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A Primer on Seq2SeqModels for Generative Chatbots
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The recent spread of Deep Learning-based solutions for Artificial Intelligence and the development of Large Language Models has
pushed forwards significantly the Natural Language Processing area. The approach has quickly evolved in the last ten years, deeply
affecting NLP, from low-level text pre-processing tasks –such as tokenisation or POS tagging– to high-level, complex NLP applications
like machine translation and chatbots. This paper examines recent trends in the development of open-domain data-driven generative
chatbots, focusing on the Seq2Seq architectures. Such architectures are compatible with multiple learning approaches, ranging from
supervised to reinforcement and, in the last years, allowed to realise very engaging open-domain chatbots. Not only do these architectures
allow to directly output the next turn in a conversation but, to some extent, they also allow to control the style or content of the response.
To offer a complete view on the subject, we examine possible architecture implementations as well as training and evaluation approaches.
Additionally, we provide information about the openly available corpora to train and evaluate such models and about the current and
past chatbot competitions. Finally, we present some insights on possible future directions, given the current research status.
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2 Scotti et al.

Dialogue agents (also known as conversational agents) have always been a long-running goal of Artificial Intelligence
(AI) since the very beginning of this research field. It is interesting to note that even the well-known Turing test for
artificial intelligence was designed around the conversational capabilities of themachine. Since then, dialogue capabilities
andmachine intelligence have been thought as tightly connected.

Nowadays, Natural Language Processing (NLP), the sub-field of AI focused on human language, offers several ap-
proaches to design and implement these agents. Traditionally, NLP literature divides conversational agents into task-
oriented and open-domain [80], as can be seen in the taxonomy depicted in Figure 1. Task-oriented agents (sometimes
called goal-oriented agents) are thought to be part of an application, acting as an interface, and are further divided into
finite-state and frame-based. Instead, open-domain agents (or chatbots) are designed for entertainment and chit-chatting.
These agents, in other words, try to give the user the impression of chatting with another human being. Chatbots are
divided into rule-based and data-driven, depending on whether the response is produced following a set of handcrafted
rules [191, 196] or following some pattern learnt through statistics or machine learning from dialogic corpora [32, 220].
Finally, data-driven chatbots are further organised into generative and retrieval. The chatbots from the former group
generate the response from scratch, while the latter select the response from a pool of available candidates.

Due to the inherent complex structure of human dialogues, designing and implementing open-domain conversational
agents is harder than designing and implementing task-oriented ones, which can rely on the constraints given by the task
to accomplish. A popular way to cope with the problem is leveraging machine learning to build the agent, thus delegating
to the learning algorithm the duty of identifying the patterns necessary to carry out the conversation. Initially, these
chatbotswere developedusing retrieval approaches due to the high computational power andhuge corpora needed to train
generativemodels. In the last years, however, the increased computational power achieved viaGeneral-Purpose computing

on graphics processing units (GPGPU) enabled the exploitation of Deep Neural Network (DNN) models to solve many AI
problems.With this computational power, training generativemodels for NLP become possible, yielding very good results
where the generated sequences of textwere “natural” enough to allow entertaining human-machine conversations [57, 76].

Conversational agents need to deal with sequential data, mainly text. Thus, conversational agents adopt specific Neural
Network architectures designed for sequence processing. These architectures for sequence modelling are often called
Sequence-to-Sequence (Seq2Seq ) since they take sequences as input and produce sequences as output. With the spread of
Deep Learning (DL) techniques in NLP and the availability of large, pre-trained, Language Models, Seq2Seq have become
the standard architecture to solve many NLP-related tasks, including the development of generative chatbots, as depicted
in the example of Figure 2. The application of such architectures, however, is neither limited to generative solutions nor
restricted to open-domain conversational agents. In fact, the Seq2Seq architecture is actually compatible with retrieval
chatbots or task-oriented agents. In general, Seq2Seq can be seen as a very generic and powerful tool for dealing with
a broad range of NLP tasks.

We divide the rest of this paper into the following sections. In Section 2 we present the main building blocks from
deep learning to create Seq2Seq neural conversational agents. In Section 3 we explain how the aforementioned blocks
can be exploited to realise these agents. Finally, in Section 5, we sum up the content of this paper and outline the expected
future directions and open issues. Additionally, we provide two appendices with material for training and evaluation
of Seq2Seq neural conversational agents. In Appendix A we present the approaches to train and evaluate the neural
Seq2Seq chatbots. In Appendix B we provide details about the available corpora to train chatbots (at different levels of
granularity) and the available competitions to test them.
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A Primer on Seq2SeqModels for Generative Chatbots 3

A: Hello, how are you?

A: Hi.
B: Hey, long time no see!

A: I’m going to Norway next week, have 
   you ever been there?

A: I’m having a hard time at work.
B: Why? 
A: My boss takes advantage of me.

B: I’m fine thanks. How about you?

A: How is you family?

B: No, but I heard that aurora borealis is 
   amazing. I hope you’ll get to see it.

B: That’s terrible, you should talk to HR.

Fig. 2. Generic sequence modelling I/O for chatbots, on the left the context and on the right the generated response

2 BACKGROUND

In this section we provide preliminary information to understand how DNNmodels work in general and how Seq2Seq
DNNs are built in particular. Additionally, we explain how natural language is encoded into a continuous representation
to be used with DNNs and how NLP uses Seq2SeqDNNs.

2.1 Neural Networks for sequencemodelling

In this section, we introduce the DNN framework applied to sequence processing. We provide an overview on DL and
howDNNs work in general. Subsequently, we focus on the two main DNNmodels for sequence analysis: recurrent Neural
Networks and transformer Neural Networks, the main building blocks of Seq2Seq networks.
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(b) Feed-forward Neural Network (ormulti-layer perceptron) with one hidden layer.

Fig. 3. Artificial Neural Network structure. Connections corresponding to the linear projection are the weights of the networks, the

connections departing from the constant value 1 correspond to the bias vector b and the remaining connection to the weight matrix

W. Activation functions are applied element-wise.
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4 Scotti et al.

2.1.1 DeepNeural Networks. Artificial Neural Networks (or simplyNeural Networks) are a flexible and powerfulmachine
learning framework compatible with supervised, unsupervised, and reinforcement learning [62]. They were inspired by
the biological neurons of the brain (hence the name). We visualise Artificial Neural Networks in Figure 3.

Neurons in the brain are organised into a massive graph. Each is a processing unit that receives electrochemical inputs
from other neurons and fires (is triggered) an output signal once the accumulated input reaches a certain threshold. This
Neural Network model translates into the mathematical formulation of Equation (1)

y= 𝑓 (x;𝜗)=𝑔(W⊤ ·x+b) (1)

where x∈R𝑑in is the input vector, y∈R𝑑out is the output vector (with 𝑑in ∈N+ and 𝑑out ∈N+ being respectively the input
and output sizes), 𝜗 ≡{W∈R𝑑in×𝑑out ,b∈R𝑑out } is the set of weights (composed of the matrixW and the bias vector b), and
𝑔(·) is an activation function, like the sigmoid 𝜎 (·) and tanh(·), or like more complex ones as softmax(·), ReLU(·), etc.

Initial research on Artificial Neural Networks produced independently the Perceptron [108, 146] and the ADAptive
LINear Element (ADALINE) [199], two learning frameworks for linearmodels respectively used for classification problems
(i.e., predicting a categorical value from the input) and regression problem (i.e., predicting a continuous value from the
input). See Figure 3a for further details on the structure of the linear model.

Bothmodelswere limited by their linear nature,which could be overcome by adding one ormore hidden transformation
layers with a non-linear activation inside these models [143]. These multi-layer Neural Networks (see ?? for further
details on the structure of the multi-layer, non-linear, model), often referred to as feed-forward Neural Networks, can
ideally approximate (and thus learn) any function, if a sufficient number of neurons in the hidden layer is provided [18].
The output of a feed-forward Neural Network is computed as in Equation (2)

y= 𝑓 (x;𝜗out)=𝑔out (W⊤out ·𝑔ℎ (W⊤ℎ ·x+bℎ)+bout)=𝑔out (W
⊤
out ·ℎ(x)+bout)=𝑔out (W⊤out ·h+bout) (2)

were h∈R𝑑ℎ is the activation of the hidden layer, with 𝑑ℎ being the number of hidden neurons,Wℎ ∈R𝑑in×𝑑ℎ , bℎ ∈R𝑑ℎ ,
Wout ∈R𝑑ℎ×𝑑out , and bout ∈R𝑑out are, respectively the weights and biases of the hidden and the output layer, and 𝑔ℎ (·) and
𝑔out (·) are, respectively, the activations of the hidden and the output layer andℎ(·) is the hidden transformation function
(note that in the formulation we considered a single hidden layer – however, it can be extended to a generic number of
hidden layers). In the last ten years, thanks to the increased computation power of GPGPU co-processors, we managed
to train feed-forward Neural Networks with a large number of layers, referred to as DNNs. These networks can learn
a hierarchy of features in their hidden layers that, provided a sufficient number of training samples, can be transferred
and reused for other tasks and in different domains [62].

Neural Networks are parametrised by a set of real-valued weights 𝜗 . To train these models, it is necessary to define
a differentiable loss function (or cost function, or objective function)L(·;𝜗) to optimise.L(·;𝜗) depends on the parameters
of the Neural Network. Common choices for a loss function are the negative log-likelihood for classification problems and
theMean Square Error (MSE) for regression problems. Training the Neural Networkmeans to iteratively minimise the loss
function, updating the weights at each iteration. This iterative optimisation process is usually realised via the Gradient
Descent algorithm (or some variants like Stochastic Gradient Descent andMini-Batch Gradient Descent) [62]. Through the
years, many different stochastic optimisations algorithms based on Gradient Descent have been developed [42, 83, 165] to
help find the global optimum of the loss function corresponding to the best weights combination, avoiding local optima.
These stochastic optimisation algorithms leverage the Backpropagation algorithm to compute the gradient of the loss
function with respect to the weights of the Neural Network.
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Fig. 4. Visualisation of tensors with one, two and three dimensions.

Due to the complexity anddepthofDNNs,many techniques are adopted to regularise and speedup their trainingprocess,
likeweight regularisation [18], dropout [177], hidden representation normalisation [6], and residual connections [68]. In fact,
despite being a powerful learning tool, many precautions need to be adopted to get the best from these models and not get
stuck in local optima during training. Moreover, due to the size of these models, and the huge corpora they usually need,
training them from scratch is a very onerous process. For this reason, largemodels are often trained by big research centres
or companies, and publicly released so that they only need to be refined, by means of fine-tuning, on a more specific task.

Traditional Artificial Neural Networks, process data samples in form of real values vectors x∈R𝑑 . Each element of
this vector represent an individual feature characterising a sample, this is why we talk of feature vectors (see Figure 4a).
However, these network are a generic tool that can be extended to 𝑛-dimensional inputs. We introduce the concepts of
𝑛-dimensional tensor to indicate generic 𝑛-dimensional vector X∈R𝑑1×𝑑2×...×𝑑𝑛 and that of 𝑛-dimensional feature map,
which indicates an 𝑛+1-dimensional tensor, we visualise these structures in Figure 4. Features maps are collections of
feature vectors, organised in a spatial structure. In-fact, some problems allow to exploit the spatial structure of the input
in the construction of the DNN. In the case of text and speech, we can see the inputs as sequences of feature vectors,
thus as matrices, or two-dimensional tensors, or one-dimensional feature maps (where time is the spatial dimension,
see Figure 4b). In the case of images, we can see the inputs as a grid of feature vectors, thus as three-dimensional tensors,
or two-dimensional feature maps (where the height and width are spatial dimensions, see Figure 4c).

Due to language’s temporal (i.e., sequential) structure [80], standard Neural Networks are unsuitable for languagemod-
elling. In fact, tomodel human language it is necessary to adoptmodels capable of capturing long-term sequential dependen-

cies in a variable-length context. To this end, convolutional, recurrent and transformer networks are themodels of choice as
they allow to leverage the spatial structure of the input [80].Despite convolutional networks being a valid tool for sequence
processing, we will focus solely on recurrent and transformer networks as they represent more powerful modelling tools.

In the NLP field, suchmodels have been shown to be powerful tools for building discriminative and generative Seq2Seq
Neural Networks for speech and text processing. Recurrent and transformer networks are usually stacked in a sequence
of iterative transformations composing a DNN, and trained on large data collections.

The term Seq2Seq refers to the class of networks built using models that take as input a sequence of vectors
Manuscript submitted to ACM
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Fig. 5. Visualisation of Seq2Seq model high-level behaviour. The model takes sequences as input and generates sequences as output.

It can process batch of sequences. In case of sequences with different lengths, within the same batch, they are usually padded with

null values to match the size of the longest one.

𝑋 = ⟨x1,...,x𝑡 ,...,x |𝑋 |⟩ (3)

(with xt ∈R𝑑𝑥 ) and generates another sequence of vectors

𝑌 = ⟨y1,...,y𝑡 ′,...,y |𝑌 |⟩ (4)

(with yt′ ∈ R𝑑𝑦 ), as depicted in Figure 5. The hidden transformations of Seq2Seq networks work on sequences of
feature vectors encoded into one-dimensional feature maps. Such feature maps are actually matrices:X∈R𝑑𝑥×|𝑋 | and
Y∈R𝑑𝑦×|𝑌 | represent the input and output sequences𝑋 and𝑌 . The two 1D feature maps are matrices of |𝑋 | or |𝑌 | column
vectors, where each column vector x𝑡 or y𝑡 ′ encodes the 𝑡-th or 𝑡 ′-th position in the sequence.

X=

[
x1,...,x𝑡 ,...,x |𝑋 |

]
(5) Y=

[
y1,...,y𝑡 ′,...,y |𝑌 |

]
(6)

Seq2Seqmodels can handle sequences of undefined length and can process multiple sequences in batch (in this latter
case, padding with null values is applied so that all sequences in a batch have the same length1 – see Figure 5). The overall
Seq2Seq network acts as a function, directly yielding the output sequence Y= 𝑓 (X;𝜗).

2.1.2 Recurrent Neural Networks. Recurrent Neural Networks were the first proposed solution for applying Artificial
Neural Networks to a possibly unbound time horizon [80] (see Figure 6). In other words, such networks can be applied
to a sequence whose length is neither known a priori not bounded to somemaximum value. In a recurrent layer, a cell
takes part in a loop where a hidden vector, representing the sequence’s past (i.e., the accumulatedmemory), is recurred
through the sequence steps (see Figure 7). Interestingly, these networks have been proven to be Turing complete [170].

Several variants of recurrent networks exist: vanilla Recurrent Neural Networks (RNNs) [54, 79], Long Short Term
Memories (LSTMs) [70] and Gated Recurrent Units (GRUs) [34]. All these networks can be used to scan a sequence from
left to right or vice versa. It is also possible to have bi-directional networks [153] to include information from both sides
of the sequence when processing each sequence element (see Figure 8).

1This is because, usually, the frameworks to implement DNNs require input and output to be encoded through tensors, and thus, along any given dimension
of the tensor, all the elements must have the same length.
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Fig. 6. Recurrent networks cells. The cell shifts through the elements of the input sequence ⟨x1,...,x𝑡 ,...,x|𝑋 | ⟩ to compute the output

at each step and compose the resulting sequence ⟨y1,...,y𝑡 ,...,y|𝑌 | ⟩. At each step the hidden state vector h (and the memory vector

c, where applicable) is updated and recurred as part of the input for the next sequence step. 𝜎 ( ·) is the sigmoid function, tanh( ·)
is the hyperbolic-tangent function and ◦ is theHadamard product (or element-wise product) operator.
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(b) Unrolled.

Fig. 7. Unidirectional RNN sequence processing visualised.

