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We present and analyze a high-order discontinuous Galerkin method for the space 
discretization of the wave propagation model in thermo-poroelastic media. The proposed 
scheme supports general polytopal grids. Stability analysis and hp-version error estimates 
in suitable energy norms are derived for the semi-discrete problem. The fully-discrete 
scheme is then obtained based on employing an implicit Newmark-β time integration 
scheme. A wide set of numerical simulations is reported, both for the verification of 
the theoretical estimates and for examples of physical interest. A comparison with the 
results of the poroelastic model is provided too, highlighting the differences between the 
predictive capabilities of the two models.
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1. Introduction

This paper deals with the numerical analysis of the fully-dynamic thermo-poroelastic model, that describes the wave 
propagation phenomena in thermo-poroelastic media. The study of these phenomena finds application in many fields, such 
as greenhouse gas reservoirs and geothermal energy extraction, that are crucial for environmental sustainability, or the 
study of thermo-elastic seismic energy release as a source mechanism for volcanic earthquakes, and induced earthquakes 
by human geological activities.

The theory of wave propagation in porous media has been first presented by Biot [12] and then developed by Carcione 
[20]. Biot considered a fully-saturated porous media and investigated the presence of three kind of waves: two compres-
sional (P ) waves and a shear (S) wave. The two P -waves propagate in different ways, the first one – denoted by (E) – is 
a fast wave, while the second one – denoted by (Biot) – is a slow wave, that is diffusive at low frequencies and is slower 
than the fast wave E at high frequencies. Biot has been the first to propose a model for poroelastic wave propagation tak-
ing into account the effect of temperature [11]; this formulation was based only on the Fourier law for heat conduction. 
The sole presence of the diffusive operator - due to its nature - may lead to non-physical results, as it yields an infinite 
diffusion velocity of the temperature. To overcome this issue, Lord and Shuman [33] introduced a relaxation term, based 
on the generalization of the Fourier law formulated by Cattaneo [23]. In general, the introduction of the coupling with the 
temperature induces the appearance of an additional T -wave (thermal), which is a slow diffusion wave. The analysis of the 
wave induced by temperature effects can be found also in [21,47], where the thermo-elasticity problem is studied, and in 
[44], where it is possible to find a comprehensive review on heat wave propagation.
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Our model - proposed in [22,40] - is constituted by three equations: mass conservation, momentum conservation, and 
energy conservation, under the hypothesis of a linear thermo-poroelastic medium, and the inertial terms are included in all 
three equations. The poroelastic component of the model is written in the two-displacements formulation, namely where 
the unknowns are the solid and filtration displacements, while the pressure field is recovered post-processing. The relaxation 
terms in the energy conservation equation are included in order to get physically-consistent results.

Other formulations for thermo-poroelastic coupling are available in the literature. As mentioned before, some works do 
not consider the relaxation terms [11,28]. In [37] the inertial terms in the temperature equation are not included, but a 
non-linear advection term is present in the model. Nield and Bejan in [36] first included the heat transfer between the solid 
and the fluid, but they still need to include the third-order terms to correctly represent the physical behavior, cf. also [41]
for a similar model. Among the literature on thermo-poroelasticity, we can also mention [31,32], even if their analysis is not 
based on Biot equations nor Darcy law, thus it is not directly comparable with our model. Last, we mention some recent 
works on the quasi-static thermo-poroelastic problem [7,15,16,24], where both the linear and non-linear cases are treated. 
In particular, in [7] a discontinuous Galerkin approximation of the fully-coupled problem including a nonlinear advection 
term is considered.

For the spatial discretization of the problem we propose a discontinuous Galerkin finite element method on polytopal 
grids (PolyDG [17]). Examples of PolyDG schemes can be found in [2,10] for elliptic problems, in [18] for parabolic problems, 
and in [3,13,14] for poroelasticity. Moreover, in [4,6,27] PolyDG methods for wave propagation problems in porous media 
are analyzed. The PolyDG methods fit well in this framework because they guarantee an arbitrary-order accuracy as well 
as a high-level of geometric flexibility, that allows to handle complex geometries, solutions with (local) low-regularity, and 
layered heterogeneous materials.

The major highlights of this paper are: (i) a precise model derivation and mathematical formulation of the fully-dynamic 
thermo-poroelasticity problem; (ii) a complete analysis of the PolyDG discretization establishing stability and error estimate 
in the hp-framework; and (iii) an in-depth numerical investigation on wave propagation phenomena in thermo-poroelastic 
media including also a comparison with the poroelastic model which neglects the temperature effects. Through numerical 
experiments, we also demonstrated the applicability of this model for tests of physical interest in heterogeneous media. 
Indeed, we take advantage of the geometric flexibility of the PolyDG scheme by allowing all the model coefficients to be 
discontinuous in the computational domain.

The rest of the paper is organized as follows: in Section 2 we present the model problem, the assumptions on the 
model’s coefficients, and its weak formulation. In Section 3, we derive the semi-discrete PolyDG formulation (cf. Section 3.2) 
and then the fully-discrete formulation is obtained by the coupling with the Newmark-β time integration scheme (cf. 
Section 3.3). Section 4 and Section 5 are devoted to the numerical investigation. In Section 4 we validate the convergence 
of the method on regular manufactured solutions, while in Section 5 we present a wide set of test cases aimed at assessing 
the numerical performances and comparing the results with benchmark configurations taken from the previous literature. 
Moreover, test cases of geophysical interest are considered. Last, in Section 6 we present the results about stability and error 
estimates for the semi-discrete problem. The proofs of these results are postponed to Appendix A.

2. Model problem

The goal of this section is to present the fully-dynamic thermo-poroelastic model and provide its mathematical formu-
lation and physical derivation. We start by considering the linear thermo-poroelastic problem [7,15] with the additional 
contribution of the inertial terms. Let � ⊂ Rd , d = 2, 3, be an open, convex polygonal/polyhedral domain with Lipschitz 
boundary ∂�. Given a final time T f > 0, the problem reads: find (u, w, p, T ) such that:⎧⎪⎪⎨

⎪⎪⎩
ρü + ρ f ẅ − ∇·σ = f̃ in � × (0, T f ], (a)
ρ f ü + ρw ẅ + K−1ẇ + ∇p = g̃ in � × (0, T f ], (b)
c0 ṗ − b0 Ṫ + α∇·u̇ + ∇·ẇ = 0 in � × (0, T f ], (c)
a0
(
Ṫ + τ T̈

)− b0 (ṗ + τ p̈) + β (∇·u̇ + τ∇·ü) − ∇·(�∇T ) = H in � × (0, T f ], (d)

(1)

where the four unknowns (u, w, p, T ) represent the solid displacement, the filtration displacement, the pore pressure, and 
the temperature, respectively. The filtration displacement is a quantity that represents the relative displacement among the 
fluid and the pore matrix, scaled with respect to the porosity [34]. Note that, in Problem (1), the field T expresses the 
variation of the temperature distribution with respect to a reference value T0. The short-hand notation ψ̇ and ψ̈ is used for 
denoting the first and second partial derivatives with respect to time of a function ψ : � × (0, T f ] →R, respectively.

Equations (1)(a), (1)(c), (1)(d) represent momentum conservation, mass conservation, and energy conservation, respec-
tively. Equation (1)(b) corresponds to Darcy’s law in its dynamic form. The terms f̃, g̃, and H are source terms that represent 
a body force, a fluid mass source, and a heat source. The description of the model’s coefficients appearing in (1) is given 
in Section 2.2 (cf. Table 1). From now on, we assume that the hydraulic and thermal conductivities K and � are isotropic, 
namely K = kI and � = θ I. However, we remark that the general anysotropic case can be handled with minor modifica-
tions following the lines of [7]. The constitutive law for the total stress tensor σ is obtained as in [26] under the small 
deformations assumption taking also into account the hydraulic and thermal effects on the porous matrix:
2
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σ (u, p, T ) = 2με(u) + λ∇·uI − αpI − βT I, (2)

where I is the identity tensor and ε(u) = 1
2 (∇u + ∇uT ) is the strain tensor. Finally, problem (1) is closed by imposing 

suitable boundary and initial conditions.

Remark 1. As pointed out in [25], the second equation in Problem (1) is valid under a constraint on frequencies. Namely, 
the spectrum of the waves has to lie in the low-frequency range. Thus, in what follows, we consider the frequencies to be 
lower than the critical value fc = φ/(2πakρ f ).

2.1. Three-field formulation

In the spirit of what is done to obtain the two-displacements formulation for the poroelasticity problem (cf. [34]), we 
exploit (1)(c) to express p and its partial derivatives in terms of the other three unknowns of the problem. Hence, we need 
to recast the expression for ṗ, p̈, and ∇p as follows:

ṗ = −c0
−1 (α∇·u̇ + ∇·ẇ − b0 Ṫ

)
, ∇p = −c0

−1 (α∇(∇·u) + ∇(∇·w) − b0∇T ) + 0, (3)

where 0 : � →Rd is the vector field taking into account the initial condition on the fluid content that appears due to the 
integration in time of (1)(c).

