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ABSTRACT

This paper models a docking system using multibody dynamics, for its integration into
algorithms like optimization, guidance, navigation, and attitude determination. The
system is described in the International Docking System Standard and aims to simu-
late docking mechanics, considering more accurate off-nominal situations. Modeling
and simulation of the docking process via the finite element method are suitable for
detailed mechanical analysis, but balancing the computational efficiency and accuracy
required in an integrated design calls for a different approach. This work provides a
design tool, taking into account the docking simulation from the early stages.
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1 INTRODUCTION
Rendez-Vous Docking or Berthing (RVD/B) technology and techniques are used to resupply or-
bital platforms and stations, switch crews in orbital stations, repair spacecraft in orbit, retrieve
and capture spacecraft to bring them back to Earth, and re-join orbiting vehicles from the ground.
Docking is the act of two spacecraft joining and sealing to one another with a Guidance Navigation
and Control (GNC) system active until the first touch. [1]

It is important to define a proper simulation environment in order to model both the docking
dynamics and control logic in the most embedded way between different fields such as GNC
design, Attitude Determination and Control System (ADCS) design, Multibody System Dynamics
design and Structures and Mechanisms design.

2 MULTIBODY MODEL
This paper refers to the IDSS Interface Docking Document (IDSS IDD) [2] guidelines for materials
and mass properties of docking system and spacecraft. The system is modeled in MBDyn (https:
//mbdyn.org/) [3, 4], defining multibody entities such as elements (bodies and joints) and nodes.

The system is divided into three body elements: the International Space Station-Hosting Vehicle
(HV), the approaching spacecraft-Visiting Vehicle (VV), and the Visiting Vehicle Soft Capture
System (SCS). Each element has its own set of properties and parameters that describe its behavior
within the system, such as mass, inertia, and geometry.

Structural nodes have 6 degrees of freedom, representing position and orientation in the 3D space,
and thus describe the kinematics of rigid-body motion in space. The three bodies are dynamic
nodes with inertia that provide linear and angular momenta degrees of freedom. Dummy structural
nodes, rigidly connected to the dynamic ones, are used to visualize the kinematics of arbitrary
points during the simulation. The modeling was made hierarchically.

A joint is an element that connects, in a prescribed way, different rigid bodies within a multibody
system. There are several types of joints available, each with its own set of parameters that define
its behavior. Joints may have internal degrees of freedom when they introduce kinematic con-
straints in form of algebraic relationships between the coordinates of the nodes they connect. By



NDSB1 Guide Petal SCS Ring HCS Plane
Material 7075−T 7351 " 2219-Al

density, g/cc 2.81 " 2.84
Young’s Modulus, GPa 72 " 73.1

Poisson Ratio, 0.33 " "
Shear Modulus, GPa 26.9 " 27.0
Yield Strength, MPa 434 " 350

Table 1: NDSB1 material properties

Vehicles m, kg Ixx, kg·m2 Iyy, kg·m2 Izz, kg·m2

IDSS 5000 34 ·103 18 ·103 18 ·103

SCS 40 12.67 6.42 6.42
HCS 300 579.4 450 452

Table 2: Visiting vehicles inertia properties

defining the properties of each joint element, and combining them together with the other elements,
the system can be fully described. Joint elements used in complex mechanical systems are total
joints (selective constrain components of relative displacement and rotation between parts), rods,
and deformable displacement joints (establishing relative configuration-dependent forces between
parts), allowing for precise control over the motion of connected bodies. The model presents 15
joint elements:

• 6 rods between Hard Capture System (HCS) and SCS, modeling the linear actuator system
(LAS);

• 1 driven total joint between SCS and ISS; it clamps the nodes when the mating systems are
close enough so that latches strikers impose a constrain along the motion axis;

• 1 driven total joint between HCS and ISS; it clamps the nodes when the mating systems are
close enough so that the HCS active and passive hooks constrain the capture system;

• 1 driven total joint imposes the velocity of the HCS node, simulating the Guidance, Naviga-
tion, and Control (GNC) system;

