Hanilgi, F. Ertas, T. Ertas, and 0. Eskidere, “Recognition of brand and
models of cell-phones from recorded speech signals,” IEEE Transactions
on Information Forensics and Security (TIFS), vol. 7, pp. 625-634, 2012.

[16] G. Baldini, I. Amerini, and C. Gentile, “Microphone identification using
convolutional neural networks,” IEEE Sensors Letters, vol. 3, pp. 1-4,
2019.

[17] L. Cuccovillo, S. Mann, M. Tagliasacchi, and P. Aichroth, “Audio tam-
pering detection via microphone classification,” in IEEE International
Workshop on Multimedia Signal Processing (MMSP), 2013.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 15

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

C. Kotropoulos and S. Samaras, “Mobile phone identification using
recorded speech signals,” in International Conference on Digital Signal
Processing (ICDSP), 2014.

R. C. Maher, Principles of Forensic Audio Analysis, 1st ed. Springer,
2018.

V. Verma and N. Khanna, “Speaker-independent source cell-phone
identification for re-compressed and noisy audio recordings,” Multimedia
Tools and Applications, vol. 80, pp. 25581-23 603, 2021.

R. Buchholz, C. Kritzer, and J. Dittmann, “Microphone classification
using fourier coefficients,” in Information Hiding (IH), 2009.

C. Kritzer, M. Schott, and J. Dittmann, “Unweighted fusion in mi-
crophone forensics using a decision tree and linear logistic regression
models,” in Multimedia and Security Workshop (MM &Sec), 2009.

D. Garcia-Romero and C. Espy-Wilson, “Automatic acquisition device
identification from speech recordings,” in I[EEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2010.

Y. Jiang and F. H. F. Leung, “Source microphone recognition aided by
a kernel-based projection method,” IEEE Transactions on Information
Forensics and Security (TIFS), vol. 14, pp. 2875-2886, 2019.

Y. Panagakis and C. Kotropoulos, “Automatic telephone handset iden-
tification by sparse representation of random spectral features,” in
Multimedia and Security Workshop (MM &Sec), 2012.

——, “Telephone handset identification by feature selection and sparse
representations,” in IEEE International Workshop on Information Foren-
sics and Security (WIFS), 2012.

C. Hanilgi and F. Ertas, “Optimizing acoustic features for source cell-
phone recognition using speech signals,” in ACM Information Hiding
and Multimedia Security Workshop (IH&MMSec), 2013.

C. Hanil¢i and T. Kinnunen, “Source cell-phone recognition from
recorded speech using non-speech segments,” Digital Signal Processing,
vol. 35, p. 75-85, 2014.

R. Aggarwal, S. Singh, A. K. Roul, and N. Khanna, “Cellphone iden-
tification using noise estimates from recorded audio,” in International
Conference on Communication and Signal Processing (ICCSP), 2014.

L. Zou, Q. He, and X. Feng, “Cell phone verification from speech record-
ings using sparse representation,” in /EEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2015.

Y. Li, X. Zhang, X. Li, Y. Zhang, J. Yang, and Q. He, “Mobile phone
clustering from speech recordings using deep representation and spectral
clustering,” IEEE Transactions on Information Forensics and Security
(TIFS), vol. 13, pp. 965-977, 2018.

V. Verma, P. Khaturia, and N. Khanna, “Cell-phone identification from
recompressed audio recordings,” in National Conference on Communi-
cations (NCC), 2018.

D. Luo, P. Korus, and J. Huang, “Band energy difference for source attri-
bution in audio forensics,” IEEE Transactions on Information Forensics
and Security (TIFS), vol. 13, pp. 2179-2189, 2018.

T. Qin, R. ding Wang, D. Yan, and L. Lin, “Source cell-phone identifica-
tion in the presence of additive noise from CQT domain,” Information,
vol. 9, p. 205, 2018.

G. Baldini and I. Amerini, “Smartphones identification through the built-
in microphones with convolutional neural network,” IEEE Access, vol. 7,
pp. 158685-158 696, 2019.

X. Lin, J. Zhu, and D. Chen, “Subband aware cnn for cell-phone
recognition,” IEEE Signal Processing Letters, vol. 27, pp. 605-609,
2020.

