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I. INTRODUCTION

Urban areas are a vital element of our society: Currently, about 75% of the population lives
in cities in the European Union (EU), and it is estimated that by 2050, seven out of every ten
people in the world will become urban residents [1]. Approximately 90% of the urban population in
the EU was exposed to air pollution levels that exceeded the levels recommended by the World
Health Organization. Pollution leads to around 800 000 premature deaths in Europe every year
[2,3]. Moreover, sustainable cities are the 11th sustainable development goal of the United Nations.
Therefore, there is an urgent need to improve forecasting and assessment methods to meet these
challenges and achieve urban sustainability soon.

For the reasons above, the flow around buildinglike obstacles has been extensively studied [4–6]
to improve pollutant dispersion, heat propagation, or energetic efficiency. For a complete review
of these methods, we refer the reader to Ref. [7]. These studies are mainly based on empirical
observations, meteorologic models, or experimental results. However, turbulence is present in a
wide variety of physical phenomena, and urban environments are certainly no exception [8]. In this
work we present a numerical study to analyze the interaction of a developed turbulent boundary
layer with two buildings in three different configurations.

Overall, the studies dealing with urban flows can be gathered around three main lines of inves-
tigation: experimental, numerical, and data driven. Experimental studies tend to combine empirical
descriptions of the flow with specific physical quantities measurements that are relevant to analyzing
the flow dynamics. These kinds of works are usually divided by their scope. On the one hand, we find
studies that characterize the overall dynamics of the flow in urban environments. Within this group,
Oke [8] observed that three zones of disturbance could characterize the flow in the envelope of a
squared cross-section obstacle: ahead of the obstacle, a bolster eddy vortex, and behind, a lee eddy
that is drawn into a cavity of low pressure. Finally, a wake region appears downstream, characterized
by increased turbulent intensity but lower horizontal speeds. In this way, fully understanding urban
flows inevitably leads to the study of turbulence. We can also mention the work of Britter and
Hanna [9], describing the urban environment in terms of the length scale. These authors divided the
urban environment into a wide range of scales bounded by the regional (from 10 to 200 km) and
neighborhood (from 100 m to 2 km) scales. The present work deals with only the latter.

On the other hand, we find experimental studies that focus on particular flow applications. For
instance, Di Sabatino et al. [10] carried out the Phoenix urban heat island experiment, in which an
extensive database of temperature measurements in various areas of central Phoenix, Arizona, was
gathered. The authors used this database to study the urban heat island (UHI) in central Phoenix
and validate UHI models. Similarly, Weerasuriya et al. [11] assessed the effect of twisted winds on
pedestrian comfort. A scaled model of Tsuen Wan Street in Hong Kong was tested in a wind tunnel
to obtain the mean flow, turbulent intensities, and yaw angles. Pedestrian comfort was also studied
experimentally by Corke et al. [12], and pollutant dispersion was assessed in a number of urban
environments by Nagib and Corke [13] and Monnier et al. [14]. More complicated geometries were
also analyzed experimentally by Monnier et al. [15].

Numerical simulations, even though they are limited by the computational cost, can provide a
detailed description of the flow properties and have been used to characterize the overall dynamics of
urban flows. There is a wide range of numerical methods available with different levels of accuracy.
Reynolds-averaged Navier-Stokes (RANS) simulations, in which all turbulent scales are modeled,
are not able to fully characterize the physical processes that take place in urban environments
[16,17], so direct numerical simulations (DNSs) and large-eddy simulations (LESs) are usually
employed. The LES category also encompasses a wide range of resolutions, where subgrid models
can represent a larger or smaller portion of turbulent scales.

Similarly to experimental studies, numerical ones also differ in the type of geometrical model
being considered. The choice of a different balance between geometrical complexity, simulation
accuracy, and computational cost led to the creation of a few distinct kinds of study cases. We
summarize the most recent papers that are relevant to the context of the present work in Table I.
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The first works focused on so-called urban canyons, where the simulation describes the cav-
ity between two rectangular bodies and the laminar freestream flow above [41–43]. Later on,
it became possible to consider arrays of obstacles with different arrangements in pattern and
packing ration, but still periodic boundary conditions in the direction of the incoming flows, e.g.,
in Refs. [18,19,21,44]. These types of flow configurations, however, do not allow us to examine
the effects of an incoming boundary layer or of the more complex geometries typical of realistic
landscapes. We then observed developments in two complementary directions of investigation.

Models for urban geometries have been considered, although they often require one to employ
a very low number of grid points per each single obstacle to be affordable. Some of the studies
that adopted this perspective have focused on measuring the impact of, e.g., resolution [20], surface
modeling [23], and boundary conditions [37] on quantities that can be measured experimentally to
assess the reliability of simulations. Others aimed at reproducing specific atmospheric phenomena
[27,28] or they provide information not easily measurable in experiments, such as terms of the
turbulent-kinetic-energy (TKE) budget [34]. This type of study takes advantage of the fact that the
main features of urban flows have a weak dependence on the Reynolds number and therefore can
be captured even when a small portion of the active scales are simulated.

On the other hand, simplified geometries have been considered in highly resolved numerical
simulations. In certain cases, these studies are aimed at developing or testing models [26], some-
times with the aid of experiments [22,24,31]. In other studies, the main purpose of the authors is
to describe the connection between the obstacle geometry and global features of the flow, such as
drag coefficients or vortex-shedding frequencies [29,35], or turbulence properties, such as velocity
fluctuations, TKE budget, and spectra [30,36,39]. Note that in these studies, an incoming turbulent
flow is often implemented as a prescribed mean-velocity profile with synthetic turbulent fluctuations
[30,31] or using a precursor simulation [33,36]. The incoming flow in the works just mentioned is
not representative of atmospheric conditions.

