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Abstract

Data science advances in sports commonly involve ‘big data’, i.e., large sport-related

data sets. However, such big data sets are not always available, necessitating spe-

cialised models that apply to relatively few observations. One important area of

sport science research that features small data sets is the study of energy recov-

ery during intermittent exercise. In this area, models are typically fitted to data

collected from exhaustive exercise test protocols, which athletes can perform only

a few times. Recent findings highlight that established recovery models, such as

the so-called work-balance models, are too simple to adequately fit observed trends

in the data. These models summarise the available energy capacities of an athlete

during exercise in a single variable, which is referred to as work balance.

In this thesis we revisit a so-called hydraulic performance model and hypothesise

that it is able to address the recently highlighted shortcomings of work-balance

models. However, current literature has not fully validated the original hydraulic

model, because it depends on physiological measures that cannot be acquired at the

required precision or quantity.

We introduce a generalised interpretation and formalisation of the original hy-

draulic model that removes its ties to concrete physiological measures. We use

evolutionary computation to fit its parameters to an athlete. In this way, we inves-

tigate a new hydraulic model that requires the same few data points as work-balance

models, but promises to predict recovery dynamics more accurately.

To compare the hydraulic model to established work-balance models, we ret-

rospectively apply them to data compiled from previously published studies. The

hydraulic model outperforms established work-balance models on all defined metrics,

even those that penalise models featuring higher numbers of parameters. However,

the more accurate energy recovery predictions of the hydraulic model come at the

cost of inaccurate predictions of metabolic responses during exercise, such as oxygen

uptake.

In conclusion, while the new hydraulic performance model should not be used

to predict metabolic responses during exercise, it promises to be a powerful tool for

predicting energy recovery. This work carefully positions the new hydraulic model

among existing models, with its benefits and limitations. The results render the



new hydraulic model a powerful alternative to address the shortcomings of estab-

lished work-balance models and incentivise further investigation. Data and code are

published as open source.
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Abbreviations

AnA anaerobic alactic energy source.

AnL anaerobic lactic energy source.

Ae aerobic energy source.

AnF anaerobic fast energy source.

AnS anaerobic slow energy source.

An anaerobic energy sources.

DCP the difference between CP and power output.

LF limited fast energy source.

LS limited slow energy source.

MU maximal flow from the unlimited energy source.

MLF maximal flow from the limited fast energy source.

MLS maximal flow from the limited slow energy source.

O oxidative energy source.

PU flow from U .

Ppeak peak power output.

Prec fixed recovery power output.

Pwork fixed work power output.

PLS flow from LS.

P constant power output.

Trec recovery time.

U unlimited energy source.
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W ′
bal−int work-balance model by Skiba et al. (2012).

W ′
bal−ode work-balance model by Skiba et al. (2015).

W ′
bart work-balance model with Tt fitted by Bartram et al. (2018).

W ′
skib work-balance model with Tt fitted by Skiba et al. (2015).

W ′
weig work-balance model with Tt fitted by Weigend et al. (2022a).

W ′ finite energy reserve for work above critical power.

Wlim total achievable workload.

Tbart,t Tt by Bartram et al. (2018).

Tskib,t Tt by Skiba et al. (2015).

Tweig,t Tt by Weigend et al. (2022a).

V̇O2max maximal oxygen uptake.

V̇O2peak peak oxygen uptake.

V̇O2 oxygen uptake.

γ distance from the bottom to the limited hydraulic model tank

(LS of hydraulicweig, or AnL of the M-M model).

AICc the small-sample version of the Akaike Information Criterion.

AWC anaerobic work capacity.

CP critical power.

hydraulic2t two-tank hydraulic.

hydraulicweig generalised hydraulic model by Weigend et al. (2021).

ϕ distance from the bottom to the unlimited hydraulic model tank

(U of hydraulicweig, or O of the M-M model).

ψ distance from the top to An.

θ distance from the top to the limited hydraulic model tank

(LS of hydraulicweig, or AnL of the M-M model).

g the level of depletion of a hydraulic model tank

(LS of hydraulicweig, or AnL of the M-M model).
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h the level of depletion of a hydraulic model tank

(An of hydraulic2t, LF of hydraulicweig, or AnA of the M-M model).

pAe flow from Ae to An.

M-M-S Margaria-Morton-Sundström.

M-M Margaria-Morton.

TTE time to exhaustion.

TTF time to task failure.

AT anaerobic threshold.

AutoML Automated Machine Learning.

LAT lactate threshold (moderate-heavy boundary).

MAE mean absolute error.

MAP maximum aerobic power.

MOEA/D Multi-Objective Evolutionary Algorithm with Decomposition.

MSE mean squared error.

MVC maximal voluntary contraction.

NRMSE normalised root mean squared error.

ODE ordinary differential equations.

RB recovery bout.

RMSE root mean squared error.

SD standard deviation.

SEE standard error of estimation.

WB1 work bout 1.

WB1→RB→WB2 recovery protocol as defined in Section 2.3.3.1.

WB2 work bout 2.
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Chapter 1

Introduction

Emerging technologies that enable the real-time monitoring of athletes in training

and competition have fostered interest in methods to predict capabilities of ath-

letes. Predictive models for how much an athlete ‘has left in the tank’ enable the

investigation of pacing strategies (Behncke, 1997; Sundström et al., 2014; de Jong

et al., 2017) and to optimise the outcome of a competition (Hoogkamer et al., 2018).

They can be described as a ‘digital athlete’: a computer-based model for enhancing

training programming or strategy optimisation. A foundation for such advances is

research in performance modelling, which can be understood as the mathematical

abstraction of exercise physiology.

Many mathematical models of the human body exist and, in a simplified view,

they are either simple and imprecise or complex but difficult to use. Typically, the

application of performance models requires fitting to exhausting exercise tests, which

athletes can only perform a few times. Therefore, an advantage of simple models

is that they can be applied to few data points. However, because these models are

simple, they are either limited to specific applications or their predictions can be

imprecise (Skiba and Clarke, 2021). This is dangerous because an overestimation of

capabilities may cause athletes to overexert themselves and risk injury. Conversely,

an underestimation can result in athletes not exercising at their full potential.

More accurate predictions can be expected from complex models that, for exam-

ple, consider how efficiently chemical processes of the human body generate required

energy. But these models require more data to be fitted, and some relevant chemi-

cal processes are impossible to monitor during exercise (Morton, 2006; Sundström,

2016; Lidar et al., 2021). Therefore, complex models are difficult to use because

they require extensive exercise tests or measurements that are impossible to obtain.