G. Baldini and I. Amerini, “Microphone identification based on spectral
entropy with convolutional neural network,” in IEEE International
Workshop on Information Forensics and Security (WIFS), 2022.

D. Girtner, C. Dittmar, P. Aichroth, L. Cuccovillo, S. Mann, and
G. Schuller, “Efficient cross-codec framing grid analysis for audio
tampering detection,” in AES International Convention, 2014.

A. J. Cooper, “Detecting butt-spliced edits in forensic digital au-
dio recordings,” in AES International Conference on Audio Forensics
(ICAF), 2010.

X. Meng, C. Li, and L. Tian, “Detecting audio splicing forgery algorithm
based on local noise level estimation,” in International Conference on
Systems and Informatics (ICSAI), 2018.

Y. D, M. Li, M, and G. J, “Exposing speech transsplicing forgery
with noise level inconsistency,” Application-Aware Multimedia Security
Techniques, vol. 2021, pp. 1-6, 2021.

K. Zhang, S. Liang, S. Nie, S. He, J. Pan, X. Zhang, H. Ma, and J. Yi,
“A robust deep audio splicing detection method via singularity detection
feature,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2022.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

S. Jadhav, R. Patole, and P. Rege, “Audio splicing detection using con-
volutional neural network,” in International Conference on Computing,
Communication and Networking Technologies (ICCCNT), 2019.

N. D. Gaubitch, M. Brookes, P. A. Naylor, and D. Sharma, “Single-
microphone blind channel identification in speech using spectrum clas-
sification,” in European Signal Processing Conference (ESPC), 2011.
J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Berkeley Symposium on Mathematical Statistics
and Probability, 1967.

J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren, and
V. Zue, “TIMIT Acoustic-Phonetic Continuous Speech Corpus,” 1993.
V. Verma and N. Khanna, “CNN-based system for speaker independent
cell-phone identification from recorded audio,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, June
2019.

Z. Borsos, Y. Li, B. Gfeller, and M. Tagliasacchi, “Micaugment: One-
shot microphone style transfer,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2021.

A. Giganti, L. Cuccovillo, P. Bestagini, P. Aichroth, and S. Tubaro,
“Speaker-independent microphone identification in noisy conditions,” in
European Signal Processing Conference (EUSIPCO), 2022.

N. Zeghidour, O. Teboul, F. de Chaumont Quitry, and M. Tagliasacchi,
“Leaf: A learnable frontend for audio classification,” in International
Conference on Learning Representations (ICLR), 2021.

T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, 2012.

L. Cuccovillo and P. Aichroth, “Open-set microphone classification via
blind channel analysis,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2016.

A. Nautsch, X. Wang, N. Evans, T. Kinnunen, V. Vestman, M. Todisco,
H. Delgado, M. Sahidullah, J. Yamagishi, and K. A. Lee, “ASVspoof
2019: Spoofing Countermeasures for the Detection of Synthesized,
Converted and Replayed Speech,” IEEE Transactions on Biometrics,
Behavior, and Identity Science, vol. 3, pp. 252-265, 2021.

Daniele Ugo Leonzio was born in Foggia, Italy,
in 1997. He received the M.Sc degree in Music
and Acoustic Engineering from the Politecnico di
Milano, Italy, in 2021. He is currently a Ph.D.

/ student with the Image and Sound Processing Lab

) (ISPL) at the Department of Electronics, Information
and Bioengineering (DEIB) of the Politecnico di
Milano. His research activity focuses on the study
of multimedia signal processing techniques.