RNN. Vanilla RNNs represented the first important step towards sequence modelling with Neural Networks (see
Figure 6a). These networks leverage a hidden memory vector (also called hidden context vector) h𝑡 ∈R𝑑ℎ to accumulate
past information through the sequence. For each element x𝑡 ∈R𝑑𝑥 of the input sequence and the corresponding hidden
memory vector from the previous step h𝑡−1, the RNN updates such hidden memory vector and computes the output
y𝑡 ∈R𝑑𝑦 for the current time step 𝑡 .
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Fig. 8. Bi-directional RNN sequence processing visualised.

Elman’s original formulation [54] prescribed to compute the hidden memory vector h𝑡 , given x𝑡 and h𝑡−1, as reported
in Equation (7) and then calculate y𝑡 as reported in Equation (8). MatricesW𝑥 ∈R𝑑𝑥×𝑑ℎ andWℎ ∈R𝑑ℎ×𝑑ℎ , and vectors
bℎ ∈R𝑑ℎ are the weights of the hidden layer, matrixW𝑦 ∈R𝑑ℎ×𝑑𝑦 and vector b𝑦 ∈R𝑦 are the weights of the output layer,
and 𝜎 (·) is the sigmoid function:

h𝑡 =𝜎 (W⊤𝑥 ·x𝑡 +W⊤ℎ ·h𝑡−1+bℎ) (7) y𝑡 =𝜎 (W⊤𝑦 ·h𝑡 +b𝑦) (8)

Instead, in Jordan’s RNNs, h𝑡 is updated using the y𝑡−1 instead of h𝑡−1, as reported in Equation (9):

h𝑡 =𝜎 (W⊤𝑥 ·x𝑡 +W⊤ℎ ·y𝑡−1+bℎ) (9)

RNNs are trained by means of the backpropagation through time approach, which implies calculating the derivatives
throughout the input sequence and computing the product of all these values. Themultiplications of the partial derivatives,
yield by the chain rule, to compute the overall gradient of the error could lead to the explosion or the vanishing of the
norm of such gradient (making it impossible to train the network) [125]. As a consequence, vanilla RNNs are not suitable
for tackling long-term dependencies, which are common in natural language.

LSTM. LSTMs were designed to overcome some limitations of the original RNNs [70]. Despite the sound mathematical
formulation behind RNNs, training those networks turns out to be a hard task [125]. This is due to their lack of robustness
to noise and the aforementioned vanishing and exploding gradient problems.

LSTMs solved the noise robustness and vanishing gradient issues, enabling themodelling of longer sequences, through
gating mechanisms. The exploding gradient issue may still occur even in these networks. However, the use of techniques
like gradient clipping [125] can help to cope with this issue.

At each sequence step, these LSTM networks take as input x𝑡 ∈R𝑑𝑥 , yield an output hidden vector h𝑡 ∈R𝑑ℎ –which is
passed to and updated by each step of the sequence analysis– andmaintain an internal cell state vector (or memory vector)
c𝑡 ∈R𝑑ℎ , which is updated at each step and represents the current status of the network. This network cell uses three
gates to model the time sequence: the input gate i𝑡 ∈R𝑑ℎ controls the amount of new information set in the cell state (see
Equation (10)), the forget gate f𝑡 ∈R𝑑ℎ controls the amount of information discarded from the cell state (see Equation (11)),
Manuscript submitted to ACM
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and, finally, the output gate o𝑡 ∈R𝑑ℎ controls the amount of information set in the output (see Equation (12)). Given these
gates, h𝑡 and c𝑡 are then updated according to Equations (13) and (14), respectively.

i𝑡 =𝜎
(
W⊤𝑥𝑖 ·x𝑡 +W

⊤
ℎ𝑖
·h𝑡−1+b𝑖

)
(10)

f𝑡 =𝜎
(
W⊤
𝑥 𝑓
·x𝑡 +W⊤ℎ𝑓 ·h𝑡−1+b𝑓

)
(11)

o𝑡 =𝜎
(
W⊤𝑥𝑜 ·x𝑡 +W⊤ℎ𝑜 ·h𝑡−1+b𝑜

)
(12)

c𝑡 = f𝑡 ◦c𝑡−1+i𝑡 ◦tanh
(
W⊤𝑥𝑐 ·x𝑡 +W⊤ℎ𝑐 ·h𝑡−1+b𝑐

)
(13)

h𝑡 =y𝑡 =o𝑡 ◦tanh(c𝑡 ) . (14)

In Equations (10) to (14) the matrices W𝑥𝑖 ,W𝑥𝑜 ,W𝑥 𝑓 ∈ R𝑑𝑥×𝑑ℎ and Wℎ𝑖 ,Wℎ𝑜 , Wℎ𝑓 ∈ R𝑑ℎ×𝑑ℎ , and the vectors
b𝑖 ,b𝑜 ,b𝑓 ∈R𝑑ℎ are the parameters of the LSTM cells, and symbol ◦ is theHadamard product (or element-wise product)
operator. Figure 6b shows the typical structure on an LSTM cell.

GRU. GRUs, like LSTMs, leverage a gating mechanism to control memory [34], but reduce such gates to two. GRUs
maintain the same computational capabilities as LSTMs and, on small corpora, they show better results [35].

The gates of a GRU cell are called update and reset. The update gate is a combination of the input and output gate of
LSTMs and computes z𝑡 ∈R𝑑ℎ as shown in Equation (15). The reset gate plays the same role as the LSTM forget gate and
calculates r𝑡 ∈R𝑑ℎ as shown in Equation (16). Unlike LSTMs cells, GRUs use a single hidden vector h𝑡 ∈R𝑑ℎ to represent
both memory and output. Finally, the output y𝑡 =h𝑡 , at each step, is computed as in Equation (17). Figure 6c shows the
typical structure of a GRU cell.

z𝑡 =𝜎
(
W⊤𝑥𝑧 ·x𝑡 +W⊤ℎ𝑧 ·h𝑡−1+b𝑧

)
(15) r𝑡 =𝜎

(
W⊤𝑥𝑟 ·x𝑡 +W⊤ℎ𝑟 ·h𝑡−1+b𝑟

)
(16)

y𝑡 =h𝑡 = (1−z𝑡 )◦h𝑡−1+z𝑡 ◦tanh
(
W⊤
𝑥ℎ
·x𝑡 +W⊤𝑟ℎ · (r𝑡 ◦h𝑡−1)+bℎ

)
. (17)

Bi-directional. Bi-directionality was introduced to improve the modelling capabilities of RNNs [153]. This approach
is applicable to any of the aforementioned recurrent cells.

Usually, RNNs used in NLP apply only a forward analysis, as shown in Figure 7b. Thus, each hidden state holds the
information coming from the preceding positions. The bi-directional approach prescribes scanning the sequence forwards
and backwards, and extracting distinct hidden vectors per direction

−→
h 𝑡 and

←−
h 𝑡 , as depicted in Figure 8b. Then,

−→
h 𝑡 and←−

h 𝑡 can be combined in many different ways (e.g., sum or concatenation). It is also possible to learn a separate pointwise
transformationWℎ to combine the two vectors, as in the example of Equation (18), where 𝑓combine (·) can be any operation
combining two vectors (e.g., concatenation, sum, etc.):

h𝑡 =W⊤ℎ · (𝑓combine (
−→
h 𝑡 ,
←−
h 𝑡 )). (18)

As can be inferred from Equation (18), the improved modelling capabilities given by the bi-directional approach come
at the cost of increased memory requirements. In fact, while uni-directional models only need to store and update a single
memory vector, the bidirectional approach requires keeping in memory the entire sequence of hidden memory states
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Fig. 9. Attention mechanism processing a sequence. Grey-scaled boxes represent the attention score between the input and output

element. Brighter cells of the attention matrix correspond to higher attention scores and vice versa. The attention mechanism learns the

alignment between the input sequence (projected into keysK) and output sequence (projected into queriesQ). This alignment is used to

combine theelementsof the inputsequence (projected intovaluesV) andproduceanewhiddenrepresentationof theoutputsequenceHatt.

Notice that the combination is repeated for each element of the output sequence, yielding an hidden representation of the same length.

for both directions. However, this requirement does not hold when the last hidden state is the only information the task
needs, for example when doing a sequence summary.

2.1.3 Transformer Neural Networks. Transformer networks arose from the need to overcome the so-called sequential
limitations of RNNs. In fact, RNNs necessarily require a sequential input processing and thus operations cannot be paral-
lelised across the sequence: RNNs need to process x𝑡 beforemoving to x𝑡+1. Instead, Transformer modules rely on highly
parallelisable transformations. Moreover, Transformers yielded better results than RNNs because of their improved (i.e.,
longer) context management capabilities [46, 134].

Transformer architectures revolve around the attention mechanism [7]. This mechanism was initially developed
for RNNs as a methodology to find the correspondences between the elements of input and output sequences, but
eventually, it completely substituted the sequence analysis modules [101, 186]. The original application was in machine
translation [186], were the effect of the learnt alignment is to find connections as in Figure 13.

Attention mechanism. The attention mechanism allows a network to extract and use information from arbitrarily large
contexts [80]. Attention layers learn to weight a combination of feature vectors, depending on some query.

In its generic formulation, the attention mechanism takes two 1D feature maps of variable length as input: the source
X∈R𝑑𝑥×𝑚 and the target Y∈R𝑑𝑦×𝑛 . The target Y is used to generate the queries Q∈R𝑑𝑘×𝑛 (i.e., Y describes the required
information), while X is used to provide keys K ∈ R𝑑𝑘×𝑚 and values V ∈ R𝑑𝑣×𝑚 , which are calculated through linear
Manuscript submitted to ACM
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Fig. 10. Examples of self-attention masking patterns with 𝑡 =5. Blank positions correspond to 0 values. The mask is summed to the

un-normalised attention scores, before the softmax( ·) activation.
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(b) Multi-head attention mechanism.

Fig. 11. Attention mechanism computation visualisation.
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(a) Self-attention block.
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(b) Self-attention block with

cross-attention.
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H

(c) Full transformer network

Fig. 12. Transformer blocks and network visualisation.

Lui sa di questa notizia

Does he know such news ?

?

Fig. 13. Translation alignment between the Italian sentence “Lui sa di questa notizia?” and its English translation “Does he know

such news?”. The mapping is quite complex, as it is neither monotonic (can go forward and then backwards) nor one-to-one (single

words in one language correspond to multiple in the other and vice-versa)

projections asQ=W⊤𝑞 ·Y, K=W⊤
𝑘
·X, and V=W⊤𝑣 ·X. Such matricesW𝑞 ∈R𝑑𝑦×𝑑𝑘 ,W𝑘 ∈R𝑑𝑥×𝑑𝑘 ,W𝑣 ∈R𝑑𝑥×𝑑𝑣 contain

the trainable parameters of the attention mechanism.
The overall attentionmechanism and the computation of the attention function 𝑓attention (·) is described in Equation (19)

and depicted in Figure 11a. KeysK arematched against the queriesQ through a scoring function (the scoring function is the
cross-correlation, computed asQ⊤ ·K). These scores are then scaled (by a 1/√𝑑𝑘 factor, to haveunit variance of the scores) and
normalised row-wise througha softmax(·) function (in thisway the resultingvalueswill sumup to1). The computedvalues
in the resultingmatrix are used asweights in the linear combination of valuesV. They represent howmuch information to
retain from the value v𝑗 (the 𝑗-th row of V), corresponding to the key k𝑗 , when computing the combination for query q𝑖 :
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H⊤att= 𝑓attention (Q,K,V)=softmax

(
Q⊤ ·K√︁
𝑑𝑘

)
·V⊤ (19)

whereHatt ∈R𝑑𝑣×𝑛 is the output feature map composed of the output hidden vectors, each corresponding to a position
of the target feature map.

To explain this approach, consider the classic language translation task, where𝑋 and𝑌 represent the sentence to be
translated and a candidate translation. We want to know how strong the relationship between any word in the sentence
and any word of the candidate translation is (in this way, we provide the rest of the translation network with further
information that can be useful for selecting the best translation). Thus, we compute𝑄 and𝐾 , which are away of projecting
𝑋 and𝑌 to a common space where they can be matched against each other. The resulting matching weights are applied
to𝑉 , which is still𝑋 but projected on the space we need to obtain as output.

The attention mechanism presented so far is the generic cross-attention. Transformer networks mostly use the self-
attention variant, where the source and target are the same:X=Y. Self-attention relates different positions of a single
sequenceX in order to compute a more effective representation ofX. Moreover, self-attention allows formasking patterns

in the computation of attention.
A masking pattern is represented by a matrixMwhose values are either 0 or −∞ (see Figure 10) and is summed to

the matrix of key-query scores:Q⊤ ·K+M. If all the elements ofM are 0, the sequence is fully visible, otherwise,M is
used to prevent the attention from considering some specific positions. For example, if an element𝑚𝑖, 𝑗 =−∞, the weight
corresponding to that position, after the softmax(·) normalisation becomes 0 (i.e., no information from the corresponding
value is retained). This fully-visible attention is typical of bi-directional encoder models, the encoder part of a transducer
model, and the cross-attention of transducers as well, as we will explain in Sections 2.2.2 and 3.1.

If the upper right triangular sub-matrix is set to −∞, the mask forces casualty (i.e., sequentiality) in the computation
of the output hidden representation. This covered attention is typical of causal decoders models, and the decoders parts
of transducers, as we explain in Sections 2.2.2 and 3.1. Finally, a prefix mask that is causal only for the right portion of the
mask, and it is fully visible in the left portion. This pattern permits to have fully visible attention to the initial part of the
input and to analyse autoregressively the remaining part. The partially covered attention, that is similar to a combination
of the patterns used by transducers, is rarely used and allows building a non-causal decoder [193]: a single model that
is a mixture of a bi-directional encoder and a causal decoder without the intermediate cross-attention [9, 137].

Masking is also used to deal with sequences of varying lengths when doing batch processing. In fact, since sequences
in a batch are required to have the same length, they need to be padded to reach the required size: the columns and rows
ofM corresponding to padded positions are set to −∞. This approach holds for both self- and cross-attention.

To capture the different parallel relationships that could occur within a sequence, the attention is often parallelised
throughmultiple attention heads (see Figure 11b). Each of the ℎ heads computes the attention transformation with its
weights (W𝑞,𝑖 ,W𝑘,𝑖 ,W𝑣,𝑖 , with 𝑖 ∈ [1,ℎ] ⊆N), independently of the others. The outputs are then concatenated along the
feature dimension and merged through a further linear transformation, as described by Equation (20):

H⊤mha= 𝑓multi-head attention (X,Y)=W⊤𝑜 · (Hatt,1⊕ ...⊕Hatt,ℎ) (20)

whereHatt,𝑖 ∈R𝑑𝑣×𝑛 is the output of the 𝑖-th head,W𝑜 ∈R(𝑑𝑣 ·ℎ)×𝑑mha is a matrix of trainable parameters, ⊕ represents
the concatenation operator (applied along the feature axis), andHmha ∈R𝑑mha×𝑛 is the resulting hidden representation.
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Transformer blocks. Transformer networks (see Figure 12c) build their hidden representations by stacking transformer

blocks [186] (see Figures 12a and 12b). Blocks alternate a multi-head attention sub-block (yielding an intermediate
representationHmha ∈R𝑑mha×𝑛) with a Feed-Forward Neural Network (FFNN) sub-block (yielding an output representation
H∈R𝑑ℎ×𝑛). Usually, each sub-block adds a residual connection around the transformation and a layer-normalisation
step [6] right after the sum of the residual connection (in some cases, the order of the operations is different [135]).

The FFNN is a point-wise non-linear transformation. As can be seen in Equation (21), this transformation is computed
as a sequence of linear projections with a non-linear activation function in the middle:

h𝑖 = 𝑓FFNN (hmha,𝑖 )=W⊤out ·ReLU(W⊤in ·hmha,𝑖+bin)+bout (21)

where hmha,𝑖 ∈R𝑑ℎ is a single hidden vector corresponding to the 𝑖-th position in the input sequence, while matrices
Win ∈R𝑑mha×𝑑ffnn ,Wout ∈R𝑑ffnn×𝑑ℎ and vectors bin ∈R𝑑ffnn , bout ∈R𝑑ℎ contain the trainable parameters of 𝑓FFNN (·). The
non-linear activation function does not need to be a ReLU(·);GELU(·) is used in some implementations [46, 134].