This work developed and investigated a combination of a simple and a complex

model. The combined model is a simplified form of a so-called three-tank hydraulic

model. The new hydraulic model can be applied to commonly collected data with

1



an optimisation approach and, at the same time, it is complex enough to make more

accurate predictions than competing currently established models.

1.1 Main contributions

• This work developed a hydraulic performance model that supports athletes in

understanding and predicting their exercise capabilities.

• The model has been published as a new pathway to approximate energy expen-

diture and recovery of an athlete at the Genetic and Evolutionary Computation

Conference (GECCO) (Weigend et al., 2021).

• An extensive comparison of energy recovery predictions of established models

and our new model has been published in Annals of Operational Research

(ANOR) (Weigend et al., 2022a).

• Further elaborations of benefits and limitations of the new model have been

published as a preprint as Weigend et al. (2022b). The submitted paper focuses

on oxygen uptake predictions during exercise.

• Two open-source python packages have been developed and published to make

our tools, models, and data more easily available to the community. These

packages are pypermod1 and threecomphyd2 and their function and content

are described throughout this work.

1.2 Layout

This introduction is followed by a literature review in Chapter 2, which covers cur-

rently established types of performance models, their applications, and their short-

comings. Subsequently, Chapter 3 details the problem statement of this work and

the arising research questions. Chapter 4 is dedicated to a comprehensive math-

ematical definition of the new model. Chapter 5 describes how the new model is

fitted to data from athletes. Chapter 6 compares predictions of the new model to

established models and previously published data. Chapter 7 scrutinises limita-

tions of metabolic predictions of the new model. Chapter 8 outlines future research

directions and concludes this work.

1https://github.com/faweigend/pypermod
2https://github.com/faweigend/three_comp_hyd
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Chapter 2

Literature Review

This chapter discusses currently established mathematical models to describe re-

sponses of the human body to the stimulus of exercise. Section 2.1 begins by defining

how the terms ‘performance’ and ‘energy’ are used. Then, advances in predicting

human performance as well as energy expenditure and energy recovery are discussed

in Sections 2.2 and 2.3. Hydraulic models are introduced in Section 2.4 and related

to other established models for energy expenditure and recovery.

2.1 Exercise performance

The definition of athlete performance depends on the perspective. For a soccer

player, it might be the amount of successful passes, ball contact time or contribution

to scored goals. However, in endurance sports such sports specific performance

measures are often not considered and performance is defined in its most general

measure: as an amount of expended energy. In units, energy is measured in joules

(J) and power in watts (W). The following relationship holds:

power (W) =
energy (J)

time (s)
. (2.1)

Winter et al. (2016) also considered that, in sports, the understanding of power

can vary according to the perspective. As an example, a nutritionist may use power

as the rate of chemical energy transfer from food and quantify energy expenditure

in kilo calories per second (Whaley et al., 2006; Winter et al., 2016). This work uses

the above in Equation (2.1) stated units and defines performance as an amount of

expended energy.

2.2 Energy expenditure

The analysis of energy expenditure and how much energy an athlete has available

lies at the core of performance modelling. This section begins with early findings

and the prominent critical power model.
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2.2.1 Critical power model

Some early findings and observations in human performance analysis were pub-

lished by Hill (1925). He was the first to suggest a hyperbolic relationship between

a constant power output and time until exhaustion. He based this suggestion on ob-

servations of isolated frog muscles, which then were related to humans with velocity

versus time plots of swimming and running world records over various distances.

Monod and Scherrer (1965) formalised the findings of Hill (1925) as a mathemat-

ical model. They were the first to define the term critical power (CP) of a muscle.

On the basis of their observations, they proposed that when work is performed at

a constant rate above CP, the relation of the total achievable workload (Wlim) and

time to exhaustion (TTE) is the result of a linear function

Wlim = a+ CP · TTE. (2.2)

Monod and Scherrer (1965) define a as the muscle’s energy reserve. Given this

equation, a power output above CP requires a muscle to draw energy from a to

match power demands. Because a is a finite capacity, it will ultimately be depleted

when TTE is reached and the muscle will be unable to perform at the required rate.

Moritani et al. (1981) confirmed that these ideas also apply to more whole-body

exercise tests on a cycle ergometer and related the estimated CP to the anaero-

bic threshold (AT). According to Beaver et al. (1986), AT marks the onset point

from which anaerobic energy production is needed in addition to aerobic energy

production to meet energy demands. Moritani et al. (1981) argued that the ideas

of CP and AT are very similar, because both mark the border between a sustain-

able (aerobic) and a limited (anaerobic) energy production, and observed a high

correlation between both variables. This way they fostered the understanding of a

in Equation (2.2) as the anaerobic work capacity (AWC). This notion implies that

work below CP can be accomplished by aerobic energy sources and work above CP

must additionally draw from anaerobic capacities. A corresponding update of a in

Equation (2.2) results in:

Wlim = AWC+CP · TTE. (2.3)

Given that Equation (2.2) and Equation (2.3) assume a constant work rate above

CP, Wlim equals the product of constant power output (P ) and TTE:

Wlim = P · TTE. (2.4)

Using Equation (2.4), Equation (2.3) can be reformulated as:

TTE =
AWC

P − CP
. (2.5)
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Whipp et al. (1982) then denoted AWC as a finite energy reserve for work above

critical power (W ′) and both terms were used interchangeably. When solved for P ,

that results in the equation:

P =
W ′

TTE
+ CP. (2.6)

Hill (1993) referred to Equation (2.5) as the nonlinear power-time relationship, to

Equation (2.6) as the linear power-1/time relationship, and to Equation (2.3) as the

linear work-time relationship. Current literature refers to the critical power model in

one of these three forms or in all of them (Clarke and Skiba, 2013; Mattioni Maturana

et al., 2018; Sreedhara et al., 2019; Jones et al., 2019).

2.2.1.1 Assumptions of the critical power model

Hill (1993) and Morton (2006) summarised the assumptions of the critical power

model as the following:

1. An individual’s power output is a function of two energy sources: aerobic

(using oxidative metabolism) and anaerobic (non-oxidative metabolism).

2. Aerobic energy is unlimited in capacity but its conversion rate into power

output is limited (CP).

3. Anaerobic energy is limited in capacity (W ′) but its conversion rate is unlim-

ited.

