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Feasibility Analysis and Synchronization Control
for Underactuated Spacecraft Formation Hovering

Jiang Shao, Qingrui Zhou, Dong Ye, Franco Bernelli-Zazzera, and Zhaowei Sun

Abstract—This paper develops a synchronization control
scheme for underactuated spacecraft formation hovering in the
case without along-track thrust. The feasible sets of initial
positions for this underactuated case are derived based on the
nonlinear and linear relative orbital dynamics. Then, a non-
preset parameter underactuated controller is designed to deal
with the unmatched disturbances caused by the loss of along-
track control. Moreover, a synchronization item is added to the
above controller to synchronize the hovering motion between
the follower spacecraft. The Lyapunov-based analysis indicates
that the minimum nonzero eigenvalue of the Laplace matrix
corresponding to the synchronization item determines the stable
hovering accuracy of the system states. Numerical simulations
also demonstrate the validity of the presented underactuated
synchronization controller.

Index Terms—Feasible sets, stable hovering accuracy, synchro-
nization control, underactuated spacecraft formation hovering,
unmatched disturbances.

I. INTRODUCTION

Spacecraft formation hovering is defined as the follower
keeping a constant position relative to the leader, thus be-
ing in an equilibrium state [1, 2]. Compared to formation
reconfiguration [3, 4] and satellite constellation [5], such a
hovering strategy is more convenient for space exploration
and provides higher resolution observation and measurement
[6, 7]. Most of the existing control schemes presented for
formation hovering, whether open- [8] or closed-loop ones [9],
are based on the fully-actuated dynamics [10]. However, the
fully-actuated controllers are not suitable for the underactuated
case because the degrees of freedom of the input provided by
the controller is 2, which is less than the degrees of freedom
of the system states. Indeed, the system is still controllable
in the absence of radial thrust, while the uncontrollable case
without along-track thrust is more challenging. The feasibility
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of relative orbital control in both underactuated cases has
already been researched for formation flying [11, 12]. Godard
found an uncontrollable eigenvalue in the linearized relative
dynamics and thus demonstrated the feasibility of underactu-
ated formation flying [11].

Current works on the feasibility of underactuated formation
hovering mainly concentrate on discussing the desired hov-
ering positions [13–15] but do not analyze the initial motion
states. In [13], Huang noted that due to the lack of thrust in
a certain direction, the follower cannot hover in an arbitrary
position relative to the leader. Hence, he derived the feasible
set of desired hovering positions for either underactuated case.
Then, he stated that the feasible desired positions are related
to the loss of thrust and the input saturation constraint of the
thrust in every direction [14]. According to the aforementioned
feasible desired positions, we know where the underactuated
spacecraft could hover. In contrast, it is also valuable to
investigate the feasible set of initial positions, which indicates
where the follower comes from, perhaps a specific hovering
position or a natural formation.

In consideration of the existing underactuated formation
controllers [12–15], one of the major challenges is that partial
control parameters are preset. Generally, the initial values of
the control parameters are set based on theoretical analysis
and engineering experience, then these parameters are adjusted
through many numerical simulations until the relevant dynam-
ic indicators of the system satisfy the project requirements
[16]. Such an operation that presets partial parameters not
only restricts the coupling relationship between the error states
in the controller but also predetermines the stable hovering
accuracy of the system states, thus affecting the robustness of
the designed controller [17, 18]. In addition, the expression
of the unmatched disturbance is also determined by the pre-
scribed control parameters. In view of these facts, this paper
devotes to developing an underactuated controller that does not
depend on preset control parameters. Unmatched disturbance
is also a concern because traditional sliding mode control
may lose invariance in the presence of unmatched disturbance,
resulting in a system behavior in the sliding mode that will
be governed by sliding surface and unmatched disturbance
[11]. In the underactuated formation flying problem, since the
loss of control input in the radial or along-track direction,
the original disturbance no longer enters the system through
the original channel but from one channel. Both matched
disturbances are not simply added but multiplied by some
matrices and added. In other words, the induced norms of these
matrices will magnify the original disturbances by a certain
multiple and then affect the control accuracy of the system.
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Huang mentioned this challenge and introduced a disturbance
observer to estimate the real value of unmatched disturbance
[13]. Notably, the strong assumption that the observation error
is zero and the conclusion that the stable hovering accuracy is
zero are not suitable for practical engineering applications.

Synchronization control is also an issue for formation flying
that has attracted wide attention [19, 20]. Synchronization
motions between robots can remain the relative state rela-
tionship to maintain the specified, and perhaps time-varying,
configuration. Although various synchronization controllers
have been designed for formation control, most are developed
for the fully-actuated system [19–21]. Moreover, in spite of the
synchronization control does not affect the convergence of the
system [19, 22]. It should be noted that the relative position,
relative velocity, and control inputs of the system are slightly
changed after adding the synchronization control item. Con-
sequently, exploring the internal mechanism of such changes
is meaningful, contributing to understanding synchronization
control further.

Inspired by the above discussions, the main contributions
of this study could be summarized into three aspects:

1) Compared to the previous feasible position analyses for
underactuated formation hovering [13, 14], we derive the
feasible set of initial positions via nonlinear and linear
relative orbital dynamics and analyze the relationship
between the initial and desired positions.

