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Abstract
By using modular functions on the upper complex half-plane, we study a class of strain en-
ergies for crystalline materials whose global invariance originates from the full symmetry
group of the underlying lattice. This follows Ericksen’s suggestion which aimed at extending
the Landau-type theories to encompass the behavior of crystals undergoing structural phase
transformation, with twinning, microstructure formation, and possibly associated plastic-
ity effects. Here we investigate such Ericksen-Landau strain energies for the modelling of
reconstructive transformations, focusing on the prototypical case of the square-hexagonal
phase change in 2D crystals. We study the bifurcation and valley-floor network of these
potentials, and use one in the simulation of a quasi-static shearing test. We observe typical
effects associated with the micro-mechanics of phase transformation in crystals, in particu-
lar, the bursty progress of the structural phase change, characterized by intermittent stress-
relaxation through microstructure formation, mediated, in this reconstructive case, by defect
nucleation and movement in the lattice.
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1 Introduction

Ericksen’s early proposal [1, 2] of an infinite and discrete invariance group for a crystalline
material’s strain energy aimed at expanding Landau-type variational approaches to encom-
pass structural phase transformations and twinning in crystals, with the associated phenom-
ena of fine microstructure, and possibly defects, forming in the lattice. Accordingly, the
material invariance of the crystalline substance should reflect the global symmetry of the
underlying lattice, with the strain energy density σ invariant under all the deformations
mapping the lattice onto itself. See also [3] for a similar viewpoint. This invariance dictates
the location of countably-many ground states for the crystal in strain space, including those
produced by the lattice-invariant shears and rotations which play a key role in twinning
mechanisms when in the presence of structural phase changes, as well as in lattice-defect
creation and ensuing plastification phenomena [4–11].

A wide-ranging extension of non-linear elasticity theory originated in this way, with
special attention initially given to suitable ranges of finite but not too-large deformations,
i.e., to ‘Ericksen-Pitteri neighborhoods’ (EPNs) in strain space [2, 4–6, 12], whereon the
global lattice invariance reduces to point-group symmetry.1 A large body of literature origi-
nated from such EPN-based approach, especially aiming at modelling reversible martensitic
transformations [4, 5, 11, 14–17], also with the goal of improving the mechanical properties
of shape-memory alloys, for instance to enhance their reversibility performance through the
control of twinned-microstructure formation [18, 19].

Another line of research used the above Ericksen-Landau framework to model a wider
class of phenomena in crystal mechanics, including reconstructive structural transformations
where strains may attain or go beyond the EPN boundaries, producing defect nucleation and
evolution in the lattice, and, in general, also to model phenomena directly related to the
plastic behavior of crystalline materials, where the large deformations are not confined to
any EPNs in strain space. Although discussions of the behavior of 3D crystals based on
global lattice symmetry can be found in [7, 20–23], more systematic research has been done
been done on crystal elasto-plasticity only in the 2D case. A family of Ericksen-Landau
energies 2D crystals, obtained by patching suitable polynomials to obtain C2-smoothness
and global invariance, was proposed in [6]. This allowed an improved understanding of the
behavior of crystalline materials also in regimes of large deformations possibly outside the
EPNs [8–10, 24–26].

A parallel line of work on the 2D case was based on the observations in [3, 27], where the
natural tools proposed for a theory encompassing full lattice symmetry in 2D are modular
functions, the well-known class of complex maps arising in diverse branches of Mathemat-
ics and Physics [28–32]. This led to the formulation of potentials suitable for 2D crystal
plasticity, by following, in particular, the suggestion in [27] to construct Ericksen-Landau
energies by means of the Klein modular invariant J [28, 29, 33, 34]. This is akin to using
a modular order parameter for crystal mechanics, extending earlier related notions such as
the transcendental order parameter in [35, 36]. In this spirit, [25, 37] proposed an explicit
class of smooth J -based strain energies with a unique ground state, up to full lattice sym-
metry, exploring the ensuing variational modelling of 2D crystal elasto-plasticity. We notice

1 These domains were considered in [2] to reconcile the present approach to crystal mechanics with the
Laudau-type theories based on standard point-group invariance [5, 6, 12]. Structural phase transitions are
termed ‘weak’ when their spontaneous transformation strains are confined to suitable EPNs. Finite defor-
mations within these domains cause symmetry breaking in the distorted lattices, and the parent and product
lattices’ point-group symmetries are in a group-subgroup relation. When this does not happen the phase
change is reconstructive. Most relevant examples of the latter are the bcc-fcc or bcc-hcp transformations in
3D [13], and the s-h transformation in 2D Bravais lattices, see [6] for more details.
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that smoothness, as obtained here and in [25, 37], is the standard assumption for potentials
in Landau theory and elasticity theory, while the reduced C2-smoothness of [6] would in-
duce jump discontinuities in the third- and higher-order moduli [38], affecting the connected
material properties.

