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a b s t r a c t 

A simple yet expressive prediction model is an essential ingredient in model-based control and esti- 

mation. Models derived from fundamental physical principles may fail to capture the complexity of the 

actual system dynamics. A potential solution is the use of a physics-informed , or gray-box model that ex- 

tends a physics-based model with a data-driven part. Learning the latter might be challenging, due to 

noisy measurements and lack of full state information. This work presents a method based on Moving 

Horizon Estimation (MHE) for simultaneous state estimation and training of a black-box submodel, such 

as a neural network. The method can be used in offline training or applied online for adaptation without 

any prior knowledge than the white-box submodel. We analyze the capabilities of the method in a two 

degree of freedom robotic manipulator case study, also showing how it can be used for online adaptation 

to cope with a time-varying model mismatch. 

© 2023 The Authors. Published by Elsevier Ltd on behalf of European Control Association. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In model-based control and estimation, such as Model Predic- 

ive Control (MPC) and Extended Kalman Filtering (EKF), a funda- 

ental component is a model of the system dynamics that is ac- 

urate, yet as simple as possible. In industrial systems it is often 

ard to capture the real-world dynamics exactly by using physical 

rinciples only, due to three types of issues: ( i ) modeling simplifi- 

ations, ( ii ) part-to-part variations, and ( iii ) time-varying changes 

f the system dynamics due to the environment or wear and 

ear of components. Due to increasing closed-loop performance 

nd estimation quality requirements, addressing these issues be- 

omes even more pressing. One potential solution that has at- 

racted great attention, due to the success of machine learning 

nd increasing computational resources, is learning-based control, 

ee [5,11,14] . Learning-based control incorporates principles from 

achine learning in the control strategy, and the use of machine 
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earning ideas in control-oriented modeling has been investigated 

n the past [8,18,22] . Offline learning can be used to address is- 

ue ( i ) and ( ii ), and ideas have been proposed to cope with issue

 iii ), see [3,17,19] and is what is often called lifelong learning . For 

xample, lifelong learning in robotics has been a topic of research 

or decades [27] and is still active today [26] . Many ideas rely on 

he use of black-box models, that is, disregard all physical knowl- 

dge and rely only on models derived from data [1,9,19] . However, 

 more appealing approach is the use of physics-informed learn- 

ng, e.g. gray-box modeling where available knowledge from phys- 

cal principles is preserved and extended with a data-driven com- 

onent [15,25] . Recently, non-parametric structures such as Gaus- 

ian processes have gained attention and have been used widely 

n gray-box models [6,17,19] . Despite their many advantages, their 

pplicability is often restricted by their limited scalability. 

In this paper, we propose a framework in which parametric 

unction approximations of the data-driven component are used. 

he proposed state and parameter estimation approach consists 

f an optimization-based training algorithm based on a Moving 

orizon Estimation (MHE) concept. In MHE, an optimization prob- 

em is solved over a window covering a limited number of past 

easurements, which moves over time in a receding horizon fash- 

on [23,24] . Based on such a window of past measurements, MHE 

an be used to estimate both the current state and parameter 
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alues. A core advantage of MHE is the possibility to add con- 

traints in a natural way, which is not possible in classical estima- 

ion methods based on recursive formulations such as EKF. Further- 

ore, MHE is more robust to inaccurate initial conditions than EKF 

nd, by suitable numerical implementations, MHE is often feasible 

or embedded real-time applications [16] . A key feature of MHE is 

ts ability to summarize and preserve existing knowledge through 

he so-called arrival cost , which makes it quite suitable for model 

daptation. 

A MHE-based approach for online adaptation of learning-based 

odels was proposed in [4] . However, a fixed learning-rate was 

sed to adapt the model, thus not relying on prior information 

hrough the arrival cost. Moreover, the authors assume that all the 

tates are measurable and only consider the noise-free case. Since 

hey rely on black-box modeling, the online optimization prob- 

em becomes hard to solve in a real-time setting, due to the non- 

egligible size of the neural network that is needed to capture the 

ntire model for systems with complex nonlinearities. 

The main contribution of this paper is to introduce the de- 

cribed framework for concurrent state estimation and learning of 

he black-box submodel. The method can directly deal with noisy 

ata and problems where not all the states are measured and is in- 

erently suited for safe online learning due MHE-framework used. 

urthermore, preserving the physical knowledge allows one to use 

unction approximations of rather limited size, thereby enhancing 

he potentials for real-time use. 