Only a few of the works employing wall-resolved simulations considered both a combination of
obstacles and a developed turbulent flow. For instance, Zhao et al. [40] studied the flow between
two buildinglike obstacles in several configurations with DNS, with a uniform inlet profile, and
at a relatively low Reynolds number of 500 (defined in terms of the obstacle height, the fluid
kinematic viscosity, and the incoming velocity). The aim of the present work stems from the lack
of high-fidelity numerical simulations for the case of obstacles in tandem subjected to an incoming
turbulent boundary layer. For this geometry, as observed at transitional Reynolds numbers [40], the
rate between wake length and obstacle distance enables identifying different flow regimes, similarly
to what was observed by Oke [8] in urban canyons. We carried out wall-resolved LES, using a
resolution that is only a factor of 2 coarser than that of a DNS and a domain size that allows
establishing a turbulent boundary layer before the obstacles. Through these simulations we will
describe how the flow regimes differ in the distributions of turbulent fluctuations, TKE budgets, and
properties of the anisotropy tensor. The conditions that we choose do not correspond to a realistic
urban flow yet, but are a step forward with respect to previous works on wall-mounted rectangular
obstacles towards fully resolved simulations of a similar system with a larger scale.

The paper is organized as follows. In Sec. II we introduce the computational method and setup
used during the simulations. The results of the simulations are presented and discussed in Sec. III.
We provide a summary and some closing notes on other lines of investigation on urban flows,
including coherent structures, in Sec. IV.

II. COMPUTATIONAL METHOD AND SETUP

The flow of air in urban environments is characterized by relatively low velocities, well below
the speed of sound. Thus, the incompressible Navier-Stokes equations can be used to model the
flow. These equations have been solved using the computational-fluid-dynamics code Nek5000,
which was developed by Fischer et al. [45]. Nek5000 is based on the spectral-element method
(SEM) developed by Patera [46], which combines the geometrical flexibility of the finite-element
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method with the accuracy of the global spectral methods. Within the elements, the governing
equations are discretized using a Galerkin projection in the so-called PN−PN−2 formulation. In
this formulation, PN denotes the polynomial space of the trial function for the velocity, where N is
the maximum order, and PN−2 denotes the space of the trial functions for the pressure. The space
of the trial function for the pressure reaches a maximum order of N − 2, because the pressure is
defined on a staggered grid within each element without points on the element edges. Nek5000 has
been extensively used for turbulent-flow simulations in complex geometries [47–51], and it is thus
adequate for the urban-environment cases considered here. The turbulence statistics are computed
with the toolbox developed by Vinuesa et al. [52].

The complexity of turbulent urban flows requires using high-fidelity methods to resolve the
relevant flow structures correctly. Direct numerical simulations are often used in wall-bounded
turbulent flows [53,54]; however, in the case of urban environments, the presence of obstacles
forbids the use of classical tools of DNS such as fast Fourier methods [55,56], making computational
cost unaffordable. In the present work we conduct wall-resolved LES, the resolution criterion of
which is close to that of a coarse DNS. The LES filter is based on the approximated deconvo-
lution model proposed by Schlatter et al. [57]. The implementation and validation of this filter
in Nek5000 are extensively documented by Negi et al. [58], who obtained excellent agreement
with DNS statistics in turbulent wings while significantly reducing the computational cost. The
same methodology has also been recently examined by Rezaeiravesh et al. [59], who used various
uncertainty-quantification techniques to describe how grid spacing and filter parameters affect
the solution. In these simulations, the governing equations for the filtered velocity are written in
dimensionless form as

∂Ũi

∂t
+ Ũj

∂Ũi

∂x j
= − ∂P

∂xi
+ 1

Reh

∂2Ũi

∂x j∂x j
− H(Ũi ), (1)

∂Ũi

∂xi
= 0 . (2)

The symbol H(Ũi ) denotes the LES relaxation that acts as a volume force, and dealiasing with
overintegration is used to evaluate the nonlinear term of the momentum equation. The effect of the
filter is to remove energy from the system by acting on a subset of modes within each spectral
element. Hereafter, we drop the symbol of filtered quantities for the sake of brevity. The operator H
is written as a high-pass filter in the frequency domain, i.e.,

H (uN ) = χ

N∑
k=0

γkakLk, (3)

where Lk and ak denote the Legendre polynomials and spectral coefficients, respectively, N is the
polynomial order, χ is the filter weight, and γk is the filter transfer function, which is defined as

γk =
⎧⎨
⎩

0, k � kc(
k−kc
N−kc

)2
, k > kc,

(4)

where kc is the cutoff mode. The cutoff mode, which is the same for all elements, the polynomial
order, and the size of each spectral element determine the local cutoff frequency within elements.
The filter with this definition does not affect continuity and its intensity does not depend on the time
interval.

The instantaneous velocity field is denoted by U (x, y, z, t ), where x, y, and z are the
streamwise, vertical, and spanwise directions, respectively, and t is time (a visualization of
the solution at an arbitrary time step is provided in Fig. 1). The pressure is denoted by P. The
three components of the velocity in the spatial directions are U = (U,V,W ). Note that the
indices i and j run from 1 to 3, spanning through the spatial coordinates, and that Einstein’s
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FIG. 1. Overview of the computational domain for the wake-interference case with vortex clusters iden-
tified with the λ2 criterion [60] (we show the isosurface λ2 = −1) and colored with the streamwise velocity
component (values from approximately −1 in blue to approximately 2 in red).

notation of summation for repeated indices is applied. All length quantities are normalized
using the obstacle height, denoted by h, and the velocity scale is the freestream value, denoted
by U∞. The Reynolds number Reh = U∞h/ν is based on the freestream velocity, the obstacle
height, and the kinematic viscosity. Following the Reynolds decomposition, U is defined as
U = U + u, where U is the average in time and u is the turbulent fluctuation. The components of
the Reynolds-stress tensor are thus denoted by uiu j .