Here we continue these investigations by examining an explicit, simplest class of
Ericksen-Landau J -based strain potentials for reconstructive transformations in 2D lattices,
focussing on the most relevant case of energy functions exhibiting ground states with the
two maximal symmetries, square and hexagonal (s-h), of 2D Bravais lattices. We explore
some basic properties of the s-h strain-energy landscapes moulded by global symmetry, in
particular their bifurcation and valley-floor network, which are important in the selection of
the activated deformation paths under total-energy minimization. We thus use a global s-h
potential in the simulation of a quasi-static shearing test, obtaining typical effects associated
with the micro-mechanics of phase transformations in crystals. In particular, we observe
strain avalanching underpinned by bursty coordinated basin-hopping activity of the local
strain values under the slowly changing boundary conditions. This produces the inhomoge-
neous progress of the structural phase change, characterized by jagged stress relaxation via
bursty microstructure development in the body, also mediated, in the reconstructive case, by
defect nucleation and movement in the lattice. The present simulations also confirm the role,
highlighted yet in [37], of the energy’s valley floors as largely establishing the deformation
pathways for a crystal’s intermittent evolution under an external driving.

2 Strain Energies for 2D Crystalline Materials

2.1 The Strain Energy of 2D Crystals and Ericksen’s Proposal for Its Invariance

We consider a two-dimensional (2D) hyperelastic material, whose deformations are one-
to-one maps x = x(X), where the Cartesian coordinates (x1, x2) identifying the current po-
sitions of material points X = (X1,X2) in a given reference state are considered with re-
spect to a given ortho-normal basis {u1, u2}. The deformation gradient F = ∇x has matrix
elements Fij = ∂xi/∂Xj , and C = FT F = CT > 0 is the symmetric, positive-definite the
Cauchy-Green strain tensor. The strain-energy density σ is a smooth real function of C, and
satisfying the material-symmetry requirements (1)1-(1)3:

σ = σ(C) = σ(GT CG), G ∈ G, G = E−1GL(2,Z)E, (1)

to hold for any C and for any tensor G in a suitable group G characterizing the response of
the material. For crystalline substances we assume with Ericksen that the invariance group
G be dictated by the material’s underlying lattice structure [1, 2], see also [3, 5, 11, 39].
In the 2D case under consideration here, this means that G should be a suitable conjugate
to the group describing the global symmetry of 2D Bravais lattices, as is made explicit in
Eq. (1)4 above, with E = (eh

j ), for ej = eh
j uh (summation understood, with j,h = 1,2),

where {e1, e2} are the lattice basis in the reference state, and GL(2,Z) denotes the group of
unimodular (thus invertible) 2 by 2 matrices with integral entries [5]. For brevity we refer to
assumption (1)4 as to the GL-invariance of the density σ in (1), which we split into the sum
of a convex volumetric part σv, penalizing the departure of det C from 1, and a distortive
term σd depending on the unimodular tensor C̄ = (det C)−1/2C:

σ(C) = σv(det C) + σd(C̄). (2)
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Fig. 1 (a) Dedekind tessellation
of the Poincaré half-plane H

[30–32]. The positions are
indicated of nine GL-equivalent
square points (i, i + 1,
ζ = 1

2 (i + 1), ζ + 1, . . . , in blue),
and four GL-equivalent
hexagonal points (ρ = eiπ/3,
ρ − 1, . . . , in purple). The
GL-equivalent points appear to
be getting closer to each other the
closer they get to the real axis,
but are equidistant in the
hyperbolic metric (4)2 on H.
This rectangle and the indicated
red dashed arc of the unit circle
about the origin of H refer also
to Fig. 2. (b) Plot of the
GL-periodic strain energy with
square minimizers, see the
function σi in (8) with μ = 1.
The plot is on the rectangle in
panel (a), so that we observe nine
energy wells, with bottoms at the
nine blue square GL-equivalent
points of panel (a)

Due to the GL-periodicity (1)4, σd in (2) is non-convex and only needs to be defined on
a GL-fundamental domain in the space of unimodular strains, such as D made explicit in
(5) below. As mentioned in [25], depending on the material and the effects of interest, in
the numerical implementations of (1) the elements of the computational grid may represent
suitable multiples of the actual lattice cell, in relation for instance to the conditions and scale
of applicability of the Cauchy-Born Rule [40, 41] in the determination of the GL-periodic
strain potential.