The main point of transformer blocks is that all the transformations in the same layer can be computed in parallel.
Thus the process is not slowed down by the sequential analysis. The drawback is in the increased memory require-
ment. However, software and hardware techniques exist to reduce space complexity (and also improve the temporal
complexity) [110, 110, 133].

In the case of transducer architectures with encoder and decoder (more on this in Section 3.1) there is also an additional
cross-attention sub-block between the self-attention and the FFNN sub-blocks. The output from the first self-attention
transformationHmha is used as the target in a further attention transformation sub-block. However, this sub-block is
a cross-attention sub-block and not a self-attention one: a separate sourceX is used to compute keys and values. This
cross-attention transformation is done to find alignment between input and output sequences. Usually, as depicted in
Figure 12c, the input sequence is pre-processed through an encoder and the output sequence through a decoder (this
transducer approach is not mandatory, however, as we explain in Section 2.2.2).

2.2 Text representation and processing

In this section, we introduce how Neural Networks represent and manipulate text; in particular, methods to map text
from a discrete orthogonal space to a dense compact space, and probabilistic models applied to language.

man

king
woman

queen

(a) Female-male.

walking

swimming

walked

swam

(b) Verbe tense.

Italy

Rome
UK

LondonGermany

Berlin

(c) Country-capital.

Fig. 14. Examples of semantic space properties. Points in the space represent the vectors of the associated words, and the relative

position of the points corresponds to certain relations.

2.2.1 Vector semantics and embeddings. Before going into the details of vector semantics, we start with some definitions.
We call vocabularyV a set of character sequences, a word type (or word)𝑤 is a unique entry in a vocabulary, while a
Manuscript submitted to ACM
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token represents a word instance in some text. Often, words represent flexed forms of the same base form, which is called
lemma (e.g., words being , been , is are flexed form of the lemma to be ). Embedding techniques can be applied to
words, tokens or lemmas, to transform them into continuous-values vectors: the embeddings.

Due to the vocabulary size, Neural Network models tend to grow large in the number of parameters. However, an
advantage we shall see of Seq2Seqmodels is that, since they build and transform their embedding representation from an
entire text sequence –rather than single words– they can leverage sub-word tokenisation to encode the input text reducing
the number of symbols (and thus the parameters to embed such symbols). With this sub-word approach, the vocabulary
contains sequences of frequent sub-words. For example, tokenisation can be represented as token and isation . With
this approach, words are decomposed into smaller units (down to single character level) that are the actual constituents
of the vocabulary, allowing also to manage out-of-vocabulary words. Usually, these sub-words units are extracted from
data applying dictionary-based compression algorithms like Byte-Pair Encoding (BPE) [156].

Human language is encoded by means of orthogonal symbols (alphabetic characters, ideograms, diacritics, etc.), which
form sequences that group at various granularity levels. We call such groupswords, sentences, sections, etc. Several discrete
representations exist to encode such sequences. For example, the popular one-hot encoding transforms a word into a
vector o∈1 |V | , such that ∥o∥2=1 In particular, all the elements are zero except the one corresponding to the word to
be encoded, which is set to 1. Note thatV is usually a large set (with millions of elements).

o=
[
0,...,0,1,0,...,0

]
(22)

Deep learning models based on Neural Networks, however, work better on dense representations expressed as tensors2,
and referred to as vector semantics. In fact, through vector semantics, it is possible to project human language symbols
and sequences into dense, smooth and compressed representations. Thus, the key idea of deep learning models for NLP
is to project everything into a continuous 𝑑-dimensional space (where 𝑑≪|V|) and then manipulate such representation.
For example, a sequence of tokens𝑋sparse is converted into a sequence of vectors𝑋dense:

𝑋sparse= ⟨𝑥1,...,𝑥𝑡 ,...,𝑥 |𝑋 |⟩→𝑋dense= ⟨x1,...,x𝑡 ,...,x |𝑋 |⟩ (23)

where |𝑋sparse | = |𝑋dense | = |𝑋 |, 𝑥𝑡 ∈V and x𝑡 ∈R𝑑 . This sequence can be further converted into a matrixX or a tensor
to be processed by a Seq2Seqmodel.

𝑋dense= ⟨x1,...,x𝑡 ,...,x |𝑋 |⟩→X∈R |𝑋 |×𝑑 (24)

A crucial property characterises vectors in this space: they represent the semantic (and, sometimes, syntactic) meaning
of the pieces of text they encode [80]. Figure 14 shows some examples about the encoding of words. Thus, it is possible
to compute the semantic similarity among pieces of text by computing the distance of their corresponding vectors. These
semantic vector representations are called embeddings, but are in practice feature vectors.

In the last years, various approaches emerged to encodeword embeddings, using them as a basic “building block” for
models representing more complex, higher-level structures, such as sentences, sections and even whole documents.

Word embeddings. As introduced above, models for word embeddings encode words into a semantic space, where they
are represented as𝑑-dimensional vectors. These models can be grouped according to two orthogonal criteria: count-based
vs. prediction-based models, and shallow (and thus static) vs. deep (and thus contextual) models.

2Here, with tensor wemean a generalised, multidimensional array.
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Shallow models represent the oldest embedding approach [36–38, 43, 44, 52]. They are encoded in an embedding
matrixW∈R |V |×𝑑 , whereV is the vocabulary and𝑑 is the desired embedding space dimension. The target word’s sparse
(one-hot) representation o is used to fetch the word embedding u ∈R𝑑 from the embedding matrixW, as: u=W⊤ ·o.
Notice that the one-hot encoding and the multiplication shown in the previous equation are actually implemented by
fetching the word embedding from the matrix (i.e., a row) starting from the index of the target word.

In particular, prediction-based models are trained to predict a target word, given a context window of surrounding
words in the corpus samples (Continuous Bag-of-Word - CBoW approach) or to predict the surrounding context words
given the target word (skip-gram approach); examples areWord2Vec [112, 113] and fastText [19]. Instead, count-based
models are trained using word co-occurrence counts in the corpus [12]; see, for example,GloVe [126].

Deep contextual models have been around for some time [13]. However, they gained traction recently, due to the
availability of sufficient computational power to train them on large corpora, in a reasonable amount of time. The idea
behind such models is to leverage all the elements in the input word sequence to build a sequence of hidden, compact,
vector representations useful to predict the next unknown word (or generic missing words). Hidden representations
extracted by these models encapsulate information on both the corresponding input token and all the other tokens of the
sequence. Due to this property, we talk of contextual/contextualised embeddings: the entire sequence serves as context
to encode all tokens, and this is what gives deep models an advantage over shallow ones.

Contextual models are based on DNNs and, since they are trained to predict the word sequence probability distribution,
represent a typology of (probabilistic) Language Models (LMs). Thus they fall into the group of predictive models. We
refer to Section 2.2.2 for further details on probabilistic language models.

Early deep contextual models were implemented using unidirectional recurrent Neural Networks [14, 16]. ELMo [127],
instead, was the first example of bi-directional recurrent networks applied for this problem. Nowadays, these models
are built using state-of-the-art transformer networks [101], GPT [134] and BERT [46] are examples of transformer based
language models. Note that, independently of the implementation of the hidden layers, all deep models start from an
initial shallow embedding of each word in the sequence. The goal of the hidden layers is thus to refine these initial vectors,
generating better, more semantically informative embeddings by incorporating information from the other tokens in
the input (context) sequence.

Generalised embeddings. Besides word-level embeddings, other embeddings are employed in NLP. These generalised
embeddings try to encode information of longer pieces of text (e.g., sentences, paragraphs, documents, ...) into single
vectors. Although deep contextual approaches for word-level embeddings represent the most adopted solution (due to
their performances), generalised embeddings still represent a useful tool, as they are simple, fast and –for several NLP
tasks– provide good-enough embeddings.

Sentence embeddings represent the most adopted typology of generalised embeddings. They find applications in
many fields, like document retrieval, and allow for very compact meaningful representations. Sentence embeddings
are divided into two groups: parametrised and non-parametrised models. Parametrised models must be trained either
through supervised approaches –leveraging corpora for Semantic Textual Similarity (STS)3 orNatural Language Inference
(NLI)4 tasks [142]– or unsupervised approaches, leveraging generic corpora for language modelling [85, 121]. Instead,
non-parametrised models are built on top of word-level embedding models, and thus training is not required [5, 219].

3Models for STS are used to compute a score about the semantic similarity of two sentences.
4Models for NLI compare two sentences to understand if they are consequential, contradictory or independent.
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Parametrised models are similar to word embeddings, and can be either shallow or built on top of deep language
models. To train a supervised model of this kind, a labelled corpus on STS or NLI is needed. Sentence-BERT [142] is a
popular example of these models. Instead, it is sufficient to leverage a generic, unlabelled corpus to train an unsupervised
sentence embedding model. Models like Sent2Vec [121] and Skip-Thought [85], leveraging a self-supervised approach,
are examples of model that can leverage unlabelled corpora. They are trained to predict the missing words in a sentence
or the following sentence (word by word) in a sequence, respectively.

Non-parametrised models showed that it is possible to achieve meaningful representations simply by combining
existing word embeddings. Models like SIF [5] orDynaMax [219] build their sentence representation starting from the
sequence of word embeddings constituting the sentence to encode, and then applying aweighted average pooling layer
or amax pooling layer, respectively. Although non-parametrised models do not achieve the results of parametrised ones,
they are easy to implement and require little computational resources.

Apart from sentence embeddings, other high-level embedding models include documents, knowledge graphs5, and
even speaker persona6 in conversations. These can be employed in many NLP applications, like conversational agents.

2.2.2 Probabilistic language models. Probabilistic language models, or simply Language Models (LM), are probability
distributions over sequences of words 𝑃LM (𝑤1,...,𝑤𝑖 ,...,𝑤𝑛) (with𝑤𝑖 ∈V) and represent a core tool for NLP [80]. Seq2Seq
Neural Networks can be used to learn probabilistic language models: we can train a deep Neural Network to output the
probability of a sequence of tokens as the product of the (conditioned) probability of the individual tokens in a sequence.
Recent research showed that training neural language models (i.e., deep Neural Networks trained as language models)
on large amounts of text data allows us to: (i) generates high-quality text (ii) yield very informative features (in the form
of contextual embeddings) to be used for discriminative tasks (iii) later fine-tuning with state-of-the-art results on a
downstream (generative or discriminative task) [22, 46, 137]. In general, these networks are trained to minimise the
negative log-likelihood of the output sequence 𝑃LM (𝑤1,...,𝑤𝑖 ,...,𝑤𝑛 ;𝜗).

Approaches. Neural Networks can be used to learn and approximate different language modelling approaches: causal,
bi-directional, and transducer (see Figure 15). The approach to languagemodelling is a result of how the hidden transforma-
tion is computed. However, independently of this choice, the end-to-end behaviour of yielding a probability distribution
is unchanged.

We talk of causal language models or auto-regressive language models or decoder (only) language models when the
LM computes the probability of observing each token in a sequence𝑋 = ⟨𝑥1,...,𝑥𝑖 ,...,𝑥 |𝑋 |⟩ ∈V |𝑋 | given only the preceding
ones (see Figure 15a):

𝑃causal LM (𝑋 )=
|𝑋 |∏
𝑖=1
𝑃 (𝑥𝑖 |𝑥1,...,𝑥𝑖−1)=

|𝑋 |∏
𝑖=1
𝑃 (𝑥𝑖 |𝑋𝑖′<𝑖 ) (25)

These models are trained on tasks like causal language modelling (predict next token given the preceding one) [22, 135].
We talk of bi-directional language models or auto-encoder language models or encoder (only) language models when

the LM computes the probability of observing each token in a sequence𝑋 = ⟨𝑥1,...,𝑥𝑖 ,...,𝑥 |𝑋 |⟩ ∈V |𝑋 | given all the tokens
present in the sequence, the conditioned probability can be computed on a (possibly) corrupted copy of the original
sequence𝑋 (see Figure 15b):

5Knowledge graphs are graph-based representations of complex structured and unstructured information.
6Speaker persona is the description of the unique characteristics, such as background and speaking style, that characterise an individual.
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Fig. 15. Seq2Seq Neural Network architectures for different language modelling approaches.𝑋 ∈V |𝑋 | and𝑌 ∈V |𝑌 | are sequences
of tokens. The . symbol is the stopping symbol that indicates the end of a sequence. Red and blue boxes correspond to hidden

representations computed by the Seq2Seq . Connections correspond to the dependencies in the hidden representation computation.

𝑃bi-directional LM (𝑋 )=
|𝑋 |∏
𝑖=1
𝑃 (𝑥𝑖 |𝑥1,...,𝑥 |𝑋 |)=

|𝑋 |∏
𝑖=1
𝑃 (𝑥𝑖 |𝑋 ) (26)

These models are trained onmasked language modelling (predict the missing tokens from a corrupted input sequence,
similar to the denoising auto-encoders objective) [46, 103].

Finally, we talk of transducer language models or encoder-decoder language models when the LM outputs the
posterior causal probability of a target sequence 𝑌 = ⟨𝑦1, ... ,𝑦 𝑗 , ... ,𝑦 |𝑌 |⟩ ∈ V |𝑌 | given a separate source sequence
𝑋 = ⟨𝑥1,...,𝑥𝑖 ,...,𝑥 |𝑋 |⟩ ∈V |𝑋 | (see Figure 15c):

𝑃transducer LM (𝑌 |𝑋 )=
|𝑌 |∏
𝑗=1
𝑃 (𝑦𝑖 |𝑋,𝑦1,...,𝑦 𝑗−1)=

|𝑌 |∏
𝑗=1
𝑃 (𝑦𝑖 |𝑋,𝑌𝑗 ′< 𝑗 ) (27)

These models are trained on tasks like prefix language modelling (similar to causal language modelling, but the first
elements of the sequence are visible to the model and they are not used to compute the loss), span replacement (predict
the missing sub-sequences of token from the source), or de-shuffling (re-order the input sequence of tokens) [90, 137].

Note that Causal LMmodels have as output sequence the same input sequence shifted to the left and Bi-directional
LM has as output sequence the input sequence with the same alignment (no shifting in any direction). However, the
Manuscript submitted to ACM
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input to Bi-directional LM can be a corrupted version of the output. We underline this concept in Figure 15b using𝑋 ad
input and𝑋 as output. Examples of causal LMs are GPT [22, 120, 134, 135], Bloom [151], Gopher [136], Chincilla [71], and
LaMDA [183]. While, examples of bi-directional LMs are ELMo [127] BERT [46] or RoBERTa [103]. When implemented
with Transformer networks, these two approaches to language modelling adopt, respectively, a fully visible masking
pattern and causal masking pattern for their self-attention transformations.

On the contrary, Transducer LMworkwith two separate and orthogonal sequences (the source and the target sequences,
respectively𝑋 and𝑌 ) that are both part of the input (the source is the input of the encoder and the target the input of
the decoder), but only the target sequence shifted to the left is part of the output. BART [90], T5 [137, 208, 209], T0 [148],
and FLAN [194] are all examples of transducers LMs. The shifting of the target is due to the autoregressive nature of
the decoder in the transducer. In fact, when implemented with Transformer networks, this transducer language model,
can be obtained either combining an encoder with fully visible attention and a decoder with causal attention using a
fully visible cross-attention in the middle, or with a non-causal decoder [193].

