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Abstract
Uncertainty quantification has been extensively used as a
means to achieve efficient directed exploration in Reinforce-
ment Learning (RL). However, state-of-the-art methods for
continuous actions still suffer from high sample complexity re-
quirements. Indeed, they either completely lack strategies for
propagating the epistemic uncertainty throughout the updates,
or they mix it with aleatoric uncertainty while learning the full
return distribution (e.g., distributional RL). In this paper, we
propose Wasserstein Actor-Critic (WAC), an actor-critic archi-
tecture inspired by the recent Wasserstein Q-Learning (WQL),
that employs approximate Q-posteriors to represent the epis-
temic uncertainty and Wasserstein barycenters for uncertainty
propagation across the state-action space. WAC enforces ex-
ploration in a principled way by guiding the policy learning
process with the optimization of an upper bound of the Q-value
estimates. Furthermore, we study some peculiar issues that
arise when using function approximation, coupled with the
uncertainty estimation, and propose a regularized loss for the
uncertainty estimation. Finally, we evaluate our algorithm on
standard MujoCo tasks as well as suite of continuous-actions
domains, where exploration is crucial, in comparison with
state-of-the-art baselines. Additional details and results can be
found in the supplementary material with our Arxiv preprint.

1 Introduction
Reinforcement Learning (RL, Sutton and Barto 2018) is one
of the most widely used frameworks for solving sequential
decision-making problems. When an agent acts in an un-
certain environment, it faces the choice between exploring
with the hope of discovering more profitable behaviors or
exploiting the current information about the actions’ val-
ues. This exploration-exploitation dilemma is particularly
challenging in continuous-state spaces, where function ap-
proximation is required to generalize across states, and an
accurate estimate of the uncertainty on the value estimates
is not available point-wise. Continuous-action tasks pose ad-
ditional challenges since most exploration methods require
the maximization of some objective (e.g., upper bound of the
Q-value) over the action space. While in the discrete case,
this maximization can be performed by enumeration, in the
continuous case it requires solving a complex optimization
problem, increasing the computational demands.
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Actor-Critic (AC) methods (Haarnoja et al. 2018; Ciosek
et al. 2019; Schulman et al. 2015) represent the current state
of the art for continuous control. Despite their widespread
adoption, these methods still suffer from high sample com-
plexity. Efficient exploration strategies have been extensively
studied in the literature as a means of reducing sample com-
plexity mainly in tabular domains (Auer, Jaksch, and Ortner
2008; Ian, Benjamin, and Daniel 2013; O’Donoghue et al.
2018; Metelli, Likmeta, and Restelli 2019). Classical explo-
ration strategies, like ε-greedy or Boltzmann (Sutton and
Barto 2018), inject noise around the current greedy policy
to enforce exploration. Although in simple settings this is
enough to guarantee convergence (Szepesvári 1997), this
exploration strategy is not efficient in the general case.

A common trend in the RL literature consists of endowing
existing methods with some form of uncertainty quantifica-
tion and using it to perform directed exploration while fo-
cusing on the most promising regions. In particular, a recent
extension of Soft Actor-Critic (SAC, Haarnoja et al. 2018),
Optimistic Actor-Critic (OAC, Ciosek et al. 2019), proved
to improve sample efficiency over the standard SAC. Indeed,
uncertainty quantification is a fundamental step to define effi-
cient exploration strategies. Exploration strategies, coming
from the Multi-Armed Bandit (MAB, Lattimore 2020) litera-
ture, have been extended for the RL settings, starting from
tabular domains (Auer, Jaksch, and Ortner 2008; Ian, Ben-
jamin, and Daniel 2013; Metelli, Likmeta, and Restelli 2019),
with theoretical guarantees on the sample complexity and/or
regret. In turn, they have been extended to the Deep Rein-
forcement Learning (DRL) settings too, but the guarantees no
longer hold up. Ensemble methods allow quantifying the un-
certainty but do not propagate it across the state action-space
when performing the critic updates. Uncertainty propagation
is a fundamental tool of any principled uncertainty estimation
approach since most AC methods rely on bootstrapping when
updating the critics. This results in Q-value estimates that
also incorporate uncertainty about the bootstrapped values.
Distributional RL (O’Donoghue et al. 2018) allows for uncer-
tainty propagation but considers only aleatoric uncertainty,
being aimed at estimating the full return distribution.