4. Exhaustion occurs when all of the W ′ is depleted.

However, more recent publications suggest that the assumed clear separation be-

tween aerobic and anaerobic energy sources is incorrect and AWC and W ′ are not

the same. Dekerle et al. (2006) compared the estimated W ′ using Equation (2.6) to

their understanding of AWC: as the time integral above the power output expected

from the measured oxygen uptake. The conclusion was that W ′ underestimates the

accumulation of expended anaerobic energy. In addition, Noordhof et al. (2013) sum-

marised that CP and W ′ should not be considered separate aerobic and anaerobic

entities but interrelated components. Poole et al. (2016) suggested the conceptu-

alisation of W ′ as a buffer ‘to resist exercise intolerance during supra-CP exercise,

where the source of the buffer will vary depending on the conditions’ (p. 2331).

As already shown by varying definitions for W ′ and AWC, all of the above

four assumptions by Hill (1993) are incorrect from a strict physiological perspective

(Morton, 2006; Clarke and Skiba, 2013; Poole et al., 2016). Moreover, in the review

by Hill (1993) in which he summarised these assumptions, he had already emphasised

that the attractiveness of this model lies in its simplicity. The simplicity of the

critical power model allows a straightforward procedure to obtain predictions and

to fit the model to athletes.
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2.2.1.2 Time to exhaustion and time to task failure

In the light of the above stated assumptions of the critical power model, the dis-

tinction between time to time to exhaustion (TTE) and time to task failure (TTF)

becomes important. The fourth assumption of the critical power model states that

exhaustion occurs when all of the W ′ is depleted. Therefore, the time from the

beginning of exercise until W ′ is depleted is being referred to as TTE (Hill, 1993;

Morton, 2006; Sreedhara et al., 2019). However, literature reconsidered the term

“exhaustion” because it may not appropriately describe the physiological state after

short extreme-intensity efforts (Hunter et al., 2004).

As an example for this reconsideration, Jones et al. (2010) referred to the critical

power model as the power to TTE relationship. Later, Jones and Vanhatalo (2017)

write “exhaustion” in quotes and, more recently, Jones et al. (2019) avoided the

term exhaustion and refer to it as the time to the limit of exercise tolerance where

the limit coincides with the exhaustion of W ′. Not mentioning exhaustion at all,

McCrary et al. (2018) and Muniz-Pumares et al. (2019) used the same critical power

model equations as introduced in the previous sections, but they used TTF instead

of TTE.

On the contrary, other recent work, for example (Sreedhara et al., 2019; Caen

et al., 2021; Skiba and Clarke, 2021), kept the semantics of the early works and

refer to the depletion of W ′ as exhaustion and use the term TTE. This work is in

large parts based upon publications by Morton (2006); Caen et al. (2021); Skiba

and Clarke (2021). Therefore, we follow their notation and hereby define that we

use TTE to refer to the time until W ′ is depleted or predicted to be to be depleted.

2.2.1.3 Fitting the critical power model

A well-known hyperbolic representation of the critical power model is depicted in

Figure 2.1. The nonlinear power-time relationship from Equation (2.6) is plotted as

a TTE versus P plot. The resulting hyperbolic curve has one asymptote at TTE = 0

and one at P = CP.

CP and W ′ of an athlete are traditionally derived from a series of exhaustive

exercise tests at distinct constant exercise intensities (Hill, 1993; Clarke and Skiba,

2013). For each of these tests, the athlete has to exercise at a constant power

output until volitional exhaustion is reached. Constant power output and TTE are

recorded and, as an example, represent one dot in Figure 2.1. Henceforth, such a test

is referred to as a TTE test. Hill (1993) suggested conducting three to five TTE tests

at distinct constant power outputs. Then, the nonlinear power-time relationship,

the linear power-1/time relationship, or the linear work-time relationship can be

fitted to all test results such that they minimise the prediction error.
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Figure 2.1: The nonlinear power-time relationship of constant power output and
time to exhaustion. The red dashed line marks the CP asymptote. Example TTE
test results are depicted as dots.

Because TTE tests require an athlete to exercise until volitional exhaustion, test

results are subject to a natural variability. Therefore, the fitted CP and W ′ of all

three forms of the critical power model are rarely identical, even if they are applied

to the same test results (Hill, 1993; Jones et al., 2019). Research has continuously

evaluated how to obtain accurate and reliable estimates of CP and W ′. Jones et al.

(2019) summarised that TTE trials should be between 2 min and 15 min with the

shortest trial 2 min to 3 min and the longest 10 min to 15 min. Accuracy of fitted

parameters should be determined by relative standard error of estimation (SEE).

The SEE associated with fitted CP should be < 5 % of CP and associated with W ′

< 10 % of W ′ (Jones et al., 2019). The ‘individual best fit’ for an athlete should be

the critical power model relationship (nonlinear power-time, linear power-1/time, or

linear work-time) that results in the smallest sum of relative SEE associated with

CP andW ′ (Jones et al., 2019). Using these ‘individual best fit’ CP andW ′, reliable

predictions for other power outputs in the severe exercise intensity domain can be

made.

Vanhatalo et al. (2007) proposed a procedure to approximate CP andW ′ without

the need for multiple TTE tests. They proposed the so-called 3-min all-out cycling

test for which the athlete has to pedal at maximal effort against a fixed resistance on

a cycle ergometer. This test is especially strenuous because the athlete is required

to not pace themselves. From the start of the test, the power output reaches its

peak within the first seconds and then declines as the athlete depletes their W ′.

By approximately the last 30 s of the test, power output stabilises around a value

similar to CP. Vanhatalo et al. (2007) compared to CP and W ′ estimated with

the conventional 5 TTE tests. The study found that the power outputs at the
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end of the 3-min all-out test were not significantly different from CP and that the

expended energy above CP during their tests was not significantly different from

W ′. The 3-min all-out is attractive because it requires only one test to determine

the power- duration parameter estimates, but Muniz-Pumares et al. (2019) noted

that some studies have reported significant differences in W ′ or an overestimation

of CP. The ‘gold standard’ remains a series of TTE tests (Muniz-Pumares et al.,

2019). Therefore, one has to differentiate between CP and the ‘end test power’ of

the 3-min all-out cycling test and as well as between W ′ the ‘work above end test

power’.

As previously stated, Hill (1993) and Clarke and Skiba (2013) emphasised that

the attractiveness of the critical power model lies in its simplicity. It should not be

employed if highly accurate predictions are required. In fact, because of its imprecise

assumptions, subsequent publications have suggested that no efforts shorter than

2 min or longer than 30 min should be considered for prediction (Housh et al., 1989;

Vanhatalo et al., 2011; Clarke and Skiba, 2013). Nevertheless, its straightforward

application and its elegant abstraction have led to improved understanding and

prediction of performance dynamics (Vanhatalo et al., 2011; Poole et al., 2016; Jones

et al., 2019).