In the context of Dialogue Language Modelling (DLM) (i.e., language modelling for dialogue) we consider a dialogue𝑋
under two perspectives: either as a plain sequence of tokens or a sequence of𝑛𝑋 utterances, each representing a sequence
of tokens on its own:

𝑋 = ⟨𝑥1,...,𝑥𝑡 ,...,𝑥 |𝑋 |⟩= ⟨𝑈1,...,𝑈𝑖 ,...,𝑈𝑛𝑋 ⟩ (28)

where

𝑈𝑖 = ⟨𝑥𝑖,1,...,𝑥𝑖, 𝑗 ,...,𝑥𝑖, |𝑈𝑖 |⟩ (29)

with 𝑥𝑡 ,𝑥𝑖, 𝑗 ∈V . Note that given this notation, since the tokens in the plain sequence map bijectively with the tokens
in the sequence of utterances, we have that 𝑥1,1=𝑥1 and 𝑥𝑛𝑋 , |𝑈𝑛𝑋

| =𝑥 |𝑋 |
From this utterance level division, we can extract all the available context-response pairs:

𝑋 = ⟨𝑈1,...,𝑈𝑖 ,...,𝑈𝑛𝑋 ⟩→⟨(𝐶1,𝑅1),...,(𝐶𝑖 ,𝑅𝑖 ),...,(𝐶𝑛𝑋 ,𝑅𝑛𝑋 )⟩ (30)

where𝑈𝑖 ∈ V |𝑈𝑖 | is a sequence of tokens representing a turn in the dialogue, 𝐶𝑖 = ⟨𝑈1, ...,𝑈𝑖−1⟩ =𝑈𝑖′<𝑖 is the context
associated to the 𝑖-th turn in the dialogue and 𝑅𝑖 =𝑈𝑖 is the 𝑖-th response (or turn) in the dialogue, with

𝑅= ⟨𝑟1,...,𝑟𝑖 ,...,𝑟 |𝑅 |⟩ (31) 𝐶 = ⟨𝑐1,...,𝑐 𝑗 ,...,𝑐 |𝐶 |⟩ (32)

where 𝑟𝑖 ,𝑐 𝑗 ∈V . In Section 3 we detail how the aforementioned language modelling approaches are currently adapted
for the dialogue task.

Text processing. All the Seq2SeqNeural Networkmodels for languagemodelling share the same high-level architecture,
as depicted in Figure 17a: there is an input embedding layer to encode the sequences and transform them from sparse
to dense representations, the hidden transformation layers compute the hidden representation of the sequences, and,
finally, the output layer yields the posterior probability of observing a token sequence ⟨𝑤1,...,𝑤𝑖 ,...,𝑤𝑛⟩ (with𝑤𝑖 ∈V).
The input sequence of tokens is extracted as in Figure 16.

For each output step, the Seq2Seq outputs a discrete probability distribution. Starting from this probability distribution,
it is possible to applydecodingor sampling togenerate text.All the inferenceusesof thesemodels are visualised inFigure 17.
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1)

2)

3)

4)

Hello, world!

Hello

<s>Hello, world!<s/>

World, !<s> <s/>

x1 x2 x3 x4 x5 x6

Fig. 16. Text encoding process. (1) Initial text string. (2) Pre-processed text string with additional tokens to mark begin and end of

a sequence (optional, sometimes other special tokens like separator or classification are inserted [46]). (3) Tokenisation of the whole
text sequence (either word or sub-word level tokenisation). (4) Conversion of each token to its index.
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Fig. 17. High-level language model inference (example considering a causal LM).

Independently of the modelling approach, any Seq2Seqmodel computes the output probability of a sequence as:

𝑓LM (𝑤1,...,𝑤𝑖 ,...,𝑤𝑛 ;𝜗)=𝑃𝐿𝑀 (𝑤1,...,𝑤𝑖 ,...,𝑤𝑛)=
𝑛∏
𝑖=1

softmax
(
W⊤LM ·h𝑖

)
𝑤𝑖

(33)

where h𝑖 ∈R𝑑 is the contextual embedding corresponding to position 𝑖 of the output (1≤ 𝑖 ≤𝑛) computed through the
hidden transformationsℎ(·) of the Seq2Seq network (𝑑 is the size of the hidden representation),W𝐿𝑀 ∈R𝑑×|V | is the
linear projection layer to compute the logits (i.e., the unnormalised log-likelihoods), and softmax(·) is the normalised ex-
ponential function. Notice that the softmax(·) outputs a vector of |V| elements, that is the discrete probability distribution
over the possible tokens, we retain the𝑤𝑖 -th element to have the probability of the token in that position.
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The input embedding layer takes care of projecting each token into a continuous vector space (the process is depicted
in Figure 19). This representation is then transformed by the hidden layers. In more recent Transformer models, the input
includes position embeddings, to take into account positional information [186].

The output layer is a final linear transformation followed by a softmax(·) activation. This final transformation is highly
demanding in terms of computation costs, due to the high dimensional size of the output. In fact, the projection matrix
isWLM ∈R |V |×𝑑 , where 𝑑 is the dimension of the hidden feature vectors andV is potentially large. In fact, before the
introduction of sub-word tokenisers [87, 156, 204] which reduced considerably the value of |V|, it was common practice
to constrainV to the most frequent tokens [92], or substitute the softmax(·) activation with its hierarchical variant [113].

The input layer and the final output layer are linear projections whose dimensions have the same semantic meaning.
Taking advantage of this aspect, manymodels rely onweight tying (orweight sharing) [78, 132], using the same parameters
for the embedding and output layers. In this way, the number of parameters is considerably reduced.

The hidden transformations are the actual Seq2SeqNeural Network. The choice of the hidden transformation directly
influences the language modelling approaches. Unidirectional (forward) recurrent networks and self-attention trans-
formers with causal attention mask pattern is used to build causal language models [22, 135]. Bi-directional recurrent
networks and self-attention transformers with fully visible attention-mask patterns are used to build bi-directional
language models [46, 103]. Encoder-decoder recurrent networks, encoder decoder-decoder transformer networks or
non-causal transformer networks with prefix mask pattern are used to build transducer language models [90, 137].

3 BASIC ARCHITECTURES

Text pre-processing Tokenisation

Loss function Gradient

Text pre-processing Tokenisation

Context

Standardised 

context text

Context token 

sequence

Response token(s) 
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(a) Training.

Text pre-processing Tokenisation

Decoding Detokenisation

Context

Standardised 

context text

Context token 

sequence
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probability 
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Response 

token 

sequence
Generated 

Response

(b) Inference.

Fig. 18. Seq2Seq model high-level pipeline visualisation.

In this section, we present suitable Seq2Seq architectures that can be used to implement generative chatbots. These
models build up on probabilistic language models introduced in Section 2.2.2, for this reason, we often talk aboutDialogue
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1)

2)

3)

4)

Hello. How are you doing?

<s>Hello.<s/> <s>How are you doing?<s/>

do ing<s> Hello . <s/> <s> How Are you ? <s/>

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

(a) Context (first turn is the agent’s previous response, then the user follows).

1)

2)

3)

4)

Fine, thanks!

Fine

<s>Fine, thanks!<s/>

thanks, !<s> <s/>

r1 r2 r3 r4 r5 r6

(b) Response.

Fig. 19. Dialogue encoding process for the context and the agent’s new response. (1) Initial text string. (2) Pre-processed text string with

additional tokens tomark begin and end of turns (optional). (3) Tokenisation of thewhole text sequence. (4) Sub-word tokenisation of the

resulting tokens from previous step (optional). (5) Conversion of each token to its index. Optional steps depend on the implementation.

Language Models/Modelling (DLM). In general, deep generative chatbots model the probability of observing a response
𝑅= ⟨𝑟1,...,𝑟𝑖 ,...,𝑟 |𝑅 |⟩ (the current utterance in a dialogue) given the context𝐶 = ⟨𝑐1,...,𝑐 𝑗 ,...,𝑐 |𝐶 |⟩ (the concatenation of the
utterances in a dialogue prior to the response) –with 𝑟𝑖 ,𝑐 𝑗 ∈V , the vocabulary– as a conditional probability 𝑃DLM (𝑅 |𝐶).

Independently of the actual architecture, there are two basic input/output pipeline flows, as for any other Neural
Network: training and inference.

As reported in Figure 18,when used at training time, themodel takes the context𝐶 (i.e., in general, previous information
about the state of the conversation like the previous turns) and the target response𝑅 as input, and generates a distribution
over the response tokens; such output distribution is matched against the target response to compute the loss and update
the model’s weights.

When used at inference time, the model takes only the context𝐶 as input and yields the output distribution over
response tokens, from which the predicted response 𝑅 is derived by means of decoding (and then possibly used as an
additional input), as we explain in Section 4.2.

DLMs follow the same preparation and processing steps that apply to generic language models. We visualise the
process again in Figure 19 to account for the differences due to the dialogue structure.

3.1 Basemodels

Themost important part of amodel is given by its set of hidden transformations, which characterise the entire architecture
and affect how the output is computed (see Figure 20). In the following,we describe the threemain approaches to designing
the architecture of the agent (and thus its hidden transformations). Notice that these concepts do not depend on the
configuration of the Neural Network: training or inference.

3.1.1 Causal decoder. Causal models are the oldest architectures (see Figure 20a). These chatbots process context tokens
and response tokens as a single sequence one after the other, shifting information from left to right, at each step. When
processing the response, the input of a given step includes the output token generated at the previous one. Thus, due
to such an autoregressive structure, the posterior probability of any token in the response is computed considering the
context and all the preceding tokens (see Equation (34)).

𝑃DLM (𝑅 |𝐶)=
|𝑅 |∏
𝑖=1
𝑃 (𝑟𝑖 |𝐶,𝑅𝑖′<𝑖 ) (34)

Manuscript submitted to ACM



1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

A Primer on Seq2SeqModels for Generative Chatbots 23

.

r2r1c1 c2 c3

r2r1

(a) Causal decoder.

c1 c2 c3

r2r1

r̃1 r̃2

(b) Bi-dirctional.

.

r2r1

c1 c2 c3 c4

r2r1

(c) Transducer.

Fig. 20. Seq2Seq model architectures variants for dialogue. Notice that these figures are simplified representations of the architectures

to explain data processing and do not correspond specifically to train or inference configurations.

This architecture was initially implemented using uni-directional RNNs [92, 144, 189]. Nowadays, Transformer blocks
are used for the same purpose [99, 202, 216], where the self-attention transformation employs a causal attention mask
pattern to prevent the attention from considering “future” tokens.

This causal decoder dialogue language model is the most common approach to Seq2Seq chatbots. As examples, see
ChatGPT [118], Bard [63], Bing Chat [111],Gopher [136], the current version of BlenderBot [86], TransferTransfo [202],
CAiRE [99], andDialoGPT [216], which are all Transformer network-based chatbots.

3.1.2 Bi-directional encoder. In general bi-directional encoder models are used to build discriminative models for classifi-
cation and regression, rather than generative ones. However, this kind of architecture allows for generative solutions too.
In fact, auto-encoders have been employed for neuralmachine translation [65, 81, 89, 96], and generic text generation [192].
Thus, auto-encoders can be considered suitable architectures for generative chatbots [76].

Similarly to causal solutions, auto-encoder chatbots process in sequence context tokens and response tokens as part
of the same sequence. Unlike causal chatbots, however, all the tokens are processed in parallel rather than in sequence.

The most straightforward solution is to start from some initial blank representation7 of the response 𝑅, and then fill in
parallel these blank response positions, as depicted in Figure 20b (note the two empty boxes). The resulting model starts
from such blank tokens and computes for each of them, in parallel, the response token distributions. This transformation
can be repeated multiple times, refining the generated distribution. This behaviour is similar to that of a denoising auto-
encoder [89]. There are other approaches, but they require complex decoding schemes [96, 192] or the use of hierarchical
models [89, 192] (we present the hierarchical group in Section 3.2).

In general, in non-autoregressive models like auto-encoders, the posterior probability of observing one of the response
tokens is considered independent of the other response tokens. However, as shown in Equation (35), the probability of
observing the 𝑖-th response token depends on all the context and response tokens. In fact, the hidden representation in

7This blank token can correspond to an embedding of all zeros, a learnt mask of some random vector.
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correspondence of the tokens in 𝑅 is built using all the input positions, and the output probabilities are computed from
those hidden vectors.

𝑃DLM (𝑅 |𝐶)=
|𝑅 |∏
𝑖=1
(𝑟𝑖 |𝐶,𝑅) (35)

This chatbot architecture can be implemented using bi-directional RNNs or Transformers with fully-visible attention
masking patterns. However, this approach is rarely used since encoder models are usually employed for discriminative
tasks, rather than generative ones. Thus, these models perform better on tasks like retrieval question answering [69].

Note that, since for each response the number of blank tokens to provide as input must be known in advance, the
length of such response must be set a priori. Alternatively, it is possible to extend the Neural Networks with a module
able to predict the output length [89]. This length can be used for adding the required blank tokens.

3.1.3 Transducer. The transducermodels combine ideas from the twoprevious architectures andwere initially introduced
for machine translation [7, 179, 186].

These chatbots split the context encoding step (the red part in Figure 20c) from the response generation one (the blue
part in Figure 20c). An alignment module between these two parts is needed (the connection between encoded𝐶 and 𝑅
of Figure 20c), to leverage the encoded context information during the response generation step. In Transformer network-
based implementations, use a fully visible masking pattern, while the decoder self-attention uses a causal masking pattern.

Transducer, sometimes encoder-decoder, chatbots are designed to process the response in an autoregressive way. Thus,
the posterior output probability of observing the response is the same as the one of the causal models (see Equation (34)).
Unlike causal and auto-encoder models, in encoder-decoder approaches the hidden representations of context and
response do not necessarily share the same vector space. In fact, context and response are encoded separately, and then
some alignment strategy (e.g., cross-attention) is used to align them.

This architecture has been implementedwith RNNs, usually relying on a unidirectional approach, for both encoder and
decoder [93]. However, the encoder could be realised with a bi-directional RNN [166]. Then, the hidden states generated
by the encoder are just passed to the decoder, realising the alignment. An example of chatbots using this approach with
RNNs is XiaoIce [220].

More modern approaches are based on Transformers with a fully-visible attention masking pattern in the encoder
self-attention and decoder cross-attention and a causal masking pattern in the decoder self-attention (the latter is to
achieve autoregressive generation), likeMeena [1] or the first version of BlenderBot [145]. The additional cross-attention
block is used to align the current response token (i.e., the attention query) with the input context (i.e., the keys and values
of the attention). Alternatively, there are some examples of architectures adopting prefix mask patterns (the non-causal
architectures), where full attention is used on the context, and causal attention on the response [9, 10].

3.2 Hierarchical models

Human language has an inherent hierarchical structure [59, 159, 188]. Somemodels have been proposed to capture this
hierarchical aspect in conversation, like Ventola’s [188] or the DAMSL [4]. One of the high-level aspects of human
language, during conversations, is the so-called dialogue act, which represents the speaker’s intention and the effect it
has on a listener. For example, a question, a statement, or a request for action. This hierarchical structure enables humans
to reason on high-level aspects, like the desired dialogue act, before producing the utterances that realise it.
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This hierarchy has been approximated in neural conversational agents (both open-domain and task-oriented) to
improve them.We distinguish between simple latent hierarchicalmodels and variational latent hierarchicalmodels. These
models can be trained using either continuous [159, 160] or discrete [10, 149] latent vector representations.

3.2.1 Latent hierarchical models. Latent hierarchical Seq2Seqmodels have been introduced to improve the chatbot’s
dialogue modelling capabilities with the goal of helping them to manage longer conversations. These architectures rep-
resented a significant improvement for models based on recurrent networks, as they couldn’t manage very long contexts.
In particular, latent hierarchical Seq2Seqmodels cope with longer conversations by introducing explicit components
to manage the high-level aspects of the conversation (the green part in Figure 21a). Although, nowadays, attention-based
models handle long conversations in a better way (removing the need of explicit components to manage the context at
a high-level) latent hierarchical Seq2Seqmodels are still used for conditioning the generation on high-level aspects. Note,
however, that such aspects are usually explicit –in the sense of human understandable– rather than latent, and thus latent
hierarchical Seq2Seqmodels are rarely applied (more on this in Section 4.3).

The core idea of hierarchical chatbots is to predict a hidden latent representation, encoding the entire response into
a single vector (a turn embedding), and then proceed with the token sequence generation exploiting such hidden latent
representation. Referring to Figure 21a, the latent representation is the grey box, derived from the context which is
used to guide the response generation, as if it was a “compressed” response that the decoder “expands”. During training,
the chatbot learns the implicit high-level dialogue model, which predicts the latent response embedding (i.e., a latent
representation of the entire chatbot’s response), and the explicit low-level model, which predicts the responses’ tokens.