Plugging (2) and (3) into problem (1), we obtain the following three-field thermo-poroelasticity system: find (u, w, T ) :
� × (0, T f ] →Rd ×Rd ×R satisfying⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρü + ρ f ẅ − ∇·
(

2με(u) +
(
λ + α2

c0

)
∇·u I + α

c0
∇·w I −

(
b0α
c0

+ β
)

T I
)

= f, (a)

ρ f ü + ρw ẅ + 1
k ẇ − α

c0
∇(∇·u) − 1

c0
∇(∇·w) + b0

c0
∇T = g, (b)(

a0 − b2
0

c0

)(
Ṫ + τ T̈

)+ ( b0α
c0

+ β
)

(∇·u̇ + τ∇·ü) + b0
c0

(∇·ẇ + τ∇·ẅ) − ∇·(θ∇T ) = H . (c)

(4)

Note that, the contribution of 0 in (4)(a) and (4)(b) has been included in the forcing terms, that have been redefined 
as f = f̃ − 0(x), g = g̃ − 0(x). For the sake of simplicity, we complete problem (4) by imposing homogeneous Dirichlet 
boundary conditions on the whole boundary ∂� and by introducing suitable initial conditions, e.g.,

(u,w, T )(·, t = 0) = (u0,w0, T0) and (u̇, ẇ, Ṫ )(·, t = 0) = (u1,w1, T1) in �.

We observe that model (4) is slightly different than the thermo-poroelastic problem investigated in [22]. Indeed, in 
(4)(c) we consider different multiplying factors for the divergence of the solid and filtration displacements. This difference 
comes from the fact that the conservation of thermal energy assumed as a starting point in [22] shows a dependence on 
the variation of the fluid content and not on the variation of the pore pressure (cf. the term in (1)(d) weighted by the 
coefficient b0). Nevertheless, we point out that the two models lead to equivalent partial differential systems under proper 
choices of the thermo-poroelastic parameters. This is in agreement with the physical relation between the pore pressure 
and fluid content described in [26] and [20]. In this paper, we prefer to state the energy conservation as in (4)(c) because it 
reduces to the one considered in [7,15,16] in the case τ = 0.

Remark 2. The choice of the two-displacements formulation for poroelasticity is not the only possible option, but it turns out 
to be convenient for the coupling with the temperature. Additionally, it allows to write the problem in a purely second-order 
hyperbolic form.

2.2. On the thermo-poroelastic coefficients

The coefficients appearing in problems (1) and (4), along with their unit of measure and physical meaning are reported 
in Table 1. All the model parameters are intended as (possibly) heterogeneous scalar fields. The densities ρ and ρw are 
given by

ρ = φρ f + (1 − φ)ρs > 0, ρw = a

φ
ρ f > 0,

where the porosity φ (the ratio between the void space in a porous medium and its whole volume) and the tortuosity a
(the measure of the deviation of the fluid paths from straight streamlines) are such that 0 < φ0 ≤ φ ≤ φ1 < 1 and a > 1 [43].

We refer to [22,26] for additional comments on the remaining physical coefficients presented in Table 1. Moreover, in [7,
15,16] the assumptions on the model parameters needed to ensure the well-posedness of the quasi-static termo-poroelastic 
problem are pointed out. However, by passing from the displacement-pressure to the two-displacements formulation, we need 
to slightly modify the assumptions on the thermal capacity, thermal dilatation and specific storage coefficients, i.e.
3
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Table 1
Thermo-poroelastic coefficients appearing in problem (4).

Symbol Unit Quantity

a0 Pa/K2 thermal capacity
b0 K−1 thermal dilatation coefficient
c0 Pa−1 specific storage coefficient
α – Biot–Willis constant
β Pa/K thermal stress coefficient
μ,λ Pa Lamé parameters
k m2/(Pa s) permeability divided by dynamic fluid viscosity
θ m2 Pa/(K2 s) effective thermal conductivity
ρ f kg/m3 saturating fluid density
ρs kg/m3 solid matrix density
φ – porosity
a – tortuosity
τ s Maxwell-Vernotte-Cattaneo relaxation time

Assumption 2.1. The model parameters a0, b0, and c0 are such that a0 ≥ b2
0c−1

0 , b0 ≥ 0, and c0 > 0.

The hypotheses on the coefficients multiplying the coupling and elliptic terms are rather standard. We assume that 
the Biot–Willis modulus and thermal stress coupling parameters satisfy φ < α ≤ 1 and β > 0, respectively. The shear and 
dilatation moduli μ and λ together with the conductivities k and θ are all assumed to be strictly-positive. Finally, the 
relaxation parameter τ is a positive scalar field possibly equal to zero.

2.3. Weak formulation

Before presenting the variational formulation of problem (4) we introduce the required notation. For X ⊆ �, we denote 
by Lp(X) the standard Lebesgue space of index p ∈ [1, ∞] and by Hq(X) the Sobolev space of index q ≥ 0 of real-valued 
functions defined on X . The notation L2(X) and Hq(X) is adopted in place of 

[
L2(X)

]d
and [Hq(X)]d , respectively. In ad-

dition, we denote by H(div, X) the space of L2(X) vector fields whose divergence is square integrable. These spaces are 
equipped with natural inner products and norms denoted by (·, ·)X = (·, ·)L2(X) and ‖ · ‖X = ‖ · ‖L2(X) , with the convention 
that the subscript can be omitted in the case X = �.

For T f > 0 and a Banach space X , we denote by Lp((0, T f ]; X) the Bochner space of Lp - regular functions defined on 
(0, T f ] with values in X . Being ‖ · ‖X a norm in X , we then define the norm in Lp((0, T f ]; X) as

‖u‖L p((0,T f ];X) =
⎛
⎜⎝

T f∫
0

‖u(t)‖p
X dt

⎞
⎟⎠

1
p

.

Finally, given k ∈N , the usual notation Ck((0, T ]; X) is used for the space of X-valued functions which are k-times contin-
uously differentiable in [0, T ]. For the sake of brevity, in what follows, we make use of the symbol x � y to denote x ≤ C y, 
where C is a positive constant independent of the discretization parameters, but possibly dependent on physical coefficients 
and final time T f .

To derive the weak formulation of problem (4) we start by providing the definition of the functional spaces that take 
into account the essential boundary conditions, namely

V = H1
0(�) = {ϕ ∈ H1(�) s.t. ϕ|∂� = 0

}
,

W = H0(div, X) = {w ∈ H(div, X) s.t. (w·n)|∂� = 0
}
.

We use the following notation through the article: V = [V ]d . Next, we multiply (4) for suitable test functions and we sum 
up all the contributions to obtain: for any time t ∈ (0, T f ], find (u, w, T )(t) ∈ V × W × V such that ∀(v, z, S) ∈ V × W × V :

Muw((ü, ẅ), (v, z)) + τMT (T̈ , S) + τ C((ü, ẅ) , S) + B(ẇ, z) +MT (Ṫ , S) + C((u̇, ẇ) , S)

+Auw((u,w), (v, z)) +AT (T , S) − C((v, z) , T ) = ((f,g, H), (v, z, S)),
(5)

where for any (u,w, T ) , (v, z, S) ∈ V × W × V we have set:
4
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Muw((u,w) , (v, z)) = (ρu + ρ f w,v
)+ (ρ f u + ρw w, z

)
,

MT (T , S) =
((

a0 − b2
0/c0

)
T , S

)
,

Auw((u,w) , (v, z)) = (2με(u),ε(v)) + (λ∇·u,∇·v) + (c0
−1(α∇·u + ∇·w),α∇·v + ∇·z),

AT (T , S) = (θ ∇T ,∇ S),

B(w, z) = (k−1w, z),

C((u,w) , S) = ([αb0/c0 + β]∇·u + b0/c0∇·w, S) .

3. Discretization

The purpose of this section is to derive the fully-discrete scheme for problem (4). We start by introducing the spatial 
discretization obtained via the PolyDG approximation, cf. Section 3.2, and then we couple it with the implicit Newmark-β
time integration scheme, cf. Section 3.3.

3.1. Preliminaries

First, we present the mesh assumptions, the discrete spaces, and some instrumental results for the design and analysis of 
PolyDG schemes. We introduce a subdivision Th of the computational domain �, whose elements are polygons/polyhedrons 
in dimension d = 2, 3, respectively. Next, we define the interfaces (or internal faces) as subsets of the intersection of any 
two neighboring elements of Th . If d = 2 an interface is a line segment, while if d = 3 an interface is a planar polygon, that 
we assume can be further decomposed into a set of triangles. The same holds for the boundary faces collected in the set 
FB which yields a simplicial subdivision of ∂�. Accordingly, we define FI to be the set of internal faces and the set of all 
the faces as Fh =FB ∪FI . In what follows, we introduce the main assumptions on the mesh Th (cf. [17,19]).

Definition 3.1 (Polytopic-regular mesh). A mesh Th is polytopic-regular if for any κ ∈ Th , there exist a set of non-overlapping 
simplices contained in κ , denoted by {S F

κ }F⊂∂κ , such that, for any face F ⊂ ∂κ , the following condition holds: hκ �
d |S F

κ | |F |−1, with hκ denoting the diameter of the element κ and with | · | denoting the Hausdorff measure.

