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Abstract. 

Air pollution is identified as the primary environmental 
risk to health worldwide. Although most of the 
anthropic emissions are due to combustion 
processes, intensive farming activities may also 
contribute significantly, especially as a source of 
particulate matter 2.5 and ammonia. Investigations 
on particulate matter and precursors dynamics, 
identifying the most relevant environmental 
factors influencing their emissions, are critical to 
improving local and regional air quality policies. 
This work presents an analysis of the correlation between 
particulate matter 2.5 and ammonia 
concentrations, obtained from the 
Copernicus Atmosphere Monitoring Service, and 
local land use characteristics, to investigate the 
influence of agricultural activities on the space-time 
pollutant concentration patterns. The selected study 
area is the Lombardy region, northern Italy. 
Correlation is evaluated through Spearman’s 
coefficient. Agricultural areas resulted in a significant 
factor for high ammonia concentrations, while 
particulate matter 2.5 was strongly correlated with built-
up areas. Natural areas resulted instead a protective 
factor for both pollutants. Results provide data-driven 
evidence of the land use effect on air quality, also 
quantifying such effects in terms of correlation 
coefficients magnitude. 
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1 Introduction 

Air pollution is identified as the most significant 
environmental risk to health worldwide and - accordingly 
- directly considered in several United Nations
Sustainable Development Goals (e.g., 3.9 and 11.6) (Rafaj 
et al., 2018).

Air pollutants and greenhouse gases have increased their 
concentration in the troposphere in the last century, due to 
the intensification of energy production, industrial 
processes, and transport. Despite most of the anthropic 
emissions being due to combustion processes, intensive 
farming activities also contribute significantly (McDuffie 
et al., 2020). In rural areas, this sector prevails in the 
emission of a few critical primary pollutants, in particular 
nitrogen emissions such as nitrogen oxides (NOX) and 
ammonia (NH3). Direct exposure to such pollutants has a 
marginal impact on human health, due to their relatively 
low toxicity (at an average ambient concentration) and 
their short residence time in the atmosphere (Zhu et al., 
2015), although it was hypothesized that it may had a role 
in facilitating the spread of COVID-19 in the first 
outbreak (Gianquintieri et al., 2021). Anyhow, 
atmospheric NH3 reacts with other gaseous emissions, 
including sulphur dioxide (SO2) and NOX, promoting the 
generation of both coarse and fine secondary particulate 
matter. Inhalation of the fine fraction of particulate matter 
with diameters of 2.5 µm or smaller (PM2.5) is instead 
associated with severe negative impacts on human health, 
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including respiratory tract diseases, undermined lung 
function, and raised morbidity and mortality of 
cardiopulmonary diseases (Xing et al., 2015). Contrary to 
other farming-related emissions, PM2.5 resides in the 
atmosphere for days to a week, thus enhancing the risk of 
exposure for the population (Awe et al., 2022).   

Investigations on PM2.5 and precursors dynamics, as well 
as the identification of the most relevant environmental 
factors influencing their emissions, are critical to 
improving local and regional air quality policies. 
Nevertheless, this kind of study requires space-time-
resolved information on PM2.5 concentration, which is 
not generally available from ground-based measurements 
(air quality sensors), especially in rural areas (Castell et 
al., 2017). The availability of open, multi-temporal and 
spatially continuous data to describe both air pollutants 
concentration and the possible influencing environmental 
factors is therefore a key asset for such analyses.  

Accordingly, the aim of this work was to study the 
correlation between PM2.5 and NH3 concentrations, 
obtained from the Copernicus Atmosphere Monitoring 
Service (CAMS) (Peuch et al., 2022), and local land use 
characteristics, to investigate the influence of agricultural 
activities on the space-time concentration patterns for the 
selected pollutants (Haider et al., 2020). The territory of 
interest is represented by the Lombardy region (Northern 
Italy), which is the most populated Italian region, with 
also the highest national agricultural production. Air 
quality in Lombardy is a primary concern due to its high 
urbanization/industrialization, as well as to its 
geomorphological conditions (Po River valley) that result 
unfavourable for air pollutants dispersion. A comparison 
of observed correlations between agricultural and urban 
areas will also be provided and discussed. 