(a)

(b)

FIG. 2. Schematic representation of the simulation domain from the (a) side and (b) top views. The flow
goes from left to right and the obstacles are marked in blue. The center of the first obstacle is at distance of 10h
from the inflow, and faces A, B, C, D, E, and F are the boundaries of the domain.

063801-6
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TABLE II. Geometrical parameters of the three flow cases under study. The reported number of grid points
is based on polynomial order N = 7, and the reported averaging periods to obtain turbulence statistics follow
40 convective time units, which are discarded to avoid initial transients. All the averaging periods correspond
to over 13 eddy-turnover times, based on the uτ and h values of the TBL at x/h = −2.

Case name Case code Lx/h Ly/h Lz/h b/h wb/h l/h No. of grid points Average period

skimming flow SF 16 3 4 0.5 0.5 1.5 103 × 106 104
wake interference WI 17 3 4 0.5 0.5 2.5 116 × 106 104
isolated roughness IR 21 3 4 0.5 0.5 4.5 142 × 106 105

In Fig. 2 we show a schematic representation of the geometry used in the three simulations, where
Lx, Ly, and Lz represent the dimensions of the computational domain in the streamwise, vertical,
and spanwise directions, respectively. The vertical and spanwise dimensions are the same in the
three cases, while the streamwise dimension of the domain is varied proportionally to the distance
between the obstacles l . The obstacles are defined using three parameters: h, wb, and b, their height,
length, and width, respectively. Table II gathers the geometrical data of the three cases considered
in the present work. In all cases, the Reynolds number is defined with a value of Reh = 10 000.

As stated in the Introduction, we present here the results of three different configurations,
representative of the three flow regimes documented by Oke [8]. As explained by Sini et al. [41],
these configurations depend on the ratio l/h as follows: If this ratio is small enough, i.e., for narrow
streets, the flow above the buildings only sometimes enters into the space between obstacles, in
a configuration denoted by skimming flow (SF). The second situation, wake interference (WI),
is present for wider streets, where the wake of the first building interacts with the second one.
Finally, the third configuration is called isolated roughness (IR) and it corresponds to very broad
streets, where the interaction of the wake of the first building with the second one is small. Table II
summarizes the geometrical parameters of the three cases.

The inflow is set at face A (Fig. 2) and the outflow is set at face C. To improve our results, we
apply the stabilized outflow developed by Dong et al. [61]. In the spanwise direction, i.e., faces E
and F, we impose periodicity. At face B we prescribe a stress-free condition in the y direction, zero
velocity in the z direction, and we set U∞ in the x direction. Face D and the faces that form the
obstacle are set as solid walls, i.e., no-slip and no-penetration conditions.

A. Turbulent-boundary-layer development

As discussed in the Introduction, urban flows are turbulent [8]. Thus, we set up the flow so that the
incoming turbulent boundary layer (TBL) can develop before reaching the obstacles. In this study
the inflow condition is a Blasius laminar profile with Reδ∗ = 450, which is the Reynolds number
based on displacement thickness δ∗. Then we trigger the transition to turbulence by employing
a numerical tripping force, acting along a horizontal line on the ground wall and at x = −9h.
Numerical tripping is a technique that consists of introducing a weak random volume in the forcing
terms of the incompressible Navier-Stokes equation acting in the wall-normal direction such that
disturbances are created in the flow, as documented in Refs. [62,63]. Next we will discuss the
turbulence statistics of the TBL upstream of the first obstacle in the SF case, noting that these
results are the same in the other two cases.

In Fig. 3(a) we present the streamwise evolution of the friction Reynolds number Reτ = uτ h/ν

and the Reynolds number based on momentum thickness Reθ = U∞θ/ν. Here uτ = √
τw/ρ is the

friction velocity, τw is the wall-shear stress, ρ is the fluid density, ν is the fluid kinematic viscosity,
and θ is the momentum thickness. As expected, Reθ increases with the streamwise coordinate,
starting at the application of the tripping force. Upstream of the first obstacle we obtain Reτ � 175,
which corresponds to fully turbulent conditions. Note that the recirculation region upstream of the
first obstacle induces an adverse pressure gradient (APG) on the TBL, which can be characterized

063801-7



MARCO ATZORI et al.

FIG. 3. Streamwise evolution of (a) the friction and momentum-thickness-based Reynolds numbers and
(b) the Rota-Clause parameter and the skin-friction coefficient in the region upstream of the first obstacle.

in terms of the Rota-Clauser pressure-gradient parameter β = δ∗/τwdPe/dx, where dPe/dx is the
streamwise pressure gradient at the boundary-layer edge. This parameter and the skin-friction
coefficient Cf = 2(uτ /Ue)2 (where Ue is the local edge velocity) are shown in Fig. 3(b). Note that
the boundary-layer thickness is obtained using the method proposed by Vinuesa et al. [64]. The
streamwise APG produces the increase of β with x, reaching a value of around 0.6 at x/h = −2.
This value corresponds to a moderate APG. The skin-friction coefficient slightly grows between
x/h = −8 and −7, which is explained by the effects of the tripping force. However, Cf decreases in
the region upstream of the first obstacle, a behavior consistent with the TBL development and the
APG.