The paper is organized as follows. Section 2 introduces the 

earning problem and formulates the MHE-based learning frame- 

ork based on neural networks to model the “black-box” part of 

he system. Section 3 presents the algorithm for learning gray-box 

odels by MHE. Simulation results are shown in Section 4 and 

onclusions are drawn in Section 5 . 

. Background and problem formulation 

We consider a dynamical system governed by the (partially un- 

nown) discrete-time dynamics 

 k +1 = f ( x k , u k , p(z k , k ) ) + v x,k (1a) 

here x ∈ R 

n x is the state vector, u ∈ R 

n u the control input, p ∈ R 

n p 

s a vector of parameters that are a function of z k as well as the

ime k where z k ∈ R 

n z may collect states, inputs, and other exoge- 

ous signals to model degradation and environmental effects that 

an change over time, and v x is a state-noise term that we assume 

ormally distributed with zero-mean and covariance Q x . The in- 

ex k denotes the sampling instant. The (partially unknown) out- 

ut equation of the system is defined as 

 k = g ( x k , p(z k , k ) ) + v y,k (1b) 

here y ∈ R 

n y is the output vector and v y the measurement noise, 

hat we assume normally distributed with zero-mean and covari- 

nce R . We represent the unknown part of the model as p : R 

n z ×
 → R 

n p in (1) . 

The fundamental challenge is to derive a model of the unknown 

p(z k , k ) and adapt it as the system evolves. Such a setup fits well

o many physics-informed models combining ideas from physics- 

ased modeling and data-driven approaches, for example in the 

quite common) case of known integrators combined with static 

onlinearities. Accordingly, the prediction model used in this work 

s defined as 

ˆ 
 k +1 = 

ˆ f 
(

ˆ x k , u k , f NN ( w k , z k ) 
)

(2a) 

ith the associated output equation 

ˆ 
 k = 

ˆ g 
(

ˆ x k , f NN ( w k , z k ) 
)

(2b) 
2 
here f NN ( w k , z k ) is a feedforward neural network (NN) with n L 
ayers described by 

v 0 = z 

v 1 = A 1 v 0 + b 1 

v 2 = A 2 f 1 (v 1 ) + b 2 

. . . 

 n L −1 = A n L −2 f n L −2 (v n L −2 ) + b n L −2 

p = v n L −1 (3) 

n (2) , vector w k collects all the weights A i and bias terms b i ap-

earing in (3) , A i ∈ R 

n i ×n i −1 , with n i indicating the number of neu-

ons in i th layer of the network, defining the weights, b i ∈ R 

n i 

efining the bias of the i th layer. v i is the vector containing the 

utputs of neurons of the i th layer, and f i the activation func- 

ion used in the i th layer. The hyper-parameters describing the NN 

odel structure, once the inputs and outputs of the neural net- 

ork have been selected, are { n i } , n L , and { f i } . The subscript on

 k indicates that the NN parameters might change over time to 

apture the time dependence in p(z k , k ) . 

The NN f NN shall capture the function of p(z k , k ) that, besides

hysical parameters, could also represent disturbances and model 

ismatches between the true dynamics f, g and their model ˆ f , ̂  g . 

Neural networks are well known to be universal function ap- 

roximators, and indeed a NN with two nonlinear layers can ap- 

roximate any arbitrary nonlinear function [28] . Note that the 

hoice of a feedforward NN is without loss of generality in our ap- 

roach: other black-box models for p could be adopted, such as 

olynomial functions and other universal function approximators, 

ithout substantial changes. 

The main challenge of this paper is to develop a method to 

ake the gray-box model in (2) matching (1) as much as possible, 

here the goodness of such a matching is measured by the differ- 

nce between y k and ˆ y k based on input and output data. More for- 

ally, considering the formulation of the gray-box model defined 

y (2) and the fact that only noisy input/output data are available, 

he learning problem can be stated as 

min 

ˆ  0 , { w j } 

k ∑ 

j=0 

� 
(
y j , ̂  y j 

)
(4a) 

.t. ˆ x j+1 = 

ˆ f 
(

ˆ x j , u j , ˆ p j 
)

(4b) 

ˆ 
 j = 

ˆ g 
(

ˆ x j , ˆ p j 
)

(4c) 

ˆ p j = f NN 

(
w j , ̂  z j 

)
(4d) 

 j, min ≤ ˆ x j ≤ x j, max (4e) 

p j, min ≤ f NN (w j , ̂  z j ) ≤ p j, max (4f) 

here the loss � (y j , ̂  y j ) penalizes the dissimilarity between the 

utput measurement y j and its estimate ˆ y j , � : R 

n y × R 

n y → R .