2 Methods 

2.1 Study Setting 

The selected area of interest is the Lombardy region in 
northern Italy (23’863 km2), with a resident population of 
10.6M. The pollutants considered for the analysis are 
particulate matter < 2.5 µm (PM2.5), which represents a 
major health risk, and ammonia (NH3), a precursor of 
PM2.5, known to be generated by agricultural activity. 
Space-time series of their concentrations [µg/m3] for the 
study area are retrieved from the Copernicus Atmosphere 
Monitoring Service (CAMS). Ensemble medians from 
CAMS European air quality forecasts (analysis dataset at 
surface level) were used 
(https://ads.atmosphere.copernicus.eu). Data are openly 
distributed as multi-temporal grids, using the NetCDF 
format, a widely adopted set of libraries for structuring 
and distributing array-like scientific data 

(https://www.unidata.ucar.edu/software/netcdf), with a 
spatial resolution of 0.1° and a time resolution of 1 hour.  

For this study, pollutant concentrations data were 
aggregated in time with a resolution of one week, 
targeting peaks of pollution concentration that are 
prolonged in time; pollution grids were downscaled to a 
measure of 0.06° (≃5.5 km) to enlarge the data sample for 
correlation analyses. The analysis period included years 
2020 and 2021, selecting the months of January, March, 
April, October, and November. In the Lombardy region, 
as indicated by the regional agency for environmental 
protection ARPA Lombardia
(https://www.arpalombardia.it), these periods coincide 
with the fertilization process of agricultural areas, when 
most of nitrogen-rich animal manure is applied on crops. 
The month of January, when manuring is limited by the 
regional air quality regulation framework, was considered 
to also investigate the possible influence of domestic 
heating from dense urban areas on PM2.5 emissions. It is 
worth noticing that the years 2020 and 2021 were 
characterized by lockdowns due to COVID-19 pandemic, 
which had limited to none impact on agricultural activity, 
but was to some extent limiting other human activities; 
however, only the months of March and April 2020 were 
characterized by a level of restriction that could had an 
impact on pollution emissions, while other working 
activities were carried almost regularly in the other 
considered periods. The variability in the data generated 
by those events is not considered to be hindering the 
robustness of the analysis. 

The analysis was conducted with two temporal 
aggregation strategies: 

• Chronological: single months and seasonal or
yearly aggregations

• Pollution peaks: selection of weeks where the
highest concentrations were recorded; to this aim, two
thresholds based on quantiles (median, 3rd quartile, and
90th percentile) were set: a first threshold to define how
many weeks to include, and a second one to define the
parameter that represents the pollution measurement for
each week on the whole territory, for a total of 3x3=9
sample selections (e.g. in the median-3rd quartile sample,
the most polluted 50% of the weeks are included, and the
pollution level of each week is computed as the 3rd
quartile across all cells in the study area).

From the spatial point of view, a first analysis was 
performed for the whole study region on a regular grid, 
obtained by downscaling the CAMS grid cells 
overlapping the Lombardy region. A second analysis was 
focused on urban areas only, thus cells with more than 
25% of the surface covered by built-up land use classes 
(including buildings, streets, industries, and other 
infrastructures), which corresponds to 12.6% of the 
region. The derived land use map with relevant colour-
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coded clusters is reported in Figure 1, along with 
examples of the analysis grid. 

The considered environmental factors, whose correlation 
with pollutants concentration was inspected, were land 
use fractions, computed as the percentage of cells’ area 
covered by different land use classes. To this purpose, the 
Lombardy region land use map, openly released as a 
vector layer (scale 1:5000, production year 2018) from the 
regional geoportal (https://tinyurl.com/cuwj7auh), was 
the reference land use data source. Agricultural areas were 
further reclassified into crop types by means of 
intersection with the Lombardy region agricultural land 
use vector map (https://tinyurl.com/rafdxkkp). Road 
infrastructure areas were extracted from the Lombardy 
region topographic database
(https://tinyurl.com/musuh2yj).  

In detail, the considered classes of land use were built-up 
area (all together, and separately for buildings, industries, 
and streets), agricultural area (all together, and separately 
for rice, corn, and cereals cultures) and natural area. A 
complete description of the considered features, with their 
corresponding data sources, is provided in Table 1. The 
values of such features were computed for each cell, with 
three different approaches: considering each cell alone, 
considering the average of the surrounding 8 cells (thus 
focusing only on the edge conditions regardless the point 
of measurement), and considering the average among 
both the central and the surrounding 8 cells. 

2.2 Correlation Analysis 

The correlation between environmental variables and 
pollutants concentration was studied with univariate 
modelling, computing the linear correlation of the rank 
value of each record (one cell, one week) with relevance 
to the concentration of each pollutant (separately for 
PM2.5 and NH3) as the dependent variable y, and to each 
environmental variable as the independent variable x. The 
strength of correlations was evaluated through 
Spearman’s correlation coefficient (R in the following), 
which is a correlation analysis between the rank of each 
data point in the distribution of the two measures under 

consideration. This methodology was chosen as it allows 
tackling the heterogeneity in data distribution and does 
not imply any assumption about data normality. 