2.2.2 Extensions of the critical power model

This section introduces alternative concepts, relates them to the assumptions of CP

and W ′ and discusses where shortcomings are addressed. Another often referenced

model, which is also mentioned in reviews by Morton (2006); Sreedhara et al. (2019),

was proposed by Ward-Smith (1985) for the prediction of sprint performances be-

tween 100 m and 10 000 m. Similarly to the assumptions of critical power based

models, Ward-Smith (1985) differentiated between aerobic and anaerobic energy

systems. He defined the maximum rate of energy release that can be maintained

by oxidative metabolism as R. Of special interest in comparison with the critical

power model is the equation for power available during a sprint at time t:

P (t) = Pmax · e−λt +R · (1− e−λt). (2.7)

Ward-Smith (1985) defined Pmax as the maximum power available from the anaer-

obic metabolism and λ was used as a parameter to govern the variation of power

over time. Depending on λ, the available anaerobic power decreases at an exponen-

tial rate, while available power from aerobic sources increases to the maximum of

R at the same exponential rate. Thus, a decrease in Pmax represents drainage of an

additional finite energy storage that diminishes over time, while R defines the rate of

energy that can be maintained indefinitely. Similarities to W ′ and CP are apparent.
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Differences lie in the limited use of W ′ and the initial increment of anaerobic en-

ergy contribution from the beginning of exercise. Ward-Smith (1985) incorporated

this model into concepts of running resistance and thermal energy generation and

reported conforming predictions for actual running data.

Peronnet and Thibault (1989) extended the work by Ward-Smith (1985) to ac-

count for longer running distances and even a full marathon. While Ward-Smith

(1985) proposed R as the maximal sustainable energy rate, Peronnet and Thibault

(1989) replaced it with the term maximum aerobic power (MAP) and suggested that

this power output is not maintainable over an indefinite time.

Relating the assumptions of Ward-Smith (1985) and Peronnet and Thibault

(1989) to those of the critical power model, two of its major inaccuracies were

addressed. As observable in Figure 2.1, one of the asymptotes of the hyperbola

lies at TTE = 0 s, suggesting that immediately accessible power is infinite. Infinite

power output is biologically impossible. Ward-Smith (1985) accounts for this by

incorporating Pmax in a way that limits the available power at times close to t =

0 s. Peronnet and Thibault (1989) accounted for the assumption that CP can be

maintained for indefinite time, that is, the second asymptote at P = CP. Their

diminishing MAP over time results in a more realistic conception (Peronnet and

Thibault, 1989).

Although these models result in higher prediction accuracy, they come at the

price of flexibility. Because Ward-Smith (1985) designed his concept to model sprint

performances, the assumption of this and of comparable models is that the athlete

always performs at the maximal possible power output to finish the task. When

examining the origin of the critical power model, this may seem comparable, but

the assumed linear use of W ′ also allows an individual to predict performance for

efforts with varying power outputs.

A valuable extension that maintains this flexibility was proposed by Morton

(1996), who extended the critical power model by an additional parameter and

named it the three parameter model. He added the parameter k to the known

Equation (2.6), which resulted in

TTE =
W ′

P − CP
+ k. (2.8)

The limitation k < 0 applies and thus k moves the x-asymptote of the hyperbola

into the negative values. This causes the model to have a y-axis intercept, which

can be regarded as the maximal instantaneous power. Similarly to the Pmax defined

by Ward-Smith (1985), this caps the power output for TTE = 0 s. Still, this model

shows that inaccuracies for short durations and adaptions have been proposed by

Vinetti et al. (2019). However, the three parameter model is well covered by re-

views Clarke and Skiba (2013); Jones and Vanhatalo (2017); Mattioni Maturana
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et al. (2018); Sreedhara et al. (2019) and provides a meaningful addition without

increasing complexity significantly.

An alternative model, which has recently gained more attention (Gorostiaga

et al., 2022; Drake et al., 2022), is the so-called power-law model, which was pop-

ularised by Riegel (1981, 1977). This model assumes that the relationship of a

constant power output P to TTE is

P = TTE SE−1. (2.9)

The parameter S is required to be greater than 0 and affects the scaling of the

power-duration curve. As described by Drake et al. (2022), it can be called “speed

parameter” and it is the power that a cyclist can sustain for exactly one second.

The parameter E is called “endurance parameter”, is required to be between 0 and

1, and affects the slope of the power-duration curve. The higher the value of E, the

faster the curve decays. A cyclist who specialises on sprints will have a large value

for S and a small E. On the contrary, a cyclist who specialises on endurance will

have a small value for S and a large E (Drake et al., 2022).

While other reviews report the critical power model as the ‘gold standard’ (Jones

and Vanhatalo, 2017; Muniz-Pumares et al., 2019), it was highlighted in an exten-

sive review by Drake et al. (2022) that the power-law model results in a better

fit and more realistic predictions when retrospectively applied to data of previous

publications. We will follow the current debate around the critical power model

with interest and will consider alternatives as future work (Gorostiaga et al., 2022).

However, in this work we will mainly focus on energy recovery predictions during

intermittent exercise. As discussed in the following section the established models

in this domain require an estimation of critical power.

2.3 Energy recovery and intermittent exercise

While the critical power model predicts energy expenditure at high intensities, it

does not consider the recovery ofW ′ after exercise has ended or during exercise at low

intensities. Formally, exercise protocols that alternate between intensities below CP

and above CP can be defined as intermittent exercise. Predictions for intermittent

exercise are important for athletes, such as cyclists, whose power demands vary

between having to climb steep ascents and recovering while riding downhill. To

predict the performance capabilities of athletes during intermittent exercise, models

need to predict the recovery of W ′ during phases of exercise below the CP intensity.
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Figure 2.2: Utilisation and recovery mechanics ofW ′ according to Morton and Billat
(2004). Exercise intensity and CP are depicted in the lower plot. The upper plot
shows predicted utilisation and recovery of W ′ balance.