The statistics presented in Fig. 3 are validated by the results by Eitel-Amor et al. [65] for a
zero-pressure-gradient (ZPG) TBL, simulated by wall-resolved LES up to Reθ = 8300. In Figs. 4(a)
and 4(b) we show the inner-scaled mean-velocity and streamwise-velocity fluctuation profiles
of our TBL at various streamwise positions, together with the profiles extracted from Ref. [65]

FIG. 4. (a) Inner-scaled mean and (b) velocity-fluctuation profiles at the following streamwise locations:
x/h = −7 (blue), x/h = −6 (red), x/h = −5 (yellow), x/h = −4 (purple), and x/h = −3 (green). The circles
represent the profiles from the wall-resolved LES data set by Eitel-Amor et al. [65] at the same Reτ as the profile
at x/h = −4. (c) TKE budget terms at x/h = −4, where lines denote data from our simulation and circles re-
sults in Ref. [65] at matched Reτ . Blue, red, green, cyan, black, and magenta represent production, dissipation,
turbulent transport, viscous diffusion, velocity-pressure correlation, and advection terms, respectively.
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FIG. 5. (a) Streamwise evolution of the inner-scaled resolution in the streamwise direction, where blue
denotes the local spacing and the black dashed line the average over the element. (b) Wall-normal resolution
of the first grid point. (c) Spanwise resolution, where blue and orange denote the minimum and maximum grid
spacings of the element, respectively, and the black dashed line again the average over the element.

at Reτ � 145, which is the Reτ of our TBL at x/h = −4. Note that we choose this location
for comparison because here turbulence has already developed and β � 0.1, i.e., the TBL is in
nearly-ZPG conditions. The various streamwise profiles reflect an adequate TBL development, and
comparison at x/h = −4 with the ZPG TBL in Ref. [65] shows excellent agreement, a fact that
indicates that the incoming TBL is properly simulated. Furthermore, in Fig. 4(c) we compare the
terms of the TKE budget in the incoming TBL with those of the same reference [65]. Additional
information on the calculation of all the terms can be found in the work by Vinuesa et al. [52].
Interestingly, this figure shows that all the terms are in perfect agreement, including the near-wall
production peak and the turbulent transport. For y+ < 3, both the TKE dissipation and the viscous
diffusion are slightly lower than the reference values, which can be attributed to the small effect of
the filter in the smallest scales. Overall, the agreement is entirely satisfactory, a fact that highlights
the quality of the present simulations.

B. Mesh design and resolution

As discussed above, Nek5000 is based on the SEM developed by Patera [46]. The mesh
comprises a number of spectral elements, ranging from 200 000 to 280 000 for the cases under
consideration here, and each element has a total of 83 points which follow the Gauss-Lobatto-
Legendre quadrature. The element size is refined near the wall and the obstacles in order to increase
resolution. The mesh is designed following the criteria by Negi et al. [58] for wall-resolved LES: In
the TBL part, �x+ < 18 and �z+ < 9, which are the inner-scaled resolutions in the streamwise and
spanwise directions, respectively, averaged over the spectral elements. Furthermore, �y+ < 0.5,
which is the wall-normal resolution of the first grid point in inner units. In Fig. 5 we show the
streamwise evolution of these quantities for x/h < −1, i.e., for the region upstream of the first
obstacle, and it can be observed that the criterion for wall-resolved LES is satisfied within the
incoming TBL. Note that the resolution in the x and z directions corresponds to approximately
half of that required for a DNS [54]. It is interesting to note that the increase in the streamwise
grid spacing at x/h = −9 is explained by the tripping force applied at this location. Farther from
the wall, an additional requirement is satisfied for mesh resolution: Defining h = (�x�y�z)1/3, the
ratio h/η < 9 everywhere in the domain, where η = (ν3/ε)1/4 is the Kolmogorov scale and ε is the
local isotropic dissipation.
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FIG. 6. Mean streamwise velocity U at (a) z/h = 0 and (b) y/h = 0.25. The red lines and black contours
denote streamlines and U = 0, respectively. The streamlines are computed using U and V for vertical planes
and U and W for horizontal planes (note that streamlines of the 3D mean flow do not lie on the horizontal
plane). Shown from top to bottom are the SF, WI, and IR cases.

III. RESULTS AND DISCUSSION

In this section we analyze the turbulence statistics, including mean velocities, Reynolds stresses,
and TKE budgets in a selected portion of the computational domain. We show the statistics at the
planes y/h = 0.25 and z/h = 0. We take advantage of the central symmetry of the case, averaging
between the right and left portions of the domain for the statistics on the horizontal plane, y/h =
0.25. Note that the following results are presented in outer scaling, i.e., in terms of U∞ and h.

A. Mean flow

In this section we focus on the properties of the mean flow. The most evident effect of the
increasing distance between the obstacles is the transition from a cavitylike flow to a wakelike
flow in the region between the two obstacle, as already described by Zhao et al. [40] for a slightly
different geometry and lower Reynolds number. The cavitylike flow is characterized by a very
large circulation zone attached to the rear face of the first obstacle, which transports fluid in a
clockwise motion. This feature of the mean flow occupies most of the space between the obstacles.
The wakelike flow also exhibits a clockwise circulation zone, but this is limited to the first portion
of the space between the obstacles. The second portion of this space, in front of the second obstacle,
is occupied by flow that is still moving in the direction of the freestream.

Figure 6 shows the streamwise mean velocity on the planes z/h = 0 and y/h = 0.25, together
with streamlines computed using the mean-velocity components on the two planes. In the SF case,
there is only a little penetration of the flow from above the canopy into the cavity. As the distance
between the obstacles increases, the wake of the first obstacle becomes more apparent and there are
stronger interactions between freestream and cavity regions, as observed in the WI case. For an even
higher distances between obstacles, in the IR case, the effects of the second obstacle on the wake
of the first are negligible. Interestingly, the wake behind the second obstacle is relatively similar
between the three regime, even thought the low speed of the incoming flow avoids the occurrence
of separation at the edges in the SF and WI cases.