Definition 3.2 (Simplicial covering). A simplicial covering T ∗
h = {K} of the polytopic mesh Th is a set of regular shaped 

d-dimensional simplices K, d = {2; 3}, such that for all κ ∈ Th , there exists K ∈ T ∗
h such that κ ⊆K.

As a basis for the construction of the PolyDG approximation, we define fully-discontinuous polynomial spaces on the 
mesh Th . Given an element-wise constant polynomial degree � : Th → N>0 which determines the order of the approxima-
tion, the discrete spaces are defined such as

V �
h =

{
vh ∈ L2(�) : vh|κ ∈ P �κ (κ) ∀κ ∈ Th

}
, V�

h =
[

V �
h

]d
,

where, for each κ ∈ Th , the space P �κ (κ) is spanned by polynomials of maximum degree �κ = �|κ . In order to analyze the 
convergence of the spatial discretization, we consider a mesh sequence {Th}h→0 satisfying the following properties:

Assumption 3.1. The mesh sequence {Th}h→0 and the polynomial degree � are such that

A.1 {Th}h→0 is uniformly polytopic-regular;
A.2 For each Th ∈ {Th}h→0 there exists a shape-regular, simplicial covering T ∗

h of Th such that, for each pair κ ∈ Th and 
k ∈ T ∗

h with κ ⊂ k it holds
(i) hk � hκ ;

(ii) max
κ∈Th

card
{
κ ′ ∈ Th : κ ′ ∩ k �= 0,k ∈ T ∗

h , κ ⊂ k
}
� 1;

A.3 For each Th ∈ {Th}h→0 and for any pair of neighboring elements κ+, κ− ∈ Th , the following hp-local bounded variation 
properties hold: hκ+ � hκ− � hκ+ and �κ+ � �κ− � �κ+ .

We remark that under A.1 the following inequality (called discrete trace-inverse inequality) holds (cf. [18] for all the 
details):

‖v‖L2(∂κ) �
�κ

h1/2
κ

‖v‖L2(κ) ∀v ∈ P �κ (κ),

where the hidden constant is independent of �κ , hκ , and the number of faces per element. For deriving the discontinu-
ous Galerkin formulation, we also need to introduce the average and jump operators. We start by defining them on each 
interface F ∈FI shared by the elements κ± as in [9]:
5
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[[a]] = a+n+ + a−n−, [[a]] = a+ � n+ + a− � n−, [[a]]n = a+ · n+ + a− · n−,

{{a}} = a+ + a−

2
, {{a}} = a+ + a−

2
, {{A}} = A+ + A−

2
,

where a � n = anT , and a, a, A are (regular enough) scalar-, vector-, and tensor-valued functions, respectively. The notation 
(·)± is used for the trace on F taken within the interior of κ± and n± is the outer unit normal vector to ∂κ±. Accordingly, 
on boundary faces F ∈FB , we set

[[a]] = an, {{a}} = a, [[a]] = a � n, {{a}} = a, [[a]]n = a · n, {{A}} = A.

From now on, for the sake of simplicity, we assume that the model parameters are element-wise constant. Moreover, for 
later use, we can introduce the quantities

c0,κ = c0|κ , θκ = θ |κ , λκ = λ|κ , and μκ = μ|κ .

3.2. Discontinuous Galerkin semi-discrete problem

We are now ready to derive the semi-discrete PolyDG approximation of the fully-dynamic thermo-poroelastic prob-
lem (4). In the following discussion, we choose the Interior Penalty formulation [8,30,46]. Thus, the PolyDG semi-
discretization of problem (5) reads:
for any t ∈ (0, T f ], find (uh, wh, Th)(t) ∈ V�

h × V�
h × V �

h such that:

Muw((üh, ẅh), (vh, zh)) + τMT (T̈h, Sh) + τ Ch((üh, v̈h) , Sh) + B(ẇh, zh) +MT (Ṫh, Sh)

+ Ch((u̇h, v̇h) , Sh) +Auw,h((uh,wh), (vh, zh)) +AT ,h(Th, Sh) − Ch((vh,wh) , Th)

= ((f,g, H), (vh, zh, Sh)) ∀(vh, zh, Sh) ∈ V�
h × V�

h × V �
h ,

(6)

supplemented by initial conditions (uh,0, wh,0, Th,0, ̇uh,0, ẇh,0, Ṫh,0) that are fitting approximations of the initial conditions of prob-
lem (4). The bilinear forms labelled with the subscript h appearing in (6) are given by

Auw,h((u,w), (v, z)) = Ae,h(u,v) +Ap,h(αu + w,αv + z)

AT ,h(T , S) = (θ ∇h T ,∇h S) −
∑

F∈Fh

∫
F

({{θ ∇h T }}·[[S]] + [[T ]]·{{θ ∇h S}} − �[[T ]]·[[S]]),
Ch((u,w) , S) =

(
αb0 + βc0

c0
∇h·u + b0

c0
∇h·w, S

)
−
∑

F∈Fh

∫
F

({{
αb0 + βc0

c0
S

}}
[[u]]n +

{{
b0

c0
S

}}
[[w]]n

) (7)

with

Ae,h(u,v) = (2μεh(u),εh(v)) −
∑

F∈Fh

∫
F

({{2μεh(u)}}:[[v]] + [[u]]:{{2μεh(v)}} − σ [[u]]:[[v]])

+ (λ∇h·u,∇h·v) −
∑

F∈Fh

∫
F

({{λ∇h·u}}[[v]]n + [[u]]n{{λ∇h·v}} − ξ [[u]]n[[v]]n
)
,

Ap,h(w, z) = (c−1
0 ∇h·w,∇h·z) −

∑
F∈Fh

∫
F

({{c−1
0 ∇h·w}}[[z]]n + [[w]]n{{c−1

0 ∇h·z}} − ζ [[w]]n[[z]]n
)
.

Here, for all a ∈ V �
h and a ∈ V�

h , ∇ha and ∇h·a denote the broken differential operators whose restrictions to each element 
κ ∈ Th are defined as ∇w |κ and ∇ · w |κ , respectively. Then, the broken version of the strain tensor is defined as εh(u) =(∇hu + ∇huT

)
/2. Last, we are left to define the stabilization functions σ , ξ, ζ , and � ∈ L∞(Fh). Following [18] we select

σ =

⎧⎪⎨
⎪⎩

α1 max
κ∈{κ+,κ−}

(
μκ�2

κ

hκ

)
F ∈ FI ,

α1μκ�2
κh−1

κ F ∈ FB ,

ξ =

⎧⎪⎨
⎪⎩

α2 max
κ∈{κ+,κ−}

(
λκ�2

κ

hκ

)
F ∈ FI ,

α2λκ�2
κh−1

κ F ∈ FB ,

ζ =

⎧⎪⎨
⎪⎩

α3 max
κ∈{κ+,κ−}

(
�2
κ

c0,κhκ

)
F ∈ FI ,

α3c0,κ
−1�2

κh−1
κ F ∈ FB ,

� =

⎧⎪⎨
⎪⎩

α4 max
κ∈{κ+,κ−}

(
θκ�2

κ

hκ

)
F ∈ FI ,

α4θκ�2
κh−1

κ F ∈ FB ,

(8)

where α1, α2, α3 and α4 ∈R are positive constants to be properly defined.
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3.3. Fully-discrete scheme

We assume that the unknowns of our problem can be written as a linear combination of modal basis functions. Given 
a generic function a(x, t) defined on a local element κ , we can write it as a(x, t) =∑nb

i=1 ai(t) �i(x), where ai are the local 
expansion coefficients associated to the orthonormal modal basis {�i(x)}nb

i=1. Here we assume that the number of modes is 
equal to nb for every element κ in our tessellation. In 2D , we have that nb = (� +1)(� +2)/2. We remark that when writing 
a(x, t) as the expansion of basis functions, we consider the local expansion coefficients as dependent only on time and the 
basis functions, on the other hand, dependent only on space. The choice of modal basis functions is here justified by the 
fact that they are appropriate for high-order approximation, relying on their hierarchical structure. Indeed, when increasing 
the order of approximation from � to � + 1, it is sufficient to add a single (� + 1)-th order shape functions to the previous 
basis [29,42]. In this work, we consider the Legendre polynomials as our modal basis functions, defined as:

Pn(x) =
[n/2]∑
i=0

(−1)i (2n − 2i)! xn−2i

2n i! (n − i)! (n − 2i)! , where: [n/2] =
{

n/2, n even,

(n − 1)/2, n odd.

From the implementation point of view, we remark that the Legendre polynomial can be computed also by the use of 
recursive formulas [38]. We denote by [U,W,T]T the vector of the expansion coefficients of the variables (uh, wh, Th) in the 
modal basis for the space V�

h × V�
h × V �

h . We can rewrite the semi-discrete problem (6) in the equivalent form

⎡
⎣ ρMuw ρ f Muw 0

ρ f Muw ρw Muw 0
τ C τ C τ

(
a0 − b2

0/c0
)

MT

⎤
⎦
⎡
⎣ Ü

Ẅ
T̈

⎤
⎦+

⎡
⎣0 0 0

0 B 0
C C MT

⎤
⎦
⎡
⎣ U̇

Ẇ
Ṫ

⎤
⎦

+
⎡
⎣Ae + α2Ap αAp −CT

αAp Ap −CT

0 0 AT

⎤
⎦
⎡
⎣ U

W
T

⎤
⎦=

⎡
⎣ F

G
H

⎤
⎦

(9)

with initial conditions U(0) = U0, W(0) = W0, T (0) = T0, U̇(0) = U1, Ẇ(0) = W1, Ṫ (0) = T1. The vectors F, G, H are represen-
tations of the linear functionals appearing in the right-hand side of (6).