2.3.1 Linear recovery

Morton and Billat (2004) were among the first to extend the CP model to consider

intermittent power outputs. They proposed that recovery kinetics are similar to the

assumed linear utilisation kinetics of the critical power model. According to the

model by Morton and Billat (2004), W ′ recovers linear dependent on the difference

from CP. An example is depicted in Figure 2.2. The bottom plot shows the power

demand on the athlete, stated as power output. The exercise features a 3 min and a

6 min work bout above CP and recovery bouts below CP. While the athlete works at

a rate above CP, availableW ′ capacity is drained according to the assumptions of the

critical power model. RemainingW ′ capacity may be denoted asW ′ balance. In the

example in Figure 2.2, CP is at 200 W, work-bout intensity at 250 W, and recovery

intensity at 150 W. Chidnok et al. (2012) confirmed the validity of this model and

relatedW ′ recovery to prolonged exercise tolerance in intermittent exercise. Chidnok

et al. (2012) suggested that the consideration of recovery aids the creation of effective

interval training programs. However, the assumption of a linear recovery turned out

to be too simple.

2.3.2 Work-balance models

Further refinements of W ′ recovery predictions were introduced by Ferguson et al.

(2010), who suggested a curvelinear recovery. Skiba et al. (2012) then confirmed

this observation and proposed an exponential recovery model: the work-balance

model. Since then, various forms of the work-balance model have developed into
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one of the most widely investigated approaches to predict recovery of W ′ during

intermittent exercise (Jones and Vanhatalo, 2017; Sreedhara et al., 2019; Skiba and

Clarke, 2021). Since the first publication by Skiba et al. (2012), an updated form

was introduced by Skiba et al. (2015) and another alternative form was proposed by

Bartram et al. (2018). Work-balance models have been used to search for optimal

drafting strategies in running (Hoogkamer et al., 2018) or to predict phases of per-

ceived exhaustion during cycling exercise (Skiba et al., 2014). Each of the available

work-balance models is introduced in the following sections.

2.3.2.1 The integral model

Skiba et al. (2012) formulated their model with a convolution integral. Henceforth,

we will refer to it as work-balance model by Skiba et al. (2012) (W ′
bal−int). The same

primary author reported in Skiba and Clarke (2021) that their original definition of

W ′
bal−int was mathematically imprecise and updated their equation to:

W ′
bal−int(t) = W ′ −

∫ t

0

e
−(t−u)
τW ′ W ′

exp(u)du, (2.10)

which denotes how the model estimates remaining W ′ balance at a given time point

t. W ′
exp(u) represents energy that was spent in one time step u and is estimated as:

W ′
exp(u) =

{
0, P (u) ≤ CP∫
(P (u)− CP)du, P (u) > CP

. (2.11)

This equation shows that the model does not distinguish between the severe

and extreme intensity exercise domains because it only distinguishes between above

CP or below. According to Equation (2.10), for every u between 0 s and t, spent

energy at time step u is subtracted from the total available W ′ capacity. Before

the subtraction, spent energy is multiplied by e
−(t−u)
τW ′ , which approaches 0 as the

difference between t and u increases. Thus, energy that was spent at u recovers

exponentially as t increases, and τW ′ affects the speed of recovery. Skiba et al.

(2012) fitted an exponential function to obtain τW ′ to observed recovery ratios during

various recovery intensities. Their fitted function is:

τW ′ = 546 · e(−0.01·DCP) + 316, (2.12)

where the difference between CP and power output (DCP) uses the average power

output during all phases of recovery.

Together, Equations (2.10) to (2.12) define the W ′
bal−int model and Figure 2.3

depicts an example of how it predicts energy expenditure and recovery. Predictions

of the previously introduced model by Morton and Billat (2004) have been added

for comparison. The step size for the estimations was 1 s. During the first 3 min of
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Figure 2.3: Example energy expenditure and recovery predictions of the work-
balance model for intermittent exercise by Skiba et al. (2012) (W ′

bal−int) and the
model by Morton and Billat (2004).

exercise, the power output was below CP, so no additional energy had to be drawn

from the W ′.

At 181 s (3 min and 1 s) the power output switched to 250 W, which was 50 W

above CP. Therefore, with a step size of 1 s, W ′
exp(181) was 50 W · 1 s = 50 J and

W ′
bal−int(181) = W ′ − 50 J. For the next step t = 182 s, the power output was the

same, so W ′
exp(182) = 50 J. However, W ′

bal−int(182) did not drop by an additional

50 J, because of the integral in Equation (2.10). Instead, the sum of W ′
exp(181) ·

e
−(182−181)

τW ′ and W ′
exp(182) were subtracted from W ′, which resulted in slightly less

than 100 J. The energy that was spent in the 181st second recovered slightly in

the 182nd second. This dynamic is a key difference of W ′
bal−int in comparison with

the critical power model and the previous model by Morton and Billat (2004). As

observable in Figure 2.3, energy expenditure of W ′
bal−int is not linear at a constant

power output.

Between 6 min and 9 min in Figure 2.3, power output dropped below CP again.

The model by Morton and Billat (2004) predicted linear recovery, theW ′
bal−int model

predicted a slower and curvelinear recovery. For all u during this timeW ′
exp(u) = 0 J,

so no additional energy was drawn from W ′. The predicted recovery by W ′
bal−int is

the exponential decrease of previously accumulated W ′
exp that approached 0 J as t

increased.

Another key difference between the model by Morton and Billat (2004) and

W ′
bal−int is observable in the final 3 min of Figure 2.3. The critical power model as

in Equation (2.6) and the model by Morton and Billat (2004) assume that CP is

the maximal power output that can be maintained for an indefinite amount of time.
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During power output equal to CP, no energy was drawn from W ′, but according

to Morton and Billat (2004) no recovery was possible. However, while W ′
bal−int also

predicted that no additional energy was drawn from W ′ it assumed that previously

spent energy recovered. W ′
bal−int predicts recovery during exercise at CP. The

W ′
bal−int model assumes that the maximal power output that can be maintained for

an indefinite amount of time is higher than CP.

Skiba and Clarke (2021) acknowledged that W ′
bal−int makes such logically in-

consistent predictions in extreme cases. The model uses CP as the threshold for

sustainable exercise but predicts recovery during exercise at CP, and therefore vi-

olates its own assumption. As a result, Skiba and Clarke (2021) recommended as

best practice to use W ′
bal−int predictions only for exercise in which power outputs

above CP are limited to short bursts. In Skiba et al. (2015), another form of the

model was proposed that addresses some of these issues.