In Fig. 7 we show the vertical and spanwise mean-velocity components for the three cases. Both
of these velocity components are less intense than the streamwise component in most of the domain,
with a few notable exceptions. The first exception is the wake regions and the cavity between the
obstacle in the SF case, where U changes sign. The second one is the separation regions caused by
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FIG. 7. (a) Mean vertical velocity V at z/h = 0 and (b) spanwise velocity W at y/h = 0.25. The red lines
and black contours denote streamlines and V = 0, respectively. The streamlines are computed using U and V
for vertical planes and U and W for horizontal planes (note that streamlines of the 3D mean flow do not lie on
the horizontal plane). Shown from top to bottom are the SF, WI, and IR cases.

the obstacle edges. These are particularly evident for the first obstacle in all three cases and are also
present in the second obstacle in the IR case. The third occurrence of where U is not the dominant
mean-velocity component is in regions just in front of the obstacles where the flow is deflected
downward. This is even more evident for the second obstacle than for the first one, in all cases. The
effects of varying intensities and signs of the three velocity components are well summarized in the
streamlines computed on the mean flow. In the WI case, where U remains high above and around
the relatively short cavity, most streamlines with origin before the first obstacle pass over or to the
sides of the cavity. The longer cavities in the SF and IR cases however correspond to a longer region
of deceleration before the second obstacle. In this region, where V is negative, streamlines lying on
the vertical plane are deflected downward.

The three flow regimes also differ in how the signs of V and W change in the domain, which is
particularly affected by the change of regime between the SF and WI cases. In the SF case, with the
large zone of clockwise mean motion, V is negative in most of the region between the obstacles,
resembling the pattern of the classical two-dimensional lid-driven cavity. In the WI and IR cases, the
region with positive V behind the first obstacle expands. In these cases the mean flow is still moving
downstream in the higher portion of the wake, but upstream in the lower one. The topology of the
mean spanwise velocity W at intermediate heights, such as y/h = 0.25, is particularly interesting. In
front of the first obstacles, the flow is deflected sideways, around the front edges, and it also moves
from the center plane towards the outside of the cavity in the wake. In the SF case, W changes sign
only once, so the flow moves toward the center of the domain in the region in front of the second
obstacle. In the WI and IR cases however, at this y/h, W changes sign at least twice, so the flow in
the cavity moves outward behind the first obstacle, inward afterward, and outward again before the
second obstacle. These differences in the topology of W are yet another aspect of the modification
of the mean flow between the SF case, where the second object is completely engulfed by the
wake of the first one, and the WI and IR cases, where the wake of the first object is confined between
the obstacles. In the IR case, W also shows the further development of the wake flow around the
second obstacle, due to the appearance of mean separation over the side faces.

There are both similarities and differences between our results and those reported by Zhao et al.
[40], who also studied the flow around two obstacles but with a lower width-to-height ratio of
wb/h = 0.25, with laminar incoming flow, and at Reh = 500. They considered distances between
obstacles up to l/h = 2, corresponding to the first two regimes that we examined. The transition
between a cavitylike flow in the SF regime and a wakelike flow in the WI regime is also observed,
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FIG. 8. Turbulent kinetic energy, denoted by k, at (a) z/h = 0 and (b) y/h = 0.25. The yellow, red, and
black contours denote regions of high u2, v2, and w2, respectively. In these regions, the considered quantity is
higher than 1/3 of its maximum in the domain. Shown from top to bottom are the SF, WI, and IR cases.

but it already occurs for l/h = 1.25, which is a distance lower than that of the SF case in our data set
(l/h = 1.5). The wake behind the second obstacle seems longer for SF configurations than for WI
configurations in the database studied in Ref. [40], a phenomenon that is not as evident in our data.
This sort of comparison is however made difficult by the fact that both Reh and wb/h are different
between the two studies.

B. Reynolds stresses

The Reynolds stresses show the distribution of turbulence fluctuations within the domain. In
Fig. 8 we illustrate the turbulent kinetic energy, defined as k = 1/2(u2 + v2 + w2), as well as
contours highlighting regions of higher values for each of the three components of the Reynolds
stress. Turbulence fluctuations tend to be more intense between the two obstacles in all the cases
and the horseshoe vortex in front of the obstacles (when present). The highest values of k tend to be
located after approximately one unit length downstream of the first obstacle. In the SF case, where
the cavity is particularly short, this region of intense fluctuations is adjacent to the front face of
the second obstacle. Both the first obstacle wake and the region in front of the second one exhibit
high fluctuations in the WI case. In the IR case, the region of higher k within the wake of the first
obstacle does not reach the second one due to an even more extended cavity. However, the first
obstacle’s influence on the second is still very apparent. The most intense fluctuations around the
second obstacle are generated in the separation region around the obstacle edges rather than in the
wake. Note that this finding seems to contrast with the description of Oke [8], who found only
negligible effects for the flow around the downstream obstacle for a similar cavity length.

The three diagonal components of the Reynolds-stress tensor have their maxima in different
positions. The highest values of the streamwise normal stress are found in the upper region of the
wake, in the high-shear flow immediately following the separation bubble on top of the first obstacle,
and in the IR case in the turbulent region of separation on top of the second obstacle. As the distance
between the obstacles increases, the streamwise normal Reynolds-stress values also increase in the
region between the obstacle. This increment of u2 is probably connected to the interaction between
low-momentum flow in the wake and high-momentum flow in the freestream. In fact, in the WI
case, where the interaction between the layers of fluid is maximum within the cavity, the largest
region of high values of u2 is observed. In addition, the values of u2 in the second obstacle wake are
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FIG. 9. Contour plots of the shear-Reynolds stresses (a) uv at z/h = 0 and (b) uw at y/h = 0.25. Note that
a symmetric range of values is chosen for all figures, to help distinguish positive and negative values. The red
contours denote regions of high turbulent kinetic energy k reported as reference. In these regions, k is higher
than 1/3 of its maximum in the domain. Shown from top to bottom are the SF, WI, and IR cases.

higher than those of the SF case. In the IR case, we observe that the region of high u2 between the
two obstacles remains attached to the first one.