2.2 Modular Forms and GL-Invariant Strain Energies on the Poincaré Half Plane

Due to their GL-invariance, smooth potentials as in (1)-(2) are closely related to the mod-
ular functions on the Poincaré upper complex half-plane H [3, 27]. This is best seen by
smoothly mapping the space of 2D unimodular (positive-definite, symmetric) strain tensors
C̄ bijectively to H:

ẑ(C̄) = C̄−1
11 (C̄12 + i) ∈H, (3)

H = {x + iy ∈C, y > 0}, (ds)2 = [
(dx)2 + (dy)2

]
/y2 , (4)

where (4)2 is the 2D hyperbolic metric on H [42–44], and C̄ij are the components of C̄ in the
basis {u1, u2}. Through the complex parameterization (3) of the unimodular-strain space,
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the material-symmetry maps C̄ �→ GT C̄G, for G ∈ G, become maps ẑ(C̄) �→ ẑ(GT C̄G)

which are all the isometries of H given by the group of linear fractional transformations with
integral entries, supplemented by the map z �→ −z̄ (see [37] for details). Figure 1 represents
geometrically this action, where the fundamental domain2

D = {z ∈H : |z| ≥ 1, 0 ≤ Re(z) ≤ 1
2 }, (5)

together with the collection of all its non-overlapping hyperbolically-congruent GL-related
copies mtDm, m ∈ GL(2,Z), produce the Dedekind tessellation [31, 45] of H. In light of
this, [27] suggested that, as a main building block to obtain GL-invariant smooth potentials
σd in (1), one can use the Klein invariant J . This complex map, given explicitly in the
Appendix, is a SL(2,Z)-periodic holomorphic function on H [28, 29, 33, 34], the modular
group SL(2,Z) being the positive-determinant subgroup of GL(2,Z). Indeed, owing to the
properties of J , it is possible to consider J -based Ericksen-Landau strain-energy functions
σd as in (1)-(2) by setting

σd(C̄) = σd

(
J (ẑ(C̄))

)
, (6)

where the smooth function σd(J ) should be such that it guarantees [37]: (a) the full GL-
periodicity (1) for (6), rather than the sole invariance under SL(2,Z) exhibited by J ; and, (b)
ensure the existence of a positive-definite elastic tensor for any stable lattice configuration,
thus avoiding the existence of equilibria with degenerate Hessian, as required by elasticity
theory. Examples of such potentials, suitable for the elasto-plasticity of 2D crystals, and for
their reconstructive transformations, are discussed explicitly hereafter.

2.3 Strain Energies for 2D Crystal Plasticity

In [25, 37] were analyzed some simplest forms of GL-invariant J -based strain-energy func-
tions σd as in (6), exhibiting a single ground-state configuration in each GL-copy of the
fundamental domain D. In this case, let the equilibrium lattice be given by the strain C̄0,
and set z0 = ẑ(C̄0) ∈ D, so that this is the only minimizer of σd in D. Then for any z0 such
that J ′(z0) �= 0 (that is, for any ground state except for square and hexagonal ones: z0 �= i, ρ)
the simplest J -based GL-invariant strain-energy function in (6) has the form

σz0

(
C̄

) = μ|J (z) − J (z0)|2, (7)

where μ > 0 is an elastic modulus, and z = ẑ(C̄) as in (3). In the case of the maximally
symmetric ground states z0 = i (square) or z0 = ρ (hexagonal), taking into account that
J (i) = 1, J (ρ) = 0, J ′(i) = 0, J ′(ρ) = J ′′(ρ) = 0, we have that the simplest J -based GL-
potentials with non-degenerate elastic moduli at their minimizers are respectively given by
[25, 37]:

σi

(
C̄

) = μ|J (z) − 1| for z0 = i (square), (8)

2The structure of D summarizes the (unimodular) strains which give, via (3), all the possible ways in which
a 2D Bravais lattice can be deformed, up to GL-symmetry. The complex numbers in the interior of D are
associated with strain tensors which through (3) produce lattices with trivial (oblique) symmetry; points
on the boundary ∂D are associated with strains generating lattices with nontrivial symmetries, including
rectangular and rhombic lattices; finally the corner points i and ρ = eiπ/3 produce strains giving respectively
a square and a hexagonal lattice. See [6, 27] for further details, also on the relation of the fundamental domain
(5) to the EPNs mentioned in the Introduction.
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σρ

(
C̄

) = μ|J (z)|2/3 for z0 = ρ (hexagonal). (9)

As an example, we show in Fig. 1 a portion of the GL-periodic energy landscape on H given
by the square energy (8).