Table 1. Environmental land-use variables and data sources. 

2.3 Processing Workflow 

An iterative procedure was applied to compute the 
correlation analysis on each different setting, hence for 
the two pollutants (PM2.5, NH3), in each time protocol 
(27 different chronological aggregations and 9 different 
pollution peaks aggregations), separately for the two 
spatial aggregations (whole territory or urban area only), 
considering each environmental variable (for a total of 9) 
computed with the three different spatial filtering 
approaches (single cell, surrounding cells, whole block of 
central and surrounding cells). This workflow was 
implemented to consider both space and time dynamicity 

Variable 
Description Data source* 

Built-up area Fraction of all 
built-up land 1 

Industry Industrial 
terrain 1 

Buildings Buildings 
surface 1 

Roads Roads 
surface 2 

Agricultural area Fraction of all 
agricultural land 1 

Cereals Fraction of 
cereals cultures 3 

Corn Fraction of corn 
cultures 3 

Rice Fraction of rice 
cultures 3 

Natural area Non anthropic 
areas 1 

Data sources*: 
1 - Regional land use DUSAF https://tinyurl.com/cuwj7auh 
2 – Regional topographic database https://tinyurl.com/musuh2yj 
3 - Regional agricultural land use https://tinyurl.com/rafdxkkp 

Figure 1. Map of the study territory (Lombardy region, northern Italy) with land-use classification (A), measurement grid for pollution 
concentration with example measure of NH3 (B) and fraction of corn fields (C) 
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in the phenomenon. As a result, a total of 3888 correlation 
coefficients were computed. 

2.4 Data and Software Availability 

Data processing and correlation analysis were performed 
with Python (v3.7) programming language, while 
graphical representations were implemented in QGIS. All 
the code used for the analysis is publicly available on 
GitHub (https://github.com/gisgeolab/D-
DUST/tree/WP4). Input data for the analysis, including 
CAMS datasets and Lombardy region land use maps, are 
open and accessible at the links and references provided 
in Section 2.1. Sample analysis-ready data, together with 
documentation on data pre-processing, were also 
published on Zenodo 
(https://doi.org/10.5281/zenodo.6906903). 

3 Results 

3.1 Whole Territory 

Concerning the built-up fraction of the environment, its 
total amount had the strongest correlation with PM2.5 
concentration during April (R=.876), while the correlation 
with the pollution peaks was R=.795; among the single 
components, the strongest correlation was recorded for 
the industrial area (R=.873 in April, R=.856 during 
pollution peaks). With regards to NH3, the strongest 
correlation was recorded in November (R=.682), while 
the correlation with pollution peaks was R=.669; again, 
the most correlated component was the industrial area, 
with R=.795 in November and R=.746 during pollution 
peaks.  

The total agricultural area resulted correlated the most 
with PM2.5 during January (R=.844), while during 
pollution peaks it reached R=.833. Considering the 
different crops, the highest correlation was obtained with 
corn (R=.914 both in January and during pollution peaks), 
while a lower but significant correlation was found for 
cereals (R=.784 and R=.775), with a weak correlation for 
rice (R=.352 and R=.316). Concerning NH3, the highest 
values were in March (R=.886), and the correlation 
coefficient reached R=.869 during pollution peaks. Again, 
the correlation was very high with corn (R=.947 in March, 
R=.949 during pollution peaks), lower but significant for 
cereals (R=.829 and R=.809) and absent for rice (R=.204 
and R=.183).  

Finally, natural area always resulted protective, hence 
with negative values of R (representing an inverse 
proportionality between the two measures): R=-.912 
during pollution peaks and a minimum value of R=-.914 

in January with relation to PM2.5, R=-.928 (peaks) and 
R=-.934 (March) for NH3.  

Details of the most relevant results are provided in Table 
2 and Figure 2. 

3.2 Urban Area 

Focusing on the urban areas only, all correlations were 
consistently lower. PM2.5 was mostly correlated with the 
total built-up surface during January (R=.634) and 
reached R=.637 during pollution peaks, with again the 
industrial area as the main factor (R=.74 in January, R=.76 
during peaks), while NH3 did not correlate with this 
variable (max value R=.137 in January). 