qs. (4e) and (4f) introduce possible constraints on states and pa- 

ameters derived from physics. The time dependence in w j is in- 

roduced to model the fact that the relation between p j and z j may 

ary over time as well. Solving (4) corresponds to solving the full 

nformation estimation problem at each time step, which becomes 

ntractable as k grows. As we show in the next section, MHE pro- 

ides a meaningful way of reducing such a complexity while pre- 

erving all the past information cumulated between time 0 and k . 
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. Moving horizon estimation for neural network learning 

We consider the following adaptation of the MHE 

cheme [16] to the combined state-estimation and network 

arameter learning problem 

min 

ˆ x k −L , w 

r(w ) + 

k ∑ 

j= k −L 

‖ V j (y j − ˆ y j ) ‖ 

2 
2 

+ 

∥∥∥∥∥P k −L 

[ 

ˆ x k −L − x̄ k −L 

w − w̄ k −L 

] 

∥∥∥∥∥
2 

2 

(5a) 

.t. ˆ x j+1 = 

ˆ f ( ̂  x j , u j , ˆ p j ) , j = k − L, . . . , k − 1 (5b)

.t. ˆ y j = g( ̂  x j , ˆ p j ) , j = k − L, . . . , k (5c) 

.t. ˆ p j = f NN (w , ̂  z j ) , j = k − L, . . . , k (5d) 

.t. x j, min ≤ ˆ x j ≤ x j, max , j = k − L, . . . , k (5e) 

.t. p j, min ≤ f NN (w , ̂  z j ) ≤ p j, max , j = k − L, . . . , k (5f)

here r(w ) is a term introduced to regularize the learning 

roblem, e.g. to prevent overfitting by introducing � 1 or � 2 - 

egularization, ˆ z j may collect ˆ x j , u j , and other measured exogenous 

ignals, and L is the size of the estimation window. 

The weight matrices V T 
j 

V j and P T 
k −L 

P k −L in the cost func- 

ion (5a) can be interpreted as inverses of covariance matrices [16] , 

n particular V j could be seen as the inverse Cholesky factor R 
− 1 

2 
j 

of 

 given covariance matrix R j . The term in (5a) related to P k −L is the

o-called arrival cost and has the role of preserving the knowledge 

btained by previous measurements that are not considered in the 

urrent estimation window, that are summarized in vectors x̄ k −L , 

p̄ k −L , and P k −L itself. In particular, matrix P T 
k −L 

P k −L quantifies the 

rust in current estimates x̄ k −L , p̄ k −L . By a good selection of the ar- 

ival cost, one can get a good approximation of the full-information 

stimation [24] . We use the efficient method proposed in [16] (Sec- 

ion 2.1 Equation (7)) to update the arrival cost. To enable adap- 

ation of NN parameters, a related noise variable is employed in 

he arrival cost update despite the model assumption of constant 

N parameters over the estimation window in (5) and the selected 

arameter covariance, Q w 

can be considered as a tuning parameter. 

y setting the horizon L = 1 in (5) and using the arrival cost update

rom [16] , the MHE is equivalent to the square-root formulation of 

he EKF [2] . 

For comparison, we will also consider the following standard 

HE formulation from [16] 

min 

ˆ  k −L , ̂ p 

k ∑ 

j= k −L 

‖ V j (y j − ˆ y j ) ‖ 

2 
2 + 

∥∥∥∥P k −L 

[
ˆ x k −L − x̄ k −L 

ˆ p − p̄ k −L 

]∥∥∥∥
2 

2 

(6a) 

.t. ˆ x j+1 = 

ˆ f ( ̂  x j , u j , ˆ p ) , j = k − L, . . . , k − 1 (6b)

ˆ 
 j = 

ˆ g ( ̂  x j ) , j = k − L, . . . , k (6c) 

 j, min ≤ ˆ x j ≤ x j, max , j = k − L, . . . , k (6d) 

p min ≤ ˆ p ≤ p max (6e) 

hat attempts to directly estimate vector p without associating an 

xplicit model to it. 
3 
To possibly increase the performance of the numerical solution 

o (5) and (6) , the MHE problems are solved in the so-called non- 

ondensed version (a.k.a. “direct multiple shooting”) where all state 

ariables are free and the equality constraints (5b) and (6b) are en- 

orced by the solver rather than explicitly taken into account in the 

ost and constraint functions i.e., the condensed the problem for- 

ulation (a.k.a. “direct single shooting”) [12] . The formulation pre- 

ented in (5) is only considering neural network parameters, but 

ould easily be extended to estimate slowly-varying parameters. 