2.3.2.2 Ordinary Differential Equations models

Subsequent to W ′
bal−int, Skiba et al. (2015) derived a model for expenditure and

recovery ofW ′ from first principles. The formal derivation is detailed in Appendix 1

of Skiba et al. (2015). They conceptualised available W ′ balance as liquid in a

tank that is emptied or refilled according to energy expenditure or recovery. These

dynamics were specified as ordinary differential equations; henceforth, their model

is referred to as work-balance model by Skiba et al. (2015) (W ′
bal−ode). In Skiba and

Clarke (2021), they also specified a discrete version of W ′
bal−ode, which is introduced

in the following section. Henceforth, the by W ′
bal−ode predicted remaining capacity

of W ′ at a discrete time point t is denoted as W ′
bal−ode,t. Pt refers to the power

output at a discrete time step t. ∆t is the difference between the discrete time step

t− 1 and t in seconds. The discrete W ′
bal−ode is defined as:

W ′
bal−ode,t =

{
W ′

bal−ode,t−1 − (Pt − CP)∆t, for Pt ≥ CP

W ′ − (W ′ −W ′
bal−ode,t−1) · e

−∆t
Tt , for Pt < CP.

(2.13)

During a constant power output above or at CP, W ′
bal−ode,t decreases linearly

as t increases, as the critical power model predicts. During power outputs below

CP, W ′
bal−ode,t increases exponentially with W ′ as its asymtote. The value Tt affects

recovery speed and its estimation varies between distinct W ′
bal−ode models. At a

discrete time step t, the Tt by Skiba et al. (2015) (Tskib,t) is estimated as

Tskib,t =
W ′

DCP,t

, (2.14)

whereDCP,t represents the difference between Pt and CP. Henceforth, Equation (2.13)

with Equation (2.14) is referred to as work-balance model with Tt fitted by Skiba

et al. (2015) (W ′
skib).
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Figure 2.4: Predicted energy expenditure and recovery by the work-balance models
by Skiba et al. (2015) or by Bartram et al. (2018). W ′ expenditure during exercise
above CP resembles the assumed linear depletion of the critical power model. Dif-
ferences in predicted curvelinear recovery kinetics are clearly visible.

Figure 2.4 depicts an example forW ′
skib predictions. During the time steps of the

first 3 min, Pt was below CP andW ′
bal−ode,t (i.e., the predicted availableW ′ balance)

remained at its maximum. Then, the power output increased above CP for the next

3 min. The available W ′ balance decreased by Pt − CP per second. Between 6 min

and 9 min, Pt dropped below CP again, W ′
skib simulated recovery and W ′

bal−ode,t rose

exponentially with W ′ as its asymptote. Speed of recovery was affected by Tskib,t

from Equation (2.14), which took the difference between Pt and CP into account.

The effect of the difference between Pt and CP on recovery dynamics is observable

by comparing recovery between 6 min and 9 min to recovery between 12 min and

21 min. During the second recovery bout, Pt was lower and therefore the slope of

the exponential recovery was steeper. During the last 3 min, Pt was exactly equal

to CP and thus W ′
bal−ode,t did not change. If W ′

bal−ode,t were to reach 0 J, exhaustion

would be predicted. In the example in Figure 2.4, the athlete was predicted to be

close to exhaustion, but some energy capacities remained.

Bartram et al. (2018) investigated the recovery speed of W ′ of elite athletes and

observed faster recovery rates than Skiba et al. (2015). They proposed another Tt

for Equation (2.13) to predict quicker recovery ratios. The Tt by Bartram et al.

(2018) (Tbart,t) was defined as

Tbart,t = 2287.2 ·DCP,t
−0.688. (2.15)

Henceforth, Equation (2.13) with Equation (2.15) is referred to as work-balance

model with Tt fitted by Bartram et al. (2018) (W ′
bart). Predictions of W ′

bart are
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WB1

intensity: Pwork

time: until exhaustion

RB

intensity: Prec

time: Trec

WB2

intensity: Pwork

time: until exhaustion

Figure 2.5: A schematic of the protocol to estimate recovery ratios. An exhaustive
work bout (WB1) at a set intensity (Pwork) is prescribed. Immediately after exhaus-
tion is reached, a recovery bout (RB) follows at a lower recovery intensity (Prec) for
a set duration (Trec). Then, a second exhaustive work bout (WB2) is conducted
and the ratio of the time to exhaustion of WB2 to the one of WB1 represents the
amount that was recovered during RB.

depicted next to those of W ′
skib in the example from Figure 2.4. It is observable that

W ′
bart predicted quicker recovery dynamics.

Research into energy recovery modelling during intermittent exercise is an evolv-

ing field with promising applications. Skiba et al. (2014) applied their W ′
bal−int to

cycling data of triathletes and deemed the model useful for predicting the fatigue

state of an athlete. Hoogkamer et al. (2018) used the W ′
skib model to investigate op-

timal pacing strategies for a sub-2-hour marathon. Reviews by Jones and Vanhatalo

(2017); Skiba and Clarke (2021) highlighted promising possibilities of work-balance

models for monitoring capabilities of an athlete during exercise but also stated that

these models require future refinement.

2.3.3 Refined energy recovery predictions

Recent findings have suggested that the currently assumed monoexponential recov-

ery of discussed W ′
bal−int and W ′

bal−ode models still overly simplify energy recovery

dynamics, and that model modifications that account for characteristics of prior

exhaustive exercise (Caen et al., 2019), as well as biexponential recovery dynam-

ics (Caen et al., 2021), might improve recovery predictions. To discuss these sug-

gested improvements in more detail, the next subsection introduces the test protocol

with which Caen et al. (2019, 2021) measured energy recovery.

2.3.3.1 Procedure for measuring recovery

Recovery ratios can be computed from exercise protocols involving two exhaustive

work bouts named work bout 1 (WB1) and work bout 2 (WB2) interspersed with a

recovery bout (RB). A schematic of the protocol is depicted in Figure 2.5. First, the

athlete exercises at a fixed work power output (Pwork) above CP until exhaustion.

Immediately after exhaustion is reached, exercise intensity switches to a lower fixed

recovery power output (Prec) below CP. After a set recovery time (Trec) at that

recovery intensity, the second work bout until exhaustion at Pwork starts. The time

to exhaustion of WB2 is expected to be shorter than the one of WB1 because of the
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Figure 2.6: This figure displays observed recovery ratios by Caen et al. (2019) for
distinct WB1→RB→WB2 test conditions. P240 and P480 are Pwork intensities
and denote the power output predicted to lead to exhaustion after 240 s or 480 s.
Reported observations indicate that recovery is quicker after an exhaustive work
bout at a higher power output.

limited recovery time in between the work bouts. Because it is assumed that W ′ is

completely depleted at the end of WB1, the ratio of the second time to exhaustion

to the first represents the amount of W ′ recovered. Thus, the time to exhaustion

of WB2 divided by the time to exhaustion of WB1 multiplied by 100 results in a

recovery ratio in percent. Henceforth, this protocol is referred to as the recovery

protocol as defined in Section 2.3.3.1 (WB1→RB→WB2). Caen et al. (2019, 2021)

used this protocol for their reported findings.