To integrate (9) in time, we introduce a time-step �t = T f /n, with n ∈N>0, discretize the interval (0, T f ] as a sequence 
of time instants {tk}0≤k≤n such that tk+1 − tk = �t , and define Xk = X(tk), with X = [U,W,T]T . Next, we rewrite (9) in a 
compact form as AẌ + BẊ + CX = F and derive

Ẍ = A−1 (F − BẊ − CX
)= A−1F − A−1BẊ − A−1CX = L(t,X, Ẋ). (10)

Last, we integrate in time (10) with the use of Newmark-β scheme, that exploits a Taylor expansion for X and Y = Ẋ:

⎧⎪⎨
⎪⎩

Xk+1 = Xk + �tYk + �t2
(

βNLk+1 + (
1

2
− βN)Lk

)
,

Yk+1 = Yk + �t
(
γNLk+1 + (1 − γN)Lk

)
,

(11)

where Lk = L(tk, Xk, Ẋk) and the Newmark parameters βN , γN satisfy: 0 ≤ 2βN ≤ 1, 0 ≤ γN ≤ 1. The typical choices for the 
Newmark parameters, that ensure unconditionally stability and second-order accuracy for the scheme, are βN = 1/4 and 
γN = 1/2. These are the values used in all the numerical tests of the next two sections.

4. Convergence tests

The aim of this section is to assess the performance of the proposed scheme in terms of accuracy. The results found in 
this section can be compared with the theoretical analysis for the semi-discrete formulation reported in Section 6.

The numerical implementation is carried out in MATLAB and the Voronoi meshes are generated via the Polymesher
algorithm [45]. In all the tests the PolyDG space discretization is coupled with the Newmark-β time-integration scheme 
(cf. Section 3.3, eq. (11)) with parameters γN = 1/2 and βN = 1/4 [4]. In the forthcoming tests, we consider the Maxwell-
Vernotte-Cattaneo relaxation time to be either null or positive. In Section 6 the analysis for the semi-discrete problem is 
carried out for the case τ = 0. However, in this section, we demonstrate numerically that the results can be extended to the 
case τ �= 0.
7
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Fig. 1. Convergence test: example of a 2D Voronoi polygonal mesh made of 300 elements.

Table 2
Convergence test: problem’s parameters for the convergence analysis.

Coefficient Value Coefficient Value

a0 [GPa/K2] 0.02 k [dm2 GPa−1 h−1] 0.2
b0 [K−1] 0.01 θ [dm2 GPa K−2 h−1] 0.05
c0 [GPa−1] 0.03 ρ f [kg m−3] 0.03
α [−] 1 ρs [kg m−3] 0.03
β [GPa K−1] 0.8 φ [−] 0.5
μ [GPa] 1 a [−] 1
λ [GPa] 5 τ [s] 0.01
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Fig. 2. Convergence test for τ = 0 : computed errors in L2-norm (left) and dG-norm (right) versus 1/h (log-log scale). The errors are computed at the final 
time T f . The polynomial degree of approximation is taken as � = 3.

We consider problem (4) in the square domain � = (0, 1)2 with manufactured analytical solutions

u(x, y, t) =
⎛
⎜⎝x2 cos

(πx

2

)
sin(πx)

x2 cos
(πx

2

)
sin(πx)

⎞
⎟⎠ cos(

√
2πt),

w(x, y, t) = −u(x, y, t),

T (x, y, t) =
(

x2 sin(πx) sin(π y)
)

sin(
√

2πt).

The initial conditions, boundary conditions, and forcing terms are inferred from the exact solutions. The model coefficients 
are chosen as reported in Table 2 and follow from a combination of the convergence parameters for the quasi-static thermo-
poroelastic problem considered in [7] and the two-displacements poroelasticity of [4]. In the first convergence test, we 
consider τ = 0. In this case, the third equation in (9) reduces to a first-order differential equation for the temperature T . 
Then, to integrate in time, we consider a Newmark-β scheme for the mass and momentum conservation equations, coupled 
with the Crank-Nicolson method for the energy conservation equation. The time discretization parameters are T f = 0.1, 
�t = 1 · 10−4, and all the penalty coefficients αi , i = 1, ..., 4 in (8) are set equal to 10.

The convergence of the PolyDG-scheme is tested both with respect to the mesh size h and to the polynomial approxi-
mation degree �. For the h-convergence a sequence of polygonal meshes as the one in Fig. 1 is considered, while for the 
�-convergence we fixed a computational mesh of 100 elements and varied the polynomial degree � = 1, 2, . . . , 5.
8
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Fig. 3. Convergence test for τ = 0.01: computed errors in L2-norm (left) and dG-norm (right) versus 1/h (log-log scale). The errors are computed at the 
final time T f . The polynomial degree of approximation is taken as � = 3.
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Fig. 4. Convergence test for τ = 0.01: computed errors in L2-norm (left) and dG-norm (right) versus � (semi-log scale). The errors are computed at the final 
time T f . The computational mesh is made of 100 polygons.

In Fig. 2 we report the L2 and dG-errors for the three variables with respect to the mesh size (log-log scale). In agreement 
with Theorem 6.2, we observe that, as we are using � = 3, the errors show a convergence rate proportional to h3. Moreover, 
for what concerns the L2-errors, we observe that we reach h�+1 convergence. Notice that this behavior is not covered by 
our theoretical analysis. In Fig. 3 we report the same quantities, but for the case τ > 0 (τ = 0.01 according to Table 2). 
We observe that, even by considering the fully-hyperbolic problem, we recover the theoretical results, cf. Theorem 6.2. We 
have also computed the L2 and dG-errors for the pressure field ph , which is recovered in the post-processing procedure by 
the use of (3). The initial condition for the pressure is taken such that p0(x) = −c−1

0 (α∇·u0 + ∇·w0), being u0 and w0 the 
initial conditions for the displacement and the filtration displacement, respectively. For computing the dG-error, we have 
considered the following dG-norm for the pressure [7]: ‖ph‖2

dG,prs = ‖√k∇h ph‖2 +∑F∈Fh
‖√γ [ [ph] ] ‖2

F , where γ is defined 
in a way similar to (8). As for the three unknowns of the problem we observe a decay of the error proportional to h3 (h4

in L2-norm), cf. Fig. 5. We remark that, due to the formulation we are using, we do not have an explicit bound on the 
dG-norm for the pressure (cf. (3) and hypotheses of Theorem 6.2); however, we observe an optimal rate of decay also in 
this case. We think that the effect of not having control over the dG-norm is seen in the magnitude of the errors, which is 
higher compared with the orders of magnitude of the errors shown in Fig. 2 and Fig. 3. Last, the �-convergence test shows 
that, in agreement with the theoretical estimates, we reach an exponential decrease of the error, the results of this test are 
presented in Fig. 4.

5. Physical tests

The aim of this section is to evaluate the proposed scheme with respect to a wide set of physically-sound test cases. 
We compare the results obtained by our method with the ones presented in [22] simulating the wave propagation in a 
homogeneous and heterogeneous media. A comparison with the results obtained via the poroelastic model is presented too. 
The setup for numerical implementation is the same as the one described in the preamble of Section 4.
9
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Fig. 5. Convergence test: computed errors for the reconstructed pressure vs h, considering both the cases τ = 0 and τ = 0.01. The polynomial degree of 
approximation is takes as � = 3.

Table 3
Test case 1: TPE medium properties.

Coefficient Value Coefficient Value

a0 [Pa/K2] 4.1695 k [m2/(Pa s)] 10−9

b0 [K−1] 1.4361 · 10−5 θ [m2 Pa/(K2 s)] 1.5 · 104

c0 [Pa−1] 1.4361 · 10−10 ρ f [kg/m3] 1000
α [-] 0.9514 ρs [kg/m3] 2650
β [Pa/K] 2.4857 · 104 φ [-] 0.3
μ [Pa] 1.885 · 109 a [-] 2
λ [Pa] 4.433 · 108 τ [s] 1.5 · 10−2

Fig. 6. Test case 1: computed velocity field |vh | at the time instants t = 0.2s (left), t = 0.4s (center), t = 0.6s (right).