2) In comparison with the existing underactuated control
approaches [12–15], a novel non-preset parameter un-
deractuated controller is proposed to deal with the un-
matched disturbances caused by the loss of along-track
control, thereby improving the robustness of the closed-
loop system.

3) Furthermore, a synchronization controller is designed to
synchronize the follower’s hovering motion with that of
the neighboring followers. To our knowledge, this is
the first time to prove the finite-time convergence of
synchronization control. A new conclusion is obtained:
the Laplace matrix’s minimum nonzero eigenvalue deter-
mines the system states’ stable hovering accuracy.

The rest of this brief is organized as follows. Section II
derives the feasible set of initial positions. Section III describes
the underactuated control scheme, including controller design
and convergence analysis. Numerical simulations are presented
in Section IV. Conclusions are driven in Section V.

Notations: R denotes the set of real numbers and ∂ is
used to indicate the partial derivative. The Euclidean norm
of a vector or a matrix is indicated by ‖ · ‖. λmin(·) is
the minimum nonzero eigenvalue of a matrix. Set v =
[v1, v2, ..., vn]T ∈ R as a vector, we define sigγ(v) =
[|v1|γsgn(v), |v2|γsgn(v2), ... , |vn|γsgn(vn)]T and vq/p =

[v
q/p
1 , v

q/p
2 , ... , v

q/p
n ]T, where 0 < γ < 1 is a constant,

q and p are odd integers, and sgn(·) is the sign function.
diag(v1, v2, ..., vn) is denoted as a diagonal matrix.

II. DYNAMICS AND FEASIBILITY ANALYSIS

A. Dynamical Model
Suppose the leader flies in a circular Earth orbit and some

followers hover nearby. We describe the dynamics of for-
mation hovering in the local-vertical-local-horizontal (LVLH)
frame, where x-axis is along the geocentric position vector
of the leader, z-axis is positive in the direction of the orbital
angular momentum vector, and y-axis is determined by the
right-handed Cartesian frame. By denoting the position and
velocity vectors of the ith (i = 1, 2, ..., n) follower relative
to the leader as ρi = [xi yi zi]

T and vi = [ẋi ẏi żi]
T, the

underactuated dynamical equation is described as follows.

ρ̈i = F (ρi,vi) + Ũi, (1)

where F = [fx fy fz]
T = [2u̇lẏi + u̇2

l xi + ülyi + n2
0Rl −

n2
if (Rl + xi) −2u̇lẋi + u̇2

l yi − ülxi − n2
ifyi −n2

ifzi]
T and

Ũi = [uix 0 uiz]
T. ul is the argument of latitude of the leader,

Rl and Rif =
√

(Rl + xi)2 + y2
i + z2

i are the orbital radius
of the leader and the follower, respectively. n0 =

√
µe/R3

l

and nif =
√
µe/R3

if , while µe is the gravitational constant of

Earth. By defining Xi = [xi yi zi ẏi ẋi żi]
T as the relative

state vector, equation (1) is generally linearized as [23]

Ẋi = AXi +BUi, (2)

with

A =


0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 −2n0 0

3n2
0 0 0 2n0 0 0

0 0 −n2
0 0 0 0

 ,
B = [02×4 I2×2]T,

where Ui = [uix uiz]
T. Using the rank criterion in linear

system theory, the rank of controllability matrix for the system
(2) is 5 < 6 [11]. Therefore, we can conclude that the system
is uncontrollable in the case without along-track thrust. More-
over, according to the linear system theory, the system could
be recast into a controllable subspace X̄ic = [ẏi zi yi ẋi żi]

T

and an uncontrollable one X̄iu = ẏi
2n0

+ xi, governed by

˙̄Xic = ĀccX̄ic + ĀcuX̄iu + B̄cUi, (3)

with

Ācc =


0 0 0 −2n0 0
0 0 0 0 1
1 0 0 0 0

n0/2 0 0 0 0
0 −n2

0 0 0 0

 , Ācu =


0
0
0

3n2
0

0

 ,
B̄c = [ 02×3 I2×2 ]T.

Despite that the system is uncontrollable, it does not hinder
the feasibility of formation hovering. As analyzed in [11, 13],
the uncontrollable state X̄iu keeps its initial value during the
whole hovering process from the initial time ti0 to the final
time tif and equals to the stability condition 2n0xi(t)+ẏi(t) =
0 of the desired hovering configuration, that is,

X̄iu(ti0) = X̄iu(tif ) = 0. (4)
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B. Feasible Initial Position

By definition of formation hovering, the follower is required
to maintain a fixed position in the LVLH frame relative to the
leader, namely, the first-order time derivative of the desired
stateXid satisfies Ẋid = [ẋid ẏid żid ẍid ÿid z̈id]

T = [01×6]T.
With the loss of along-track input, the thrusts from the other
two channels cannot ensure that the follower hovers at an
arbitrary relative position. Hence, the initial state of the
follower is also subject to the underactuated dynamics, as
derived by the following theorem.