Early solutions of this kind adopted RNNs and an encoder-decoder approach [175], like theHREDmodels [159] and
XiaoIce [220], the latter uses the hierarchical approach to condition the response generation on its empathetic-response
targets. Given a turn of the conversation, the encoder part of the Seq2Seqmodel extracts a single hidden vector rep-
resenting the entire turn and passes it to a high-level recurrent network. This high-level network is realised through
a separate RNNworking directly on latent representations: the input is the sequence of turn embeddings and the output
is the response turn embedding at each time step (again, the grey box of Figure 21a). The predicted turn embedding is
used to condition the low-level generation in the decoder by concatenating it to each response token embeddings.

In theory, the hierarchical approach also applies to Transformer networks (it has been adopted for task-oriented
dialogue [66, 150]). Moreover, it alsoworks on architectures other than the encoder-decoder. Finally, it is worth tomention
that it is also compatible with discrete representations, not only continuous ones [149].

3.2.2 Variational hierarchical models. The hierarchical models were quickly extended into variational solutions (see
Figure 21b), similarly to the Variational Auto-Encoders (VAEs) [84, 185]. In VAEs the hidden representation is a random
variable z, this variable is sampled using the reparametrisation trick to make the entire process differentiable.

At training time, the hidden latent representation z is sampled from the approximated posterior distribution 𝑞(z|𝐶,𝑅)
(𝑞(z|𝐶,𝑅) ≈𝑝 (z|𝐶,𝑅)). At inference time (i.e., when predicting a new response), instead, the prior distribution of the latent
given the context 𝑝 (z|𝐶) is used in place of the posterior to sample z. In both cases, the latent z, possibly with the context,
is used to condition the generation of the response from its likelihood 𝑝 (𝑅 |𝐶,z).

Despite being conceptually similar to vanilla hierarchical chatbots, variational solutions have a regularised hidden
space for the latent representation z, which enables an easy exploration of the latent space allowing for the generation
of diverse responses [9, 10, 218]. Moreover, while vanilla versions do not alter the training process, the variational models
require a slightly different objective to optimise (more on this in Appendix A.1).
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(a) Latent model.
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p(z|C) q(z|C,R)
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c1 c2 c3 c4 r1 r2

(b) Variational latent model.

Fig. 21. Seq2Seq hierarchical model architectures. Notice that these figures are simplified representations of the architectures to

explain data processing and do not correspond specifically to train or inference configurations.

NLP has already explored this technique for diverse text generation, using variational latent space representa-
tions [21, 217]. Early chatbots implementing these approaches were still based on recurrent models, like VHREDmodel
family [158, 160, 218], since they were the direct extensions to the previous hierarchical chatbot models. As before, this
variational approach is compatible with Transformer networks; some of such networks even adopted a discrete latent
representation (see PLATO [9, 10]) to reduce the variance of latent space and produce more interpretable representations.

4 ADVANCED TOPICS

Up to now, we have described architectures that leverage probabilistic language models as generative chatbots. There
are further aspects to consider when using these architectures. In particular, hybrid models, decoding, and conditioning.

In the probabilistic languagemodelswe presented so far as generative dialoguemodels, decoding is essentially sampling
the output probability distribution yielded by these models and generating a response. But, in some cases, we want
the generated text to have certain properties or attributes. In this sense, we introduce the concepts of conditioning (or
controlled decoding) and prompting. Moreover, the models introduced up to now only rely on generative mechanisms,
while, in some cases, having a hybrid model capable also of retrieval approaches may improve the general quality.

4.1 Hybridmodels

Some solutions for generative chatbots showed improvementswhen combining the retrieval approachwith the generative
one. In particular, we distinguish betweenmulti-objectivemodels and retrieve-and-refinemodels.

4.1.1 Multi-objective. Multi-objective models use a single architecture that combines the two approaches to implement
data-driven chatbots: generative and a retrieval [9, 10, 202]. The idea is to leverage two distinct heads on top of the hidden
Manuscript submitted to ACM
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representations, one to do the usual language modelling and the other to classify the responses into correct Ccorrect and
incorrect Ccorrect ones.

This additional retrieval head implicitly learns a scoring function by predicting the matching probability of the context
and a response (i.e., the probability of a given response to belong to the correct responses class Ccorrect). This scoring
function can be used to rank possible responses: responses more suitable for the given context should have an high
probability score and responses not suitable for the given context should have a low probability score. We call them
retrieval chatbots because this scoring function can be used to search a data set of possible responses for the best match
(the highest-ranked response with respect to the current context in the collection).

The retrieval head 𝑓CLS (·) computes the posterior probability of a response to belong to Ccorrect, as in Equation (36):

𝑃CLS (𝑅 ∈Ccorrect |𝐶)= 𝑓CLS (𝐶,𝑅)=𝜎
(
w⊤CLS ·hCLS

)
(36)

where 𝜎 (·) is the sigmoid function, hCLS ∈R𝑑 is the hidden vector representing the sequence to classify andwCLS ∈R𝑑

is the vector of learnable weights of the retrieval head.
Since we have a binary classifier, we can compute the probability for a response to be correct, and then derive the

probability to be incorrect from the first one, as in Equation (37). Thus, the idea is to obtain a high probability for correct
responses 𝑅+ and a low probability for incorrect responses 𝑅−.

𝑃CLS (𝑅 ∈Cincorrect |𝐶)=𝑃CLS (𝑅∉Ccorrect |𝐶)=1−𝑃CLS (𝑅 ∈Ccorrect |𝐶) (37)

Given a conversation corpus, an incorrect response (sometimes called distractor or contrastive sample) can be easily
obtained sampling a random substitute response from the corpus. Moreover, some solutions have been proposed to avoid
raw sampling and leverage semantic similarity between contexts or responses when selecting such distractors [27].

During training, as we explain in Appendix A.1, the model uses a combination of language modelling and retrieval
objectives. During inference, the two heads can be either used independently or it is possible to re-rank the responses
generated by the language modelling head, according to the probability predicted by the retrieval head [9, 10].

Examples of models using this multi-objective approach are TransferTransfo [202], CAiRE [99], and PLATO [9, 10].
CAiRE also uses an additional objective to predict user’s emotion.

4.1.2 Retrieve-and-refine. Retrieve-and-refine models were introduced to cope with two issues of basic generative
models: the generation of dull responses and the so-called “hallucination of knowledge” [86, 145, 198, 206] (the latter
refer to the case where agents generate responses without actually knowing the information it is talking about or without
referring to some knowledge base, leading to possibly wrong/misleading information). This approach aims to generate
the response starting from the context sequence and an additional sequence, selected by a retrieval model, that can be
either a possible response [198], or some external knowledge retrieved from the web [86].

Given the context of the conversation, it is possible to leverage a pre-trained retrieval model to select a candidate
response 𝑅candidate from a corpus, or a segment of a document𝐾 containing the knowledge necessary to generate the
answer. These sequences can be appended to the context and provide additional information during the generative step.
The output response probability becomes thus 𝑃 (𝑅 |𝐶,𝑅candidate) or 𝑃 (𝑅 |𝐶,𝐾) depending on the approach: retrieve and
refine or knowledge-grounded.
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The generative model can exploit the candidate response 𝑅candidate to yield an utterance showing a more vibrant
language, typical of human-generated responses [145]. Similarly, the generative model can exploit the additional knowl-
edge𝐾 to ground the response on actual information instead of “hallucinating” it using the knowledge embedded in its
weights [145]. Notice that the two approaches are not alternative: 𝑃 (𝑅 |𝐶,𝐾,𝑅candidate).

Despite retrieve-and-refine models showed to improve over vanilla generative models [198], training these models
is difficult since they do not always learn to exploit the additional information in a proper way [145]. However, solutions
have been proposed to cope with this issue by randomly alternating the retrieved response and the target one [145]. The
first version of BlenderBot [145] is an example of correctly trained retrieve-and-refine model.

An important point to keep in mind is that at training time it is necessary to have the retrieved sequence. While this
requirement does not represent an issue for response retrieval models –since the retrieval model can be trained on a
generic conversation corpus (even the same one)– this is an issue for knowledge retrieval systems. In fact, in this case
it is necessary to have a gold knowledge, retrieved by humans, to be sure that the selected segment of text is relevant to
the context and contains information necessary to generate the response.

4.2 Decoding

All the presented models do not directly output a sequence of tokens, but rather a sequence of probability distributions
over the vocabularyV . These sequences need to be decoded somehow to extract the actual token sequence composing
the response. There are multiple ways to accomplish this task8.

Since the Seq2Seq are trained to maximise the probability of the correct response, the best-generated response should
be the most probable one (which maximises the expression in Equations (34) and (35)). Ideally, we would like to use an
exaustive search algorithm to decode the output probabilities and retrieve the most probable sequence. In practice, this is
unfeasible due to the size of the output space (the branching factor is the size of the vocabularyV). Thus, approximations
exists that allow exploration of the output space [72].

In general, we distinguish between deterministic and stochastic decoding. In deterministic decoding the next token is
sampled according to some fixed rule and always yields the same output. In stochastic decoding the next token is sampled
randomly from the distribution predicted by the language model. These techniques can be combined with approaches
to explore multiple possible response sequences.

4.2.1 Single sequence. The most straightforward decoding approach is called greedy decoding where, at each step, the
most probable token is fed back to the model, as in Figure 22a. However, simple greedy decoding usually leads to dull
responses (e.g., “I don’t know”) that often contain degenerated text full of repetitions.

Alternatively, it is possible to resort tomultinomial sampling. The idea is to sample a token according to the output
probability distribution over the vocabularyV , recur the token as the next response token, and then repeat the process
iteratively until some stop criteria (e.g., the end-of-sequence token is sampled). This can help avoid the bland, and
incoherent text sometimes yielded by maximisation-based decoding methods like greedy decoding [72]. The process
can be repeated to sample multiple responses and retrieve the most probable one.

Some variations to vanilla sampling can be combined. The temperature re-scoring is applied on the logits (hence,
before the exponential normalisation of the softmax(·)), dividing the logit scores by a temperature parameter 𝜏 , as in
Equation (38). If 𝜏 <1 the distribution gets more “peaky” and if 𝜏 >1 the distribution gets more “smooth”. Usually, a 𝜏 <1

8In the following we refer to an autoregressive decoder, but the same concepts apply to other models.
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(b) Beam search decoding with beam size 4.

Fig. 22. Deterministic decoding.
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Fig. 23. Effects of sampling strategies on the token probability mass.

is used to reduce the probability of more unlikely tokens being sampled [1]. Examples of application of temperature
re-scoring to the output distribution can be found in Figure 23a.

𝑃 (𝑥𝑡 )=softmax
( (
W⊤LM ·h𝑡

)
/𝜏

)
𝑥𝑡
=

exp
((
w⊤𝑥𝑡 ·h𝑡

)
/𝜏

)
∑ |V |
𝑖=1 exp

((w⊤𝑖 ·h𝑖 )/𝜏 ) (38)

Another common sampling approach is filtering on the best candidates before sampling. In this sense, two comple-
mentary approaches exist: top-𝑘 and top-𝑝 sampling (the latter is also referred to as nucleus sampling). Top-𝑘 prescribes
to consider only the most probable 𝑘 ∈N+ tokens (where 𝑘 is predefined) and sample among them according to their
probability. Instead, top-𝑝 prescribes to consider the smallest set of tokens such that the sum of their probability is
≥ 𝑝 ∈ [0,1] ⊂R (thus, yielding a variable number of possible tokens) [72]. Examples of application of top-𝑘 and top-𝑝
re-scoring to the output distribution can be found, respectively, in Figures 23b and 23c.

Finally, a very recent solution is contrastive search [178]. This deterministic approach combines top-𝑘 with a re-scoring
function: the next token is selected among the first top-𝑘 that maximises a weighted score combining the token score
and a degeneration penalty. The score is computed as in Equation (39), where 𝛼 ∈ [0,1] ⊆R+0 is a tunable hyperparameter,
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and 𝑠 (·) is the cosine similarity.

𝑥𝑡 = argmax
𝑥 ∈ top-𝑘 (𝑝 (𝑥 |𝑥𝑡′<𝑡 ))

{(1−𝛼) ·𝑃 (𝑥 |𝑋𝑡 ′<𝑡 )−𝛼 · max
𝑡 ′∈[1,𝑡 ) ⊆N

𝑠 (h𝑥 ,h𝑡 ′)} (39)

With anisotropic models9 this decoding scheme allows to generate very diverse responses. In fact, at each step the
decoding scheme selects the token with the most different latent representation among the 𝑘 most probable tokens.

4.2.2 Multiple sequences. When decoding the response sequence it can be useful to generate multiple candidates and
then select among them. An exhaustive search is not feasible, yet there are some available approximations.

The deterministic or stochastic decoding schemes for single sequences can be combined with an orthogonal technique:
beam search decoding. Beam search decoding is a heuristic that considers multiple candidates while decoding, yielding
multiple sequences in output. The basic idea is to keep track of a fixed number of candidates (beam) and carry on their
decoding, in parallel. The decoding process is advanced for each candidate at each step, keeping the best new elements.
All these new candidate sequences are then re-ranked on the new cumulative probability. Only up to the first 𝑛 sequences
(with 𝑛 being the so-called beam size) are kept, as depicted in Figure 22b.

A simpler alternative is to sample and re-rank. The probabilistic language model is used to sample independently
multiple sequences. These sequences can be re-ordered according to some metric or scoring function. For this purpose,
leveraging a multi-objective model, which can use the retrieval head to score the candidates, can be helpful.

In this re-ranking settings, it is worth to mention theMaximumMutual Information scoring approach [91, 216]. The
idea behind this technique is to employ a separate backward model to re-score generated candidates. The backward model
tries to predict the probability of observing the context (or, at least, the latest utterance) given the response. In this way,
keeping the response that maximises the context probability would help filter out bland and inconsistent responses.
Notice that this technique, despite being useful, requires the training of a completely separate model that must be used
to re-rank all the generated responses, increasing the overall computational cost.

4.3 Conditioning and prompting

Conditioned (or controlled) generation is a relevant feature to include in a chatbot. In fact, these agents can benefit
from following some high-level behaviours. Thus, conditioned generation is fundamental to controlling the generated
response’s content and style. This control, ideally, enables selecting different aspects of the generated text, from the
simpler ones, like the emotion or the dialogue act, to more complex ones, like the agent’s persona or knowledge ground.
Apart from the possible architectural changes and extensions to the Seq2Seq agent, to work correctly at inference time,
conditioning may require one or more additional modules to predict the expected content of the response.

In general, neuralmodels for conditioned sequence generation use a set of desired attributes𝐴≡{𝑎1,...,𝑎𝑘 } to output the
posterior probability of a sequence given these attributes.Maximising the output posterior probabilitywill ideally lead to a
sequence showing the properties encoded through the attributes. In the specific case of chatbots, the posterior probability
is conditioned on the context, too (see Equation (40)). This target posterior probability distribution to approximate is
similar to that of hierarchical models.

𝑃 (𝑅 |𝐶,𝐴)=
𝑛∏
𝑖=1
𝑃 (𝑟𝑖 |𝐶,𝐴,𝑅𝑖′<𝑖 ) (40)

9In this context, anisotropy is a measure of how well embeddings are “spread” in their hyperspace. Usually, language models with more than 500M
parameters are naturally anisotropic [178].
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Fig. 24. Conditioning strategies. Notice that these figures are simplified representations of the architectures to explain data processing

and do not correspond specifically to train or inference configurations.