In this paper, we address the problem of uncertainty estima-
tion and propagation in the context of continuous-action RL.
Starting from the methodology introduced in WQL (Metelli,
Likmeta, and Restelli 2019), we devise a novel actor-critic
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algorithm, Wasserstein Actor-Critic (WAC), which employs
Q-posteriors both to quantify uncertainty on the critic esti-
mates to drive exploration, as well as a tool to propagate it
across the state-action space (Section 3). Furthermore, we
consider some practical problems that arise while quantifying
uncertainty by means of Q-posteriors coped with function ap-
proximators, especially neural networks. To this end, we pro-
pose a regularization approach for the uncertainty networks
(Section 4). After reviewing the literature (Section 5), we
present a thorough experimental evaluation over some simple
1D navigation domains, as well as some MujoCo (Todorov,
Erez, and Tassa 2012) tasks designed for exploration to as-
sess the effect of uncertainty estimation and propagation on
exploration and sample complexity (Section 6).

2 Preliminaries
Markov Decision Processes We consider infinite-horizon
discounted Markov Decision Processes (MDP, Puterman
2014). An MDP is a 5-tuple M = (S,A,P,R, γ), de-
fined by the state space S, the action space A, a transi-
tion kernel P : S × A → ∆(S), a reward R : S ×
A → ∆(R) and the discount factor γ ∈ [0, 1).1 Let
r : S × A → R be the expectation of the reward R that
we assume bounded in [rmin, rmax]. The behavior of an
agent is described by a policy π : S → ∆(A). The per-
formance of a policy π is measured by its action-value func-
tion defined as Qπ(s, a) = E [

∑∞
t=0 γ

trt| s0 = s, a0 =
a], where we fix the first action and follow policy π for
the next steps. The value functions satisfy the Bellman
equations, Qπ(s, a) = r(s, a) + γ E [Qπ(s′, a′)] for every
(s, a) ∈ S × A. The optimal action-value function Q∗ is
the maximum, over all policies, of the Q function, for all
state-action pairs, Q∗(s, a) = supπ{Qπ(s, a)}. Q∗ satis-
fies the Bellman optimality equation Q∗(s, a) = r(s, a) +
γ E [supa′∈A{Q∗(s′, a′)}]. The Bellman equations form the
basis of Temporal Difference (TD) learning, which updates
the estimation of the Q function in the current state using
estimates of the next-states Q function. The goal of learning
algorithms in this setting is to find the optimal policy π∗,
which is defined as the policy that acts greedily w.r.t. Q∗,
π∗(·|s) ∈ ∆ (arg maxa∈A{Q∗(s, a)}) , ∀s ∈ S .

Actor-Critic Methods AC methods maintain a parameter-
ized value-function Qω (critic) to estimate the value of the
current (or a given target) policy, and a parameterized policy
πθ (actor), trained through gradient descent. In particular,
SAC, employs an entropy-regularized architecture, i.e., the
agents optimize a modified objective regularized with the
entropy of the policy favoring stochastic policies over de-
terministic ones, shown in Equation 2. Specifically, it main-
tains two parameterized action-value functions {Qω1

, Qω2
}

to estimate the entropy-regularized value function of policy
πθ. They are trained on the same samples and differ only
on the initialization of ω1 and ω2. The actor optimizes a
“lower bound” of the action-value function, QLB(s, a) =
min{Qω1

(s, a), Qω2
(s, a)}. To update the critic, given a

sample (s, a, r, s′), SAC uses the SARSA (Sutton and Barto

1∆(X ) denotes the set of probability distributions over X .