5.1. Test case 1: homogeneous media

In this section we consider a wave propagation problem in a homogeneous thermo-poroelastic medium inspired by [22]. 
The aim of this simulation is to prove that our scheme can reproduce known results present in the literature. We consider a 
domain � = (0, 1500)2 m2 and in Table 3 we report the thermo-poroelastic properties of the medium. We model the shear 
source in terms of a moment tensor M as f = −M ∇·δ(x − xs)h(t) [35], where xs is the point-source location, δ(x −xs) is the 
Kronecker delta located in xs , and h(t) is the time-history. This form of f is often used in the context of earthquakes. In our 
case, the time evolution is given by [22] h(t) = A0 cos [2π(t − t0) f0] exp

[−2(t − t0)
2 f 2

0

]
, where A0 = 10 m is the amplitude, 

f0 = 5 Hz is the peak-frequency, and t0 = 3/(2 f0) = 0.3 s is the time-shift. To discretize our domain we choose a polygonal 
mesh with mesh size h ∼ 60 m (# Elements = 2500) and polynomial degree � = 4. As a time stepping scheme we employ 
the Newmark-β scheme, with �t = 1 · 10−2 s and T f = 1 s. Finally, we complete our problem with homogeneous Dirichlet 
boundary conditions and with null initial conditions. In the following, we denote by vh the solid velocity (i.e. u̇h), by vh,y
its vertical component, and by qh,y the vertical component of the filtration velocity (i.e. (ẇh)y).

We report in Fig. 6, Fig. 7, and Fig. 8, the computed quantities |vh|, vh,y , and qh,y at selected time instants, respectively.
10
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Fig. 7. Test case 1: computed vertical component of the velocity field vh,y at the time instants t = 0.2s (left), t = 0.4s (center), t = 0.6s (right).

Fig. 8. Test case 1: computed temperature field Th at the time instants t = 0.2s (left), t = 0.4s (center), t = 0.6s (right).

From the results of Fig. 6 we notice a symmetric wavefront that detaches from the center of the domain at t = 0.4 s; this 
is due to the homogeneity of the thermo-poroelastic material in which it propagates. We can see that the axes of symmetry 
of our wavefront are the diagonals of the square domain. This behavior is correct and is due to the form of the forcing 
term we are imposing. Looking at the three snapshots we can also observe the presence of the fast P -wave captured by our 
scheme, even if its amplitude is far lower than the ones of the slow P -wave and the S-wave. We can also notice that in the 
last frame, the fast P -wave reaches the border of the domain, causing some reflection effects in the corners.

From the results in Fig. 7 and Fig. 8 we can qualitatively compare our results with the ones presented in [22] with very 
similar parameters. We highlight that the main difference between our test and the one proposed in [22] lies in the lower 
frequency content of the source term, i.e. lower f0. This generates a wavefield with a larger wavelength and makes the 
identification of the P and S waves more difficult. In Fig. 7, we observe more plainly the appearance of the shear waves and 
the anti-symmetric pattern of the wave fronts with respect to the y-axis. In Fig. 8 we can see the presence of the diffusive 
thermal T -wave. In conclusion, taking into account the value of the central peak frequency f0 that we considered, we can 
see a good agreement between our results and the ones presented in [22].

5.2. Test case 2: comparison with the poroelastic model

The aim of this subsection is to compare the results obtained via the thermo-poroelastic model, with the ones obtained 
through the poroelastic model presented in [4]. In the poroelastic setting we consider the parameters taken from Table 3
and the same mesh as the one displayed in Fig. 9 (right). The yellow dot represents the point in which the forcing term 
f is located, while the red, green, and blue dots represent the points x1 = (750m, 1125m), x2 = (1015m, 1015m), and 
x3 = (1125m, 750m), respectively, where the solution is recorded. In Fig. 9 we report the snapshots of the magnitude of the 
11
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Fig. 9. Test case 2: computed velocity field |vh | for the poroelastic case (left) and its vertical component vh,y (center) at time instant t = 0.6 s. Voronoi 
polygonal mesh (#Elements = 2500) generated via PolyMesher algorithm [45] used in Test case 1, Test case 2; the yellow, red, green, and blue dots 
represent the point in which the forcing term is located and the points in which the solution is recorded, respectively (right). (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 10. Test case 2: comparison of the velocity field |vh| between the thermo-poroelastic (TPE) and poroelastic (PE) model in terms of magnitude of the 
difference (left), cosine of the subtended angle (center), and difference of magnitudes (right) at the time instant t = 0.6s.

velocity field (left) and of its vertical component (center) computed for the poroelastic problem at the time instant t = 0.6
s. As one can see, they are qualitatively similar to those reported in Figs. 6–7.

In Figs. 10–14 we compare qualitatively the solutions obtained with the thermo-poroelastic and the poroelastic model, 
respectively. Namely, in Fig. 10 and Fig. 11 we plot the magnitude of the difference, the cosine of the subtended angle, and 
the difference of the magnitudes for the solid velocity and its vertical component, respectively. Looking at the six figures we 
can see that the patterns of differences regarding the entire velocity and its vertical component are similar. From Fig. 10, 
Fig. 11 we can see that the biggest differences can be observed in the areas where shear waves are present, while in 
the longitudinal and transverse areas of the domain, the behavior of the solutions is similar. Particularly interesting is the 
fact that, in the corners, the velocity fields computed by the thermo-poroelastic and the poroelastic models have opposite 
directions (cf. Fig. 10b and Fig. 11b); this is due to the phase shift between the two wave fields. By looking at Fig. 10c and 
Fig. 11c we can see that in the corners the magnitude of the velocity field generated by the poroelastic model is greater than 
the one of the thermo-poroelastic. Even in transversal and longitudinal directions, we can observe some slight differences. 
For instance, in Fig. 11c we see that in the propagating direction of the transversal waves, at the wave front with larger 
amplitude, that magnitude of the thermo-poroelastic wave is greater than the poroelastic one. In general, we see that the 
difference is one order of magnitude lower with respect to the amplitude of the two waves.

In Fig. 12, 13, 14 we report the time evolution of vh, vh,y , and qh,y during time. First of all, we observe that for both 
of the cases, the amplitude of the filtration velocity has several orders of magnitude of difference with respect to the solid 
one; this is due to the choice of the forcing terms f, g (cf. [35]).
12



Fig. 11. Test case 2: comparison of the vertical component of the velocity field vh,y between the thermo-poroelastic (TPE) and poroelastic (PE) model in 
terms of magnitude of the difference (left), cosine of the subtended angle (center), and difference of magnitudes (right) at the time instant t = 0.6s.
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Fig. 12. Test case 2: comparison of time-evolution of the solid velocity |vh | measured in the points x2 (green), x3 (blue), and x1 (red) for the thermo-
poroelastic (TPE) model (solid-line) and the poroelastic (PE) one (dashed-line). Unit of measure: μm s−1 .

We see that for the monitored points x1 and x3 (the ones on the vertical and horizontal direction, respectively) the re-
sults are comparable. Instead, for what concerns the point x2, we can observe considerable differences, not only a reduction 
of the amplitude of the wave, but also a phase shift. These remarks are in agreement with Figs. 10–11 and motivate the 
major discrepancies on the corners of the domain.

To sum up, from the comparison of the results of the thermo-poroelastic model and the poroelastic one, it seems that 
adding the temperature to our model does not have a great effect on compressional waves, while it has an important impact 
on the computation of shear waves.

5.3. Test case 3: heterogeneous media

As a third test case, we consider wave propagation in a heterogeneous media. We split � = (−750, 750) × (0, 1500) m2

into two vertical layers. The left part of the domain is characterized by the same thermo-poroelastic properties of Test case 
S. Bonetti, M. Botti, I. Mazzieri et al. Journal of Computational Physics 489 (2023) 112275
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Fig. 13. Test case 2: comparison of time-evolution of the vertical component of the solid velocity vh,y measured in the points x2 (green), x3 (blue), and x1

(red) for the thermo-poroelastic (TPE) model (solid-line) and the poroelastic (PE) one (dashed-line). Unit of measure: μm s−1 .
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Fig. 14. Test case 2: comparison of time-evolution of the vertical component of the filtration velocity qh,y measured in the points x2 (green), x3 (blue), and 
x1 (red) for the thermo-poroelastic (TPE) model (solid-line) and the poroelastic (PE) one (dashed-line). Unit of measure: nm s−1.
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Table 4
Test case 3: thermo-poroelastic properties of the medium (right layer).

Coefficient Value Coefficient Value

a0 [Pa/K2] 4.1017 β [Pa/K] 4.8571 · 104

b0 [K−1] 1.3684 · 10−5 μ [Pa] 9 · 109

c0 [Pa−1] 1.3684 · 10−10 λ [Pa] 4 · 109

α [-] 0.7143

Fig. 15. Test case 3: computed velocity field |vh | at the time instants t = 0.1s (left), t = 0.3s (center), t = 0.5s (right).

Fig. 16. Test case 3: computed vertical component of the velocity field vh,y at the time instants t = 0.1s (left), t = 0.3s (center), t = 0.5s (right).

1, while in the right part, we consider the following, cf. Table 4 (the parameters that are not listed there are taken as in 
Table 3). The forcing terms, time-integration scheme, polynomial degree of approximation, and discretizations in space and 
time are the same of Test case 1.

The focus of this test case is to investigate how the heterogeneity of the media can affect wave propagation. In terms of 
the velocity field, the main difference with respect to the homogeneous case is the presence of the head waves, which are 
particularly evident by looking at the vertical component (cf. last frame of Fig. 16). The field that is mainly affected by the 
change of medium is the temperature one. By looking at Fig. 17 we can observe that the behavior of Th is quite different 
with respect to Fig. 8; moreover, even if the interface is very simple (i.e. a straight interface) we can observe the presence 
of strong boundary effects, notably stronger than the ones observed in Fig. 15, Fig. 16. Also in this case, we can observe a 
qualitatively good agreement with respect to the results presented in [22].