Considering the agricultural land, a lower correlation was 
recorded with PM2.5, reaching a maximum of R=.571 in 
November and R=.534 during pollution peaks, with an 
impact of the different cultures evaluated with R=.598 
(November) and R=.658 (peaks) for cereals, R=.608 and 
R=.526 for corn, R=.43 and R=.551 for rice. Concerning 
NH3, higher values of R=.812 in March and R=.8 during 
peaks were recorded, in detail with R=.489 (March) and 
R=.459 (peaks) for cereals, R=.879 and R=.868 for corn, 
R=.242 and R=.245 for rice.  

Again, natural areas resulted protective, with a minimum 
of R=-.943 during pollution peaks and R=-.934 in October 
with relation to PM2.5, and R=-.753 (peaks) and R=-.785 
(April) for NH3.  

Details of the most relevant results are provided in Table 
2 and Figure 2. 

Table 2. Highest results of correlation (Spearman’s correlation 
coefficient R) between land-use variables and pollution 
concentration (PM2.5 and NH3), among different time frames 
and during pollution peaks (see text for details). 

Whole territory Built-up area 

PM2.5 NH3 
Chronological  
[R] 

April 
.876 

November 
.682 

Pollution peaks 
[R] 

Med-med 
.795 

90th-med 
.669 

Main component 
[R chrono – R peaks] 

Industry 
.873-.856 

Industry 
.795-.746 

Agricultural area 
PM2.5 NH3 

Chronological  
[R] 

January 
.844 

March 
.866 

Pollution peaks 
[R] 

90th-med 
.833 

Med-med 
.869 

Main component 
[R chrono – R peaks] 

Corn 
.914 .914 

Corn 
.947-.949 
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Natural area 
PM2.5 NH3 

Chronological  
[R] 

January 
-.914 

March 
.-934 

Pollution peaks 
[R] 

90th-med 
-.912 

Med-med 
.-928 

Urban area Built-up area 

PM2.5 NH3 
Chronological  
[R] 

January 
.634 

January 
.137 

Pollution peaks 
[R] 

Med-med 
.637 

Med-med 
.093 

Main component 
[R chrono – R peaks] 

Industry 
.74 .76 

Industry 
.515 .475 

Agricultural area 
PM2.5 NH3 

Chronological  
[R] 

November 
.571 

March 
.812 

Pollution peaks 
[R] 

75th-90th 
.534 

90th-med 
.8 

Main component 
[R chrono – R peaks] 

Cereals 
.589 .658 

Corn 
.879 .868 

Natural area 
PM2.5 NH3 

Chronological  
[R] 

October 
-.934 

April 
-.785 

Pollution peaks 
[R] 

75th-90th 
-.943 

Med-med 
-.753 

4 Discussion 

For the interpretation of results, it is worth pointing out 
that the highest correlation values were generally obtained 
by considering both the central cell and the surroundings, 
meaning that the methodology considering an enlarged 
perspective was capable of better capturing possible 
cause-effect relationships. The only exception stands for 
NH3 in the urban areas only, where the largest 
correlations with agricultural areas were obtained 
considering only the surrounding cells (suggesting that 
the edge conditions matter the most in this set-up, 
regardless of the point of measurement), and the highest 
values for built-up environment emerged when 
considering only the single cells. Moreover, while some 
interesting considerations can be drawn from 
chronological aggregations, an aggregation based on 
pollution peaks is more significant (as these periods 
represent the worst threat to population health), and 
greater attention should be paid to those results. 

4.1 Interpretation of results for PM2.5 

As can be expected on the basis of well-established 
knowledge, the fraction of built-up area in the territory 
resulted in a significant factor for the concentration of 
PM2.5, both considering the whole territory and focusing 
on urban areas only; it must be noticed that, in this second 
case, lower values were recorded, but this result could be 
partially explained by the significant reduction in the data 
sample dimension, and this consideration is transversal to 
the whole analysis. In the urban area, the correlation peaks 
were recorded in January (R=.634), as can be expected 
considering the impact of heating systems, while, when 
enlarging the analysis on the whole territory, the 
maximum correlation was recorded in April (R=.876), 

Figure 2. Main results of correlation analysis, evaluated through Spearman’s correlation coefficient, between PM2.5-NH3 and different 
land-use classes, separately for the whole territory (Lombardy region, northern Italy, upper panels) and for the strongly urban areas only 
(lower panels), considering time aggregations either based on chronological order (left panels) and on peaks of pollutants concentration 
(right panels). 
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secondarily in November (R=.81) and October (R=.806), 
and a lower value of R=.738 in January. The correlation 
appeared much stronger in the larger perspective, but the 
different timing seems to suggest a more manifold 
phenomenon compared to the only effect of the heating 
systems. Similar conclusions can be drawn considering 
pollution peaks, where the impact of built-up terrain 
reached R=.795 on the whole territory, thus lower 
compared to chronological aggregation, and R=.637 in the 
urban areas, thus instead slightly higher than the 
chronological aggregation. In all experimental settings, 
the single component of the built-up environment with the 
highest impact was the industrial areas (R=.873 on the 
whole territory, R=.74 in urban areas); a significant 
correlation was also found for buildings (R=.841) and 
roads (R=.783) considering the whole territory, while 
their impact on urban areas only was limited (R=.356, 
R=.599). 