3 Ericksen-Landau Theory for Reconstructive Transformations in
Crystalline Materials

3.1 Simplest J -Based Strain Energies for the Square-Hexagonal Transformation

The functions in (7)-(9) can be used to construct GL-potentials of the type (6) with more
than one minimizer in the fundamental domain D, so that they are suitable for crystals which
may undergo structural phase changes between different stable equilibrium configurations
of their lattice (see Footnote (3)). Here we consider explicitly the case of reconstructive
transformations, and their most relevant case, in which the two energy minimizers in D
are the maximally symmetric points i (square) and ρ (hexagonal). This will produce a GL-
invariant potential suitable for the s-h transformation in 2D Bravais lattices.3

A simplest class of such s-h densities is given by the following normalized linear com-
bination of the two functions in (8)-(9):

σR

(
C̄

) = σi

(
C̄

) + βσρ

(
C̄

)

= μ|J (z) − 1| + βμ|J (z)|2/3,
(10)

where z = ẑ(C̄) as in (3) and (6), and where we consider β > − 3
2 . The modulus μ is here a

scale factor which will henceforth be set to 1, so that (10) defines a one-parameter family of
potentials with critical points i and ρ, whose relative height is controlled by β as shown in
Fig. 2.

3.2 Bifurcation and Valley Floors

We show in Fig. 3(a) the bifurcation on the plane (β , y), with x = 1
2 , for the critical points

of the s-h energy σR in (10). This is obtained from the way the global GL-symmetry of the
potential constrains, via the implied local (point-group) symmetry, the second-derivatives of
its critical and bifurcation points [2, 5]. This diagram expectedly has the same main features
as the one pertaining to the polynomial-based s-h energy in [6]. The actual GL-periodicity
of the bifurcation pattern of the energy in (10) is sketched in Video V1 of the Supplementary
Material (SM).

In Fig. 3(a) we see that the square critical point i of σR is stable for β < 3
2 , losing stability

at β = 3
2 through a subcritical pitchfork to two rhombic critical points (saddles). On the other

hand, ρ is a minimum for β > 0, becoming unstable at β = 0, where symmetry dictates the
presence of a monkey saddle, unfolding [47] via a transverse bifurcation to three rhombic

3Strain energies in models for weak martensitic transformations (Footnote (1)) involve the presence of several
energy wells inside the EPNs, related to the existence of multiple martensitic variants breaking the symmetry
of the austenitic parent phase [4, 5, 11]. As in Landau theory, such energies require more complex, higher-
degree forms than those considered hereafter in (10) for the reconstructive case. A preliminary discussion
of J -based potentials suitable for weak transformations, written in terms of the functions in (7)-(9), can be
found in [46].

http://link.springer.com/content/esm/art:10.1007/s10659-023-10023-y/file/MediaObjects/10659_2023_10023_MOESM1_ESM.gif
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Fig. 2 GL-invariant strain energy
for the square-hexagonal phase
transformation. (a) Plot of the s-h
potential σR in Eq. (10) for β = 1
and μ = 1, on the domain in
Fig. 1(a), whereon the energy σR
exhibits thirteen energy wells:
nine well bottoms are located at
the nine equivalent square points,
and four at the equivalent
hexagonal points, shown in
Fig. 1(a). (b) Section of the plot
of the s-h energy σR in (10) with
μ = 1 and varying β , taken along
the unit-circle shown in red in
Fig. 1(a). The value φ = π

2
corresponds to the square point i,
while φ = π

3 and φ = 2π
3

correspond to the two
neighbouring hexagonal points
ρ − 1 and ρ, with rhombic points
given by generic values of φ, see
also Fig. 1 and Footnote (2)

Fig. 3 Bifurcation and valley floors for the s-h energies. (a) Section on the plane (β , y), for x = 1
2 , of the

GL-invariant bifurcation diagram for the critical points of the s-h energy σR in Eq. (10) for β > − 3
2 . Dotted

and solid lines indicate unstable and stable critical-point branches, respectively, with the square-i (solid red
line) and hexagonal-ρ (solid green lines) which coexist as local minimizers for 0 < β < 3

2 , with rhombic
saddles in between (dotted blue lines). See also Video V1 in the SM. (b) GL-invariant hyperbolic network
(a Bethe-like tree) of the valley floors on H for the strain energy σR in Eq. (10), for β = 1. Nodes (blue and
purple symbols) are at the s-h minimizers, and edges are along those geodesics on H which contain a pair
of s-h minimizers (for clarity only the arcs joining such s-h points are marked, by dotted red lines). The
rhombic saddles mentioned in panel (a) are marked by black dots. See also Figs. 4-5, and Videos V2, V3 in
the SM

critical-point branches (standard saddles, only one of which belongs to the plane (β , y) of
the figure; see also Video V1 in the SM). The points i and ρ are the only local minimizers