In our setup (5) , the part of the arrival cost related to the neu-

al network parameters w can be seen as an adaptive learning-rate. 

t can be tuned by setting the covariance on the neural network 

arameters, Q w 

, in the arrival cost update. Note also that with 

onstraint (5f) one can attempt to explicitly constrain the learned 

odel in a way that is meaningful from the point of view of the 

hysics of the system and the formulation in (5) could easily be 

xtended to explicitly constrain the neural network parameters. 

Since MHE is a method developed for online state and param- 

ter estimation, the formulation in (5) can be directly applied in 

n online setting to continuously adapt w in (2) to changes in 

he way p depends on z k . The method can even be cold started 

ithout a pre-trained neural network and rely on the knowledge 

ontained in the white-box model while adapting to the unknown 

odel mismatch online. In case of online learning, using a pre- 

rained neural network is preferable if training data are available 

rior to deployment. In the following, we present how the MHE 

cheme can be used as an offline training algorithm to obtain such 

 network. Given a training dataset D N = { (u 0 , y 0 ) . . . (u N−1 , y N−1 ) }
f N input/output pairs, consider again Problem (4) for k = N − 1 

nd constant parameter vector w 

in 

ˆ x 0 , w 

N−1 ∑ 

k =0 

� 
(
y k , ̂  y k 

)
(7a) 

.t. ˆ x k +1 = 

ˆ f ( ̂  x k , u k , ˆ p k ) (7b) 

ˆ 
 k = 

ˆ g 
(

ˆ x k , ˆ p k 
)

(7c) 

ˆ p k = f NN (w , z k ) (7d) 

 k, min ≤ ˆ x k ≤ x k, max (7e) 

p k, min ≤ f NN (w , z k ) ≤ p k, max (7f) 

Such a reduced problem can be solved using different nonlinear 

rogramming solvers [20] , but requires processing the entire data 

et in one shot, as the cost function of the problem is not separable

ue to the dynamic constraints in (7b) . The gradient of the cost 

unction can be evaluated efficiently by backpropagation through 

ime [29] , although this could lead to the problem of vanishing or 

xploding gradients [13] . 

We propose to solve the training problem (7) by processing the 

raining dataset D N for a number N e of epochs using the MHE for- 

ulation (5) . In each epoch, the data is processed sequentially by 

he MHE (5) ; after each epoch, the part of the arrival cost related

o the state estimates is reset while the knowledge obtained on 

he neural network parameters is kept for the next training epoch, 

hat is 

 0 ← 

[
Q 

−1 / 2 
x 0 

0 

0 [ P k −L ] nx : ,nx : 

]
(8) 

The approach can be interpreted as a mini-batch algorithm with 

atches of length L for learning a recurrent model with hidden 
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Fig. 1. Two degree of freedom robotic manipulator used in numerical example. 
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tates, where the loss function used in each batch is updated re- 

ursively. 

Before starting a new epoch, the covariance matrix associated 

ith the neural network parameters is possibly scaled as Q w 

← 

Q w 

, with 0 ≤ α ≤ 1 . After the N e epochs have been processed, the

verage of { w k } obtained over the last epoch is taken as initial pa-

ameters for f NN , which avoids possible biases of the network to- 

ards better explaining the last part of the training data set D N . 

he proposed method is summarized in Algorithm 1 where M de- 

lgorithm 1 Physics-informed learning of NN submodel. 

1: Inputs: Q w 0 , Q w 

, Q w online 
, L , N e , ε, Q x , Q x 0 , R , x̄ 0 , D N =

{ (u k , y k ) } N−1 
k =0 

; 

2: Initialize: 

Xavier initialization [10] : 

A i ∼ U[ −
√ 

6 √ 

n i + n i +1 
, 

√ 

6 √ 

n i + n i +1 
] , b i = 0 ; 

w̄ 0 ← A i , b i , i = 1 , . . . , n L ; 

Covariance initialization: 

P 0 ← 

[
Q 

−1 / 2 
x 0 

0 

0 Q 

−1 / 2 
w 0 

]
; 

V j ← R −(1 / 2) , ∀ j; 

Offline MHE learning - D N � = ∅ 
3: for h = 1 , . . . , N e do : 

4: for k = L, . . . , N − 1 do : 

5: Update x̄ k −L , w̄ k −L , P k −L according to [19]; 

6: Solve MHE problem in (5); 

7: end for 

8: MSE y = 

1 
N ‖ y − ˆ y ‖ 2 2 ; 

9: if MSE y ≤ ε then 

0: Break ; 

11: end if 

2: Reset the MHE : 

3: x̄ L ← x 0 ; 

14: P 0 ← 

[
Q 

−1 / 2 
x 0 

0 

0 [ P k −L ] nx : ,nx : 

]
; 

5: Q w 

← αQ w 

; 

6: end for 

17: w ← 

1 

N 

N−1 ∑ 

k =0 

w k . 