Luca Cuccovillo has received his M.Sc. in Com-
puter Science and Engineering at the Politecnico di
Miano (Italy). He is currently pursuing his PhD at
Ilmenau University of Technology (Germany), on
the topic of audio signal analysis for multimodal
tampering detection. He is working as a researcher at
Fraunhofer IDMT since 2013, in the research group
of media distribution and security. His research
activity focuses on signal processing and trustworthy
Al and on their applications to audio forensics and
fight against disinformation.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, MONTH 20XX 16

Paolo Bestagini (M’11) was born in Novara, Italy,
in 1986. He received the M.Sc. degree in Telecom-
munications Engineering and the Ph.D. degree in
Information Technology from the Politecnico di Mi-
lano, Italy, in 2010 and 2014, respectively. He is
currently Assistant Professor with the Image and
Sound Processing Lab (ISPL) at the Department of
Electronics, Information and Bioengineering (DEIB)
of the Politecnico di Milano. His research interests
focus on multimedia forensics and acoustic signal
processing for microphone arrays. He has been sci-
entific investigator for the European projects SCENIC and REWIND coor-
dinated by the Politecnico di Milano. He has been co-principal investigator
for the DARPA-funded MediFor project. He is co-principal investigator for
the DARPA-funded SemaFor project. He is an elected member of the IEEE
Information Forensics and Security Technical Committee for the second time.
He serves as an Associate Editor for the IEEE Transactions on Circuits and
Systems for Video Technology (TCSVT) and the Elsevier Journal of Visual
Communication and Image Representation (JVCI). He is Co-Organizer of the
IEEE Signal Processing Cup 2018 and 2022.

Marco Marcon was born in Bollate (Milan) in
1972. He completed his studies in Electronic Engi-
neering at the Politecnico di Milano, Italy in 1998.
He received the Ph.D. in Applied Physics in 2003
from the Department of Physics of the Politecnico
di Milano. In 2003 he joined the Department of
Electronics, Information and Bioengineering (DEIB)
of the Politecnico di Milano, where he is actually
working as a research scientist in the Image and
Sound Processing Lab (ISPL). His current research
interests are in the area of Digital Image Processing

and Computer Vision for Biometry and 3D object reconstruct from multiple
uncalibrated views. He participated to the Origami European project and to
the Visnet Network of Excellence and he is participating to its continuation:
Visnet II NoE.

Patrick Aichroth worked as a freelance software
developer and IT trainer before becoming a research
associate at Fraunhofer IDMT in 2003. Since 2006,
he has been head of the Media Distribution and
Security Group at Fraunhofer IDMT, which focuses
on the development of technologies for audio ma-
nipulation detection and provenance analysis, media
security, privacy enhancing technologies and trust-
worthy Al

Stefano Tubaro (SM’01) was born in Novara, Italy,
in 1957. He received the M.Sc. degree in Elec-
tronic Engineering from the Politecnico di Milano,
Milan, Italy, in 1982. He then joined the Depart-
ment of Electronics, Information and Bioengineering
(DEIB), Politecnico di Milano, first as a Researcher
of the National Research Council, and then in 1991
as an Associate Professor. Since 2004, he has been
appointed as a Full Professor of telecommunication
with the Politecnico di Milano. His current research
interests include advanced algorithms for video and
sound processing. He coordinates the research activities of the Image and
Sound Processing Lab (ISPL) at the Department of Electronics, Information
and Bioengineering (DEIB), Politecnico di Milano. He had the role of a
Project Coordinator of the European Project ORIGAMI: A new paradigm
for high-quality mixing of real and virtual and of the research project ICT-
FET-OPEN REWIND: REVerse engineering of audio-VIsual coNtent Data.
This last project was aimed at synergistically combining principles of signal
processing, machine learning, and information theory to answer relevant
questions on the past history of such objects. He has authored more than
180 scientific publications on international journals and congresses and has
coauthored more than 15 patents. In the past few years, he has focused his
interest on the development of innovative techniques for image and video
tampering detection and, in general, for the blind recovery of the processing
history of multimedia objects. He is a member the IEEE Multimedia Signal
Processing Technical Committee and of the IEEE SPS Image Video and
Multidimensional Signal Technical Committee. He was in the organization
committee of a number of international conferences, including the IEEE
MMSP 2004/2013, the IEEE ICIP 2005, the IEEE AVSS 2005/2009, the
IEEE ICDSC 2009, the IEEE MMSP 2013, and the IEEE ICME 2015. From
2012 to 2015, he was an Associate Editor of the IEEE Transactions on
Image Processing (TIP), and he is currently an Associate Editor of the IEEE
Transactions on Information Forensics and Security (TIFS).