2018) update rule, Q{ω1,ω2}(s, a) ← r + γQLB(s′, a′),
where a′ ∼ πθ(s′). Specifically, SAC maintains experience
collected with previous policies πθ in a replay buffer D (Sut-
ton and Barto 2018). The critic is trained to minimize the
(entropy regularized) Bellman error over this replay buffer,
as follows:

JC({ω1,ω2}) = E
s,a,r,s′∼D

[
(Q{ω1,ω2}(s, a)−

(r + γQ̃(s′, a′)))2
]
,

(1)

where Q̃(s, a) = QLB(s, a)−α log πθ(s′, a′),QLB(s, a) =
min{Qω1(s, a), Qω2(s, a)} is the lower bound of the Q-
values given by two target networks which are updated slowly
to improve stability (Mnih et al. 2015), a′ ∼ πθ(s′), and
α > 0 specifies the level of entropy regularization. The actor
network is trained to optimize an entropy-regularized objec-
tive. Since the target Q-function is a parameterized function
approximator, the policy can directly follow the gradient of
the critic:

JA(θ) = E
st∼D

at∼πθ(st)

[log πθ(st, at)−QLB(st, at)] . (2)

Wasserstein TD-Learning Bayesian approaches to
RL (Dearden, Friedman, and Russell 1998; Metelli, Lik-
meta, and Restelli 2019) maintain, for each state-action
pair (s, a) ∈ S × A, a probability distribution Q(s, a),
called a Q-posterior, used to represent the epistemic
uncertainty over the value estimates. In practice, Q is an
approximate distribution in a class Q (e.g., Gaussians).
Using the concept of barycenter, we can also propagate
the uncertainty of the value function estimates across the
state-action space. As in (Metelli, Likmeta, and Restelli
2019), we employ the notion of barycenter defined in
terms of Wasserstein (Villani 2008) divergence since the
variance of our Q-posteriors vanishes as the number of
samples grows to infinity, and the Wasserstein divergence
allows computing the distance between distributions with
disjoint support. Given two probability distributions, µ
and ν, the Lp-Wasserstein distance between µ and ν is de-
fined as: Wp(µ, ν) = (infρ∈Γ(µ,ν) EX,Y∼ρ[d(X,Y )p])1/p,
where Γ(µ, ν) is the set of all joint distributions with
marginals µ and ν, and d is a metric (i.e., we use the
L2-norm). Given a class of probability distributions N ,
a set of probability distributions {µi}ni=1, µi ∈ N and
a set of weights {ξi}ni=1,

∑n
i=1 ξi = 1 and ξi ≥ 0, the

L2-Wasserstein barycenter is defined as (Agueh and Carlier
2011): µ ∈ arg minµ∈N {

∑n
i=1 ξiW2(µ, µi)

2}. From this,
having observed a transition (s, a, r, s′), the Wasserstein
Temporal Difference (WTD, Metelli, Likmeta, and Restelli
2019) update rule is defined via the computation of the
barycenter of the current Q-posterior and the TD- target
posterior, defined as Tt = r + γQt(s′, a′):

Qt+1(s, a) ∈ arg min
Q∈Q

{
(1− αt)W2 (Q,Qt(s, a))

2
+

αtW2 (Q, Tt)2
}
,

(3)
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Algorithm 1: Wasserstein Actor-Critic.

Input: critic parameters ω1,ω2, policy parameters θ,θT

InitializeQ{1,2}(s, a) with the priorQ0

Initialize replay buffer D ← ∅
for epoch = 1, 2, ... do

for t = 1, 2, ... do
Take action at ∼ πθ(·|st)
Observe st+1 and rt+1

D ← D ∪ {(st, at, rt+1, st+1)}
end for
σ
{1,2}
old ← σω{1,2}

for iteration = 1, 2, ... do
Update critic weights ω{1,2} using Equation (8)
Update actor (resp. target) weights θ (resp. θT ) using Equa-
tion (6) (resp. Equation (7))

end for
end for

where αt is the learning rate, and a′ is the action taken in the
next step. Depending on the policy used to select action a′,
the update can be either on-policy or off-policy. The presence
of γ in the definition of Tt shrinks the posteriors, vanishing
the uncertainty when the number of samples grows to infinity.
When the Q-posteriors become point estimates, the update
rule reduces to the classic TD update rule.

3 Wasserstein Actor-Critic
In this section, we introduce Wasserstein Actor-Critic (WAC),
which extends WQL to handle environments with continuous-
action spaces. We present the algorithm, define the update
rules, and a regularization for the uncertainty estimates.