Regarding the vertical normal component of the Reynolds stresses (denoted by v2), in the SF
regime, we find a region of high values attached to the front wall of the second obstacle. The
strong fluctuations at the front wall of the second obstacle can be explained by interactions between
the high-momentum fluid moving from the freestream, which descends into the cavity parallel to
the front wall of the second obstacle, and the low-momentum fluid in the cavity. An increase in
the distance between the obstacle, as we can see for the WI case, produces a new region of high
v2 at the center of the cavity, as the mixing between flow in the cavity and flow outside the cavity
becomes more pronounced. At the wake of the second obstacle, the region of high v2 is extended
from that in the SF case. This extension is the result of the overall increase of turbulent fluctuations
around the second obstacle, which is invested by flow with higher speed. In the IR case, intense
vertical fluctuations are not present anymore in the region in front of the second obstacle.

The spanwise fluctuations w2 reflect the same trend as the other normal components of the
Reynolds-stress tensor and further confirm the significant impact that the presence of the first
obstacle still has on the second in the IR case.

The shear Reynolds stresses uv and uw are shown in Figs. 9(a) and 9(b), respectively. These
quantities allow us to discuss the prevalent orientation of turbulent fluctuations. They both tend to
be particularly intense in regions where the u2 also have higher values, i.e., in the upper region of the
wakes and, in the IR case, in the turbulent region of separation on top of the second obstacle. The
vertical shear Reynolds stress uv is negative in the regions where it is more intense, showing that
turbulent fluctuations tend in general to drive momentum downward into the cavity. The extension
of regions with different sign however varies between the three flow regimes. In the SF case, uv is
positive in most of the cavity, including a relatively vast portion of space where the mean vertical
velocity V is negative. In this case, mean advection contrasts with turbulent transport. In the WI case,
which is the case with stronger mixing between the low-speed flow in the wake and the high-speed
flow outside the wake, the region of negative and intense uv occupies the higher portion of the cavity.
The region of positive uv underneath includes the location with the highest positive uv observed in
the three cases, which is attached to the lower portion of the front face of the second obstacle.
In this region again, relatively intense turbulent fluctuations have opposite orientation to the mean
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FIG. 10. Anisotropy-invariant maps for vertical profiles at the center plane and from y/h = 0 to 1 for cases
(a) SF, (b) WI, and (c) IR. The circles and the squares on each line denote values at y/h = 0 and 1, respectively.
Black rectangles enclose states at locations from the wall in the range 0 < y/h < 0.5. Dashed black lines denote
the theoretical limits to values of II and III.

advection. Finally, in the IR case, the region of intense negative uv is also limited to approximately
two length units downstream of the first obstacle.

The horizontal shear Reynolds stress uw exhibits behavior similar to that of uv, as turbulent
fluctuation carries momentum towards the inner region of cavity. This term of the Reynolds stress
however tends to be of higher values than uv, because fluctuations in the spanwise direction are not
limited by the presence of the ground as those in the vertical direction are. In particular, the pattern
of uw on the left and the right of the obstacles tends to reproduce that of uv in the upper half of the
cavities, in all cases.

We now consider the anisotropy-invariant maps (AIMs) to better describe how the structure of
the turbulent flow within the cavity changes in the different cases. The anisotropy tensor, originally
introduced by Lumley and Newman [66], is defined as

ai j = 1

2

uiu j

k
− 1

3
δi j, (5)

and AIMs are constructed using its second and third invariants, i.e., II = ai ja ji and III = ai jaina jn.
The space of possible values of II and III is enclosed within boundaries determined by a set of limit
cases: Three-dimensional (3D) isotropic turbulence, where energy is equally distributed in the three
components, is (II = 0, III = 0); 2D isotropic turbulence is (II = 1/6, III = −1/36); and the limit
of 1D turbulence is (II = 2/3, III = 2/9). The three paths between these limit cases are boundaries
for allowed configurations and they represent axisymmetric contraction, between the 3D and 2D
isotropic limits, II = 3/2(4/3III)2/3; axisymmetric expansion, between the 3D isotropic and 1D
limits, II = 3/2(−4/3III)2/3; and the path between the 2D isotropic and 1D limit, II = 2/9 + 2III.
In Fig. 10 we show the AIMs for a set of vertical profiles within the cavity for each case. For the SF
case, we examine x/h = 0.5, 0.75, and 1 and for the WI and IR cases we also consider x/h = 1.5
and 2. The profiles are limited to the cavity region, i.e., 0 < y/h < 1.

In all cases, the distributions of II and III move from the limit of 2D turbulence from the wall
towards a state close to the limit of 3D isotropic turbulence far from the wall, as expected. This
is particularly evident for the first profile (x/h = 0.5), in the proximity of the obstacle, where
the mean velocity is relatively low at y/h ≈ 1. In the SF case, along the first profile with a low
turbulence intensity, we move from the 2D limit to the 3D limit almost following the axisymmetric
contraction, with a predominance of flattened structures (so-called pancake-shaped turbulence).
Moving along the second profile (x = 0.5), which is located at the middle of the cavity for this
case, we transition from the 2D isotropic limit to the 3D isotopic state almost along the vertical
line III = 0. On the other hand, along the third profile (x = 1), where we observe stronger but
still relatively low turbulent fluctuations, the AIM departs from the 2D limits. In the WI case,
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FIG. 11. Selected terms of the turbulent-kinetic-energy budget on the vertical plane z/h = 0. Shown from
top to bottom are production, turbulent transport, and velocity-pressure-gradient correlation, denoted by Pk , Tk ,
and �k , respectively, and from left to right the SF, WI, and IR cases. Note that the same symmetric colormap is
used, to highlight positive and negative values in all cases, even though it may not properly represent maxima
and minima.