Theorem 1: For the case without along-track thrust, given
that the initial relative velocity vi(ti0) = vig = [ẋig ẏig żig]

T

and the initial relative acceleration ρ̈i(ti0) = ρ̈ig = [0 0 0]T,
the feasible set of initial positions ρig is expressed as

Λi1 = (Λi11 ∪Λi12) ∩Λi13, (5)

where the detailed expressions of Λi11, Λi12, and Λi13 are
derived in the following.
Proof: Since the leader flies in a circular orbit, u̇l = n0 and
ül = 0. As ui = [uix 0 uiz]

T, substituting the initial state
Xig = [ρT

ig v
T
ig]

T = [xig yig zig ẋig ẏig żig]
T and the desired

state Xid = [ρT
id v

T
id]

T = [xid yid zid ẋid ẏid żid]
T into the

nonlinear dynamics (1) yields
−2n0ẏig + (n2

if − n2
0)(xig − xid) = uix(ti0),

2n0ẋig + (n2
if − n2

0)(yig − yid) = 0,

n2
if (zig − zid) = uiz(ti0).

(6)

Provided that ẋig = 0, the second term of (6) leads to
(n2
if − n2

0)(yig − yid) = 0. If n2
if − n2

0 = 0 holds, due to

n0 =
√
µe/R3

l and nif =
√
µe/R3

if , one has

R2
if = R2

l . (7)

In view of R2
if = (Rl + xig)

2 + y2
ig + z2

ig = x2
ig + y2

ig + z2
ig +

2Rlxig+R2
l = R2

l , a nonlinear feasible set of initial positions
is thus formulated as

Λi11 = {ρig|2Rlxig + ‖ρig‖2 = 0}. (8)

If yig − yid = 0 holds, another set could be solved as

Λi12 = {ρig|yig = yid}. (9)

Moreover, there also exists a linear constraint generated by
(4), that is, ẏig/(2n0) + xig = ẏid/(2n0) + xid = 0. Given
that ẏig 6= 0 and ẏid = 0, a linear feasible set is expressed as

Λi13 = {ρig|xig = xid − ẏig/(2n0)}. (10)

Typically, the linearization error is less than 0.03% while
‖ρi‖ ≤ 100 km [12]. Since the position of the follower relative
to the leader is negligible compared with the radius of their
orbits, the nonlinear and linear sets (i.e., equations (8)-(10))
could be integrated into one set (5). Here completes the proof
of Theorem 1. �

Remark 1: Since the orbital angular velocity of the leader
remains constant during hovering, solving the equation (n2

if −
n2

0)(yig−yid) = 0 can also yield R2
if = (Rl + xid)

2+y2
id+z2

id

and yig − yid = 0. Likewise, two feasible sets of desired
positions are, respectively, given by Λi21 = {ρid|2Rlxid +

‖ρid‖2 = 0} and Λi22 = {ρid|yid = yig}. In the light of (4),
the linear feasible set has the expression of Λi23 = {ρid|xid =
xig + ẏig/(2n0)}. Thus, the feasible set of desired positions
can be summarized as (Λi21 ∪Λi22) ∩Λi23.

Remark 2: According to (6), if ẋig = 0 holds, the feasible
set of initial positions satisfies the same nonlinear condition as
that of the desired ones. In other words, the follower hovers
from one position to another one. If ẋig 6= 0, it can be seen
that the feasible set of desired positions can be derived through
the initial velocity and position, but the initial state can not
be obtained via the desired position. For the linear set (10),
if ẏig 6= 0, given one of the initial radial position or desired
radial one, the other could be solved by the linear condition
(4), corresponding that the follower flies from a natural orbit
around the leader to a specified hovering position.

Remark 3: For the case without radial control, since ui =
[0 uiy uiz]

T, the equation −2n0ẏig+(n2
if−n2

0)(xig−xid) = 0
can be deduced from the first term of (6). Provided that
ẏig = 0, by using similar approaches in Theorem 1, the
feasible sets of initial and desired positions for the case
without radial thrust could be, respectively, derived as Λi3 =
{ρig|2Rlxig + ‖ρig‖2 = 0} ∪ {ρig|xig = xid} and Λi4 =
{ρid|2Rlxid+‖ρid‖2 = 0}∪{ρid|xid = xig}. As can be seen,
the forms of the nonlinear feasible sets for both underactuated
cases are the same, indicating these sets are subject to the same
dynamics constraint. In addition, the reason why there is no
linear set similar to (10) in Λi3 and Λi4 is that the system is
controllable in this underactuated case. Hence, the feasible set
without radial thrust can be regarded as a subset of that for
the case without along-track thrust.

C. Problem Statement

The control objective of the underactuated spacecraft for-
mation hovering problem considered in this brief is to present
a synchronization control scheme, which designs the initial
and desired positions for hovering from the aforementioned
feasible sets, such that the controller could eliminate the
initial offsets in the presence of unmatched disturbances and
synchronize the motion between followers simultaneously.