Distributional Critic For each state-action pair (s, a) ∈
S ×A, we maintain an approximate distribution Q(s, a) ∼
Q(s, a), to model the uncertainty estimate on the value func-
tion. While these distributions will generally depend on the
aleatoric uncertainty of the environment (state transition and
reward), our updates will vanish the variance as we collect
samples. This represents our main difference w.r.t. Distribu-
tional RL (Bellemare, Dabney, and Munos 2017), as we do
not require learning the whole return distribution, while still
propagating uncertainty across the state-action space. More
specifically, given a replay buffer of past behavior D, our
critic minimizes the L2-Wasserstein distance between the
Q-posterior Qω and the target posterior r + γQω, defined
through the target parameters ω and target policy πθT :

JC(ω) = E
s,a,s′,r∼D

[
W2

(
Qω(s, a),

r + γQω(s′, πθT (s′)
)2]

.

(4)

Different flavors of the algorithm can be proposed, based on
the combination of: (i) distribution classes Q, (ii) behavioral
policy πθ , and (iii) target policy πθT . We focus on optimistic
exploration, that requires optimizing upper bounds. More-
over, although other distribution classes, like particle-models,
could be employed, we limit our discussion to Gaussian pos-
teriors, as their parametrization allows for direct control over
the distribution variance.

Similar to WQL, we maintain a parameterized distribu-
tional critic using a function approximator (e.g., neural net-
work) that outputs the parameters of the distribution. For
the Gaussian case, Q(s, a) ∼ N (µω(s, a), σω(s, a)), the
Wasserstein distance has a closed form, and the critic objec-
tive becomes:

JC(ω) = E
s,a,s′,r∼D

[(
µω(s, a)− (r + γµ̃ω(s′, πθT (s′)))

)2
+
(
σω(s, a)− γσω(s′, πθT (s′))

)2]
, (5)

where µ̃ω(s, a) = µω(s, a) − α log πθT (s, a). In practice,
µω and σω can use either a shared network architecture or
two different networks. We initialize the posterior networks
using the bias of the last layer of the network. If the reward
function is limited in the interval [rmin, rmax], the Q values
will be in the range [qmin, qmax] with qmin = rmin/(1 − γ)
and qmax = rmax/(1− γ). We therefore initialize the uncer-
tainty networks to σ0 = (qmax− qmin)/

√
12, i.e. variance of

the Gaussian minimizing the KL divergence with the uniform
distribution in [qmin, qmax] (Metelli, Likmeta, and Restelli
2019).

Actor The actor in WAC is updated by optimizing an upper
bound U δω of the estimated Q-value, which we can efficiently
compute using Gaussian posterior: U δω(s, a) = µω(s, a) +
σω(s, a)Φ−1(δ), where Φ−1 is the quantile function of the
standard normal and δ ∈ (0, 1). When actions are finite,
no actor is needed, as we can compute the maximum by
enumeration. However, in the continuous-action case, we
need an actor that follows U δω(s, a), which is differentiable
in ω, leading to the minimization of the objective:

JA(θ) = E
st∼D

at∼πθ(st)

[
log πθ(st, at)− U δω(st, at)

]
, (6)

where θ are the parameters of the behavioral policy.

Target Policy We propose two alternatives for the target
policy πθT , corresponding to different estimators for the
target posterior Tt. First, we can use the same policy we
use for exploration, i.e., θ = θT , like SAC. This has the
advantage of not requiring a second parameterized policy.
We call this version Optimistic Estimator-WAC (OE-WAC),
which represents an on-policy algorithm. Alternatively, we
can use a greedy policy that optimizes the expected value of
the Q-posteriors (the mean critic µω(s, a) in the Gaussian
case). In this case, the target policy minimizes:

JT (θT ) = E
st∼D

at∼πθT (st)

[log πθT (st, at)− µω(st, at)] . (7)

We call this version Mean Estimator-WAC (ME-WAC). The
best version to use between the two is task-dependent. Gener-
ally, OE-WAC is more suitable for environments that require
large exploration, whereas ME-WAC is more suitable for
simpler environments where OE-WAC might over-explore
and might suffer from some instability.