Online MHE learning 

18: Q w 

← Q w online 

9: for k = 0 , . . . , M − 1 do : 

0: Update x̄ k −L , w̄ k −L and P k −L according to [19]; 

1: Solve MHE problem in (5); 

2: end for 

otes the number of measurements processed in the online phase. 

To monitor the progress during training, the Mean Square Er- 

or (MSE) on the output estimates obtained at each stage during 

raining using w k is evaluated. This is used to possibly stop the 

lgorithm early, before the maximum number of epochs has been 

eached in case MSE y ≤ ε, where ε > 0 is a prescribed tolerance. 

he initial state can be obtained from prior knowledge or esti- 

ated using the white-box model. 

. Numerical example 

We apply the proposed training algorithm to learn a model of a 

wo degree of freedom robotic manipulator on simulated data. The 

obotic manipulator can be seen in Fig. 1 . Algorithm 1 is first used

o train a gray-box model, showing its estimation and prediction 
4 
apabilities. Using the pre-trained neural network, we also show 

ow the MHE in (5) can be used for online adaptation. 

.1. Dynamics 

The equation of motion is derived based on the recursive 

ewton-Euler equations [ 7 , Chapter 6.5] 

¨ = M 

−1 ( θ ) 
(
τ − V (θ, ˙ θ ) − G ( θ ) −

(
c̄ + c d (θ, ˙ θ ) 

)
˙ θ
)

(9) 

here M(θ ) is the mass matrix 

(θ ) = 

[ 

l 2 2 m 2 + 2 l 1 l 2 m 2 cos (θ2 ) 
+ l 2 1 (m 1 + m 2 ) 

l 2 2 m 2 

+ l 1 l 2 m 2 cos (θ2 ) 
l 2 2 m 2 + l 1 l 2 m 2 cos (θ2 ) l 2 2 m 2 

] 

(10) 

 (θ, ˙ θ ) is the vector collecting the velocity terms 

 (θ, ˙ θ ) = 

[
−m 2 l 1 l 2 sin (θ2 ) ˙ θ

2 
2 − 2 m 2 l 1 l 2 sin (θ2 ) ˙ θ1 

˙ θ2 

m 2 l 1 l 2 sin (θ2 ) ˙ θ2 
1 

]
(11) 

 ( θ ) is the vector collecting all terms containing the gravitational 

onstant, g

 (θ ) = 

[
m 2 l 2 g cos (θ1 + θ2 ) + (m 1 + m 2 ) l 1 g cos (θ1 ) 

m 2 l 2 g cos ( θ1 + θ2 ) 

]
(12) 

¯ is the nominal damping, c d is a nonlinear damping acting on the 

oints, m 1 and m 2 are the joint masses, and l 1 and l 2 denotes the

ength of the joints (see Fig. 1 ). The state vector consists of the 

ectors θ of joint angles and 

˙ θ of joint velocities 

 = 

[
θ1 θ2 

˙ θ1 
˙ θ2 

]T 
(13) 

he dynamics of the system can be expressed by the system of 

DE’s 

˙ 
 = f (x, u ) + v x = 

[
˙ θ

θ̈

]
+ v x (14) 

here v x is a state noise term with zero mean and covariance ma- 

rix Q x , while θ̈ is computed from (9) . The measured output of the 

ystem is the vector of joint angles 

 = g(x ) + v y = 

[
1 0 0 0 

0 1 0 0 

]
x + v y (15) 

here v y is an output noise term with zero mean and covari- 

nce R . The dynamics are discretized using a fourth-order Runge- 

utta scheme with sampling time T s = 0 . 05 s . In our numerical ex-

eriments we set the covariance matrices Q x = 0 . 001 2 I ∈ R 

4 ×4 and

 = 0 . 005 2 I ∈ R 

2 ×2 . We also set 

 (x ) = c 1 sin (θ1 ) + c 2 θ2 + c 3 ˙ θ1 + c 4 ˙ θ2 (16) 
d 
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Fig. 2. Illustration of the (unknown) nonlinear damping, c d , for fixed values of θ2 = 