moving along the first profiles still means approaching the isotropic case from the 2D limit, as
in the SF case. The profiles downstream however exhibit a different behavior. In correspondence
with more intense turbulent fluctuations, turbulent structures depart more significantly from the 2D
limit along the profile, and the state at y = 1 is farther from the 3D isotropic limit. A particularly
evident distinction between the SF and WI cases is apparent along the profile closer to the second
obstacle, which is at x = 1 for SF and x = 2 for WI. In the latter, in the proximity of the region with
even more intense turbulent fluctuations, the AIM indicates a prevalence of elongated structures
along the axisymmetric-expansion limit (so-called cigarlike turbulence). In the IR case, the profiles
close to the first obstacle (x = 0.5, 0.75, and 1) exhibit an even more pronounced shift towards the
1D limit state than in the WI case. The profile x = 1.5 however is in good agreement with the same
profile for the WI case, underling that structures in this region for the WI case are quite similar to
those in the wake behind an isolated obstacle despite the proximity of the second obstacle. Finally,
the profile x = 2 in the IR case, which is now behind the region with more pronounced fluctuations
in the wake of the first obstacles, departs again from the 2D limit case at the wall with a trajectory
closer to an axisymmetric contraction, but it also arrives at states with more elongated structures
farther from the wall, with the same profile as in the WI case.

C. Budget of the turbulent kinetic energy

To close the present discussion we will analyze terms of the TKE budget. We show production,
turbulent transport, and velocity-pressure-gradient correlation in Figs. 11 and 12 for the vertical
plane z/h = 0 and the horizontal plane y/h = 0.25, respectively. Each quantity is defined as
described by Pope [67].

All terms of the TKE budget are virtually negligible in the freestream, away from the obstacles.
On the other hand, most terms exhibit relatively high values in the horseshoe vortices. These vortices
are always present in front of the first obstacle and the second one in the IR case. In the cavity and
obstacle proximities, the three flow regimes differ significantly.

In the SF case, turbulent production, denoted by Pk , is particularly intense in three regions, i.e.,
immediately downstream of the separation region on top of the first obstacle, in front of the front
face of the second obstacle, and downstream of the trailing edge of the second obstacle. In this
case, Pk is almost negligible within most of the cavity. In the WI case, a relatively large region
with negative Pk appears in front of the second obstacle and production occurs within the cavity.
In the IR case, Pk in the cavity is more intense just behind the first obstacle. Around the second
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FIG. 12. Selected terms of the turbulent-kinetic-energy budget on the horizontal plane y/h = 0.25. Shown
from top to bottom are production, turbulent transport, and velocity-pressure-gradient correlation, denoted by
Pk , Tk , and �k , respectively, and from left to right the SF, WI, and IR cases. Note that the same symmetric
colormap is used, to highlight positive and negative values in all cases, even though it may not properly
represent maxima and minima.

obstacle, however, the most intense production occurs in the regions of separated flow adjacent to
the faces. Interestingly, Pk remains negative in front of the second obstacle in the IR case, even
though it is much less intense in that region than in the WI case. The contours on the horizontal
plane highlight the importance of high-shear regions on the sides faces of the first obstacles, which
are also relatively similar for all cases.

Turbulent transport, denoted by Tk , tends to be negative in regions of very high turbulent
fluctuations and positive in the adjacent regions where their intensity rapidly decreases. This fact is
particularly apparent on the horizontal plane. In the SF case, Tk is almost negligible in most of the
cavity, where fluctuations are low, and it has negative values in front of the second obstacle, where
we found the highest values of v2. In both the WI and IR cases, the turbulent transport is negative
in the upper region of the wake and positive in the lower region, but in the IR case Tk becomes
negligible before the second obstacle.

The velocity-pressure-gradient correlation, denoted by �k , is negative in regions of very intense
turbulent fluctuations, which is a trend similar to what is observed for the turbulent transport Tk . The
change of sign of �k in the region in front of the second obstacle is however particularly interesting.
In the SF case, this term of the TKE budget is negative in that region. In the WI case, �k becomes
positive and reaches relatively high values there. In the IR case, �k remains positive in front of the
second obstacle, but its value decreases significantly. The qualitative behavior of �k is then opposite
to that of the production term, in this particular region of the domain.

We can discuss the TKE budgets in light of the anisotropy-invariant maps shown in the previous
section. In the SF case, the profile at x/h = 1, which is in front of the second obstacle, roughly
corresponds to the region of positive Pk , negative Tk , and negative �k , where the AIM indicates that
turbulence is approaching the 3D isotropic limit along the asymmetric-contraction limit (pancake
turbulence). In the WI case, downstream of the first obstacle, the distinction between the region
close to the wall with positive Tk and negative �k and the region far from the wall with negative
Tk and positive �k corresponds to the transition observed in the AIMs from states closer to the 2D
limit to state closer to the 3D isotropic limit. The opposite signs of Tk and Pk in profiles x/h = 2
for the WI case and x/h = 1 for the SF case, which are the corresponding profiles at the front of
the second obstacle, are linked to the fact that in the WI case those profiles exhibit states close the
asymmetric-expansion limit (cigarlike turbulence).