III. SYNCHRONIZATION CONTROLLER DESIGN

Actually, the spacecraft may drift from the hovering position
due to the J2 perturbation, atmospheric drag, and linearization
errors. Thus, the perturbed nonlinear dynamical system of
formation hovering can be formulated as

Ẋi = AXi +BUi + ∆F̃i(Xi) + d̃i, (11)

where ∆F̃ (Xi) = F̃ (Xi) − AXi is defined as the lin-
earization error, F̃i(Xi) = [01×3 fy fx fz]

T, and d̃i =
[01×3 d̃y d̃x d̃z]

T is denoted as the external disturbance. Since
Ẋid = 06×1 and BTB = I2×2 hold [13], the continuous
open-loop control at ρid can be solved by (11) , one has

uid = BT(AXid + ∆F̃i (Xid)). (12)

We express ei = Xi − Xid as the error state and ui =
Ui − uid as the error control input, the error dynamics of
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formation hovering is then governed by

ėi = Aei +Bui + di, (13)

where di = ∆F̃i(Xi)−∆F̃i(Xid) + d̃i = [01×3 dy dx dz]
T,

satisfying ‖di‖ ≤ dim and dim > 0.

A. Controller Design

Different from the works in [11–14], the underactuated error
dynamics have the new decomposition expression of{

˙̃eiρ = A11ẽiρ +A12eiv + diρ,
ėiv = A13eiρ +A14eiv + ui + div,

(14)

with

A11 =

 0 1 0
0 0 0
0 0 0

 , A12 =

 0 0
−2n0 0

0 1

 ,
A13 =

[
2n0 3n2

0 0
0 0 −n2

0

]
, A14 = [02×2] ,

(15)

where eiρ = [ėiy eix eiz]
T, ẽiρ = [eiy ėiy eiz]

T, eiv =
[ėix ėiz]

T, ui = [uix uiz]
T, diρ = [0 diy 0]T, and div =

[dix diz]
T. Note that the vector ui ∈ R2 and eiv ∈ R2, but

ẽiρ ∈ R3. To make the degree of freedom of ẽiρ consistent
with that of ui, a linear transformation is conducted on ẽiρ.

ēiρ = P11ẽiρ, (16)

with
P11 =

[
a1 b1 0
0 0 f1

]
, (17)

where a1, b1, and f1 are constants to be set.
Then, taking the time derivative of ēiρ yields ˙̄eiρ =

P11
˙̃eiρ = P11(A11ẽiρ +A12eiv + diρ). It can be seen that

by using P11, the along-track error vector is in the same
channel as the radial one. As a result, the disturbance in
the along-track direction enters the system through the radial
channel, producing the unmatched disturbances. To eliminate
the influence of the unmatched disturbances on the control
accuracy, a disturbance observer proposed in [24] is introduced
to estimate the real value of the unmatched disturbance for
designing the underactuated controller.

Assumption 1: The external disturbance di and its deriva-
tives are bounded, satisfying ‖di‖ ≤ dim and ‖ḋi(t)‖ ≤ dif ,
respectively [24].

Lemma 1: [24] Define zi1, zi2, and zi3 = d̂i as the
estimated values of xi1 = ρi, xi2 = vi, and xi3 = di,
respectively, the finite-time convergent extended state observer
is constructed as

żi1 = zi2 − κ11sig(κ14+1)/2(εi1),

żi2 = zi3 − κ12sig(κ14+1)/2(εi1) + Ũi,
żi3 = −κ13sigκ14(εi1),

(18)

where ε̇i1 = εi2 − κ11sig(κ14+1)/2(εi1), ε̇i2 = εi3 −
κ12sig(κ14+1)/2(εi1), and ε̇i3 = −κ13sig(κ14+1)/2(εi1)− ẋi3.
The terms εi1 = zi1 − xi1, εi2 = zi2 − xi2, and εi3 =
zi3 − xi3 with the bound as ‖εi3‖ ≤ εim = ‖d̂i − di‖.
κ11 > 0, κ12 > 0, κ13 > 0, and 0 < κ14 < 1 are observer
gains.

It is assumed that every follower can accurately obtain
its position and velocity information. Thus, only the external
disturbance di and its time derivative ḋi need to be estimated.
A non-singular fast terminal sliding mode (NFTSM) function
is designed as

si = α1ēiρ + χ1 ˙̄eiρ + β1 ˙̄eiρ
q1/p1 , (19)

where α1 > 0, χ1 > 0, and β1 > 0 are constants. q1 and p1

are odd integers, satisfying p1 < q1 < 2p1.
Let ṡi = 0, the equivalent control ui1 is thus obtained as

ui1 =− S−1Hi − S−1[χ1P11(χ−1
1 α1(A11ẽiρ +A12eiv)

+A11(A11ẽiρ +A12eiv) +A12A13eiρ)

+ P̃11P11(A11(A11ẽiρ +A12eiv) +A12A13eiρ)],
(20)

where P̄11 = β1q1/p1(P11(A11ẽiρ +A12eiv))
(q1/p1)−1 =

[p11 p12]T, P̃11 = diag(p11, p12), S = χ1P11A12 +

P̃11P11A12, and Hi = χ1P11(α1χ
−1
1 d̂iρ +A11d̂iρ +

ˆ̇
diρ +

A12d̂iv) + P̃11P11(A11d̂iρ +A12d̂iv +
ˆ̇
diρ) is the estimated

value of the unmatched disturbance δi = χ1P11(α1χ
−1
1 diρ +

A11diρ + ḋiρ +A12div) + P̃11P11(A11diρ +A12div + ḋiρ),
namely, the terms d̂iρ, ˙̂

diρ, and d̂iv are the estimated values
of diρ, ḋiρ, and div , respectively. Thus, two conclusions on δi
can thus be obtained: 1) δi is composed of the algebraic sum
of several matched disturbances. 2) The bounded value of δi is
larger than that of the matched disturbance, thus highlighting
the necessity of introducing a disturbance observer.