http://link.springer.com/content/esm/art:10.1007/s10659-023-10023-y/file/MediaObjects/10659_2023_10023_MOESM1_ESM.gif
http://link.springer.com/content/esm/art:10.1007/s10659-023-10023-y/file/MediaObjects/10659_2023_10023_MOESM2_ESM.flv
http://link.springer.com/content/esm/art:10.1007/s10659-023-10023-y/file/MediaObjects/10659_2023_10023_MOESM3_ESM.flv
http://link.springer.com/content/esm/art:10.1007/s10659-023-10023-y/file/MediaObjects/10659_2023_10023_MOESM1_ESM.gif
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of σR in D for 0 < β < 3
2 , and in this range the energy σR in (10) is thus suitable to model

the s-h transformation. The coexisting minima i and ρ have the same energy at the Maxwell
value β = βM = 1, so that the global minimum is i for 0 ≤ β ≤ 1, while it is ρ for 1 ≤ β ≤ 3

2 .
For the s-h energy σR in (10) with 0 < β < 3

2 , it is also interesting to highlight the
structure of the infinite GL-invariant network of the valley floors connecting the energy
extremals on H. As mentioned in the Introduction, this considerably inform us regarding
the evolution of the strain field in H. Precisely, the valley floors of an energy σ are the
gradient-extremal loci on H locally satisfying H∇σ − ξ ∇σ = 0, with ξ ∈R and Hv · v ≥ 0
[48–50], where ∇σ and H are respectively the gradient and Hessian of σ , and v is any
vector orthogonal to the energy gradient, with derivatives and orthogonality considered in
relation to the hyperbolic metric (4)2. This produces the following explicit gradient-extremal
equation:

2

y3
|∇σ |2 v2 − 2

y2
H∇σ + ξ ∇σ = 0, (11)

where v2 is the unit vector in the y-direction on H, and derivatives are intended in its stan-
dard atlas (x, y). For β = 1 the valley floors of the s-h energy σR obtained from (11) com-
pose the hyperbolic network highlighted in Fig. 3(b), whose edges lie on those geodesics of
H [42, 43] which contain both the s-h minimizers.

4 Shear-Driven s-h Transformation

We investigate numerically the behavior of an s-h phase-transforming crystal in quasi-static
simple shear, imposed to the top side of a square body containing a square lattice aligned
with the body sides, with fixed bottom and the remaining two body sides free. In this in-
cremental test, for each value of the shear parameter γ a local minimizer of the body’s
total strain-energy functional is computed through the density σR in (10) with β = 1, and
complying with the imposed boundary conditions (see the Appendix and [37] for details).

Figures 4(d)-(e)-(f) show three snapshots of the resulting γ -dependent strain field in the
sheared crystal. Figures 4(a)-(b)-(c) highlight the corresponding strain clustering as a cloud
of points which evolves with γ on the GL-domains of the Dedekind tessellation of H. See
Video V2 in the SM for the numerical simulation of shearing up to γ = 0.24.

The stress-strain relation in Fig. 4(g), where Fx is the integrated shear stress on the top
boundary, shows that the initially defect-free lattice begins shearing with a significant elastic
charge, the associated strain cloud widening away from i in H, as γ moves away from 0, due
to the growing strain heterogeneity caused by the unloaded body-sides, see Figs. 4(a)-(d).
A large transformation event at about γ = 0.13 ends the elastic regime, with a large stress
drop taking place as part of the strain cloud in H splits away from its initial location near the
reference state i towards the neighbouring well in ρ. A portion of the cells’ strains remain
far from the well bottoms, elastically stabilized on the intermediate non-convex regions, see
Figs. 4(b)-(c).

From there on, the imposed shearing induces a bursty deformation process in the body,
characterized by an intermittent sequence of stress-relaxation events due to avalanching s-h
microstructure formation assisted by lattice-defect evolution, as can be seen in Figs. 4(e)-
(f)-(g), and Video V2 in the SM. These phenomena occur as the strain field in the lattice
locally takes advantage, for the relative minimization of the total energy, of the available
s-h GL-wells of the density σR. Twin-type bands and dislocations emerge as neighboring
lattice cells suitably stretch or shear and rotate while satisfying Hadamard’s kinematic com-

http://link.springer.com/content/esm/art:10.1007/s10659-023-10023-y/file/MediaObjects/10659_2023_10023_MOESM2_ESM.flv
http://link.springer.com/content/esm/art:10.1007/s10659-023-10023-y/file/MediaObjects/10659_2023_10023_MOESM2_ESM.flv
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Fig. 4 Shearing of an s-h phase-transforming crystal, with strain energy σR in (10) for β = 1. The imposed
loading is along a primary-shear direction in the square lattice, parallel to the driven horizontal body-sides,
see the Appendix. The associated path in H is the straight dashed blue line i → 1 + i in panels (a), (b), (c),
with increasing shear parameter γ (green dot), from the defect-free reference configuration in the ground
state z0 = i (γ = 0) to the GL-equivalent fully-sheared square configuration i + 1 (γ = 1). Convexity do-
mains around each s-h energy minimizer are shaded gray, and the valley floors of σR are in dashed-red as
in Fig. 3(b). The snapshots (a), (b), (c) show the evolution of the strain clustering during shear, given by the
heatmap 2D-histogram for the cell-strain density evolving on the Dedekind tessellation of H in Fig. 1(a).
Panels (d), (e), (f) show the associated body deformation (with same color coding for the cell strains in H