π and ˙ θ2 = −1 . 5 . 
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Fig. 3. Convergence of the neural network parameter vector w during training. 
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here c 1 = 0 . 25 Nm ·s 
rad 

, c 2 = 0 . 25 Nm ·s 
rad 2 

, c 3 = −0 . 1 Nm ·s 2 
rad 2 

, and c 4 =
0 . 1 Nm ·s 2 

rad 2 
. Eq. (16) is unknown during training and c d acts as p

n (1) . The nonlinear damping is illustrated in Fig. 2 for a fixed val-

es of θ and 

˙ θ2 . Furthermore, we use c̄ = 5 Nm ·s 
rad 

, the joint masses 

 1 = m 2 = 2 . 5 kg, and joint lengths l 1 = 0 . 5 m and l 2 = 0 . 25 m . For a

ore detailed understanding of the dynamics in (9) , see [ 7 , Chap-

er 6.5–8]. 

.2. White-box model for data collection 

We consider a white-box model of the dynamical equa- 

ions in (9) , in which the nominal damping c̄ is used while the un-

nown damping caused by c d is neglected, for controlling the sys- 

em while generating the data. Hence, the dynamics of the white- 

ox model are 

¨ = M 

−1 ( θ ) 
(
τ − V (θ, ˙ θ ) − G ( θ ) − c̄ ˙ θ

)
(17) 

.3. Gray-box model for estimation and control 

Regarding the gray-box model, we introduce a neural network 

hich takes the state vector as the input and gives an estimate of 

 d as the output 

ˆ 
 d ( ̂  x ) = f NN ( w , ̂  x ) (18) 

Therefore, the dynamics of the gray-box model used in training 

nd for estimation and control becomes 

¨ = M 

−1 ( θ ) 
(
τ − V (θ, ˙ θ ) − G ( θ ) −

(
c̄ + 

ˆ c d (θ, ˙ θ ) 
)

˙ θ
)

(19) 

We consider a neural network with v 0 ∈ R 4 , v out ∈ R 1 , n L = 3 ,

nd v 1 ∈ R 6 , which results in a parameter vector w ∈ R 37 that must

e learned. Furthermore, we use sigmoid activation functions f i = 

1 
1+ e −v . This structure was found to be sufficient for capturing the 

ynamics of c d , but for more complex systems it might be worth 

o analyze the NN structure and dimensions considering the trade- 

ff between performance and computational complexity. However, 

ne could use a larger network during offline training and use � 1 - 

egularization to prune the network by removing NN parameters 

elow a certain threshold. 

.4. Model for standard MHE 

For the MHE in (6) used for comparison we consider the fol- 

owing model which assumes c d to be constant 

¨ = M 

−1 ( θ ) 
(
τ − V (θ, ˙ θ ) − G ( θ ) − ( ̄c + c̄ d ) ˙ θ

)
(20) 
n  

5 
.5. Offline training using MHE 

The gray-box model can be pre-trained offline with the algo- 

ithm provided in Section 3 . To this end, training data are collected 

y tracking random set points for both joints using an MPC con- 

roller based on the white-box model (17) . Each constant set-point 

alue is kept for 12 . 5 s . To fully explore the state space, N = 20 0 0 0

amples are collected for training while 50 0 0 samples are kept 

or testing the model. Offline training is carried out over N e = 50 

pochs and the parameter covariance Q w 

= (5 · 10 −5 ) 2 I ∈ R 37 ×37 is

sed, with α = 0 . 9 . We use Q x 0 = (1 · 10 −3 ) 2 I ∈ R 4 ×4 , Q w 0 = (1 ·
0 −1 ) 2 I ∈ R 37 ×37 and the initial state x 0 = 

[
0 0 0 0 

]T 
. More- 

ver, the � 1 -regularization term w l1 ‖ θ‖ 1 is used with w l1 = 1 ·
0 −5 . Unless otherwise stated, the horizon length L = 10 is used 

or MHE throughout the rest of the paper. No bound on ˆ x j and ˆ p j 
s in (5) is imposed. Fig. 3 shows how the neural network param- 

ters evolve during training and tend to converge. One interesting 

nding is that a relatively good prediction performance is obtained 

ery quickly, so that the learned parameters could be used already 

fter a few epochs. 