• 1 total joint between HCS ans SCS, this imposes a slider between the HCS and SCS, it is
then deleted, it is used for preliminary settings to reduce modeling uncertainties;

• 1 total joint between HCS ISS nodes, this imposes a slider between the HCS and SCS, it is
then deleted, it is used for preliminary settings to reduce modeling uncertainties;

• 1 total joint on ISS, it clamps the ISS and can be deleted, in a first approximation ISS is not
free to move;

The actuation elements are implemented using the prescribed strain, εp, of rod elements, namely

F = F(ε− εp, ε̇) (1)

which is formulated according to the control logic of the docking system. Their rather sophis-
ticated constitutive law is implemented in a dedicated user-defined module, a specific docking
module with the state machine and control logic, following NASA guidelines. The 6 rods are
arranged in a Stewart platform fashion, with 3 couples of hinges on the SCS and 3 couples of
mirrored hinges on the HCS.



X Y Z
IDSS 2.3 0 0
SCS 0.015 0 0
HCS 0.165 0.356 0.0045

Table 3: X , Y , Z coordinates of the capture system mating plane center, m

Joint elements are also used model the contacts. The contact between latch and striker is pro-
vided by driving a rod joint element. The contact between the petals is modeled using deformable
displacement joints, with instances of the continuous contact module (cont-contact) in the di-
rection normal to the surface to model finite contact areas. Contact at an angle with respect to
the tangent plane can cause the outgoing velocity and angle to be significant enough to allow the
object to fall freely.

The regions in the mating systems where the contact can occur are the edges of the petals and the
latches and strikers spots. Given the dimensions of the edge limiting the contact area a = 0.3 m
and b = 0.011 m, given the orientations of each area, the contacts are geometrically well defined.
The dimensions on the edges enforce the minimum number of contact points: 30 for each edge for
a total of 180 contact points and relative contact joint.

The contacts module requires the characterization of its parameters to model the contact force.
The formulation proposed in [5, 6] with restitution coefficient eres = 0.6, stiffness kel = 2 · 103,
exponent n = 1.5 is used.

Figure 1: Geometry of the Docking System

(a) Contact nodes nominal displacement (b) Contact nodes off-nominal interaction

Figure 2: Contact nodes displacements



3 STATES AND CONTROL
This paper simulates the NASA Docking System Block 1 (NDSB1) [7] since it is the standardized
docking system developed by NASA for use in various space missions. It uses a “state machine”
to represent the system’s behavior as a series of states and transitions between those states. The
modes or states defined by the state machine are described in NASA documentation and are man-
aged by the Linear Actuator System (LAS). The conditions to trigger the state change are stated
below, with each transition requiring to be in the previous state to have a sequential ordering.

The aforementioned defined modes are 7: INITIAL, EXTRACTION, LUNGE, ATTENUATION,
ALIGNMENT, RETRACTION, STRUCTURAL MATING.

• The condition to pass from INITIAL to EXTRACTION mode is that the spacecraft over-
come a threshold distance, in this simulation, the triggering distance is dsc

extraction < 3 m.

• Any contact between the docking system is required to transition from extraction to lunge
mode. This implies accounting for any of the contact joints aforementioned, ∑i Fconti > 0.

• The condition to pass from LUNGE to ATTENUATION mode: each latch is engaged to its
striker within a certain tolerance, such that ||xlatchi−xstrikeri ||< tol, where tol = 0.0005 m.

• The condition to pass from ATTENUATION to ALIGNMENT mode is that the spacecraft’s
kinetic energy is below a tolerance, ESC

kin < tol, where tol = 0.001.

• The condition to pass from ALIGNMENT to RETRACTION mode is that each actuator
length lLASi is at the prescribed elongation ltarget within a strict tolerance, |lLASi− ltarget|< tol,
where tol = 0.01 m.

• The condition to pass from RETRACTION to STRUCTURAL MATING mode is that the
elongation of LAS is small enough to allow structural hooks engagement, such that |lLASi−
lSM
target|< tol with lSM

target = 0.2 m and tol = 0.001 m.