as in panel (a)), with panel (g) displaying the stress-strain relation (blue jagged line, with black dots mark-
ing the snapshots) for increasing γ . The response is elastic to about γ = 0.13, after which a bursty phase-
transformation regime begins. Panels (d), (e), (f) show this is marked by the formation of s-h phase mixtures
(twin bands and lath-type microstructures) mediated by evolving lattice defects, as seen in the detail inset to
panel (e). The deformation’s intermittency is tracked in panel (g), through the sequence of relaxation events
given by the observed jumps in the jagged stress-strain diagram, as well as the orange spikes indicating the
percentage of cell-strain values that are changing energy basin at each increment of γ . Panels (a), (b), (c)
show that the strain-cloud path on H under the imposed boundary condition here follows the directions of the
valley floors in the energy landscape, as is the case in crystal plasticity [37]. More information on the bursty
deformation triggered in this shear test is also in Figs. 5-6 and Videos V2, V3, V4 in the SM

patibility, together with the imposed boundary conditions.4 Long-range elastic interactions
correspondingly produce coordinated basin-hopping on H which results in strain avalanches
within the shearing body under the slow driving, see also [25, 26, 37]. These complex de-
formation mechanisms involving both phase transition and defect evolution, occur here with
no need for auxiliary hypotheses: they originate directly from energy minimization not only

4The presence of defects in the lattice as a consequence of the phase change, as shown in Fig. 4, leads to the
irreversibility typically observed in reconstructive transformations, in both experiment and simulation [7, 51].

http://link.springer.com/content/esm/art:10.1007/s10659-023-10023-y/file/MediaObjects/10659_2023_10023_MOESM2_ESM.flv
http://link.springer.com/content/esm/art:10.1007/s10659-023-10023-y/file/MediaObjects/10659_2023_10023_MOESM3_ESM.flv
http://link.springer.com/content/esm/art:10.1007/s10659-023-10023-y/file/MediaObjects/10659_2023_10023_MOESM4_ESM.flv
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Fig. 5 Snapshot of the bursty
evolution of the strain field on H

(γ = 0.24) shown directly on a
portion of the energy landscape
during the shear-driven s-h
transformation. The GL-energy is
σR in Eq. (10) with β = 1, so the
s-h wells i, ρ, ζ , i + 1, . . . , all
have the same depth. The
avalanching strain values largely
follow the energy valley floors
indicated in dashed red, as in
Fig. 3(b). See also Video V3 in
the SM

due to the GL-arrangement of the density minimizers in strain space, but also to the way
in which the global GL-symmetry shapes the whole energy landscape. Indeed, we observe
here in Figs. 4(d)-(e)-(f), as is the case also with crystal plasticity [37], that the GL-energy
valley floors act as strain-cloud deformation pathways on H. For instance, the creation and
evolution of the vertical shear bands in Figs. 4(e)-(f), is due to strain avalanches occurring as
suitable lattice domains leave the square reference state i, with the strain cloud following the
valley-floor path i → ρ → ζ in H, see Figs. 4(b)-(c), although the body is being externally
loaded in the horizontal principal shear direction i → i + 1 (green dot in the same figures)
for the square crystal. The activation of the deformation pathway i → ρ → ζ implies s-h
phase transformation events happening together with, and assisted by, dislocational effects
in the lattice, as some cells’ strains respectively reach the ρ-well (hexagonal) or the ζ -well
(fully sheared square through a principal lattice-invariant shear) when the driving forces
them away from i. We see here that in the present variational GL-modelling plastification
may arise in the lattice via defect nucleation through lattice-invariant shears [6–10, 24, 25],
because in the reconstructive case the barriers to the these shears are only as high as the
barriers relative to the phase transformation itself. The stress distribution of the dislocations
matches well the linear elastic predictions for the far field, see Fig. 1 of [23] and Fig. 4 of
[25].