Concerning agricultural terrains, the correlation with 
PM2.5 on the urban environment resulted limited, with 
the only mildly significant value found for cereal crops 
(during pollution peaks with R=.658). On the opposite, a 
strong correlation can be verified when considering the 
whole territory, in particular for corn crops, while a mild 
impact was due to cereals, and a weak correlation was 
found for rice. The maximum value in chronological 
aggregations was lower compared to the fraction of built-
up area, with R=.844 against R=.876, but it was instead 
higher when considering pollution peaks, with a 
maximum of R=.833 against R=.795. This is a particularly 
relevant result, as it suggests that the most intense peaks 
of PM2.5 concentration on the territory occurred in 
correspondence to more densely farmed areas rather than 
in most urbanized ones. Anyway, when considering 
population exposure, this aspect is consistently relevant 
only for people living in mildly urbanized areas, while 
concerning people living in larger cities, the fraction of 
built-up environment on the territory has a stronger 
impact.  

Finally, natural areas resulted strongly correlated with 
reduced pollution concentrations. 

4.2 Interpretation of results for NH3 

The perspective is different when considering NH3 
pollution. In this case, the impact of built-up terrain was 
limited, with R=.669 during pollution peaks, and was not 
relevant when focusing only on urban areas (max 
R=.137). This result may suggest that the level of 
urbanization does contribute to NH3 concentration only 
up to a certain threshold, after which a further increase in 
the amount of built-up environment is no longer 
impactful. On the opposite, the role of agricultural terrains 
on NH3 concentration was evident on the whole territory, 

with R=.869 during pollution peaks, and significant also 
on urban areas only, with R=.8. Specifically, the 
correlation was particularly high when considering corn 
crops, with R=.949 and R=.868, respectively on the whole 
territory and urban areas only, while lower values were 
found for cereals (R=.809 and R =.459) and no significant 
correlation was recorded with rice (R=.183 and R=.245). 
As for natural areas, the results are equivalent to those for 
PM2.5, hence they were strongly correlated with reduced 
pollution concentration. 

4.3 Limits and future developments 

The main limitations of this study are related to the 
temporal extension, which was limited to two years and is 
therefore susceptible to random noise in the data, as well 
as to the impact of other variable factors (such as 
meteorological conditions, in particular wind), and to the 
spatial resolution, which, despite the downscaling, was 
still limiting the sample size and variability. To cope with 
such issues, the same analysis should be repeated over the 
years, with new data available, and possibly extended 
and/or replicated on different territories. Moreover, from 
a statistical point of view, the proposed modelling is 
univariate and is therefore missing possible interactions 
between the different considered environmental variables. 
In this perspective, a possible development will be to 
include a multi-variate model, e.g., with a multivariate 
logistic regression (where variables are evaluated through 
odds ratio) and/or with a random forest algorithm (e.g. 
evaluating variables with the SHAP (Lundberg and Lee, 
2017) methodology). 

4.4 Conclusion 

The proposed study explores the correlation between the 
concentration of two pollutants, PM2.5 and NH3, and 
different classes of land use, in particular related to the 
built-up environment and agricultural activities, adopting 
a data-driven and iterative approach and taking advantage 
of continuous mapping. The analysis was first performed 
on the whole study territory (the region of Lombardy, in 
northern Italy), and then repeated considering only the 
most urbanized areas, to infer a focus on population 
exposure. Results showed that both the built-up 
environment and the agricultural terrains had a significant 
impact on pollution; in particular, considering the whole 
territory, the worst peaks of PM2.5 were more correlated 
with agricultural areas rather than with the fraction of 
built-up environment, meaning that people living outside 
of larger cities were more affected by farming activities 
than they were by urbanization. This does not stand within 
metropolitan areas, where the impact of agriculture was 
much more limited compared to urbanization. Concerning 
NH3, results were more aligned in indicating that the 
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strongest correlation was with agricultural activity, while 
that with the fraction of built-up environment was weaker 
and limited up to a certain level of urbanization. Finally, 
the component of the built environment that seemed to 
contribute the most to pollution was industry, while the 
most polluting crop appeared to be corn. 
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