Remark 1 (What is our Critic Estimating?). We underline
that our distributional critic maintains uncertainty about the
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Figure 1: Example of uncertainty estimates. σ0 shows the
initial constant high value.

Q∗ and not about the Q-function of the current policy Qπθ .
Indeed, the method starts with an initial high-uncertainty
estimate and updates it as we collect samples from the en-
vironment. In the tabular case, it can be proven that these
upper-bounds on the value of Q∗ are valid with high prob-
ability for every timestep t, under some conditions on the
learning rate αt (Metelli, Likmeta, and Restelli 2019). When
extending the method to DeepRL, these guarantees are no
longer valid, since the uncertainty estimates are outputs of
general function approximators and local updates are no
longer possible.

4 Regularized Uncertainty Estimation

Our Q-posteriors are initialized to high uncertainty at the
beginning of the learning process. Since they represent epis-
temic uncertainty, their variance will shrink as we observe
more samples. This is apparent in Equation (5), where the
targets σω are multiplied with γ. In tabular settings, the up-
dates are localized, i.e., they affect a single state-action pair,
without interfering with the others. However, when function
approximators are involved, generalizing uncertainty in an
uncontrolled way might cause non-visited areas of the state-
action space to take low uncertainty values, which might be
undesired.2 Consider the example in Figure 1 showing the
uncertainty estimate as a function of the action, in a fixed
state s. Starting from an initial high constant estimate of σ0,
at the beginning of the learning process, we will observe
samples like the red crosses in the figure, i.e., with lower
uncertainty since it gets shrunk with γ. Among all the possi-
ble fitting lines, we would prefer an estimate like σ3

1 , which
keeps high uncertainty in unseen regions, and would like to
avoid failures like σ1

1 . This requires controlling the “smooth-
ness” properties of the approximator. To avoid the additional
computational burden, we propose a simple scheme based
on synthetic samples. Specifically, we periodically save the
weights of the uncertainty network σold and use it as the target
for state-action pairs drawn uniformly from the state-action

2This generalization phenomenon happens for the mean too, but,
as visible in Equation (5), is particularly critical for the variance that
gets updated with the next-state-action variance scaled by γ < 1.

space. More formally, our distributional critic minimizes:

J ′C(ω{1,2}) = JC(ω{1,2})+

λ E
s,a∼U(S×A)

[(
σω{1,2}(s, a)− σold(s, a

)2]
,

(8)

where JC(ω{1,2}) is defined in Equation (5) and λ ≥ 0
defines the relative weight of the regularization. Furthermore,
in practice we add a second parameter, ρ ∈ [0, 1] which
represents the fraction of fake samples (w.r.t. the samples
used for JC(ω{1,2})) drawn for regularization. Specifically, if
we estimate JC(ω{1,2}) using N samples from replay buffer
D, we will estimate the expectation in Equation (8) with
M = ρN samples from U(S ×A). Algorithm 1 reports the
pseudocode of WAC, embedding the regularized uncertainty
estimation.

To investigate the effectiveness of the regularized uncer-
tainty loss, on an illustrative example, we trained two differ-
ent agents, in a one-dimensional Linear Quadratic Regula-
tor (LQG, Dorato, Cerone, and Abdallah 2000). This task has
a one-dimensional state and action spaces, which allows us to
visualize the uncertainty estimates. Figure 2 shows the result-
ing uncertainty estimates. On the left, we show the empirical
state-action visitation distribution. The agent starts in one of
the borders of the state space and has to reach the center in
a few steps while calibrating the actions. This is apparent
in the histogram, with the highest densities in the borders
and the center. We consider it desirable to obtain uncertainty
estimates that mirror these state-action densities, as the epis-
temic uncertainty is inversely proportional to the state-action
visitation. While in both cases, the state-action densities are
similar, the uncertainty estimates are completely different. In
Figure 2b, we see that without regularization, the critic com-
pletely fails to represent the uncertainty. In Figure 2c, we can
see that the regularized uncertainty critic, almost perfectly
matches the state-action densities. In Section 6 and Appendix
B, we show a more thorough investigation of the effect of the
regularized uncertainty loss.
Remark 2 (Where does WAC differ from WTD?). While
WAC is a direct extension of Wasserstein TD-learning to the
actor-critic architecture, it does come with some modifica-
tions (mostly to regularize the learning process). Indeed, the
entropy setting we employ in the critic and actor fit is not a
part of the base framework. Wasserstein TD-learning, in it’s
pure form, would employ deterministic policies. In practice,
we observed that this, coupled with optimistic exploration,
caused instability in the learning process. Adding entropy
regularization improves stability while not decreasing sig-
nificantly the exploration capabilities of the method. More-
over, the regularization term in Equation (8) is added due to
the use of general function approximators for generalizing
uncertainty, and was not found in the main Wasserstein TD-
framework. We use the regularization term as a way to control
the “smoothness” of the function approximator. The synthetic
samples do not necessarily need to be “valid” state-action
pairs. They need to be in the input space of the approximator.
Indeed, in our implementation we simply uniformly sample
in [−1, 1]