Two neural networks with the same dimensions are trained for 

omparison by using the ODYS Deep Learning Toolset [21] . A neu- 

al network is trained with full knowledge of the states and c d i.e. 

he true states and values of c d obtained in simulation are used 

s inputs and outputs of the NN respectively in training. This can 

e seen as the best possible achievable performance and serves as 

 baseline for comparison. As a second term of comparison, an- 

ther neural network is trained by means of a two-step proce- 

ure. Firstly, the training data are processed using standard MHE in 

6) to simultaneously estimate the states and c d . Secondly, the neu- 

al network is trained using the estimated states as input and the 

stimated values of c d as output. We remark that obtaining reason- 

ble results required a very carefully tuning. Finally, a third term of 

omparison is obtained by training a NN with an EKF [3] instead of 

HE in Algorithm 1 . As performance index, the MSE between the 

stimate by the neural network, ˆ c d , and the true value c d is used 

SE c d = 

1 

N 

N−1 ∑ 

k =0 

(
c d k − ˆ c d k 

)2 
(21) 

or a fair comparison, we use the true states contained in the test 

ataset and feed them directly to the NN’s. From Fig. 4 , it is ap-

arent that the neural network trained using MHE is comparable 

n performance with the neural network trained with full-state in- 

ormation. Both neural networks are able to reconstruct c d , which 

s not possible for the neural network trained with the afore- 

entioned two-step procedure. The MSE for the neural network 

rained using the proposed method is 6 . 29 · 10 −4 and the MSE for 

he neural network trained with full information is 1 . 61 · 10 −4 . The

eural network trained using EKF has an MSE of 1 . 08 · 10 −2 and
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Table 1 

MSE c d on test data for offline training methods. Obtained by evaluating the neural 

networks on the true states from simuation. 

Method True “2-step” EKF MHE 

MSE c d 1 . 61 · 10 −4 1 . 07 · 10 −1 1 . 08 · 10 −2 6 . 29 · 10 −4 

Fig. 4. Comparison of estimation capabilities of nonlinear damping, c d , for neural 

networks obtained using different training methods. 

Fig. 5. Comparison of parameter estimation between gray-box model MHE and 

standard MHE. 
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Table 2 

Results in estimation, prediction and closed-loop nonlinear MPC. 

Scenario White-box Standard MHE Gray-box 

MSE c d - 0.26 1 . 67 · 10 −3 

MSE x -Estimation 1 . 03 · 10 −2 1 . 03 · 10 −3 2 . 37 · 10 −5 

MSE x -1-step prediction 1 . 19 · 10 −2 1 . 52 · 10 −3 2.37 ·10 −5 

MSE x -10-step prediction 4 . 41 · 10 −2 1 . 10 · 10 −2 8 . 70 · 10 −5 

MSE sp -Nonlinear MPC 0.40 0.39 0.37 
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he neural network trained using state estimates and c d has an 

SE of 1 . 01 · 10 −1 . The results are summarized in Table 1 . 

.6. Comparison in terms of estimation and prediction 

As estimation and predictive capabilities are crucial for using 

he model in control applications such as MPC, we evaluate the 

bility of the gray-box model to perform such tasks. The gray-box 

odel obtained in Section 4.5 is used for state estimation without 

nline adaptation of the neural network. For comparison, we con- 

ider a MHE based on the formulation in (6) to estimate the state 

nd c d , and compare the MSE of state and c d estimates. For the

HE using the gray-box model, the MSE on the states is MSE x = 

 . 37 · 10 −5 while standard MHE gives MSE x = 1 . 03 · 10 −3 . The MSE

n c d is MSE c d = 1 . 67 · 10 −3 for the gray-box model and MSE c d =
 . 26 for the standard MHE. In Fig. 5 it can be seen how using the

ray-box model improves estimation of c d significantly. Further, the 

verage and maximum computational time was decreased when 

sing the gray-box model which is very relevant for real applica- 

ions. In terms of one-step-ahead prediction quality, the gray-box 

odel provides an MSE x = 2 . 37 · 10 −5 , while using a constant c̄ d 
ives MSE x = 1 . 52 · 10 −3 . Moreover, doing prediction on a longer 
6 
orizon, which is the case in MPC, leads to even greater prediction 