Figure 5 and Video V3 in the SM display explicitly the shearing body’s strain cloud
as it flows in quasi-static intermittent fashion along the energy-surface valley floors. Most
of the cell’s strains are located near the involved well bottoms, with a fraction elastically
stabilized on the non-convex regions between wells. Our simulations confirm the role of
the GL-network of valley floors as giving the deformation pathways for the strain cloud on
H during total-energy minimization, and show, as in [37], that these features of the energy
landscape can help to better inform also other crystallographically-based approaches to crys-
tal micromechanics, such as the phase-field models in [23, 52], and may usefully guide the
analysis of their relations with fully variational formulations such as in the present setting.

As a concluding remark, we highlight explicitly the strain avalanches characterizing the
intermittent deformation in this shear test, showing one such event in Fig. 6. It originates
from a burst of coordinated basin-hopping activity of the strain values on H, associated
to microstructure and defect evolution in the lattice, producing a stress-relaxation drop.
The computed sequence of such strain avalanches observed in our quasi-static simulation

http://link.springer.com/content/esm/art:10.1007/s10659-023-10023-y/file/MediaObjects/10659_2023_10023_MOESM3_ESM.flv
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Fig. 6 Highlight of a strain burst
characterizing the shear-driven
s-h transformation in Fig. 4. This
strain-evolution event in the body
undergoing quasi-static shear
(γ = 0.20) corresponds to a spike
(in orange) in the intermittent
basin-hopping activity of the
local strains on H, with the
associated relaxation drop in the
stress-strain relation (blue jagged
line). The strain avalanche is
computed by considering the
norm of the strain difference at
each cell for two consecutive
values of γ in the simulation,
near γ = 0.20. See Video V4 in
the SM for more details

is shown in Video V4 of the SM, and the corresponding serrated stress-strain relations, as
in Fig. 6, are observed experimentally in mechanically-induced reconstructive transforma-
tions in crystals [53]. Our modelling predicts this to occur through strain intermittence as
in Video V4, in close analogy to the strain-intermittence experimentally observed during
mechanically-induced martensitic transformation in shape-memory alloys [54]. Such be-
havior is expected at least at the early stages of the mechanically induced reconstructive
transformation. For the latter, the developing plasticity effects, also evidenced by the model,
would eventually impede microstructure formation and mobility, leading to the transition’s
irreversibility (Footnote 4, [7]), unlike with the case of memory martensites.

Appendix

A.1 Variational Problem and Computational Details

In the numerical simulation the body is square-shaped containing an initially a defect-free
square lattice (z0 = i), with the lower, fixed side, aligned with a dense square-lattice di-
rection, in turn parallel to the vector u1 in the given ortho-normal basis. The simple shear
boundary condition is I + γ u1 ⊗ u2, imposed to the top side of the square body, with shear
parameter γ such that γ = 0 at the ground state z0 = i and γ = 1 at the fully-sheared square
ground state i + 1. The corresponding shearing path in H is the straight dashed blue line
i → 1 + i in panels (a), (b), (c) of Fig. 4. The remaining two sides of the square body are
free.

For each γ a local minimizer of the body’s total strain-energy functional is computed
through the density (10), with β = βM = 1, and complying with the imposed boundary
conditions given by the increasing γ . In the minimization algorithm the volumetric energy
σv(det C) in (2) has the form

σv(det C) = λ(det C − log det C), (12)

with modulus λ such that λ/μ = 30 to obtain quasi-incompressibility. Furthermore, the
function j (z) ≡ 1728J (z) used to compute σR in (10), has, as a basic property, all integers
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in its Fourier coefficients [28, 29, 33, 34], and is given explicitly by

j (τ ) = 1

q
+744+196884q+21493760q2 +864299970q3 +20245856256q4 +· · · , (13)

where q = exp(2πiτ).
The variational problem derived from minimizing the body’s total energy functional is

discretized through a classical FEM implemented through the free-source Finite-Element
software FreeFEM++ [55], using piece-wise affine functions on a mesh for a total of about
3 × 104 degrees of freedom. As both the energy density σR and its related functional are
highly non-convex, the variational problem shows an infinite number of metastable states
in which minimization algorithms such as gradient-descent or Newton’s methods perform
poorly. A suitable preconditioner was thus used via spectral equivalence. At each γ -step in
the shear test the initial guess coincides with the metastable state associated with the previ-
ous value of the imposed loading. The algorithm then searches for metastable states which
are close (in the sense of the preconditioned gradient-descent) to the previous equilibrium.
The FEM discretization introduces in this non-convex problem a regularizing length scale
related to lattice discreteness.

A.2 Caption to Supplementary Video V1

Animation showing the GL-periodic β-bifurcation diagram for the critical points of the s-h
potential σR in (10).