Therearemultiple approaches to trainaconditionedgenerative chatbot.Themost straightforward solution is to train the
conditioning and thegenerative aspects, together, in an end-to-endmanner. There are twomajor approaches of this kind: ei-
therprepend the conditioning attributes to the sequence to generate or concatenate the conditioning embeddings to thehidden
text representation.The formerapproach,depicted inFigure24a, instructs thegenerativemodel throughthe input sequence.
It ispossible to insert “special” tokens representing theattributes (e.g., emotionordialogueact),whichwill beconverted into
embeddings by the input layer [99, 117, 211]. Alternatively, it is possible to use entire text sequences describing the agent’s
persona or the knowledge necessary to generate the answer (these text sequences are usually marked through additional
type tokens or “special” start and end tokens) [50, 99, 202], TransferTransfo [202] and CAiRE [99] use prepending to add
persona-grounding, while BlenderBot [86] uses it for knowledge grounding. The latter approach directly alters the hidden
state of the model, as depicted in Figure 24b. The embedding of the desired attribute (or attribute combination) is concate-
nated (or summed) to each of the initial word (or token) embeddings coming from the input layer, the resulting “extended”
embedding is then used to feed the hidden transformations [92, 220]. For example, XiaoIce [220] uses the concatenation
approach to condition the generation towards the desired attributes prescribed by its cognitive and emotional models.

Some solutions suggest using a mixture of generative models, where each one of them is specialised on a specific
attribute (or attribute combination) [98] (see Figure 24c). For example, when conditioning on emotions, we will have
a decoder for “happiness” (i.e., trained only with samples labelled as “happiness”), a decoder for “anger” (i.e., trained with
samples labelled as “anger”), and so on. Depending on the selected emotion, the corresponding decoder is used to generate
the conditioned response. Consequently, during training, only the weights of the decoder corresponding to the target
attribute are updated on the given response. This mixture approach does not scale up well, since the generative portion
of the network must be replicated for each possible attribute combination, and is not compatible with non-categorical
conditioning attributes (e.g. persona or knowledge). The chatbotMoEL [98] uses this approach.
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An alternative approach to end-to-end conditioning is to just learn the adaptive (conditioning)model. The key idea is to
decouple the generative part from the conditioning one [106, 212]. In thisway, the generative core chatbot has to be trained
only once (which is the most onerous operation), and the conditioning modules can be trained and freely plugged into the
core dialogue model, as in the architecture depicted in Figure 24d. These adapter layers [11, 74] (the purple blocks in Fig-
ure 24d) are responsible of altering thehidden representationsof thenetwork toachieve the conditioning.Notice that, given
the pre-trained generic chatbot, this technique requires training a smaller number of parameters than standard fine-tuning.
In fact, this approach requires training only the conditioning layers, instead of fine-tuning the entire model. The Plug-
and-Play conversational model [106] uses this conditioning technique. The advantage is that, by design, the adapter layers
fewer parameters than the rest of the network. However, it is hard to achieve results as good as those of fine-tuning [137].

Other solutions involve using an attribute discriminator to carry out weighted decoding. It is possible to either re-score
the output sequences using the attribute discriminator [155] or apply more sophisticated techniques of this kind as
PPLM [41]. The advantage of these techniques is that they allow employing pre-trained chatbots and discriminative
models to produce conditioned generative dialogue agents without needing specific training. The disadvantage is that
the more complex decoding scheme slows down the inference. PPLM powered chatbots [2, 106] are more sensitive to
this issue since they need to alter, step-by-step, the hidden state of the model in forward-backwards manner, making
this approach hardly usable in real-time scenarios.

All these models rely on conditioning approaches and need, to be trained, conversational corpora labelled with the
desired attributes. This requirement usually gets problematic due to possible unbalances among the attributes, or to
unsatisfactory corpora size. To overcome this limitation it is possible to add synthetic labels, using a discriminator [171].

In the last threeyears, thedevelopment of large languagemodels likeGPT-3 has introduced the concepts ofprompting and
few-shots learning, sometimes referred to as in-context learning [22, 120, 136, 148, 194], to condition the output of themodel.
The idea behind prompting is to use natural language to describe the desired behaviour or output as initial part of the input
context, and then leveragemodel completioncapabilities togenerate anoutput that responds to the requests. For example10:

The following is a conversation between a highly knowledgeable and

intelligent AI chatbot and a human user. In the following interactions,

the user and the AI will converse in natural language. The AI chatbot

is built to be respectful, polite, inclusive and to do its best to

answer the user’s questions.

User: Hi, I'm going to start by quizzing you with some questions.

Who is captain Malcolm Reynolds?

AI:

For a sufficiently complex Seq2Seq language model trained on a large amount of data this is sufficient to start generating
the response utterance.

In a sense, this prompting approach is a generalisation of the “prepending” approach to conditioning, where the
attributes are described in natural language and may affect the entire behaviour of the agent, rather than a single re-
sponse. Moreover, introducing examples of the desired behaviour on similar inputs as part of the context helps the model
extrapolate and carry out the desired task. This is why we talk about few-shots: shots are the examples in the context,
paired with the prompt to obtain the desired behaviour [22].

10The example is adapted from Gopher.
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In the context of chatbots, prompting and few-shot learning can be used to instruct the model to follow a specific
behaviour. Examples of models using these appraoches are ChatGPT [118], Bard [63], Bing Chat [111]. models like
ChatGPT or BingChat rely on an additional ad-hoc training for chatting. In the case of the languagemodelGopher, instead,
generic dialogue pre-training and promptingwere sufficient to produce a languagemodel capable of having conversations
at the same level its ad-hoc trained version for dialogue [136]. Dropping the additional task-specific training may be an
important key towards the future developments, which we discuss in Section 5.2.

5 CONCLUSION

In this section, we summarise the content of this paper and we report our considerations on the possible future directions
and open issues connected to generative Seq2Seq chatbots.

5.1 Concluding remarks

In this paper, we explained how to employ neural Seq2Seq architectures to build and train open-domain conversational
agents (or chatbots). This kind of architecture allows the implementation of generative data-driven chatbots, which show
more robust adaptive capabilities than retrieval based ones.

These Seq2Seq models work on text represented as a sequence of embeddings, and leverage recurrent layers, or
Transformer layers with attention, to process the input (the context) sequence and yield the output (the response)
sequence. Each time step output actually contains a probability distribution over the vocabulary words. Such time step
distributions need to be decoded to obtain the final tokens composing the response.

The Seq2Seqmodels are mainly trained to maximise the probability of the target response in the sample conversation,
given the context (i.e., the preceding turns). Many corpora exist for open-domain conversation, including large corpora for
pre-training and smaller corpora for fine-tuning. Once trained, these models can be evaluated either through automatic
metrics or by means of human raters. Moreover, these Seq2Seq can be further optimised some human feedback for a
continuous improvement. Additionally, it is possible to join one of the available competitions to test the quality of the
conversational agents, comparing it with others.

5.2 Future directions

The landscape of NLP, in general, and the landscape chatbot develpement, in particular, are evolving quickly. Chat-
GPT [118], Bard [63], Bing Chat [111], etc. have shown how impressive a large language model based on Seq2Seq
architecture and trained on massive amount of dialogues can be.

In the near future, we expect to see a further scaling of these models, to be more complex and to train on more data.
Moreover, we expect these Seq2Seqmodels to become end-to-end multimodal models, thus allowing multiple forms
of inputs and outputs, like images or audio, to be mixed with regular text. Multimodal agents are already being developed,
like XiaoIce [220], Gato [141], or GPT-4 [120], but these functionalities are not always deployed with the chatbot (for
example ChatGPT with GPT-4 backend, to this day, does not support image inputs yet despite GPT-4 does).

As models scale up, we expect also a convergence with task-oriented systems. Initial works in this direction adopted
Seq2Seq architectures to train generative models for task-oriented conversational agents [23, 88, 102]. The idea was
to fine-tune pre-trained language models on task-oriented dialogues data [24] adding, for example, specific tokens to
represent the additional pieces of information for the dialogue agent or prepending text containing the description of the
agent’s belief state (i.e., the dialogue state according to the agent, usually expressed as a set of slot-value pairs). Tracking
of the belief state is delegated to additional pieces of the Neural Network. These models generate a response starting from
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the description of the belief state and the context of the conversation. Currently, the general purpose capabilities of large
language models used as chatbots are slowly allowing to use the samemodel for both open-domain and task-oriented
dialogues, guiding the behaviour with the initial prompt description. Moreover, some services are starting to develop
compatible plugins to exploit these chatbots, as happend with ChatGPT [119].

Finally, the improvement of the underlying languagemodels is opening the possibilities towardmore andmore general
agent whose behaviour is controlled through natual language prompts. Thus, eventually we will drop the adoption of
fine-tuning and objective optimisation in favour of prompting as a form of high-level programming of the chatbot, as it is
(partially) happeningwith ChatGPT or Bard for example.Gopher already showed that with the correct pre-traing and chat
prompt thegenerateddialogues are indistinguishable from thoseobtained afterfine tuning fromahumanperspective [136].

5.3 Open problems

Apart from the functional improvements, we expect also the agents to overcome their limitations. In fact there are still
some open technical problems and ethical issues to solve. These issues are inherited from the Seq2Seq language models
underlying these chatbots [195].

Seq2Seq chatbot are prone to knowledge hallucination. This problem is mostly due to the lack of proper knowledge
grounding in favour of weights memorisation(i.e., relying on the knowledge embedded in the model’s weights) that
characterises the currently developed Seq2Seq bases chatbots (e.g., ChatGPT). Knowledge grounding introduces the
possibility of explaining and supporting the generated responses, but increases the system complexity. Moreover, despite
there is the possibility of implementing the agent to exploit knowledge sources, there still can be faults in the generated
content(the benchmarks in this sense do no report perfect scores [128]). Strictly related to this aspect, is the lack of sound
logical reasoning that leads these models to generate nonsensical content or leading to the wrong conclusion even if
starting from the correct premises (e.g., Gopher at times respondes very confidently with wrong answers [136]).

Given the quality of the generated text and the conversations these chatbots are capable of managing, the prolonged
use of these tools, possibly combined with avatars and other embodyment techniques [122], may result in overconfidence
towards the agent. This situation can be exploited to manipulate opinion and spread misinformation [195].

These knowledge hallucination and misinformation issues are connected to the explainability and interpretability of
the results. Being deep Neural Networks an opaque tool, understanding how and why a specific output is generated is not
always easy. Lately, Human-Computer Interaction, the are comprising all the technologies that interface directly humans
and computers, has become strongly connected to this aspect, leading towards the concept of Explainable AI (XAI) [147];
the idea is to make AI more transparent rather than a black box tool, and subsequently ease its adoption.

Another noteworthy issue is that of bias and fairness present in the data and the generated content. Being deep Neural
Networks based on a frequentist approach to inference, they are prone to overfitting. As a result, if trained on biased/unfair
data, these models can possibly produce biased, unfair content such as offensive, discriminative, and hurtful text. Lately
there has been a lot of attention to quantify and remove bias from data and models [20, 45, 61]. Currently deployed
Seq2Seq chatbots (like ChatGPT ) use automatic system to detect whether it is generating this kind of content and either
avoid it or add a disclaimer to inform the user. However, this detection system are not foolproof.

Finally, given the current computational requirements imposed by these large language models, the access to these
technologies for development is limited to very complex and costly cloud deployments or web-based APIs. Eventually,
we would expect to be able to get an easier access to the underlying Seq2Seqmodel to so that everyone could benefit
from them and can customise the chatbots to their needs.
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ONLINEMATERIAL

A TRAININGANDEVALUATION

In this section, we explain how Seq2Seq chatbots can be trained and evaluated. As for the previous section, hereafter
we refer to models using auto-regressive generation. However, the formulae can easily be extended to other models.

A.1 Training approaches

To produce models that generate fluent responses, Seq2Seq chatbots must be trained with a large amount of data. The
training process can be carried out inmultiple steps, from pre-training [134, 216] to fine-tuning [210], following a so-called
curriculum learning approach [15]. Finally, following recent trends, we introduce also objective-based training, which
is a reinforcement learning-based fine-tuning.

We talk of curriculum learning because the general idea is to start training the chatbot on large text corpora, even from
a different domain, and then iteratively refine (fine-tune) the chatbot, shifting it towards the target domain and behaviour.
At each different training step, the complexity of the dialogue task is increased and the samples get closer to the those of the
target domain. For example, one can start from pre-training on generic text from books, which account for very large data
sets (to learn linguistic structure), do a first fine-tuning on conversations scraped fromTwitter (to learn dialogue structure)
and finally fine-tune again on empathetic dialogue (to learn empathetic behaviour in conversations). Empirically, this
curriculum learning approach was shown to yield better results than training directly on the target data [15].

A.1.1 Pre-training. The pre-training step is fundamental to obtaining a fluent chatbot [1, 145, 216]. The idea is to leverage
a large collection of unlabelled text to perform the first training of the Seq2Seqmodel. At this training step, the Neural
Network learns useful hidden representations and fundamental linguistic structures.

The training data does not necessarily need to be conversations: a generic corpus for language modelling is usually
sufficient (e.g., the Toronto Book Corpus [222] or C4 [51]). However, leveraging a large, generic conversation corpus
directly yields a usable chatbot, likeMeena [1] or BlenderBot [169] (the latter is then refined via objective optimisation,
see Appendix A.1.3). It is also possible to mix these two approaches, performing a first pre-training on generic text data
and then a further pre-training on a large, generic conversation corpus, like in the case ofDialoGPT [216].

Note that such a “large, generic conversation corpus” usually does not contain the conversation typologies that the
chatbot will need to learn at the end of the whole training process. So, the goal is to obtain a good initialisation from
which it will be simpler to refine the chatbot on the desired (typically smaller) specific conversational corpus.

The language modelling head of the chatbot tries, at each step, to predict the probability distribution of the next token.
Thus, the main loss function to minimise is the negative log-likelihood of the next token into the sequence, given the
preceding ones. In fact, during training, the decoding is guided by the reference response, and thus it is possible to compute
the average negative log-likelihood loss as reported in Equation (41) and depicted in Figure 25.

LDLM (𝐶,𝑅;𝜗)=−
1
|𝑅 |

|𝑅 |∑︁
𝑖=1

ln𝑃DLM
(
𝑟𝑖
��𝐶,𝑅𝑖′<𝑖 ;𝜗 ) (41)

where𝐶 = ⟨𝑐1,...,𝑐 |𝐶 |⟩ is the input context, 𝑅= ⟨𝑟1,...,𝑟 |𝑅 |⟩ is the output response, and 𝜗 represents the model parameters.
This approach is valid for simple latent hierarchical models, too. For variational latent hierarchical models, the loss

function changes to optimising the Exponential Lower BOund (ELBO) [174] (see Equation (42)):
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Fig. 25. Visualisation of the loss computation process. The token-wise loss is averaged across the response tokens.

LELBO (𝐶,𝑅;𝜗)=−
1
|𝑅 |

|𝑅 |∑︁
𝑖=1

ln𝑃DLM
(
𝑟𝑖
��𝐶,z,𝑅𝑖′<𝑖 ;𝜗ℎ,𝜗𝑙𝑚,𝜗𝑞 )+D𝐾𝐿 [𝑞(z|𝐶,𝑅;𝜗 ;𝜗ℎ,𝜗𝑞) | |𝑝 (z|𝐶;𝜗ℎ,𝜗𝑝 )] (42)

where𝐶 and 𝑅 are defined as before, z is the latent variable, sampled from the posterior latent distribution 𝑞(·), and
D𝐾𝐿 [𝑞(·) | |𝑝 (·)] is the Kullbak-Leibler divergence (or KL divergence11) between the prior latent distribution 𝑝 (z|𝐶) and
the posterior latent distribution 𝑞(z|𝐶,𝑅), defined as in Section 3.2.2. Moreover, 𝜗ℎ , 𝜗𝑙𝑚 , 𝜗𝑝 , and 𝜗𝑞 are ,respectively, the
parameters of the hidden transformations, the languagemodel head, the prior latentmodel, and the posterior latentmodel.
Notice that the next token in the response also depends on z, and not only on the context and the previous response tokens.