5.4. Computational times

All the numerical simulations presented in Section 4 and Section 5 were performed using the Cerbero cluster (6 cores 
I7-3930K @3.20 GHz + 20 cores Intel Xeon E5-2640v4 @ 2.40 GHz, GPU NVidia GT520, 128 GB RAM, O.S. CentOS 7 – 
Resource for sequential applications) at MOX, Department of Mathematics, Politecnico di Milano.
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Fig. 17. Test case 3: computed temperature field Th at the time instants t = 0.1s (left), t = 0.3s (center), t = 0.5s (right).

Table 5
CPU time [s] required for solving the physical tests presented in Section 5. For each test, we report 
the time required for assembling the linear system and the time for solving the time-loop. More-
over, in the last column we report the number of non-zero elements for the global system matrix 
arising from (11).

Test Case
CPU time [s]

# nnz
Assembly Time loop

Test case 1: TPE, Monodomain 911 63677 214815993
Test case 2: PE, Monodomain 874 16517 128932200
Test case 3: TPE, Bidomain 455 62067 213500830

The number of degrees of freedom (that are associated with the space V 4
h on a 2500 elements mesh) is equal to 37500. 

This leads to a total number of unknowns equal to 375000 for Test case 1 and Test case 3 (TPE problem), and equal to 300000
for Test case 2 (PE problem). For solving the linear system arising from (11) we use the MATLAB command backslash. 
The mesh is generated off-line for all three tests and it requires ∼ 250 s. In Table 5, we summarize the computational time 
needed for performing the numerical simulations regarding the physical tests.

Looking at the results reported in Table 5, we observe that the computational time needed for assembling is quite 
dependent on the individual simulation, depending on how many jobs are active on the compute cluster and on the mesh 
that we are using, in any case, it does not exceed a time ∼ 15 minutes and is not that different for the three test cases. 
A larger difference is seen for time loop resolution, where the computational cost required by TPE simulation is about 
4 times greater than that required by PE simulation. There are two reasons behind this behavior: first, we are solving 
a larger system; second, the presence of the C-coupling matrices (cf. (9)) breaks the symmetry of the system, making it 
more difficult to solve. For this reason, the purpose of the forthcoming work is to design appropriate solver strategies (e.g., 
splitting schemes) to deal with the high computational costs. Last, it is interesting to notice that, adding heterogeneity to 
the model has no impact on the computational cost of the overall simulation.

6. Analysis of the semi-discrete problem

The aim of this section is to provide the key ingredients and the main results regarding the analysis of the semi-discrete 
formulation (12) in terms of stability and a-priori error estimates. The proofs of the stability and error estimates are reported 
in Appendix A.

In this section, we will focus on the case τ = 0. We remark that, from a physical point of view, this assumption may lead 
to nonphysical results. However, the analysis carried out in this particular situation still can provide us crucial information 
about the performance of the method, even in the case τ �= 0, as numerically assessed in Section 4. As shown in [40], the 
analysis can be generalized to the case τ > 0. The proof of the existence and uniqueness provided in the aforementioned 
work relies on the following steps: (i) construct a sequence of approximate solutions of Problem (4) using the Galerkin 
method; (ii) derive a-priori bounds for the approximate solutions, in terms of boundary conditions, initial data, and forcing 
terms; (iii) show the existence of the limit of a subsequence of approximate solutions in the weak−∗ topology via com-
pactness arguments; and (iv) show that the limit found satisfy the initial and boundary conditions for the problem. We 
think that, by combining these steps with arguments concerning the PolyDG-discretization, the analysis can be extended to 
the fully-hyperbolic model. The theoretical analysis of the full problem will be focus of future works.

In the case τ = 0, problem (6) reduces to: for any t ∈ (0, T f ], find (uh, wh, Th)(t) ∈ V�
h × V�

h × V �
h such that ∀ (vh, zh, Sh) ∈

V� × V� × V � it holds:
h h h
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Muw((üh, ẅh), (vh, zh)) + B(ẇh, zh) +MT (Ṫh, Sh) + Ch((u̇h, ẇh) , Sh) +Auw,h((uh,wh), (vh, zh))

+AT ,h(Th, Sh) − Ch((vh, zh) , Th) = ((f,g, H), (vh, zh, Sh)).
(12)

We remark that the initial condition on Ṫ (0) is not needed for problem (12).

6.1. Stability analysis

In order to establish the stability of the proposed method, we mainly refer to the techniques that are used in [4,7]. We 

introduce the shorthand notation ‖ · ‖F =
(∑

F∈Fh
‖ · ‖2

F

) 1
2

and define the following dG-norms and semi-norms:

‖v‖2
dG,e = ‖√2μ εh(v)‖2 + ‖√σ [[v]] ‖2

F ∀ v ∈ V�
h,

|z|2dG,p = ‖c−1
0 ∇h·z‖2 + ‖√ζ [[z]] ‖2

F ∀ z ∈ V�
h,

‖S‖2
dG,T = ‖√θ∇h S‖2 + ‖√�[[S]] ‖2

F ∀ S ∈ V �
h .

Remark 3. | · |dG,p : V�
h →R+ is a semi-norm. By proceeding as in [4] it is possible to prove that for any v and w in V�

h × V�
h , 

‖ (v,w)‖2
dG,∗ = ‖v‖2

dG,e + |αv + w|2dG,p +B(w, w) is a norm on V�
h × V�

h .

Then, we introduce two auxiliary norms for our problem for all (v, z) ∈ C1((0, T f ], V�
h × V�

h) and S ∈ C0((0, T f ], V �
h):

‖ (v, z, S) (t)‖2
E = Muw((v̇, ż) , (v̇, ż))(t) +MT (S, S)(t) + ‖ (v,w) (t)‖2

dG,∗

‖ (v, z, S) (t)‖2
E,∗ = ‖ (v, z, S) (t)‖2

E +
t∫

0

‖S(s)‖2
dG,T ds

Now, we look at the boundedness and coercivity properties of the bilinear forms appearing in (12). Since we rely on standard 
steps in the discontinuous Galerkin framework, we refer to [1, Section 3], [4] for detailed proof.

Lemma 6.1. Let Assumption 2.1 and Assumption 3.1 be satisfied. Let α1, α2, α3 and α4 in (8) be sufficiently large. Then, we have:

Ae,h(u,v) � ‖u‖dG,e‖v‖dG,e, Ae,h(v,v) � ‖v‖2
dG,e ∀ u,v ∈ V�

h,

AT ,h(T , S) � ‖T ‖dG,T ‖S‖dG,T , AT ,h(S, S) � ‖S‖2
dG,T ∀ T , S ∈ V �

h ,

Muw((u,w), (v, z)) � ‖(u,w)‖‖(v, z)‖, Muw((v, z), (v, z))� ‖(v, z)‖2 ∀ u,w,v, z ∈ V�
h,

MT (T , S) � ‖T ‖‖S‖, MT (S, S) � ‖S‖2 ∀ T , S ∈ V �
h ,

Auw,h((u,w), (v, z)) + B(w, z) � ‖ (u,w)‖dG,∗ ‖ (v, z)‖dG,∗
Auw,h((v, z), (v, z)) + B(z, z) � ‖ (v, z)‖2

dG,∗
∀ u,w,v, z ∈ V�

h.

Note that, from Lemma 6.1 it follows the well-posedness ∀t ∈ (0, T f ] of Problem (12). We can state now the main 
Theorem of this section:

Theorem 6.1. Let Assumption 2.1 and Assumption 3.1 hold, suppose that the parameters α1, α2 , α3 , and α4 appearing in (8) are large 
enough and let Xh(t) = (uh, wh, Th)(t) ∈ V�

h × V�
h × V �

h be the solution of (12) for any t ∈ (0, T f ]. Then, it holds

sup
t∈(0,T f ]

‖Xh(t)‖E,∗ � ‖Xh(0)‖E +
T f∫

0

‖ (f,g, H) (s)‖ds,

where the hidden constant depends on the material properties and the final time T f , but it does not depend on the mesh size h and the 
polynomial degree �.

Proof. The proof of Theorem 6.1 can be found in Appendix A.1. �
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6.2. Error analysis

We start by defining, for a given element-wise constant l : Th →N>0, the broken Sobolev spaces with variable regularity, 
which are needed to establish the error bounds in the hp-framework. We set

Hl(Th) =
{

vh ∈ L2(�) : vh|κ ∈ Hlκ (κ) ∀κ ∈ Th

}
, Hl(Th) =

[
Hl(Th)

]d
.

where as usual lκ = l|κ . Next, we introduce the stronger dG-norms

|||v|||2dG,e = ‖v‖2
dG,e + ‖σ− 1

2 {{2μεh(v)}}‖2
F + ‖ξ− 1

2 {{λ∇h·v}}‖2
F ∀ v ∈ H2(Th),

|||z|||2dG,p = |z|2dG,p + ‖ζ− 1
2 {{c0

−1∇h·z}}‖2
F ∀ z ∈ H2(Th),

|||S|||2dG,T = ‖S‖2
dG,T + ‖�− 1

2 {{θ ∇h S}}‖2
F ∀ S ∈ H2(Th).