Subsequently, a switch control is selected as ui2 = −k1si−
k2sigγ1(si), where k1 > 0, k2 > 0, and 0 < γ1 < 1 are
constants. The disturbances observer-based NFTSM controller
(DO-NFTSMC) for the case without along-track thrust is then
expressed as

u′i = ui1 + ui2 + uid. (21)

Different from DO-NFTSMC, NFTSM controller (NFTSM-
C) only uses the bound of δi, and the design process is
not presented here. Notably, DO-NFTSMC (21) only con-
cerns the hovering control for a single follower but does
not consider the synchronization motion control between the
followers. By defining the synchronization error as si − sj ,
where si and sj are the sliding surface of the ith and jth
(i, j = 1, 2, ..., n, i 6= j) followers, respectively. A sliding-
mode-based synchronization hovering item is given by

ui3 = −k3

n∑
j=1

wij(si − sj), (22)

where k3 > 0 is a constant and wij is an element within the
matrix W . Throughout this paper, the undirected graph G is
a topology composed of n followers, where W and L are the
adjacency matrix and the Laplace matrix of G, respectively
[25]. It is to be noted that L is a positive semidefinite matrix.

Therefore, the synchronization controller (SC) can be sum-
marized as

ui = ui1 + ui2 + ui3 + uid. (23)

For the convenience of the readers to understand the opera-
tion mechanism of the underactuated synchronization control
scheme proposed in this paper, the schematic diagram of the
whole scheme is depicted in Fig. 1.
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Fig. 1. Schematic diagram of synchronization control scheme.

B. Convergence Analysis

Before analyzing the convergence of the closed-loop system,
two lemmas are given.

Lemma 2: [26] Assume V1 is a positive function, one has

V̇1 + α1V1 + α2V1
α3 6 0, (24)

where α1 > 0, α2 > 0, and 0 < α3 < 1 are con-
stants, V1 will converge to zero in a finite time t1 6

1
α1(1−α3) ln α1V1

1−α3 (ti0)+α2

α2
.

Lemma 3: [12] Let ẋ = f(t,x) be a nominal system with
exponentially stable equilibrium point x = 0. Let V2(t,x) be a
Lyapunov function of the system and satisfies these conditions.

σ1‖x‖2 6 V2(t,x) 6 σ2‖x‖2,
∂V2

∂x + ∂V2

∂t f(t,x) 6 −σ3‖x‖2,
‖∂V2

∂x ‖ 6 σ4‖x‖,
(25)

where (t,x) ∈ [0,∞) ×D and σλ(λ = 1, ..., 4) > 0. g(t,x)
is defined as the vanishing perturbation and satisfies{

‖g(t,x)‖ 6 %‖x‖,
% < σ3/σ4.

(26)

Hence, x = 0 is an exponentially stable equilibrium point
of the perturbed nominal system ẋ = f(t,x) + g(t,x).

Lemma 3 only applies to the exponentially stable case. For
the sliding surface si in (19), it generally converges to the
equilibrium point in finite time. Consequently, we extend this
lemma to the finite-time case, given by the following corollary.

Corollary 1: Let ẋ = f(t,x) be a nominal system with
finite-time stable equilibrium point x = 0. Let V2(t,x) be a
Lyapunov function of the system and satisfies these conditions.

σ1‖x‖2 6 V2(t,x) 6 σ2‖x‖2,
∂V2

∂x + ∂V2

∂t f(t,x) 6 −σ3‖x‖2 − σ4‖x‖γ2+1,

‖∂V2

∂x ‖ 6 σ5‖x‖,
(27)

where (t,x) ∈ [0,∞) × D, σλ(λ = 1, ..., 5) > 0, and 0 <
γ2 < 1. g(t,x) is denoted as a vanishing perturbation that
satisfies {

‖g(t,x)‖ 6 %‖x‖,
% < σ3/σ5.