nS+nA (where nS and nA are the dimension of the
state and action space, each normalized in [−1, 1]).
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(a) State-action density (b) No uncertainty regularization (c) With uncertainty regularization

Figure 2: Comparison on the uncertainty estimates after training with and without uncertainty regularization in the LQG
illustrative example (action on the y axis and state on the x axis).

5 Related Works
There exists a large body of literature studying efficient ex-
ploration techniques in RL. In the tabular settings, prov-
ably efficient methods have been devised, both in the model-
based (Jaksch, Ortner, and Auer 2010; Ian, Benjamin, and
Daniel 2013) and model-free (Strehl et al. 2006; Jin et al.
2018) settings. These methods cannot be easily extended to
the Deep RL setting, or when extensions are proposed, they
lose their theoretical guarantees. In this section, we focus
on tractable exploration methods proposed for Deep RL for
continuous action spaces. Two main exploration frameworks
exist: uncertainty-based methods and intrinsic motivation
methods (Houthooft et al. 2016; Zhang et al. 2021; Mutti,
Pratissoli, and Restelli 2021). For space reasons, we will
focus our discussion on uncertainty-based methods.

Classical value-based methods (including ACs) maintain a
point estimate of the value functions for each state (or state-
action pairs). Exploration policies, like ε-greedy or Boltz-
mann (Sutton and Barto 2018), add noise around the greedy
action derived from these point estimates. These methods are
not efficient, mainly because the exploration is not directed
towards unvisited regions of the state space. The entropy reg-
ularization of SAC is a form of undirected exploration too, as
the policies are trained to sacrifice some returns to preserve
stochastic behavior. In recent years, several methods that
move away from point estimates have been proposed. Ensem-
ble methods (Chen et al. 2021; Wang, Lin, and Zhang 2021)
implicitly model the epistemic uncertainty of the Q-value
estimates by maintaining multiple Q-function approximators.
OAC (Ciosek et al. 2019) explicitly models the uncertainty
on the value estimates by computing the variance of two
critics, and it uses it to compute an exploration policy that
optimizes an upper bound of the Q-values. Unfortunately,
this uncertainty estimate is just heuristic and only stems from
the disagreement between the two Q-networks with differ-
ent initialization. Indeed, the networks are also trained with
the same samples, and same target Q-values, so any dis-
agreement is purely due to the random initialization only.
Recently, SUNRISE (Lee et al. 2021) proposes a framework
to unify ensemble methods for epistemic uncertainty estima-
tion and shows considerable performance improvements in
discrete and continuous action spaces. Distributional RL, on
the other hand, models the aleatoric uncertainty, as its goal is

to estimate the whole return distribution. First proposed for
problems with a discrete action space (Bellemare, Dabney,
and Munos 2017; Dabney et al. 2018; Mavrin et al. 2019),
it has been successfully extended also to the AC setting in
TOP (Moskovitz et al. 2021). TOP models both aleatoric and
epistemic uncertainty and adapts the level of optimism/pes-
simism by means of a MAB approach. While TOP deals with
uncertainty propagation, it mixes the epistemic and aleatoric
uncertainty while estimating the return distribution.