rrors by using a static estimate of c d . In a 10-step ahead predic-

ion, the gray-box model provides an MSE x = 8 . 70 · 10 −5 , while us-

ng a constant c̄ d gives MSE x = 1 . 10 · 10 −2 which is comparable to 

hat is obtained with the white-box model, see Table 2 . The re- 

ults obtained in this section underline the potential of gray-box 

odels trained by the proposed framework to achieve high ac- 

uracy, that can improve the performance in estimation and con- 

rol obtained for example with MHE and MPC. We highlight this 

y comparing the results obtained in closed-loop simulation with 

HE and nonlinear MPC (NMPC) based on the white-box model, a 

odel using a constant c̄ d over the estimation and prediction hori- 

on obtained by (6) , and the gray-box model respectively. Random 

et points changing every 12 . 5 s are tracked. Further, we impose 

tate constraints on the joint velocities, that is −2 rad 
s ≤ ˙ θ1 ≤ 2 rad 

s 

nd −1 . 5 rad 
s ≤ ˙ θ2 ≤ 1 . 5 rad 

s . The MSE obtained on the set points

s MSE sp = 0 . 40 for the white-box model, MSE sp = 0 . 39 using a

onstant estimate of c̄ d over the horizon in MHE and MPC, and 

SE sp = 0 . 37 using the gray-box model i.e., the gray-box model 

educes the MSE on the set point tracking by 5 . 6% with respect

o using the standard formulation in (6) . For control applications 

ith high precision requirements such as robotic manipulators, an 

mprovement of 5 . 6% is significant especially if the impact on end- 

ffector position is considered. Further, the improvement in closed- 

oop MPC performance is mainly seen during transients (i.e. both 

odels performs well in steady state) which is not reflected prop- 

rly in the MSE, see Fig. 6 b. As seen in Fig. 6 d the NMPC based on

he gray-box model is operating closer to the constraints, thanks 

o the capabilities of the model to better predict the impact of the 

nknown damping on the acceleration of the joints, which explains 

he improved performance during transients. 

.7. Online adaptation using MHE 

In this section we show how the MHE scheme in (5) performs 

n an online setting for adaptation. We use the pre-trained gray- 

ox model from Section 4.5 but change the coefficients in (16) . The 

ovariance used for adaptation are Q w 

= (5 · 10 −5 ) 2 I ∈ R 37 ×37 . After

25 s , the nonlinear damping coefficients are slowly changed lin- 

arly over the following 250 s and kept constant for the rest of the 

imulation to mimic wear and tear on the system. The new values 

re c 1 = 0 . 15 Nm ·s 
rad 

, c 2 = 0 . 45 Nm ·s 
rad 2 

, c 3 = −0 . 2 Nm ·s 2 
rad 2 

and c 4 = 0 . 0 Nm ·s 2 
rad 2 

.

For comparison, ˆ c d is also evaluated with the pre-trained neu- 

al network. From Fig. 7 it is seen how the MHE is capable of cop-

ng with the changes and provide a better estimate of ˆ c d than the 

eural network relying on the parameters obtained in offline train- 

ng. Evaluating the neural network with the pre-trained parame- 

ers yields MSE c d = 4 . 34 · 10 −1 , while the adaptive neural network 

ives MSE c d = 9 . 12 · 10 −3 The results in Fig. 7 and the MSE confirm

he applicability of (5) for online adaptation of gray-box dynami- 

al models containing neural networks. In this work only slowly 

hanging coefficients in (16) have been considered, however it ex- 

ected that the method will perform similarly well under rapid 



K.F. Løwenstein, D. Bernardini, L. Fagiano et al. European Journal of Control xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EJCON [m5G; July 14, 2023;14:27 ] 

Fig. 6. Comparison of NMPC results based on different model types: white box (17) , gray box (19) , and standard MHE model (20) . 

Fig. 7. Values of ˆ c d calculated by the pre-trained neural network and the neural 

network adapted online by MHE. 
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hanges, e.g. step changes, since the standard MHE in (6) has been 

een to handle step changes during parameter estimation well. 

. Conclusions and future work 

In this paper we have proposed a moving horizon estimation 

cheme to learn and adapt gray-box models from noisy input- 

utput data in which neural networks are used to model hidden 

ynamics. The approach can be used offline to reconstruct a model 

y processing a given input/output dataset over multiple epochs 

nd is also inherently suited for online adaptation. The key in- 

redient to be able to process the dataset in short batches is the 

se of a properly defined arrival cost. A further feature offered 

y MHE is its natural ability to handle constraints on estimated 

uantities throughout the learning process, possibly enhancing es- 
7

imation quality by enforcing known physical limitations. While 

romising results have been achieved, many interesting research 

hallenges lie ahead. One promising line of research is to exploit 

he knowledge contained in the arrival cost. With an uncertainty 

stimate on all neural network parameters, the optimization prob- 

em to be solved online could be reduced to a subset of all the 

eural network parameters. This would allow to decrease the MHE 

omputation time or to handle larger neural networks. Another in- 

eresting topic to investigate is the adaptive tuning of the artificial 

ovariance matrix of the neural network parameters; discovering a 

uitable adaptation mechanism is expected to be useful for both 

ffline training and online adaptation. 
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