(28)

Then, x = 0 is a finite-time stable equilibrium point of the
perturbed nominal system ẋ = f(t,x) + g(t,x).
Proof: Substituting the first term of (27) into the second term
leads to

V̇2 =
∂V2

∂x
+
∂V2

∂t
f(t,x) ≤ −σ3

σ2
V2 −

σ4

σ2
γ2+1

2

V2

γ2+1
2 . (29)

According to Lemma 2, x = 0 is thus regarded as the
finite-time stable equilibrium point of ẋ = f (t,x). For the
perturbed system ẋ = f(t,x) + g(t,x), the derivative of V2

can be formulated as

V̇2 6
∂V2

∂t
+
∂V2

∂x
f(t,x) + ‖∂V2

∂x
‖‖g(t,x)‖. (30)

Furthermore, substituting (27) into (30) yields

∂V2

∂t
+
∂V2

∂x
f(t,x) 6 −(σ3 − %σ5)‖x‖2 − σ4‖x‖γ2+1. (31)

From Lemma 2, the perturbed nominal system ẋ =
f(t,x) + g(t,x) is finite-time stable if % < σ3/σ5 holds.
This completes the proof. �

Next, we will discuss the convergence of the closed-loop
system, especially the influence of the synchronization hover-
ing item (22) on the system states.

Theorem 2: For the underactuated error dynamics (14),
given that the sliding surface and the controller are designed

as (19) and (23), respectively. If
n∑
j=1

|φ′(lij)| ≤ κl‖si‖ and

b1/a1 > 0 hold, the system will converge to the desired
hovering position in finite time, and the stable hovering
accuracy can be expressed as

‖si‖ ≤ ∆si , |eiµ| ≤ ∆eiµ , µ = x, y, z, (32)

where κl > 0 is a constant. The detailed expressions of φ′(lij),
lij , ∆si , and ∆eiµ will be derived in the following.
Proof: Substituting (23) into the time derivative of si yields

ṡi = fi + gi + ∆i, (33)

where fi = ui2, gi = ui3 , and ∆i = Hi − δi is the
observation error with its bound ‖∆i‖ = ‖Hi − δi‖ ≤ ∆im.

From Corollary 1, it can be concluded that ei = 0, si = 0,
and gi = 0 at the desired hovering position ρid. gi is thus
regarded as a vanishing disturbance of the nominal system
ṡi = fi. For the nominal system ṡi = fi perturbed by ∆i,
considering a Lyapunov candidate Vi1 = 1

2s
T
i si and taking its

time derivative yields

V̇i1 = sT
i (fi + ∆i) ≤ −k1‖si‖2 − k2‖si‖γ1+1 + ‖si‖∆im.

(34)
With regard to Corollary 1, setting the parameters as σ1 ∈

(0, 1/2], σ2 ∈ [1/2,+∞], σ3 = k1, σ4 = k2, and σ5 = 1,
respectively. From (34), if the nominal system ṡi = fi holds
di = 0, that is, ∆im = 0. Then, si = 0 is the finite-time stable
equilibrium point by using the lemma 2. However, the system
is actually perturbed by δi, and the corresponding observation
error ∆i 6= 0. By using the similar approaches in [26], it
could be concluded that the second term of (27) is kept if
k2 −∆im‖si‖−γ1 > 0 or k1 −∆im‖si‖−1 > 0 holds. Thus,
the other two terms within (27) could also be satisfied when
the parameters σλ(λ = 1, ..., 5) are selected above.

By denoting φ(lij) as a smooth and nonnegative potential-
like function [27], where lij = ‖si − sj‖ and φ′(lij) =
dφ(lij)/dlij = k3wij lij . Thus, equation (22) has the expres-
sion of

gi = ui3 = −
n∑
j=1

φ′(lij)l
−1
ij (si − sj). (35)
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Given that ‖l−1
ij (si − sj)‖ = 1 and the term

n∑
j=1

|φ′(lij)| ≤

κl‖si‖ hold, equation (35) could be reduced to

‖gi‖ ≤
n∑
j=1

|φ′(lij)| ≤ κl‖si‖. (36)

Let % < κl ≤ k1 = σ3/σ5, both terms in (28) are
satisfied. In this way, all the conditions in (27) and (28) are
satisfied. Since the existence of the unmatched disturbance
and the observer can not fully estimate the true value of the
disturbance, si can only converge to a neighbourhood around
the equilibrium, given by

‖si‖ ≤ ∆si = min
{(
k−1

2 ∆im

)1/γ1
, k−1

1 ∆im

}
. (37)

For the case without disturbance observer, the sys-
tem trajectory will converge to the region as ∆′si =

min
{

(k−1
2 δim)

1/γ1
, k−1

1 δim

}
, where δim is the bound of

δi. Since ∆im � δim, ∆si � ∆s′i
holds. In addition,

equation (37) shows that gi will not disappear completely
in the later stage of hovering because si cannot converge
to the equilibrium. Notably, the bound of gi composed of
the algebraic sum of multiple sliding surfaces are of the
same order of magnitude as the bound of ∆si and could
be considered vanished, which satisfies the conditions within
Corollary 1. Therefore, at the later stage of formation hovering,
fi is revised as f ′i = fi + gi. Then, considering another

Lyapunov candidate function Vi =
n∑
i=1

Vi1 = 1
2

n∑
i=1

sT
i si and

taking its time derivative yields

V̇i ≤
n∑
i=1

∆im‖si‖ −
n∑
i=1

k1‖si‖2 −
n∑
i=1

k2‖si‖γ1+1

− k3F
TLF .