These models suffer from an issue called KL vanishing [218], where the KL-divergence goes to zero cancelling the
contribution of the latent. In practice, the variational model degenerates and always predicts the same latent code, making
the latent code uninformative and thus useless for the generation process. However, various solutions help prevent
this collapse [56, 124, 217, 218, 221]. Plato [9, 10] is an example of variational latent hierarchical model pre-trained on
conversations scraped from Reddit, it was also fine-tuned on some reference benchmarks (see Appendix A.1.2).

As mentioned before, this first pre-training step requires processing large text collections using a high amount of
computational time and power. Thus, starting completely from scratch and doing the entire pre-training is not always
viable. So, to cope with this computational power demand, it is possible to rely on pre-trained models made available
by large companies (e.g. OpenAI, Google, Microsoft, Facebook). For example, the Transformers package fromHugging

Face [201] gives easy access to many pre-trained Transformer models.

A.1.2 Fine-tuning. Fine-tuning (together with transfer learning [210]) has become a fundamental step (especially in
NLP) for taking advantage of deep pre-trained models and achieving impressive performances, even on small cor-
pora [46, 134, 135, 137]. This step is part of the curriculum learning process currently used to train chatbots: the model
11The KL divergence is a common way of measuring the distance of a probability distribution from a reference one. In our case 𝑞 ( ·) is the reference
distribution and 𝑝 ( ·) is the distribution to be measured.
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is first trained on a large text corpus (not necessarily conversations, but also books or web scrapes), then it is interatively
refined on data samples coming from domains more and more similar to the target one (e.g., corpora for knowledge
grounded conversations or empathetic conversations) [86, 99, 168, 202]. In this way, it is possible to take advantage of
the initialisation given by the pre-training, which offers a good initial hidden representation encoding the main linguistic
features, to achieve good results in an efficient way.

Fromapractical perspective, themain loss function to optimise for training the network (i.e., the negative log-likelihood
of the next token) does not change: only the underlying corpus changes. However, it has become common practice
to add further loss functions to improve the fine-tuning process. In the case of chatbots, the language modelling loss
function (as defined in Equation (41)) is often mixed with a retrieval one, as in the hybrid architectures described in
Section 4.1.1, like TransferTransfo [202] or CAiRE [99]. During training, the usual negative log-likelihood is paired with
a binary contrastive loss: the model is presented with samples where the correct response is substituted with a distractor
response, following the given context [27, 94, 202]. This approach is used to help chatbots generate better responses [202].
The most straightforward implementation of this approach is to use a separate classifier on top of the decoder model.
In such a case, the loss becomes like the one in Equation (43), where Rdistractor is the set of distractor responses, 𝛼 is the
hyper-parameter used to control the relative importance of the losses, andLCLS (·) is the contrastive binary cross-entropy
loss to train the retrieval head, defined in Equation (44).

Lmulti-objective (𝐶,𝑅,Rdistractor;𝜗)=𝛼LLM (𝐶,𝑅)+(1−𝛼)LCLS (𝐶,𝑅,Rdistractor) (43)

LCLS (𝐶,𝑅,Rdistractor;𝜗)=−ln𝑃CLS (𝑅 ∈Ccorrect |𝐶)−
1

|Rdistractor |
∑︁

𝑅′∈Rdistractor
ln𝑃CLS (𝑅′∉Ccorrect |𝐶)=

=−ln𝑃CLS (𝑅 ∈Ccorrect |𝐶)−
1

|Rdistractor |
∑︁

𝑅′∈Rdistractor
ln

(
1−𝑃CLS (𝑅′ ∈Ccorrect |𝐶)

) (44)

Another approach is to leverage unlikelihood training, mixing the usual token-wise loss with a contrastive loss [27, 94].
The model is trained to maximise the probability of observing the tokens of the correct response 𝑅 and minimise the
probability of observing the tokens of distractor responses taken from a set of distractors Rdistractor, as in Equation (45).
This second step is done through the unlikelihood loss from Equation (46).

Lcontrastive (𝐶,𝑅,Rdistractor;𝜗)=𝛼LLM (𝐶,𝑅)+(1−𝛼)LUL (𝐶,Rdistractor) (45)

LUL (𝐶,Rdistractor;𝜗)=
1

|Rdistractor |
∑︁

𝑅′∈Rdistractor
− 1
|𝑅′ |

|𝑅′ |∑︁
𝑖=1

ln
(
1−𝑃DLM

(
𝑟 ′𝑖

��𝐶,𝑅′𝑖′<𝑖 ;𝜗 ) ) (46)

Finally, we want to underline that this fine-tuning step is also useful for introducing additional features to the agent,
like conditioning. In general, conditioning affects how the input is presented to the model or which parameters to update
during the training iterations (see Section 4.3). Thus, it is helpful to train additional predictive or discriminative parts
of the chatbot during fine-tuning. For example, conditioned models, which require the attributes describing the response
to generate the answer, would need to train an additional model head to predict such attributes given the context. For
example, amodel generating responses conditioned on emotionwould require an additionalmodule to predict the emotion
of the response. Such modules for conditioned language modelling, attribute prediction, and attribute recognition can
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be trained at once, summing all the losses together, this is the case of CAiRE [99] and EmpTransfo [211] for empathetic
dialogues, they both predict the target emotional status to condition the response generation.

A.1.3 Objective optimisation. Despite open-domain dialogue not having a clear and well defined objective function to
optimise, it is possible to use reinforcement learning algorithms [180] to further fine-tune a chatbot to pursue one or more
objectives through dialogue [149, 158]. In fact, training a dialogue agent to optimise some objective is more common
for task-oriented agents [57].

Most solutions relied on policy gradient algorithms, like REINFORCE [200], and handcrafted objectives [149, 158, 166,
220]. They are applicable either to base models (defining a policy over the tokens composing the response, altering the lan-
guagemodel) [93, 166]or tohierarchicalmodels (definingapolicy overhigh-level attributes to condition the responsegener-
ationoron thehidden latent representation) [149, 158, 220].Whenusedwithbasemodels, thiskindofapproachesmaybreak
the generative capabilities of themodel and lead to disfluent text, there are possible solutions to dealwith these issues [166].

Usually, policy-gradient approaches applied to dialogue generation consider an entire conversation as a sequence
of utterances and extract all the avaialble context-response pairs:

𝑋 = ⟨𝑈1,...,𝑈𝑖 ,...,𝑈𝑛𝑋 ⟩→⟨(𝐶1,𝑅1),...,(𝐶𝑖 ,𝑅𝑖 ),...,(𝐶𝑛𝑋 ,𝑅𝑛𝑋 )⟩ (47)

where𝑈𝑖 ∈V |𝑈𝑖 | is a sequence of tokens representing a turn in the dialogue,𝐶𝑖 = ⟨𝑈1,...,𝑈𝑖−1⟩ is the context associated to
the 𝑖-th turn in the dialogue and𝑅𝑖 =𝑈𝑖 is the 𝑖-th turn in the dialogue. Each response𝑅𝑖 has an associated reward 𝑟𝑖 , so that
given thediscount factor𝛾 ∈ [0,1] ⊆Rof theMarkovDecisionProcess (MDP) [93, 166, 180] associatedwith the reinforcement
learning problem, we can compute the discounted cumulative future reward 𝐺𝑖 of the response 𝑅𝑖 as in Equation (48)

𝐺𝑖 =

⌊ (𝑛𝑋 −𝑖 )/2⌋∑︁
𝑘=0

𝛾𝑘 ·𝑟𝑖+2𝑘 (48)

Note that in some cases, the discounted cumulative future reward is standardised over the dialogue to enforce stability
of the policy gradient algorithm. Given a dialogue𝑋 , the objective 𝐽𝜋 (·) tomaximise to train the dialogue policy is thus
defined in Equation (49)

𝐽𝜋 (𝑋 ;𝜗)=−
1
𝑛𝑋
·
𝑛𝑋∑︁
𝑖=1
(−𝐺𝑖 ·ln𝑃DLM (𝑅𝑖 |𝐶𝑖 ;𝜗)) (49)

To prevent the collapse of the underlying language model, the objective is mixed with the usual language modelling loss,
as in Equation (50) [166]

𝐽mixed (𝑋 ;𝜗)=𝛼 𝐽𝜋 (𝑋 ;𝜗)−(1−𝛼)E(𝐶𝑖 ,𝑅𝑖 ) ∈𝑋 [LDLM (𝐶𝑖 ,𝑅𝑖 ;𝜗)] (50)

with 𝛼 ∈ [0,1] ⊆R being the hyper-parameter used to control the relative importance of the two objectives
These reinforcement learning-based solutions are particularly suitable for empathetic chatbots or empathetic chatbots.

In fact, as long as ameasure of empathy is provided, it is possible to refine the agent tomaintain the open-domain dialogue
properties while steering the responses towards more empathetic ones. For example, XiaoIce [220] optimises the expected
Conversation-turns Per Session to be more social and empathetic, which is an handcrafted metric that should correlate
with an empathetic behaviour. Another adopted handcrafted feature is the expected user sentiment, with the objective
of eliciting a positive sentiment in the other person during the dialogue [166]. Instead of handcrafting the objective, some
solutions relied on a learnt empathy measure to maximise [163, 164].
Manuscript submitted to ACM
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Rather then defining an handcrafted objective or learning a specific reward, it is possible to rely on human feedback
to improve the agent. BlenderBot [169] proposed a solution of continuous improvement where each response can get
a feedback with different level of granularity [207]. These feedbacks can be used to learn either a re-ranking system or
a reward function to optimise.

ChatGPT [118] represents the current state of the art of open-domain chatbots. It was trained starting from a large lan-
guagemodel and then refined through reinforcement learning using a Proximal Policy Optimisation (PPO) algorithm [152].
The model starts from a supervised initialisation and is iteratively updated to optimise a reward function. The reward
function is learned by mimicking human ranking on possible responses to a prompt.

A.2 Evaluation approaches

Twomain approaches exist to evaluate generative conversational agents: automatic or human-based [100, 172, 187]. The
former is based on automatic metrics that allow a quantitative and objective evaluation of the conversational agent. The
latter, instead, is based on subjective human evaluations. Since there is no objective metric capable of capturing all the
nuances of an open-domain conversational agent, the task of evaluation is often delegated to humans.

A.2.1 Automatic evaluation. There are several metrics used to evaluate chatbots. The most popular automatic metric
is undoubtedly the perplexity (PPL ). PPL of generative dialogue models is defined as in Equation (51), where, as usual,
𝐶 is the context sequence and 𝑅 is the response sequence12. It measures howwell a probability distribution predicts a
sample. Recent studies found a correlation between PPL and human opinion on different aspects of a conversation [104].

PPL(𝐶,𝑅)=exp©«− 1
|𝑅 |

|𝑅 |∑︁
𝑖=1

ln𝑃 (𝑟𝑖 |𝐶,𝑅𝑖′<𝑖 )
ª®¬ (51)

Other popular metrics are the next token accuracy or the F1-score. Note that, despite being defined for the retrieval
domain, these metrics also apply to generative models.

Next token accuracy is computed by means of guided decoding. At each step, given the preceding response tokens, the
probability distribution of the next token is computed, and the most probable next token is matched against the correct
one from the corpus. The accuracy is then the ratio between correct predictions and total response length.

In the case of F1 score, given a target sequence 𝑅 = ⟨𝑟1,...,𝑟𝑖 ,...,𝑟 |𝑅 |⟩ and a generated sequence 𝑅 = ⟨𝑟1,...,𝑟 𝑗 ,...,𝑟 |𝑅 |⟩, it
is possible to define the precision Pr as the ratio of the number of common tokens between 𝑅 and 𝑅 and the number of
elements in the generated sequence (see Equation (52)). The recall Re is defined as the ratio of the number of common
tokens between 𝑅 and 𝑅 and the number of elements in the target sequence (see Equation (53)). Given these definitions,
the F1 can be computed, as usual, as the harmonic mean of Pr and Re13.

Pr=
|𝑅∩𝑅 |
|𝑅 | (52) Re=

|𝑅∩𝑅 |
|𝑅 |

(53) F1=2·
Pr·Re
Pr+Re (54)

Note that these definitions ofPr,Re andF1 consider onlyunigrams (i.e., individual tokens in the sequences).However,we
can extend the definitions to consider𝑛-gramswith𝑛≥ 1 (i.e., sub-sequences of𝑛 consecutive tokens), like bigrams (𝑛=2),
trigrams (𝑛=3), and so on. Thus, we can introduce precision, recall and F1-score over𝑛-grams: Pr(·;𝑛), Re(·;𝑛) and F1 (·;𝑛)
12In this formulation we considered an autoregressive model, but the formula is extensible to any model.
13Often, when computing these metrics, articles and other similar stopwords are removed.
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Other widely used metrics are BLEU [123], ROUGE [97], andMETEOR [8]. These metrics are defined using 𝑛-grams
comparison.

BLEU, defined in Equation (55), is the geometric average of the precision computed with different 𝑛-grams (in fact,
usually we talk of BLEU−𝑛, where 𝑛 is the maximum considered 𝑛-gram). Usually, the elements of the geometric average
are weighted uniformly with𝑤 =1/𝑛. The BLEU score if often scaled by a brevity penalty defined in Equation (56).

BLEU(𝑅,𝑅;𝑛)=brevity−penalty(𝑅,𝑅) ·
𝑛∏
𝑛′=1

Pr(𝑅,𝑅;𝑛)
1
𝑛 (55)

brevity−penalty(𝑅,𝑅)=


1 |𝑅 |> |𝑅 |

exp
(
1− |𝑅 |
|𝑅 |

)
|𝑅 | ≤ |𝑅 |

(56)

ROUGE is a set of metrics: ROUGE−𝐿, ROUGE−𝑆 , and other weighted variants. All these variants are focused on
the computation of the recall. ROUGE−𝑛 is the 𝑛-gram recall. ROUGE−𝐿 is recall computed as the ratio of the Longest
Common Subsequence (LCS) of𝑅 and𝑅 and the length of the reference response, see Equation (57).ROUGE−𝑆 considers the
skip-bigram co-occurence statistics, where a skip-bigram is any pair of unigrams in their sentence order; see Equation (58),
where the function skip(·;𝑛) maps the input sequence to its skip-𝑛-grams.

ROUGE−𝐿(𝑅,𝑅)= LCS(𝑅,𝑅)
|𝑅 |

(57)

ROUGE−𝑆 (𝑅,𝑅)= |skip(𝑅;2)∩skip(𝑅;2) |
|skip(𝑅;2) |

(58)

METEOR relies on alignments, that are mappings between the reference output sequence and the generated output
sequence (we provided an example of mapping in Figure 13).

The METEOR score, defined in Equation (59), is a scaled, weighted harmonic mean of precision and recall. The
F−mean(·) is the harmonic mean of precision and recall where recall is weighted nine times more than precision, see
Equation (60) . The scale is computed from the chunks penalty defined inEquation (61),where the chunk function computes
the fewest possible overlapping chunks between the target response and generated response. A chunk is a set of unigrams
that are consecutive in the target output and the generated output.

METEOR(𝑅,𝑅)= (1−chunks−penalty(𝑅,𝑅)) ·F−mean(𝑅,𝑅) (59)

F−mean(𝑅,𝑅)= 10·Pr(𝑅,𝑅) ·Re(𝑅,𝑅)
Pr(𝑅,𝑅)+9·Re(𝑅,𝑅)

(60)

chunks−penalty(𝑅,𝑅)= 1
2
·
(
|chunk(𝑅,𝑅) |
|𝑅∩𝑅 |

)3
(61)

These last threemetrics come from other areas of NLP (machine translation and automatic summarisation). Similarly to
F1-score , suchmetrics try to evaluate the generated sequence bymeans of its overlap with a reference sequence. Although
useful, these metrics not always correlate well with human judgement, and hence their use can be counterproductive
(for example the results of the human evaluation in the ConvAI2 challenge reported as winner a model that performed
poorly on overlap metrics [49]). In cases where the objective is to generate diverse responses that may steer away from
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the reference ones, the distinct−𝑛metric can be useful to evaluate the generated responses independently of the target
responses [91]. distinct−𝑛 is defined as the ratio between the distinct 𝑛-grams in the generated response and the length
(in tokens) of the generated response, see Equation (62) (𝑛−gram(·;𝑛) maps the input sequence of tokens to its sequence
of 𝑛-grams). Usually the metric is computed with 𝑛 ∈ {1,2,3}.

distinct−𝑛(𝑅;𝑛)= |𝑛−gram(𝑅;𝑛) |
|𝑅 |

(62)

Alternatively to thesemetrics, a recent trend consists inusing learnedmetrics [58, 104, 181, 187],where amodel is trained
on a corpus of human ratings of conversations with dialogue agents. Provided a sufficiently accurate model, it should be
possible to have a robust estimate of human evaluationswithout involving anyhuman in the evaluation loop.Alternatively,
it is possible to directly use the raw probabilities of large language models to evaluate dialogue quality automatically.
In fact, the PPL of these models showed good correlation with human ratings on some dialogue aspects [116, 178].