(13)

and the following Lemma stating the boundedness of the bilinear forms (7) in the dG-norms (13):

Lemma 6.2. Let Assumption 2.1 and Assumption 3.1 be satisfied. Let α1, α2, α3, α4 in (8) be sufficiently large. Then,

AT ,h(T , S) � |||T |||dG,T ‖S‖dG,T ∀ T ∈ H2(Th), ∀ S ∈ V �
h ,

Ae,h(u,v) � |||u|||dG,e‖v‖dG,e ∀ u ∈ H2(Th), ∀ v ∈ V�
h,

Ap,h(w, z) � |||w|||dG,p|z|dG,p ∀ w ∈ H2(Th), ∀ z ∈ V�
h,

Ch((u,w), S)�
(|||u|||dG,e + |||w|||dG,p

)‖S‖dG,T ∀ u,w ∈ H2(Th), ∀ S ∈ V �
h ,

Ch((v, z), T ) �
(‖v‖dG,e + |z|dG,p

)|||T |||dG,T ∀ T ∈ H2(Th), ∀ v, z ∈ V�
h,

Auw,h((u,w), (v, z)) � |||u|||2dG,e + |||u|||2dG,p + |||w|||2dG,p

+ ‖v‖2
dG,e + |v|2dG,p + |z|2dG,p

∀ u,w ∈ H2(Th), ∀ v, z ∈ V�
h.

For the sake of readability, we also define

|||(v, z)(t)|||2dG,∗ = |||v(t)|||2dG,e + |||z(t)|||2dG,p,

||| (v, z, S) (t)|||2dG = |||v(t)|||2dG,e + |||v(t)|||2dG,p + |||z(t)|||2dG,p + |||S(t)|||2dG,T ,

||| (v, z, S) (t)|||2E = Me((v̇, ż) , (v̇, ż))(t) +MT (S, S)(t) + B(z, z)(t) + ||| (v, z, S) (t)|||2dG .

Then, we need to introduce the interpolants (uI ,wI , T I ) of the solutions to (5). In order to properly treat the interpolation 
errors, we introduce the Stein extension operator. For a polytopic mesh Th satisfying Assumption A.2, the Stein operator 
E : Hm(κ) → Hm(Rd) is defined for any κ ∈ Th and m ∈N>0 such that

Ev|κ = v, ‖Ev‖Hm(Rd) � ‖v‖Hm(κ) ∀v ∈ Hm(κ).

Analogously, we can define the vector-valued version that acts component-wise and is denoted in the same way. In what 
follows, for any κ ∈ Th , we will denote by Kκ the simplex belonging to T ∗

h such that κ ⊂ Kκ . Then, we state the following 
approximation estimate:

Lemma 6.3. Let Assumption 3.1 be fulfilled. For any v ∈ Hl(Th), z ∈ Hm(Th), and S ∈ Hn(Th) with lκ , mκ , nκ ≥ 2 for all κ ∈ Th, there 
exist vI ∈ V�

h, zI ∈ V�
h, and S I ∈ V �

h such that

|||v − vI |||2dG,e �
∑
κ∈Th

h2(qκ−1)
κ

�
2lκ−3
κ

‖Ev‖2
Hlκ (Kκ )

|||z − zI |||2dG,p �
∑
κ∈Th

h2(rκ−1)
κ

�
2mκ−3
κ

‖Ez‖2
Hmκ (Kκ )

|||S − S I |||2dG,T �
∑
κ∈Th

h2(sκ−1)
κ

�
2nκ−3
κ

‖E S‖2
Hnκ (Kκ )

where qκ = min{�κ + 1, lκ }, rκ = min{�κ + 1, mκ }, and sκ = min{�κ + 1, nκ }.
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For the detailed proof of Lemma 6.3 refer to [1, Lemma 3.6], [18, Theorem 36], and [5, Corollary 5.1]. Last, we need 
to introduce the notion of error that is used in the analysis. We consider the discretization errors E = (eu, ew , eT ), where 
eu(t) = u(t) − uh(t), ew(t) = w(t) − wh(t), eT (t) = T (t) − Th(t). Denoting by Xh(t) = (uh, wh, Th)(t) ∈ V�

h × V�
h × V �

h and 
X(t) = (u, w, T )(t) ∈ V × W × V for all t ∈ (0, T f ] the solutions to (12) and (5) (with τ = 0), respectively, we split the errors 
as E(t) = E I (t) − Eh(t), with

E I (t) = X(t) − XI (t) = (eu
I (t),ew

I (t), eT
I (t)) = (u(t) − uI (t),w(t) − wI (t), T (t) − T I (t))

Eh(t) = XI (t) − Xh(t) = (eu
h(t),ew

h (t), eT
h (t)) = (uI (t) − uh(t),wI (t) − wh(t), T I (t) − Th(t)).

Exploiting all of the previous ingredients, we can now state the main result of this section.

Theorem 6.2. Let Assumption 2.1 and Assumption 3.1 be valid and assume that the parameters α1, α2 , α3 , and α4 appearing in (8)
are large enough. Let the exact solutions of problem (4) be such that

(u,w) ∈ C2((0, T f ];Hl(Th) × Hm(Th)) ∩ C1((0, T f ];V × W), T ∈ C1((0, T f ]; Hn(Th) ∩ V )

with l, m, n ≥ 2, and let (uh, wh) ∈ C2((0, T f ]; V�
h × V�

h), Th ∈ C1((0, T f ]; V �
h) be the solutions of the semi-discrete problem (12). 

Then, for all t ∈ (0, T f ] the discretization error Eh = (eu
h , ew

h , eT
h ) satisfies

‖Eh(t)‖2
E +

t∫
0

‖eT
h (s)‖2

dG,T �
∑
κ∈Th

h2qκ−2
κ

�
2lκ−3
κ

(
‖Eu‖2

Hlκ (Kκ )
+

t∫
0

‖Eu̇‖2
Hlκ (Kκ )

+
t∫

0

‖Eü‖2
Hlκ (Kκ )

)

+
∑
κ∈Th

h2rκ−2
κ

�
2mκ−3
κ

(
‖Ew‖2

Hmκ (Kκ ) +
t∫

0

‖Eẇ‖2
Hmκ (Kκ ) +

t∫
0

‖Eẅ‖2
Hmκ (Kκ )

)

+
∑
κ∈Th

h2sκ−2
κ

�
2nκ−3
κ

⎛
⎝‖ET ‖2

Hnκ (Kκ ) + ‖E Ṫ ‖2
Hnκ (Kκ ) +

t∫
0

‖E Ṫ ‖2
Hnκ (Kκ )

⎞
⎠ ,

where qκ , rκ , and sκ are defined as in Lemma 6.3. The hidden constant depends on the time t and on the material properties, but do 
not depend on the discretization parameters.

Proof. The proof of Theorem 6.2 can be found in Appendix A.2. �
7. Conclusions and further developments

In this work, we have proposed a new PolyDG discretization method for the fully-dynamic thermo-poroelastic problem. 
The stability and error analysis for the semi-discrete problem have been performed, establishing a-priori hp-error bounds. 
A wide set of numerical simulations is presented. First, we demonstrated the convergence error bounds of our scheme with 
respect to both the mesh size and the polynomial degree of approximation. Second, we assessed the capabilities of the 
proposed formulation addressing literature test cases. Last, we test our approach in physically-sound test cases by observing 
the wave-propagation phenomenon in thermo-poroelastic media. A comparison with the poroelastic model is presented too, 
showing the crucial role of temperature in the behavior of the shear waves.

Further developments of this work are possible. First of all, from the point of view of the theoretical analysis, it would 
be very interesting to include the third-order terms in the energy equation, while from the numerical point of view, the 
use of effective splitting schemes could allow coping with the high computational cost required for the resolution of the 
problem in its monolithic formulation. This will be the subject of future research.
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Appendix A. Proofs of main theorems for the semi-discrete analysis

In this appendix, we report the proofs of the main results constituting the analysis of the PolyDG-semidiscrete formula-
tion carried out in Section 6.

A.1. Stability estimate (proof of Theorem 6.1)

Take (u̇h, v̇h, Th) as test functions in (12). We use the skew-symmetry property of the bilinear form Ch and the symmetry 
property of the bilinear forms Muw , MT , Auw,h to get

1

2

d

dt

[
Muw((u̇h, ẇh), (u̇h, ẇh) (t) +MT (Th, Th)(t) +Auw,h((uh,wh), (uh,wh))(t)

]
+ B(ẇh, ẇh)(t)

+AT ,h(Th, Th)(t) = ((f,g, H), (u̇h, ẇh, Th))(t).

Next, we integrate in time from 0 to t ≤ T f and we obtain

Muw((u̇h, ẇh), (u̇h, ẇh))(t) +MT (Th, Th)(t) +Auw,h((uh,wh), (uh,wh))(t) + 2

t∫
0

B(ẇh, ẇh)(s)ds

+ 2

t∫
0

AT ,h(Th, Th)(s)ds = 2

t∫
0

((f,g, H), (u̇h, ẇh, Th))(s)ds +Muw((u̇h, ẇh), (u̇h, ẇh))(0)

+MT (Th, Th)(0) +Auw,h((uh,wh), (uh,wh))(0).