(38)

where F = [sT
1 , s

T
2 , ... , s

T
n ]T. By similar approaches, if k2−

(2Vi)
−(γ1)/2

∆im > 0 or l1 − (2Vi)
−1/2∆im > 0 holds, si

converges to the region as

‖si‖ ≤ ∆si = min
{

(k−1
2 ∆im)

1/γ1
, l−1

1 ∆im

}
. (39)

where l1 = k1 + k3λmin(L). As can be seen, equation (39)
reveals that the minimum nonzero eigenvalue λmin(L) of the
Laplace matrix also affects the convergence accuracy of the
system. Then, according to (19), the system dynamical equa-
tion is governed by α1ēiρη+χ1 ˙̄eiρη+β1 ˙̄eiρη

q1/p1−ζi1η = ζi2η ,
where |ζi2η| < ∆si , ζi1 = [ζi11 ζi12]T = χ1P11d̂iρ +
β1( ˙̄eiρ)

q1/p1 − β1(P11(A11ẽiρ +A12eiv))
q1/p1 is bounded

by ||ζi1|| ≤ ζiq , and the subscript η = 1, 2. Likewise, if
χ1 − ζi1η+ζi2η

˙̄eiρη
> 0 or β1 − ζi1η+ζi2η

˙̄eiρη
q1/p2

> 0 holds, ˙̄eiρη and
ēiρη converge, respectively, to the bounded regions as{
| ˙̄eiρη| ≤ ∆ ˙̄eiρ = max

{
∆ ˙̄eiρr , ∆ ˙̄eiρs

}
,

|eiρη| ≤ ∆ēiρ = |∆si + ζiq − χ1∆ ˙̄eiρη − β1∆ ˙̄eiρη
q1/p1 |,

(40)
where ∆ ˙̄eiρr = (β−1

1 (∆si + ζiq))
p1/q1 and ∆ ˙̄eiρs =

χ−1
1 (∆si + ζiq). Moreover, equation (16) has the expression

of ēiρ = [ēiρ1 ēiρ2]T = [a1ėiy + b1eiy f1eiz]
T, that is,

ēiρ2 = f1eiz . Then, the normal position error converges to

|eiz| ≤ ∆eiz = |f1|−1|ēiρ2| ≤ |f1|−1∆ēiρ . (41)

By using the first item of (16), a first-order system could
be established as

ėiy + a11eiy = ζi3, (42)

where a11 = b1/a1 and ζi3 = ēiρ1/a1 with its bound |ζi3| ≤
ζir = ∆ēiρ/|a1|. It can be concluded that the first-order system
(42) is stable when a11 = b1/a1 > 0 holds [14]. Likewise, if
a11 − ζi3e−1

iy > 0 or 1 − ζi3ė−1
iy > 0 holds, the along-track

states converge to the bounded regions as{
|eiy| ≤ ∆eiy = a11ζir,
|ėiy| ≤ ∆ėiy = ζir.

(43)

Integrating the along-track dynamics ëiy = −2n0ėix + diy
yields ėiy(t) = −2n0eix(t) + 2n0eix(0) + ėiy(0) + ζi4 =

−2n0eix(t) + ζi4, where ζi4(t) =
∫ tif

0
[diy(τ)]dτ is bounded

by |ζi4(t)| ≤ ζis. Then, the radial relative position error can
be expressed as

|eix| ≤ ∆eix = (2n0)−1(∆ėiy + ζis). (44)

Equations (41)-(44) demonstrate that the parameters in P11

affect the coupling relationship between the system states
and determine the stable hovering accuracy of the system.
In this sense, the non-preset parameter controller designed
in this brief can guarantee robustness for the system against
unmatched disturbances. Here Theorem 2 is proved. �

Remark 4: To weaken the chattering induced by the sign
function in (23), a common way is to replace the sign function
sgn(·) with the following saturation function sat(·).

sat(siη) =

{
sgn(siη), |siη| ≥ εη,
siη/εη, |siη| < εη,

η = 1, 2 (45)

where εη > 0 indicates the width of the boundary layer and is
a very tiny constant. A minor boundary layer can improve the
control accuracy but cause the chattering phenomenon [14].
Thus, a proper boundary layer can eliminate the chattering
while keeping the state error within the allowed range.

Remark 5: In the application of spacecraft formation flying,
the value of k2 is normally one-thousandth of that of k1.
In this sense, there must be l−1

1 ∆im < (k−1
2 ∆im)

1/γ1 , that
is, the system trajectory converges to the bounded region
∆si = l−1

1 ∆im, indicating that the synchronization control
determines the stable hovering accuracy of the system errors
but does not affect the convergence of the system.