A.2.2 Human evaluation. Usually, human raters are asked to rate specific aspects or compare available responses. The
chatbot is then evaluated, for example, on the raters’ preferences or based on the number of times the chatbot performed
not worse than the ground truth or other models. Evaluated aspects include [1, 91, 140, 154, 181, 214]:

• General quality: whether the response is to be considered good;
• Ease of answer : whether the response would be easy to respond to;
• Fluency: whether the language seems accurate, or the response can be understood;
• Relevance: whether the responses seem appropriate to the conversation;
• Naturalness: whether the response maintains the natural conversation flow;
• Consistency: whether responses contain contradictory information with respect to the context;
• Diversity: whether the responses show lexical diversity;
• Engagingness: whether the conversation is interesting disregarding fluency;
• Sensibilness: whether the response, given the context, makes sense;
• Sensitivity: whether the response is specific given the context.

In some cases, open-domain agents are also evaluated on empathy [140, 166], to understand whether the responses show
understanding of the feelings of the other person. Notice that the raters can evaluate individual responses or can compare
alternative responses.

Usually, human raters provide different evaluations. To help reconcile such evaluations, and understand whether
the whole evaluation process was successful, an agreement coefficient among raters is usually calculated. The Kappa
coefficient [48] is a popular choice, as it considers the possibility of the agreement occurring by chance.

Many formulas exist to calculate the Kappa (Cohen’s K, Scott’s pi, Fleiss’ kappa, Randolph’s kfree [139], etc.) but the
basic idea is given by Equation (63):

Kappa=1− 1−𝑝𝑜
1−𝑝𝑒

(63)

where 𝑝𝑜 is the observed agreement among raters, and 𝑝𝑒 is the expected probability of chance agreement. Kappa=1
means perfect agreement, while Kappa=0means chance agreement. Kappa can be negative if there is no relationship
between the ratings or the raters tend to give totally differing ratings. Note, however, that Kappa can be affected by bias
and other issues and thus its results should be evaluated with care [48].
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Human evaluation can be carried out in two ways: either in a static manner, where the human is given samples
composed of context taken from a corpus and response(s) to evaluate, or in an interactive manner, where the human
carries out a conversation with an agent, in real-time.

Static. Static human evaluation is the most straightforward approach. The idea is to start from fixed conversation
contexts, like those available in the training set, and generate a response. This approach can be applied to comparemultiple
models. Human raters are given the context, followed by the generated response(s) and the ground truth response, and
are asked to evaluate them. It is possible to adopt a so-calledmechanical Turk of crowdsourced workers [49, 158] to have
a larger (but less controllable) pool of raters, or rely on a more restricted (but possibly better) set of expert raters (e.g.,
three or five) [91–93, 166] to evaluate the models.

Interactive. Differently, from static evaluation, the interactive approach poses some non-trivial challenges. First of
all, the chatbot should be responsive in real-time. Given that they need to mimic human behaviour, a high response
time may harm the engagingness. Secondly, it requires deploying the agent and hence developing a user interface, or
at least leveraging some available APIs from social media (e.g., Facebook Messenger14 [220]) or messaging services (e.g.,
Telegram15 [49]). It this setting, the human can directly interact with the agent, making the evaluation more entertaining.
This kind of approach can be helpful in collecting real-time feedback from the users. Such feedback can be leveraged
to update the agent either at run-time or after the conversation.

B CORPORAANDCOMPETITIONS

In this section we describe the main corpora to train and evaluate Seq2Seq chatbots [157], and the most interesting
competitions related to these models. Sometimes, the competitions revolve around one of the available corpora.

B.1 Corpora

Dialogue corpora to train generative chatbots can be ofmany kinds.We distinguish among threemain groups: pre-training
corpora, fine-tuning corpora and benchmarks or collections.

B.1.1 Pre-training. Large conversational corpora obtained scraping social media (like Twitter) and forums (like Reddit)
are often used to perform pre-training of conversational agents. The advantage of these corpora is that, due to their
size –often these corpora include from hundreds of thousands to millions of conversation samples– they provide the
Seq2Seq model with basic conversation capabilities that can be easily refined on more specific corpora that usually
provide way fewer samples. The disadvantage is the lack of control over the content and the low quality of language in
the conversations [157]. It is possible to train agents with impressive linguistic capabilities, leveraging such low-quality
scraped conversations, but the amount of required data is huge (for example, Google used more than 300 GB of text to
train Meena [1]). In the following, we briefly describe some of such corpora.

TheUbuntu Corpus [105] was extracted from theUbuntu chat logs16. It is an extensive collection ofmulti-turn dialogues
for neural conversational agents. All conversations are between two human participants.

The Cornell Movie-Dialogs Corpus [40] was built from rawmovie scripts and covers many topics and writing styles.
Unlike other large corpora, it was manually curated and contains metadata about the speaking character and the movie.

14https://www.facebook.com
15https://telegram.org
16https://irclogs.ubuntu.com
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Reddit17 is a website containing social news, web content ratings, and discussions. Due to the conversational structure
of the posts, it has been scraped to extract dialogue corpora [77, 216]. To avoid directly scraping the original website,
a third party dump of Reddit is published on the pushift.io18 platform. Extracted conversations cover many topics, which
reflect the ones of the sub-reddit they belong to. Conversations are multi-turn and multi-writer. Moreover, in some cases,
it is possible to mine additional information without manual annotations, like the writer’s persona [212].

Twitter19 was one of the first social media to have been employed for these kinds of tasks, due to the public availability
of its content [1, 155, 175], and is still occasionally used to build corpora for training the agents. Conversations are built
scraping the answers under posts. As for previous corpora, the conversations cover different topics and are multi-turn
and multi-writer.

B.1.2 Fine-tuning. Apart from the extensive conversational collections used for pre-training, many corpora exist to
train open-domain dialogue agents. Unlike the corpora mentioned above, those for fine-tuning have fewer samples, are
manually curated, and are rich in additional information, like labels and metadata. Labels may include emotion, topic,
and dialogue acts, while metadata may include information to ground the conversation in:

• speakers’ persona, the persona grounding is a set of short sentences describing the speaker’s profile.
• knowledge, with knowledge grounding document we refer to a document chunk, manually selected to act as

reference knowledge for providing grounding to a given response;
• situation, the situation grounding is provided as a short description of the situation discussed in the dialogue or

that is happening while the dialogue is taking place;
• images, the image grounding is provided through one or more pictures that are object of the conversation (or

at least mentioned in the conversation).

Early corpora of this kind, like CallHome [31], CallFriend [30] and Switchboard [60], were extracted from recorded
telephone conversations. The Switchboard corpus also presents dialogue acts, leveraging the DAMSL notation [4].

A commonly found label, especially in recent corpora, describes the emotion. In fact, thanks to the rising interest in
affective computing [129], many corpora have been labelled to include the speaker’s emotional status, often employing
a categorical representation reflecting Elman’s taxonomy [53] (in some cases, the Elman’s six basic labels are extended
to have a better granularity). Some of these corpora also label the speaker’s sentiment (i.e., positive or negative polarity).

Emotion labelled corpora include SEMAINE [109] and IEMOCAP [26], which provide video and audio recordings of
the enacted conversations. IEMOCAP also includes emotion labels with a continuous notation [39]. Differently, the
DailyDialogues [95] corpus was built crawling conversations from English learning websites and includes labels about
emotion, dialogue act, and topic. The EmpatheticDialogues [140] contains simulated empathetic dialogues grounded in
a situation presented trhough a descriptive sentence associated with the dialogue (this data set was used to train the
empathetic chatbot CAiRE [99]). TheMELD corpus [130] (previously known as EmoLines [75]) presents multi-speaker
dialogues extracted from the transcripts of the “Friends” TV show, it also presents sentiment labels. The EDOS [197]
corpus was recently introduced, it is the most extensive available collection of this kind: it contains around a million
dialogues extracted from theOpenSubtitles20 data base. Each turn is labelled with emotion or intent information.

Some corpora present specific kinds of dialogues. A relevant example is given by dialogues where one of the speakers
tries to explain something to the other. In these corpora, it is possible to observe clarification questions that are hardly
17https://www.reddit.com
18https://pushshift.io
19https://twitter.com
20https://www.opensubtitles.org/
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used by open-domain chatbots. Corpora of this kind include the Teacher-Student Chatroom [28, 29], where teachers answer
students’ questions, ELI-5 [55], extracted from a subreddit to provide simplified explanations about any topic, and the
HCRCMap Task [182] where multiple speakers try to provide someone with directions to reach some place.

In the context ofmental healthcare, counselling and psychotherapy represent two task-oriented dialogue problems
that are actually appraoched with open-domain dialogue techniques. In fact, counselling or therapy sessions are actually
open domain dialogues. There exists some data sets that are . Counseling and Psychotherapy Transcripts: Volume II [115]
andHOPE [107] (now extended toMEMO corpus [176]) are transcription of sessions. Moreover HOPE contains also labels
with dialogue acts associated to each utterance, and its extensionMEMO contains labels with the status of the session
and the summary of the interaction. Additionally there exists also the Counsel Chat [17] and the Epitome [164] corpora.
These two corpora are composed only of message-response pairs instead of entire conversations. Epitome is labelled
with the communication level of different empathy mechanisms.

Certain corpora present some kind of grounding. It is the case of corpora for persona grounding, which are helpful
to ensure agent’s consistency. Persona groundings can be provided for the agent, the user or both. Having access to both
persona descriptions, improves the agent’s dialogue capabilities [92]. The Persona-Chat [214] corpus contains simulated
conversations preceded by short sentences describing participants’ personas. The corpus also provides variants of the
persona descriptions, and contrastive samples for discriminative training and evaluation (this chatbot was used to train
TransferTransfo [202] in the ConvAI-2 challenge [49] and to do the first fine-tuning of CAiRE [99]). The LIGHT [184]
corpus, instead, has dialogues grounded in a text adventure game. It also provides information about the actions performed
within the game (situation grounding). More recently theMulti-Session Chat [206] was released, this corpus uses persona
grounding and was specifically realised to learn managing long conversations.

Other forms of grounding include knowledge. Some corpora provide this grounding through document exchanges
that are associated with dialogue turns. It is the case of theWizard-of-Wikipedia [50], Topical-Chat [64], andWizard-of-

Internet [86] corpora. In all cases the speakers refer to external knowledge sources (Wikipedia for the first corpus, many
sources for the other two) where text chunks are extracted and added to the conversation turns, as metadata. In the first
two corpora the topic is explicitly associated with the conversation.

Finally, it is worth to mention image grounded corpora, like Image Chat [167] and IGN [114]. Due to the emerging
presence of chatbots in social media, and given the relevance that images play in such contexts, providing chatbots with
the capability of handling visual contents is essential. Both corpora are taken from conversations about a given image:
Image Chat provides also persona information, IGC is focused on question-answer dialogues.

As a conclusive remark, it is important to point out that the corporaused forfine-tuning are often curated to avoidunsafe
and biased content. In some cases, for example when pre-training on large corpora crawled from the web, the resulting
corpus may contain harmful examples. To cope with this issue some filtering techniques have been suggested [205, 216].
These techniques aim at filtering the corpus to remove unsafe, biased, or negative utterances.

B.1.3 Benchmarks and collections. Lately, there has been an emerging interest in building benchmarks for conversational
agents. The idea behind these benchmarks is to collect multiple corpora covering different aspects and dialogue styles,
and combine them to test automatically all these capabilities. These benchmarks offer both training and evaluation data.
In the following some of them are presented.

TheDodecaDialogue [168] covers 12 different corpora that are used both for pre-training and fine-tuning. The fine-
tuning ones allow for grounding on persona, knowledge, situation, and images. It is mainly though for generative agents
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since it evaluates the agent generative abilities in many different contexts. In fact, the baseline models trained on these
corpora have been evaluated on PPL, F1-score, BLEU and ROUGE.

The Silicone [33] benchmark, instead, is mostly for sequence labelling rather than generation. It is composed of eight
different corpora, including one for task-oriented conversations. The labels of the corpora provide dialogue acts and
affect (either emotion or sentiment). Despite being for sequence labelling, this benchmark can be employed to evaluate
generative agents in the same way as DodecaDialogue.

The KILT [128] benchmark is a resource for knowledge intensive language tasks. This benchmark is composed of 11
different data sets targeting five tasks. Apart from the dialogue task (provided by the Wizard-of-Wikipedia data set),
KILT includes open domain question answering, slot filling, entity linking and fact checking. This benchmark is useful
to improve knowledge grounded agents and to learn to provide support to factual responses.

The BlendedSkillTalk [173] targets a chatbot ability to manage different tasks within a conversation. The considered
tasks are to talk about oneself as well as getting to know the conversation partner, displaying empathetic behaviour and
being knowledgeable. BlendedSkillTalk is built starting from pre-exisiting data sets (namely Persona-Chat, EmpatheticDi-
alogue andWizard-of-Wikipedia) that are used as prompts for humanworkers to generate new dialogues. These dialogues
are labelled to help the agent understand whether an utterance in the dialogue requires external knowledge, requires
personal knowledge, describes a personal situation, or is a display of empathy. This benchmark permits to evaluate the
grounding skills of the agent as well as its ability to understand when and which grounding is necessary.

B.2 Competitions

Competitions for chatbots are thought to promote sharing the latest results in the design of conversational systems. They
cover many kinds of approaches for open-domain models and sometimes involve multiple interaction modalities.

The Loebner Prize Competition (Loebner prize for AI) [131] was the oldest competitions for chatbots. It is currently
discontinued and was based on the Turing Test for machine intelligence. The latest registered winner (in 2018) was the
Mitsuku chatbot (now Kuki AI ) [203], which is based on theAI Markup Language (AIML) for its core functions [190].

The Dialog State Tracking Challenge (DSTC) [47, 67, 73, 82] was first organized in 2013 and reached the 10th edition21.
It is mainly thought for task-oriented systems. However, nowadays, this challenge is divided into multiple tracks, also
involving open-domain conversational agents.

TheNTCIR Short Text Conversation Task [161, 162, 213, 215] started as a retrieval task for Chinese and Japanese chatbots,
but it was extended to include generative models, from the second edition. It is mainly designed for “post-comments”
kind of conversations found in social media likeWeibo22 or Twitter. In the latest edition, the organisers also introduced
a task for emotion grounded conversations.

The Conversational AI Challenge (ConvAI) [3, 25, 49] is a series of competitions for open-domain agents. Each edition
presents a new challenge (e.g., “clarifying questions”). The second edition is particularly famous for the results obtained
by transfer-learning and fine-tuned models[202], in the persona grounded conversations (on Persona-Chat [214]). Such
transfer-learning based models have become a prevalent approach for neural chatbots, as explained in Appendix A.1.2.

TheAlexa Prize [138] is a challenge organised by Amazon to improve the Alexa virtual assistant. The idea is to give
chit-chat capabilities to Alexa to make it more entertaining. The prize currently proposes three challenges, including
one for social chatbots, which is specifically thought for open-domain conversational agents.

21https://dstc10.dstc.community
22https://weibo.com/
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