A new module was written in C++ for MBDyn to manage all states and control laws, as well
as define a new driver to drive joints to turn them on and off. The paper proposes a saturated
Proportional-Derivative (PD) control on each actuator’s displacement and velocity, independent
for each actuator, to limit the total force put on the mating ring and structure behind it. This
behavior continues until the state machine’s trigger for the next phase. An important aspect is that
straightforward formulation of NASA guidelines [7, 8, 9] like the one written below can lead to
discontinuities in numerical computation.{

F = kp(u−utarget)+ kd(u̇− u̇target) if |F |< Fmax

F = Fmax if |F | ≥ Fmax
(2)

To address this, scenarios were investigated to find a solution.

1. making use of some linking polynomials all the way up to a finite continuity of class n;

2. to optimize a parametric sigmoid function with the constraints of zeros and slopes, with the
goal of minimizing the approximation error;

3. to locate an effective mollifier by making use of the results of Urysohn’s lemma.

The first method includes at least 2N(n+ 1) parameters for each of the N discontinuity points
(surfaces for higher dimensions) and each of the n continuity classes.



The second strategy’s manipulation of the sigmoids did not have enough degrees of freedom to
simultaneously recover the slope in the zeros locus and the “time” to reach steady conditions. The
new sigmoidal proposed by Liying Cao and other [10] sigmoidal patterns like generalised logistic
or Gompertz’s function were covered, but they suffer from the aforementioned and coupling pa-
rameters. It is useful to stress here the conditions and constraints that such a parametric smooth
function shall accomplish:

1. At infinite its behavior shall not differ from the constant behavior of the original piecewise-
linear function: | f (x−→ ∞)|= Fmax,k).

2. Its value at the discontinuity point shall be tunable: f (x = x̂,k) = λFmax. Otherwise, an
optimality constraint shall be imposed such as minimizing the squared mismatches.

3. Its value should be the same as the value of the original piecewise-linear function in a certain
part of the domain (in zero’s loci in this case): f (x = x0,k) = f̃ = 0.

4. In the same loci its slope shall be the same as the original piecewise-linear function: f (x =
x0,k)|x = ααα .

5. The cylindrical symmetry condition with respect to the zero’s loci line: f (−(x− x0),k) =
− f ((x−x0),k).

The third strategy ought to be effective; however, it should make it possible to avoid direct convo-
lution and integration in the software, and it ought to provide directly tunable flexibility.

The application of a linear description, in accordance with Victor M. Jimenez-Fernandez [11] and
O. Chua’s works [12, 13, 14] , offers an n-dimensional infinite continuity class function with a
tunable error that can be managed with just one parameter more than the bare minimum set for
piece-wise functions. Ochua canonical representation followed these steps to provide its compact
formulation:

• Given f = f (x) with x ∈ Rn.

• Defined the ith linear partition of Rn such as ααα>i x = βi.

• Given the non-degenerate partition of Rn in p hyperplanes.

• Defined the pseudo-unbounded, essentially-unbounded regions R j∞ and their amount num-
ber k.

• Defined two adjacent regions associated with the ith hyperplane where their sign-sequence
vectors differ only at the ith position as Ri+ and Ri−.

b =
1
k

k

∑
j=1

∇ f (x)
∣∣∣∣
Rj∞

a = f (0)−
p

∑
i=1

ci|βββ i| ci =
1
2

ααα>i (∇ f (x)|Ri+−∇ f (x)|Ri−)

ααα>ααα

f (x) = a+b>x+
p

∑
i=1

ci|ααα>i x−βi|
(3)

Victor M. Jimenez-Fernandez’s work was used to create a smoothed representation of the standard
piecewise-linear model. The result is a differentiable formulation preserving the parameters of
the original model, allowing for control of the smoothness grade and approximation accuracy at
specific break-point locations.