6 Experiments
In this section, we present the empirical evaluation of WAC
in various continuous control domains. We start from sim-
ple 1D-navigation, where we can better visualize the ef-
fects of the Q-posteriors in the learning and exploration
process. In Appendix B, we show an evaluation on sev-
eral standard MujoCo tasks, which show that this suite of
environments does not pose significant exploration chal-
lenges. Hence, we focus our evaluation of WAC on a set
of MujoCo tasks specifically designed for exploration. Our
results can be reproduced using the source code in https:
//github.com/amarildolikmeta/wac explore.

1D Navigation To measure the effect of uncertainty estima-
tion on exploration we keep track of the cumulative coverage
of the state-action space, i.e., the portion of the total volume
visited with relative frequency larger than ε > 0. We consider
a one-dimensional LQG, an environment with no particular
exploration challenges, and a more challenging continuous-
action version of the Riverswim (Strehl and Littman 2008),
where long sequences of rewardless actions are needed to
reach high reward states. A full description of the environ-
ments is reported in Appendix A. Figure 3 shows the results
of these experiments. For each environment, we train WAC,
varying the parameters λ and ρ of the regularized uncertainty
loss in Equation (8). For each value, we report the coverage
averaged over all training epochs. Firstly, we observe that
the coverage is monotonically increasing with both λ and ρ.
As expected, low values of ρ cause higher variance, as fewer
samples are employed to estimate the uncertainty regulariza-
tion. This can be seen in all the curves of the leftmost plot, as
well as in the third plot, where the black curve corresponding
to ρ = 0.25 suffers from a high variance. In Appendix B,
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(a) Coverage in LQG. (b) Coverage in Riverswim.

Figure 3: Coverage in LQG and Riverswim as function of λ and ρ; average of 5 seeds, 95% c.i..

(a) Average return in 4 2D navigation tasks.

(b) Number of episodes completed in 3000 steps in 4 2D navigation tasks.

(c) Number of episodes completed in 3000 steps in 4 2D navigation tasks with sparse reward function.

Figure 4: Experimental results in 4 2D navigation tasks starting from the easiest (left) to the hardest (right); average of 5 seeds,
95% c.i..
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we perform a similar study for OAC and we observe that the
coverage is not so easily controllable. We attribute this to the
heuristic nature of the uncertainty estimation of OAC.

2D Navigation To assess whether a principled uncertainty
estimation and propagation translate into lower sample com-
plexity, we perform an empirical evaluation in a set of
MujoCo (Todorov, Erez, and Tassa 2012) tasks, where the
amount of exploration needed to solve the task can be con-
trolled. We start from the 2D navigation task used in (Moro
et al. 2022), where the agent has to reach a goal state in a
2D world, by avoiding obstacles. The reward is the nega-
tive Euclidean distance from the goal state. While this is a
dense reward, the obstacle presence generates local optima
which the agent needs to overcome by exploring efficiently.
We progressively make the task more challenging by adding
additional walls and obstacles. We leave the full description
of the environments in Appendix A. We name the tasks as
“Point x” with x ∈ {1, 2, 3, 4}, where a higher x means a
more difficult exploration challenge. We compare the perfor-
mance of WAC, in both versions defined in Section 3, with
SAC and OAC. In each task, we track the cumulative return,
as well as the number of episodes completed in a fixed num-
ber of steps (higher is better). We use the implementation of
SAC and OAC used in (Ciosek et al. 2019), and extend the
repository with our implementation, to guarantee comparable
results. The same network architectures are used for all algo-
rithms. For the common hyperparameters, we only tune SAC
and use the same values for WAC and OAC, by additionally
tuning the algorithm specific parameters (δ and β for OAC
and λ and ρ for WAC). Details on the hyperparameter tuning
are in Appendix A.