A section of this diagram is shown in Fig. 3(a). The Poincaré disk model [6, 39, 46, 56]
is used here for the 2D hyperbolic space. The purple square and green circles in the disk re-
spectively correspond to square and hexagonal points, with fat [slim] rhombic points given
by bold [thin] blue lines, while red curves represent rectangular points. The 3D-diagram
corresponds to increasing β from bottom to top. Vertical lines indicate stable (bold) or un-
stable (dotted) square and hexagonal critical points. Stability ranges for these s-h extremals
are as detailed in Fig. 3(a) and in the text. In particular, there is the s-h coexistence interval
1
2 < β < 3

2 where both the square and hexagonal points are local minimizers, with branches
of rhombic saddle points bifurcating from these two maximally symmetric ones with fea-
tures and multiplicities as described in Fig. 3(a): three transverse rhombic branches issue
from each hexagonal bifurcation point, while two rhombic branches issue with a subcritical
pitchfork from each square bifurcation point. For completeness here are also indicated the
supercritical pitchforks from square to rectangular local minimizers of the potential σR in
(10) for β ≤ − 3

2 .

A.3 Caption to Supplementary Video V2

Shearing of a homogeneous square body containing an initially defect-free square lattice for
an s-h phase-transforming crystal with strain energy σR in (10) with β = 1. The imposed
loading is along a primary shear direction in the square lattice, aligned with both the parallel
square-cell side and bottom body side. The shearing boundary condition is imposed through
the constrained horizontal sides of the body, with the two remaining sides free. See also
Figs. 2-3-4 in the main text.

(a) Bursty deformation field in the body for increasing shear parameter γ , indicated
by the moving green dot along the γ -axis in (e). Lattice points are color-coded according
to (c) depending on the energy basin in the Poincaré half-plane H visited by the strain
of each lattice cell during loading. Defect nucleation and evolution accompany the phase
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transformation, intrinsically produced in this model through energy minimization. See also
Fig. 4(d)-(e)-(f).

(b)-(d)-(f) Intermittent evolution of the γ -dependent histograms of the four 2D deforma-
tion-gradient parameters recorded during the shear simulation.

(b) Evolution of the 2D histogram (strain cloud) of the density of strain parameters on
the Dedekind tessellation of H during shearing. The histogram color-coding provides the
percentage of body cells with strain located at each point of H. The straight horizontal
dashed-blue line between the two neighboring square configurations i and i +1 is the image
in H of the primary shear path imposed as boundary condition. The initial configuration is
in i for γ = 0, while γ = 1 corresponds to i + 1. Shading indicates the convexity domains
around the s-h minimizers in H of the energy σR, while the red dashed lines mark the valley
floor segments as in Fig. 3, which largely direct the strain-cloud evolution under the slow
driving. See also Fig. 4(a)-(b)-(c) and Fig. 5.

(c) Color-code map used in (a) for the GL-energy basins of σR on the Dedekind tessel-
lation of H. The ridges marking the basins’ boundaries are computed via a Eq. (11) in the
main text.

(d) Evolution of the histogram for the values of det F, indicating volumetric effects in the
lattice.

(e) Bursty s-h phase transformation in the shearing test. Jagged stress-strain body be-
havior (blue), with the underlying spikes (orange) showing the percentage of basin-hopping
strain values during loading, as γ grows. The body response is elastic to about γ = 0.13,
where, after a first large stress drop, intermittent stress-relaxation continues for growing γ .
See also Fig. 4(g) and Fig. 6.

(f) Evolution of the histogram for the values of the angle θ in the polar decomposi-
tion of the deformation gradient F, indicating local lattice rotation accompanying the phase
transformation process. Notice the different rotation angles of the s-h phase-microstructure
bands, resulting in an evolving bimodal distribution for θ .

A.4 Caption to Supplementary Video V3

Quasi-static bursty evolution of the strain field on H for growing parameter γ , shown di-
rectly on the energy landscape during the shear-driven s-h transformation. The GL-energy
is σR in Eq. (10) with β = 1, so the s-h wells i, ρ, ζ , i + 1, . . . , all have the same depth.
Under the slow driving the strain values largely follow the energy valley floors indicated in
dashed red in Fig. 3(b) and Fig. 5. See also panel (b) in Video V2 in the SM.

A.5 Caption to Supplementary Video V4

Strain avalanching during the shear-driven s-h phase transformation.
(c)-(a) For reference, these two panels report respectively the evolution of the strain field

in the shearing body, as in Video V2(a), and the associated jagged stress-strain relation, from
Video V2(e).

(b) Intermittent strain avalanching within the shearing crystal. Each event corresponds to
phase transformation and defect evolution in the deforming lattice. Avalanches are computed
by considering the difference in strain norm at each lattice cell for two consecutive values
of γ in the simulation. The GL-energy is σR in Eq. (10) with β = 1, as in Fig. 2. See also
Fig. 6.
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