This notation has overflow problems, which can be solved by using a multi-objective optimization
approach. This approach tries to minimize both the approximation error and the governing param-
eter by utilizing a weighted utopia method. Analytically, it can be useful to understand the relation
between the max error emax and λ , even if a least square method is used.

A = a−
p

∑
i=1

ciβi; B = b+
p

∑
i=1

ci; Ci =
2ci

λ
; B̂ = B+

p

∑
i=1

ciααα i;

f (x) = A+ B̂x+
p

∑
i=1

Ci log
(

1+ eλ (ααα>x−βi)

)
;

(4)

emaxi =
2ci log(2)

λi
= log(2)Ci; (5)

• Given two breaking lines so p = 2:

h1 : k1(u−u0)+ k2(u̇− u̇0) =−Fmax; ααα1 = [k1,k2]
>; β1 =−Fmax + k1u0 + k2u̇0;

h2 : k1(u−u0)+ k2(u̇− u̇0) = Fmax; ααα2 = [k1,k2]
>; β2 = Fmax + k1u0 + k2u̇0;

(6)

• Given two essentially unbounded regions, k = 2

• Defining:
R1∞ = R1−; R2∞ = R2+; R1+ = R2−; (7)

• Computing:

f|x|R1− = 0; f|x|R1+ = f|x|R2− = [k1,k2]
>; f|x|R2+ = 0; (8)

Given f (0) =−Fmax, the canonical representation, with the minimum parameter set, is defined as:

b = 0; c1 = 1/2; c2 =−1/2;

a =−Fmax−
1
2
|−Fmax + k1u0 + k2u̇0|+

1
2
|Fmax + k1u0 + k2u̇0|;

(9)

f (x) =
{
−Fmax−

1
2
(|k1u0 + k2u̇0−Fmax|+ |k1u0 + k2u̇0 +Fmax|+ (10)

+ |k1(u−u0)+ k2(u̇− u̇0)+Fmax|− |k1(u−u0)+ k2(u̇− u̇0)−Fmax|)
}

;

It is now provided the actual implemented non-linear control law:

A =−1
2
|−Fmax + k1u0 + k2u̇0|+

1
2
|Fmax + k1u0 + k2u̇0|;

B̂ = 0; C1 = 1/λ ; C2 = 1/λ ;
(11)

f (x) =
{
|k1u0 + k2u̇0 +Fmax|−

1
2

(
|k1u0 + k2u̇0−Fmax|+

1
λ

log
(

1+ e−λ (k1(u−u0)+k2(u̇−u̇0)+Fmax)
)
+

(12)

− 1
λ

log
(

1+ e−λ (k1(u−u0)+k2(u̇−u̇0)−Fmax)
))}

;



For a two-dimensional control law, the number of parameters of this formulation is the minimum
one, just six: Fmax, u0, u̇0, α1 = α2 = α , k1 and k2.This function is tunable and respects all con-
straints. It adds one parameter, α , to enforce infinite order smoothness, while selecting a linking
polynomial for continuity implies ten more parameters in one dimension. With this control law
tuned for each docking mode, it implies 70 more than the already required seven parameters.

(a) Control law directly from NASA (b) Control law after smoothing process

Figure 3: Dummy control laws for understanding

(a) First derivatives along position (b) Implemented control law

Figure 4: Derivatives and actual control law

Another result is the formulation of a new one-dimensional sigmoidal function that can overcome
the issues of Liying Cao and colleagues, the tanh expression, and the generalized logistic function.
It provides the smallest possible group of parameters and decoupled parameters, making the initial
guess more guessable and the process of optimizing the data fit more simple.

x1 =
F1

m
+ x0; x2 =

F2

m
+ x0; (13)

f (x) = F(0)+
m
2

(
−|x1|+ |x2|+ x1− x2 +

2
α1

log
(

1+ e−α(x−x1)
)
− 2

α2
log
(

1+ e−α(x−x2)
))

Where there are just six parameters, F1 for the lower asymptote, F2 for the upper asymptote, m for
the slope in x0, x0 the zero passing point and α1 and α2 complying for the curvature in the slope
change points. If symmetry is imposed and required just three remain, F , m, α .