2.3.3.2 Effects of prior exhaustive exercise

Caen et al. (2019) found that recovery kinetics depend on previous work rates in

addition to time and difference to CP. Their results are depicted in Figure 2.6.

Caen et al. (2019) obtained their measurements from 11 athletes and 15 to 17 per-

formance tests per athlete. As a first step, they estimated CP and W ′ of an athlete

by fitting the critical power model to results of three to five TTE tests. From CP

and W ′, they estimated the constant power outputs that were predicted to lead to

exhaustion after 240 s (P240) and 480 s (P480). These were the Pwork intensities for

their WB1→RB→WB2 protocol. Their Prec was either 33 % of CP (CP33) or 66 %

of CP (CP66). Their investigated Trec were 120 s, 240 s, and 360 s.

Caen et al. (2019) reported means and standard deviations of combined CP33

and CP66 data of all athletes. These are depicted in Figure 2.6. They observed

that athletes recovered faster when exhausted after a work rate of P240 in com-

parison with P480. W ′
bal−int and W ′

bal−ode models are insensitive to Pwork in the

WB1→RB→WB2 protocol. Equation (2.12), Equation (2.14), and Equation (2.15)

define recovery speed of these models and are only affected by DCP,t. Caen et al.
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Figure 2.7: This figure displays observed recovery ratios by Caen et al. (2021) for
distinct WB1→RB→WB2 test conditions. Pwork and Prec were constant but Trec
ranged from 30 s to 900 s. Caen et al. (2021) reported that their fitted biexponential
model explained their observations more accurately than a monoexponential one.

(2019) concluded that modifications to work-balance models that take work-bout

characteristics into account would improve prediction quality.

2.3.3.3 Biexponential recovery

In a subsequent study, Caen et al. (2021) showed that their energy recovery obser-

vations were better explained with a biexponential model that implements a steeper

slope during the beginning of recovery. Caen et al. (2021) obtained recovery ratios

of 20 participants for a range of 8 Trec conditions with constant Pwork and Prec. They

observed that group averaged recovery ratios rose quickly during shorter Trec and

slower during the longer Trec. When fitting a biexponential and a monoexponen-

tial model to their recovery data, they observed that the biexponential model made

more accurate predictions. Figure 2.7 summarises reported findings that Caen et al.

(2021) presented in Figure 3 of their publication. In addition, Skiba et al. (2012);

Skiba and Clarke (2021) proposed an alternative biexponential version of their work-

balance models but such biexponential models have yet to be applied in practice.

Work-balance models with these proposed modifications would feature additional

parameters, which introduces challenges in fitting them to small data sets. As

demonstrated by the WB1→RB→WB2 protocol, recovery dynamics are derived

from exhaustive exercise tests and therefore data for model fitting and validation

are sparse (Vanhatalo et al., 2011; Sreedhara et al., 2019). Indeed, the search for

models that optimally balance complexity with applicability to few data points is

a primary challenge of energy recovery modelling. The review by Sreedhara et al.
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Figure 2.8: Left: A schematic of a hydraulic two-tank model. The left tank repre-
sents the aerobic energy source (Ae) and is of infinite capacity, which is indicated
by the fading colour to the left. The right tank represents anaerobic energy sources
(An), which in this particular example is considered to be of capacity W ′. A pipe
connects the bottom of Ae to An, allows flow from Ae to An (pAe), and has the
maximal flow capacity CP. A tap p is attached to the bottom of An and h indicates
the level of depletion of An. Tank positions are defined by ϕ and ψ. Right: The
hydraulic two-tank model predicts energy expenditure and recovery according to the
assumptions of Morton and Billat (2004).

(2019) discussed work-balance models in detail and highlighted the search for models

that refine energy recovery predictions as future research opportunities.

2.4 Hydraulic models

Hydraulic models offer an alternative to work-balance models for predicting energy

expenditure and recovery dynamics during exercise. They represent human bioen-

ergetic responses to exercise as liquid flow within a system of pipes and tanks. This

section begins with an analogy between hydraulic and work-balance models as an

introduction.

2.4.1 Hydraulic related to work-balance

Morton (2006) discussed a hydraulic model with two tanks, which adheres to the

assumptions of the critical power model defined in Section 2.2.1.1. Henceforth,

this is referred to as the two-tank hydraulic (hydraulic2t) model. A schematic of

the hydraulic2t model is depicted on the left in Figure 2.8. The first of the listed

assumptions of the critical power model in Section 2.2.1.1 is that power output is

a function of two energy sources: aerobic and anaerobic. Each energy source is
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represented by one tank in Figure 2.8. The second assumption says that aerobic

energy is unlimited; therefore, the aerobic tank is of infinite size, indicated by the

fading colour to the left. The third assumption is that anaerobic energy is limited

in its capacity.

As discussed above, it is controversial whether W ′ equates the anaerobic work

capacity. For example, Sreedhara et al. (2019) avoided this connotation, naming

the anaerobic tank ‘limited capacity’ when they described the hydraulic2t model.

However, because the present example uses the hydraulic2t model as an analogy for

the assumptions of the critical power model, it is justified to interpret the limited

tank as anaerobic source with the capacity W ′ in this instance. The fill-state of An

can drop and rise by h and remaining liquid represents available W ′ balance.

A pipe (pAe) connects the bottom of the aerobic tank to the anaerobic tank.

Flow from this pipe represents a sustainable energy contribution because the aerobic

tank is of infinite capacity. The second assumption in Section 2.2.1.1 states that

the conversion of aerobic energy into power output is limited by CP. Therefore, the

pipe has a maximal flow capacity of CP. At the bottom of the An tank is a tap p.

Flow from this tap represents power output.

As depicted in Figure 2.8, liquid flow within the example hydraulic2t model

resembles the relation of power output, CP, and W ′, as assumed by the critical

power model and the assumed linear recovery by Morton and Billat (2004). At

the beginning of the simulated exercise in Figure 2.8, the anaerobic tank was filled.

During the first 3 min, power output was below CP and thus flow from the tap p

could be matched by flow from the aerobic tank. Then, power output rose above

CP, maximal flow from the aerobic tank was reached and the liquid level of the

anaerobic tank dropped by the difference between flow from p and CP every time

step. From the 6th minute power output was below CP again, allowing flow from the

aerobic tank to refill the anaerobic tank. PredictedW ′ balance rose by the difference

between flow from p and CP every time step. During the last 3 min, power output

was exactly at CP, the flow from p matched the maximal flow capacity from the

aerobic tank and no changes to the fill level of the anaerobic tank occurred.