Regarding the other terms of the TKE budget that are not shown here, they are viscous diffusion,
pseudodissipation, and advection. Viscous diffusion is negligible, except for small near-wall regions
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in all cases. Pseudodissipation is also relatively low if compared to the other terms of the budgets in
most of the domain. Advection, denoted by Ck , reaches it highest positive values in the high-shear
regions related to separation, similarly to what happens for the other terms already described. In
the SF and WI cases, in the cavity, it has negative values in proximity to the front face of the
second obstacle, where the mean vertical velocity is negative and carries turbulent kinetic energy
downward. In the WI and IR cases, where a wake region is clearly distinguishable downstream of
the first obstacle, Ck exhibits positive values in the upper region of the wake and negative values in
the lower region, which is qualitatively the opposite pattern to that of turbulent transport.

IV. CONCLUSION

We have studied the results of highly resolved large-eddy simulations of the flow around
two rectangular obstacles invested in a turbulent boundary layer. The Reynolds number based
on the freestream velocity and obstacle height is Reh = 10 000, whereas the incoming boundary
layer reaches approximately Reτ = 170 before the first obstacle. We considered three different
configurations with various distances between the obstacles, corresponding to the three different
flow regimes identified in the literature.

In the first regime, characterized by skimming flow, there is little penetration from the freestream
into the cavity between the two obstacles, and the wake of the first one engulfs the second obstacle.
In this case, the topology of the mean-velocity components is more similar to a cavity than a wake
flow. In the second regime, characterized by wake interference, there are strong interactions between
the freestream and the wake of the first obstacle. In the third regime, characterized by isolated
roughness, the wake behind the first obstacle is not significantly affected by the presence of the
second obstacle. In the first two cases, the reduced velocity of the incoming flow prevents separation
from the edges of the second obstacle. In the IR case, separation around the second obstacle occurs,
but the separation bubbles are smaller than those for the first obstacle.

The inflow conditions and the relatively high Reynolds number in our study, compared to
previous numerical works with multiple obstacles, allowed us to discuss in detail the turbulent flow
properties in the three regimes. This discussion included the distribution of turbulent fluctuations
and terms of the turbulent-kinetic-energy budget, which were not considered in previous studies
on similar geometries. Our analysis has identified three critical regions of the domain that are
fundamentally affected by the increasing distance between the obstacles.

(i) The first region is immediately behind the first obstacle. This region is occupied by cavitylike
flow in the SF case and wakelike flow in the WI and IR cases. The cavity flow exhibits lower
turbulent fluctuations and TKE production to the wake flow.

(ii) The second region is adjacent to the second obstacle’s front face. This region immediately
reflects the more effective flow penetration from the freestream as the distances between obstacles
increase. In the SF case, we have the most intense turbulent fluctuations and production of turbulent
kinetic energy in this region. In the WI case, relatively intense turbulent fluctuations are still
observed, but the production term of the TKE is negative, and turbulent kinetic energy is created
with more complex mechanisms, as shown by the velocity-pressure-gradient correlation. In the IR
case, turbulent fluctuations are less intense, and the classical horseshoe vortex is also present in front
of the obstacle.

(iii) The last region, which changes more dramatically due to the increasing obstacle distance,
immediately surrounds the second obstacle. In the SK and WI cases, there is no separation. In the
IR case, there is mean separation and very intense turbulent fluctuations in the separation bubbles
attached to the three faces.

There are also two regions of the domain where the increasing distance between obstacles has
only mild repercussions. These are the surroundings of the first obstacle, as expected, and, perhaps
more surprisingly, the wake of the second obstacle.

Important distinctions between the three regimes also appear in the anisotropy-invariant maps,
which provide information about the structure of turbulence. In the SF case, there is a prevalence of
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states close to the asymmetric-contraction limit within the cavity, including the region in front of the
second obstacle with the more intense turbulent fluctuations and where TKE production is positive
while the TKE turbulent transport and the velocity-pressure-gradient correlation are negative. On
the other hand, at the corresponding location in the WI case, where turbulent fluctuations are also
intense, there is a prevalence of states close to the asymmetric-expansion limit.

The results that we just summarized provide important indications for future works on similar
geometries that will not employ high-fidelity numerical simulations. A similar distribution of
turbulent fluctuations has to be obtained if particles or scalar dispersion are relevant in the conducted
study, in particular if dispersion models are employed [68,69]. The anisotropy-invariant map that
we showed also suggests a note of caution for the usage of turbulence models that employ a linear
eddy viscosity hypothesis, as these models often fail to correctly predict anisotropy.

Nevertheless, our study has obvious limitations if the general context of urban flows is consid-
ered. The first limitation is the still very low Reynolds number compared with realistic length and
velocity scales. It is reassuring to observe that our results are qualitatively similar to those in, e.g.,
the study by Zhao et al. [40] conducted at a Reynolds number 20 times lower than the present one.
Our results also show the complexity of the turbulent flow in the three regimes, confirming that
numerical studies at even higher Reynolds numbers may be required.

The second limitation is the simplicity of our configuration, which is evident in both inflow
conditions and the obstacle geometry. The crucial phenomenon in the flow that originates from a
boundary layer impacting a group of obstacles is the interaction of the wake created by leading
obstacles with subsequent ones. In our idealized study case, this phenomenon was governed by the
only geometrical parameter that we let vary, i.e., the obstacle distance. However, different obstacle
alignments with the inflow velocity as well as different aspect ratios and relative sizes will lead to an
even greater variety of flow regimes, indicating other possible directions for future investigations.
A larger array of obstacles should also be considered to study the interaction between the wakes of
obstacles farther downstream.

A further extension of the present study worth considering pertains to additional methodologies
to characterize the different flow regimes. One approach is to examine coherent structures and link
features of the instantaneous flow with the turbulence statistics that we considered here, following
the work by Torres et al. [7], or causality analysis, as done by Martínez-Sánchez et al. [70]. A second
approach is to determine how the three flow regimes differ in the dispersion of passive scalars and
particles with inertia, which are both relevant in applications connected with pollution and pathogen
contamination.

The data used to perform this study are available from the following repository: Urban flow
statistics [71].
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