In Figure 4a, we present the average return as a function
of the training epochs, whereas in Figure 4b we present the
number of episodes completed in 3000 steps of interaction.
Starting from left to right, we increase the difficulty of the
task. We can see that for the easiest task, all algorithms are
able to find the optimal policy of quickly avoiding an obstacle
in the middle to reach the goal state, even though SAC learns
slower compared to the others. Being a simple exploration
task, ME-WAC performs better and is more stable than OE-
WAC. OAC is also able to quickly solve the task. While the
difference in return is negligible, the number of completed
episodes shows an advantage for ME-WAC, which completes
more episodes faster. Finally, we underline that even though
the task does not require particular exploration, WAC does
not over-explore, but rather solves with a speed comparable
with the other baselines. The clear advantages of WAC in
terms of exploration can be seen starting from the second
task, where the exploration requirements are increased. Both
versions of WAC learn faster and with less variance com-
pared with both SAC and OAC. The difference is even more
apparent in the number of episodes completed, where SAC
and WAC have disjoint confidence intervals. In the third task,
SAC completely fails in learning to reach the goal, while
OAC succeeds in some of the seeds only, showing a high
variance. WAC, on the other hand, outperforms them both in
terms of return and completed episodes. ME-WAC performs
better, even though the task requires a good amount of ex-

ploration. Compared to ME-WAC, OE-WAC over-explores
and it shows a slower learning curve. The last task is solved
by the WAC agents only. SAC and OAC never reach the
goal state. WAC outperforms them, in both versions, with
statistical significance. We also see the need for larger explo-
ration, apparent from the difference in performance between
OE-WAC and ME-WAC.

Finally, Figure 4c presents the number of episodes com-
pleted in a sparse reward version of the same tasks. In this
scenario, we do not show the return as it is proportional to the
number of completed episodes. We only trained OE-WAC
agents in these tasks, as they present a substantial exploration
challenge. The advantage of WAC is extremely evident in
these tasks. SAC and OAC are only able to solve the simplest
task. In a sparse reward setting, SAC and OAC will only
explore randomly so they fully rely on the chance of reach-
ing the goal state with random actions. OAC explores more
compared to SAC, but since the exploration does not depend
on the state-action visitations, but only on the disagreement
between the critics, sparse reward tasks are a great challenge.
WAC, instead, will still explore, even when facing sparse
rewards since the uncertainty will gradually decline in visited
regions, so the upper bounds will favor reaching unvisited
ones. Indeed, OE-WAC outperforms both baselines in all the
tasks with sparse rewards.

7 Conclusions
In this paper, we presented a novel AC algorithm to perform
directed exploration. We presented WAC, which extends the
recently proposed WQL to the continuous-actions case. Fur-
thermore, we addressed a problem of uncertainty estimation
that arises when using function approximation, related to the
generalization of the uncertainty estimates. We proposed a
simple, yet effective, regularization method, based on syn-
thetic samples that allowed us to better generalize the uncer-
tainty across the state-action space. Finally, we performed a
thorough empirical evaluation to investigate the advantages
of performing a principled uncertainty estimation and propa-
gation in continuous-action domains. We observed that the
uncertainty estimates of WAC can effectively steer explo-
ration towards promising regions of the state-action space,
even under sparse rewards, especially when comparing it with
heuristic uncertainty estimation based on ensemble methods.

References
Agueh, M.; and Carlier, G. 2011. Barycenters in the Wasser-
stein space. SIAM Journal on Mathematical Analysis, 43(2):
904–924.
Auer, P.; Jaksch, T.; and Ortner, R. 2008. Near-optimal
Regret Bounds for Reinforcement Learning. In Koller, D.;
Schuurmans, D.; Bengio, Y.; and Bottou, L., eds., Advances in
Neural Information Processing Systems, volume 21. Curran
Associates, Inc.
Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A
Distributional Perspective on Reinforcement Learning. In
Precup, D.; and Teh, Y. W., eds., Proceedings of the 34th
International Conference on Machine Learning, volume 70

8788



of Proceedings of Machine Learning Research, 449–458.
PMLR.
Chen, X.; Wang, C.; Zhou, Z.; and Ross, K. W. 2021. Ran-
domized Ensembled Double Q-Learning: Learning Fast With-
out a Model. In International Conference on Learning Rep-
resentations.
Ciosek, K.; Vuong, Q.; Loftin, R.; and Hofmann, K. 2019.
Better Exploration with Optimistic Actor Critic. In Wallach,
H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox,
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