Remark 6: Suggestions on parameter selection in P11: a1

and b1 can be regarded as the coupling gains of eiy and ėiy
entering the radial channel. In view of (20), if P11A12 = I2×2

holds, the canonical transformation can ensure the coupled
dynamics form of the along-track states. Hence, b1 and f1 can
be set close to −(2n0)−1 and 1, respectively. In the first-order
system (42), a11 = b1a1 > 0 yields a1 as a negative number.
Generally, the stable hovering accuracy of the relative velocity
is about one-thousandth of that of the relative position. In this
sense, a1 ≈ 10−3b1 ≈ −0.4. In addition, it is easy to deduce
that the matrix S in (20) is nonsingular when these parameters
are select above.
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IV. NUMERICAL SIMULATIONS

To testify the above theoretical analysis, the spacecraft
formation hovering without along-track thrust is simulated.
The formation system consists of a virtual leader and three
followers who communicate with each other. The orbital
elements of the leader in a circular orbit are listed in Table I.
In this brief, the nonlinear J2 perturbation and atmospheric
drag in [28] are employed here, and detailed derivations
are not repeated for brevity. Meanwhile, the linear quadratic
regulator (LQR) and the non-singular terminal sliding mode
controller (NTSMC) are used in comparative experiments,
and the detailed derivation and parameter setting for both
controllers can be referred to [13].

Fig. 2 depicts the feasible set of initial positions (8). As
can be seen, changing the range of y will generate different
feasible sets. Then, the initial and desired states of followers
in Table II are set by using the linear set (10), where n0 ≈
1.1× 10−3 rad/s. The control parameters are chosen as: α1 =
3 × 10−3, χ1 = β1 = 0.5, q1 = 11, p1 = 9, k1 = 3 × 10−3,
k2 = 1 × 10−6, a1 = −0.4, b1 = −454.5, f1 = 1, k3 =
3× 10−5, κ11 = 20, κ12 = 850, κ13 = 950, and κ14 = 0.4.

TABLE I
ORBITAL ELEMENTS OF THE LEADER.

Orbit elements Value Unit
Semi-major axis 6878000 m
Eccentricity 0 -
Inclination 42 deg
Right ascension of ascending node -60 deg
Argument of latitude 30 deg

TABLE II
INITIAL AND DESIRED STATES OF FOLLOWERS.

State Followers
Follower 1 Follower 2 Follower 3

vig (m/s) [0, 200n0, 0]T [0, 200n0, 0]T [0, 200n0, 0]T

ρig (m) [1100, 400, 500]T [1200, 380, 450]T [1300, 360, 400]T

ρid (m) [1200, 0, 0]T [1300, 0, 0]T [1400, 0, 0]T

Fig. 3 presents the hovering trajectories of three followers
under the action of SC (23). Every follower synchronously
flies from the initial position foi (i = 1, 2, 3) to the desired
hovering position f∗i . Taking follower 1 as an example, where
one orbital period is denoted as 2π/n0 ≈ 5712 s and the final
time tif is set to 2.5 orbital periods. Figs. 4 and 5 depict the
time histories of the relative position errors and the relative
velocity errors, respectively. As can be seen, follower 1 flies
to the desired hovering position f∗1 after about one period. Fig.
6 presents the time histories of control inputs. In particular,
continuous thrust is required to ensure that the follower 1
hovers in the desired position.

Table III shows the quantitative results of the controllers.
The term tis represents the settling time when the position er-
ror ‖eiρ‖ = (e2

ix+e2
iy+e2

iz)
1/2 of the ith follower reaches and

maintains within 5 m, td = max|tis−tjs| (j = 1, 2, 3, i 6= j) is
defined as the difference between the maximum settling time

and the minimum one among followers, dms = n−1
n∑
i=1

dis and

Fig. 2. Feasible sets of initial position when |y| ≤ 2000m and |y| ≤ 20000m.
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Fig. 4. Relative position error of follower 1.

Fig. 5. Relative velocity error of follower 1.
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Fig. 6. Underactuated control inputs of follower 1.

TABLE III
PERFORMANCE INDICES OF CONTROLLERS.

Controller Performance index
td(orbital period) dms(m) ∆Vm(m/s)

LQR 0.06 3.61 76.19
NTSMC 0.14 3.35 76.36
NFTSMC 0.13 3.31 76.36
DO-NFTSMC 0.17 3.02 76.36
SC 0.02 2.95 76.36

∆Vm = n−1
n∑
i=1

∫ tf
t0
‖ui‖dt calculate the mean stable error

distance and the mean velocity increment for all followers, re-
spectively, where dis = (tif − tis)−1

∫ tif
tis
‖eiρ(t)‖dt. Clearly,

DO-NTSMC and SC outperform other controllers, especially
LQR, in control accuracy. Under the action of SC, the value of
the index td is the smallest, which is 0.02 orbital period. The
results indicate that SC could improve the control accuracy
and synchronize the motion between the followers without
significantly increasing the velocity increment.

V. CONCLUSION

This brief investigates the feasibility of underactuated s-
pacecraft formation hovering in the case of losing along-
track thrust. Based on the nonlinear and linear relative orbital
dynamics, the feasible set of initial positions is derived. More-
over, a non-preset parameter underactuated synchronization
control scheme is proposed using the inherent coupling of
the system state, the finite-time disturbance observer, and
the sliding mode technique. The presented controller can
effectively eliminate the initial offsets, cope with the influence
of unmatched disturbances on the control accuracy, and syn-
chronize every follower motion with that of nearby followers.
It is promising to extend the underactuated control scheme to
elliptic orbits.
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