We use the fundamental theorem of calculus on the [0, t] together with the Cauchy–Schwarz inequality to infer 
B(w, w)(t) � B(w, w)(0) + ∫ t

0 B(ẇ, ẇ)(s)ds. Then, applying Lemma 6.1 and recalling the definition of the energy norms 
gives

‖ (uh,wh, Th) (t)‖2
E,∗ � ‖ (uh,wh, Th) (0)‖2

E + 2

t∫
0

((f,g, H), (u̇h, ẇh, Th))(s)ds. (A.1)

Focusing now on the integral term on the right-hand side of (A.1), we apply the Cauchy-Schwarz inequality to get
20
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t∫
0

((f,g, H), (u̇h, ẇh, Th))(s)ds ≤
t∫

0

‖(f,g, H)(s)‖‖(u̇h, ẇh, Th)(s)‖ds

�
t∫

0

‖(f,g, H)(s)‖‖(uh,wh, Th)(s)‖E,∗ds

Therefore, it is inferred that

‖ (uh,wh, Th) (t)‖2
E,∗ � ‖ (uh,wh, Th) (0)‖2

E +
t∫

0

‖(f,g, H)(s)‖‖(uh,wh, Th)(s)‖E,∗ds (A.2)

Finally, we can apply Gromwall’s lemma [39] to (A.2). Since (A.2) holds for an arbitrary t ∈ (0, T f ], this concludes the proof.

A.2. Error estimate (proof of Theorem 6.2)

We start by introducing the following auxiliary result. Owing to Lemma 6.3 and [19, Lemma 22, Lemma 33] we observe 
that:

||| (v − vI , z − zI , S − S I ) |||2dG �
∑
κ∈Th

(
h2qκ−2
κ

�
2lκ−3
κ

‖Ev‖2
Hlκ (Kκ )

+ h2rκ−2
κ

�
2mκ−3
κ

‖Ez‖2
Hmκ (Kκ )

+ h2sκ−2
κ

�
2nκ−3
κ

‖E S‖2
Hnκ (Kκ )

)
,

||| (v − vI , z − zI , S − S I ) |||2E �
∑
κ∈Th

(
h2qκ
κ

�
2lκ
κ

‖E v̇‖2
Hlκ (Kκ )

+ h2rκ
κ

�
2mκ
κ

‖E ż‖2
Hmκ (Kκ )

+ h2sκ
κ

�
2nκ
κ

‖E S‖2
Hnκ (Kκ )

)
+
∑
κ∈Th

(
h2qκ−2
κ

�
2lκ−3
κ

‖Ev‖2
Hlκ (Kκ )

+ h2rκ−2
κ

�
2mκ−3
κ

‖Ez‖2
Hmκ (Kκ ) + h2sκ−2

κ

�
2nκ−3
κ

‖E S‖2
Hnκ (Kκ )

)
.

(A.3)

To derive the error equation for our problem we need to extend the bilinear forms (7) to the space of continuous solu-
tions. Thus, we need further regularity assumptions on the exact solutions X. Indeed, we consider the solid displacement, 
filtration displacement, and temperature to have at least local H2-regularity, as reported in the statement of Theorem 6.2. 
Moreover, without any loss of generality, we assume the continuity of the normal stress, of the heat flux, and of the normal 
traces of the two velocities u̇ and ẇ across the interfaces F ∈ FI for all time t ∈ (0, T f ]. Under these assumptions, we can 
insert the exact solutions into (12) obtaining a formulation equivalent to (5). Now, we can subtract the resulting equation 
from (12) to infer the error equation

Muw((ëu, ëw), (vh, zh)) + B(ėw , zh) +MT (ėT , Sh) + Ch(
(
ėu, ėw) , Sh) +Auw,h((eu,eu), (vh, zh))

+AT ,h(eT , Sh) − Ch((vh, zh) , eT ) = 0,
(A.4)

for all (vh, wh, Sh) ∈ Vh ×Vh × Vh . We assume that the semi-discrete problem (12) is completed by initial conditions Xh(0) =
(uI (0), wI (0), T I (0)) and (u̇h(0), ẇh(0)) = (u̇I (0), ẇI (0)) where uI , wI , T I are the interpolants of the exact solutions given 
by Lemma 6.3, so that the error equation (A.4) is supplemented by the condition

Eh(0) = 0, ėu
h = 0, ėw

h = 0. (A.5)

We now take (vh, zh, Sh) = (ėu
h , ėw

h , eT
h

)
in (A.4), bringing to the right-hand side all the terms that involve the interpolation 

errors. Thus, we get

Muw((ëu
h , ëw

h ), (ėu
h , ėw

h )) + B(ėw
h , ėw

h ) +MT (ėT
h , eT

h ) +Auw,h((eu
h ,ew

h ), (ėu
h , ėw

h )) +AT ,h(eT
h , eT

h )

= Muw((ëu
I , ëw

I ), (ėu
h , ėw

h )) + B(ėw
I , ėw

h ) +MT (ėT
I , eT

h ) + Ch(
(
ėu

I , ėw
I

)
, eT

h ) +Auw,h((eu
I ,ew

I ), (ėu
h , ėw

h ))

+A (eT , eT ) − C ((ėu, ėw), eT ).

(A.6)
T ,h I h h h h I
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For treating the left-hand side of (A.6) we follow the same arguments of Appendix A.1. For the right-hand side, we move the 
time derivatives from the discretization errors to the interpolation ones in the fifth and seventh bilinear forms via Leibniz’s 
formula. By doing so, we infer that

1

2

d

dt

[
Muw((ėu

h , ėw
h ), (ėu

h , ėw
h )) +MT (eT

h , eT
h ) +Auw,h((eu

h ,ew
h ), (eu

h ,ew
h ))

]
+ B(ėw

h , ėw
h ) +AT ,h(eT

h , eT
h )

= Muw((ëu
I , ëw

I ), (ėu
h , ėw

h )) + B(ėw
I , ėw

h ) +MT (ėT
I , eT

h ) + Ch(
(
ėu

I , ėw
I

)
, eT

h ) + d

dt
Auw,h((eu

I ,ew
I ), (eu

h ,ew
h ))

−Auw,h((ėu
I , ėw

I ), (eu
h ,ew

h )) +AT ,h(eT
I , eT

h ) − d

dt
Ch((eu

h ,ew
h ), eT

I ) + Ch((eu
h ,ew

h ), ėT
I ).

Now, we integrate with respect to time between 0 and t ≤ T f , recalling (A.5), and owing on the same arguments as in the 
proof of Theorem 6.1 we obtain

‖Eh(t)‖2
E +

t∫
0

‖eT
h (s)‖2

dG,T ds �R1(t) +
t∫

0

(
R2(s) +R3(s)

)
ds, (A.7)

where

R1 = Auw,h((eu
I ,ew

I ), (eu
h ,ew

h )) − Ch((eu
h ,ew

h ), eT
I ),

R2 = Muw((ëu
I , ëw

I ), (ėu
h , ėw

h )) + B(ėw
I , ėw

h ) +MT (ėT
I , eT

h ),

R3 = Ch(
(
ėu

I , ėw
I

)
, eT

h ) −Auw,h((ėu
I , ėw

I ), (eu
h ,ew

h )) +AT ,h(eT
I , eT

h ) + Ch((eu
h ,ew

h ), ėT
I ).

We bound the terms R1, R2, R3 by the repeated use of Cauchy-Schwarz, Young and triangles inequalities, and Lemma 6.2:

R1 �
(
|||eu

I |||2dG,e + |||eu
I |||2dG,p + |||ew

I |||2dG,p + |||eT
I |||2dG,T

)
+
(
‖eu

h‖2
dG,e + |eu

h |2dG,p + |ew
h |2dG,p

)
R2 �Muw((ëu

I , ëw
I ), (ëu

I , ëw
I )) + B(ėw

I , ėw
I ) +MT (ėT

I , ėT
I ) +Muw((ėu

h , ėw
h ), (ėu

h , ėw
h )) + B(ėw

h , ėw
h )

+MT (eT
h , eT

h )

R3 �
(|||ėu

I |||2dG,e + |||ėu
I |||2dG,p + |||ėw

I |||2dG,p + |||ėT
I |||2dG,T + |||eT

I |||2dG,T

)+ (‖eu
h‖2

dG,e + |eu
h |2dG,p

+ |ew
h |2dG,p + ‖eT

h ‖2
dG,T

)
(A.8)

By plugging (A.8) into (A.7) we get

‖Eh(t)‖2
E +

t∫
0

‖eT
h (s)‖2

dG,T ds �|||E I (t)|||2dG +
t∫

0

‖Eh(s)‖2
Eds

+
t∫

0

(
|||Ė I (s)|||2E + |||eT

I (s)|||2dG,T

)
ds

and by using Gronwall’s lemma we obtain

‖Eh(t)‖2
E +

t∫
0

‖eT
h (s)‖2

dG,T ds � |||E I (t)|||2dG +
t∫

0

(
|||Ė I (s)|||2E + |||eT

I (s)|||2dG,T

)
ds. (A.9)

The thesis follows by bounding the right-hand side of equation (A.9) via the interpolation estimates of Lemma 6.3 and (A.3).
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