The PD controller is no longer fully actuated, leading to saturation behavior and difficult param-
eters characterization. To overcome these troubles, it is suggested to start the modeling with a
normal PD controller and then tune it with NASA guidelines. The control parameters required for
this docking modeling are listed below.



STATE k1 N/m k2 Ns/m λ n.d. Fmax N u0 m u̇0 m/s

EXTRACTION 2000 200 0.02 200 0.3 0

LUNGE 20 2000 0.02 67 0.4 0.1016

ATTENUATION 20000 50 0.02 356 0.05 0

ALIGNMENT 6000 5850 0.001 200 state machine 0

RETRACTION 4 ·106 4.4 ·106 0.0001 1200 state machine 0

Table 4: Control parameters

4 SIMULATIONS
Here are presented the results of this modeling, the incoming velocity to the target is v = 0.0368 in
the approaching direction. Different masses are simulated from 300 kg to 5000 kg and a first off-
nominal characterization is provided by tilting the incoming spacecraft by 2 degrees with respect
to the x̂ axis, the incoming direction. The simulations constrain the bodies HCS SCS to keep
relative alignment by imposing a total joint and addressing all the motion to the chaser vehicles.
Further developments shall overcome these limitations. Simulations are all presented with the
same control parameters, to stress their performances and ranges, to follow the ultimate goal to
develop a general tool. This shall change in a more detailed simulation where fine adjustment shall
be performed, in this situation the customizability of the module and MBDyn, in general, allows a
more precise control parameters definition.

The first two plots show the approaching direction in the nominal situation, simulating the mass
of the system alone (300kg), from the point of view of the vehicle flying to the space station and
from the relative displacement of the actuator. The results show a position profile that makes clear
the full docking achievement. Simulating different weights with the same control can easily bring
uncontrolled situations, fortunately, this has not happened, since the control is robust enough.
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(a) HCS and SCS pos. along incoming axis
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Figure 5: Positions for nominal 300 kg simulation

Below are shown the actuators’ control forces and relative velocities. Even if the forces are em-
bedded with respect to the prescribed forces stated by NASA, it shall address that in this light
configuration, forces oscillate a lot and it can become an issue to overcome. Velocities are quite
low everywhere, there are oscillations but they do not have a wide excursion.

The off-nominal situation in general, with the plot of the positions, shows that even in this situation
the simulation provides good results and the docking is achieved, and zoom over the attenuation
mode is provided, it is an important moment where the system is highly stressed and differences
between nominal and off-nominal are more visible.
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Figure 6: Force and velocity for 300 kg nominal simulation
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Figure 7: Off-nominal general behavior and comparison with nominal simulation

The 5000 kg configuration is presented below, it is already in the off-nominal situation and without
the constraint on the spacecraft path, increasing its generality. The plots still show the docking
obtained. The comparison with the off-nominal with 300 kg.
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(a) Relative actuator displacements
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Figure 8: Off-nominal, 5000 kg simulation

5 CONCLUSIONS
Further analysis shall be addressed to let the presented system general enough to be implemented
autonomously in different algorithms, here are presented some issues to be overcome in future
works. A more automatic system to set the control parameters should be defined since even if the
work in this paper makes the number of control parameters the fewest as possible while smoothing
and respecting NASA guidelines for control, their number still does not allow for an easy way to



select them.

The model and its simulations are still relatively simple. It is missing the full petal contact de-
scription, and the spacecraft’s motion is still constrained to be nominal besides some tilting on the
x̂ axis that provides a first off-nominal. Overcoming these issues provides a more reliable tool for
simulating control or determining navigation trajectories. The solution to these problems shall be
recovered in a new control parameters characterization and in a more detailed contact description.

This work provides a first tool for analysis, with its computational velocity the motion can be
simulated in a promising way for embedded analysis, it already simulates with some off-nominal.
The NASA control laws are followed in their principal aspects while reducing their complexity
still can be adopted for a preliminary analysis.
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