Changes to tank positions allow hydraulic models to make more sophisticated

predictions and to resemble bioenergetic responses to exercise in more detail. For

example, as discussed earlier Ward-Smith (1985) suggested in his Equation (2.7)

that power output during the first seconds of exercise is nearly entirely provided

by anaerobic sources and the contribution of aerobic sources increases exponentially

from the onset of exercise. If in Figure 2.8 the parameter ψ was smaller, then liquid

in the filled anaerobic tank would pressure against the pipe exit of pAe. In such a

scenario, when p is opened, the fill level of the anaerobic tank would drop first and

the flow from the aerobic tank would increase according to decreasing liquid pressure
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against the pipe exit. Thus, the hydraulic2t model would predict an increase in the

contribution from aerobic energy sources as suggested by Ward-Smith (1985).

Other more complex hydraulic models make use of such liquid pressure dynamics

and even predict body responses to power demands with three or four tanks (Morton,

2006; Sundström, 2016). In addition, the first hydraulic model was more complex

than the hydraulic2t model and is introduced in the following section.

2.4.2 M-M model

The first hydraulic model was published by Margaria (1976) and later further elabo-

rated by Morton (2006). Morton mathematically defined its dynamics and published

it as the Margaria-Morton (M-M) model. An example of the M-M model with the

notation of Morton (2006) is depicted in Figure 2.9. Like Margaria (1976), Morton

(2006) labelled the left infinitely big tank as oxidative energy source (O) and de-

scribed it as the aerobic energy source. Because it is a sustainable energy source,

it is a tank of infinite capacity. This is indicated by the fading colours to the left

in Figure 2.9. The limited tank in the middle is labelled anaerobic alactic energy

source (AnA) and Morton (2006) stated it represents the alactic anaerobic energy

source. The third tank is also limited, labelled anaerobic lactic energy source (AnL),

and represents the lactic anaerobic source (Morton, 1986b, 1990, 2006).

The depicted situation in Figure 2.9 is that T was opened and the fill level of the

middle tank AnA dropped by h. The more liquid flows out of the middle tank, the

less liquid pressures against R1, and the more flows from O through R1 into AnA.

This way R1 contributes to flow out of T . In the depicted situation in Figure 2.9,

T was opened so wide that h > θ and flow from AnL began to contribute as well.

Its fill level has dropped by g.

Because the pipe R1 enables flow from the aerobic source O into the middle

tank, Morton (2006) referred to flow through R1 as oxygen uptake (V̇O2). He also

defined that the maximal flow through pipe R1 represents the maximal oxygen up-

take (V̇O2max). Morton (1986b) fitted differential equations of his model to collected

V̇O2 dynamics of participants during exercise on a treadmill. Fitted equations could

explain the observations well. However, Morton (2006) concluded it remained to

be seen what predictions of the M-M model would conform to reality because the

model parameters (e.g. AnL tank capacity and its height defined by θ and γ) are

extremely difficult or impossible to obtain from individual athletes.

The M-M model in Figure 2.9, defines tank positions with the values θ, γ and

ϕ. Because each tank represents a concrete bioenergetic energy source, Morton

(1986b, 1990, 2006) developed several constraints on θ, γ and ϕ to find a realistic

arrangement of tanks for his model:
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Figure 2.9: The M-M model as published by Morton (2006). Hydraulic models
approximate human bioenergetic responses to exercise as liquid flow within a system
of pipes and tanks. The left infinitely big tank O represents the oxidative or aerobic
energy source. The limited tank in the middle (AnA) represents the alactic anaerobic
phosphagens. The right limited tank (AnL) represents an anaerobic lactic energy
source. A tap (T ) is attached to AnA, which can be opened and closed according
to energy demand. The tube B accounts for early lactic acid occurrence. The pipes
R1, R2, R3 enable flow between the tanks and have maximal flow capacities.

• Pipe R2/R3 has to be above R1 (γ > ϕ) because athletes can deplete their

glycogen stores when exercising below V̇O2max.

• The onset of flow through R2 represents the lactate threshold (moderate-heavy

boundary) (LAT), i.e., the commencement of increased lactic acid production.

Therefore, the top of tank AnA has to have some distance to the top of the

entire system (θ > 0) and should be at approximately 40 % of the height of O.

• During constant severe intensity exercise, V̇O2 rises asymptotic to a maximal

value. When exercise stops, oxygen consumption does not decline immediately.

Therefore, R1 cannot be at the top or bottom of the middle tank (0 < ϕ < 1).

From these constraints, Morton (1990) argued that the only realistic configuration

of the three component hydraulic model is the one depicted in Figure 2.9.

2.4.3 Extensions of the M-M model

Despite the lack of clear verification, the M-M model was developed even further

by Behncke (1993). He increased complexity by introducing adaptions to account

for fatigue effects during runs of 10 km or longer. Then Behncke (1997) applied his

form of the M-M model to world records in competitive running. Behncke (1997)
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described the many constraints of the hydraulic model to make calculations ‘cumber-

some’ and highlighted that naive conclusions about metabolic capacities according

to tank fill levels are not justified. Further, he proposed that even more adaptions

to the hydraulics model were necessary to precisely simulate energy flows, and fi-

nally suggested abandoning the hydraulics model instead of adding more dynamic

capacity constraints Behncke (1997).

Sundström et al. (2015) later argued that Behncke (1997) modelled switches

between energy systems as too rapid and proposed another hydraulic model with

four tanks. He used this model to simulate constant power output exercises as

well as all-out efforts and compared the values to empirical findings by Gastin et al.

(1995). Sundström et al. (2015) reported good resemblance but also stated that their

results could not be regarded as a validation. All parameters of their simulations

were chosen to represent a general trained athlete according to reported values by

Gastin et al. (1995); Karatzaferi et al. (2001); Watt et al. (2002). However, for

a validation parameters would have to be collected from an individual and results

matched to its performance. Indeed, the Margaria-Morton-Sundström (M-M-S)

model by Sundström (2016) has yet to be validated experimentally.

2.4.4 Validation of the M-M model

Sundström et al. (2014) investigated predictions of the M-M model further in the-

oretical elaborations. They compared predicted optimal pacing strategies of the

M-M model to those of a critical power model for intermittent exercise on an artifi-

cial course and reported that the M-M model made more realistic predictions.

Lidar et al. (2021) developed an approach to apply the M-M to real athlete

data by fitting parameters with an optimisation approach to available V̇O2 data.

The study estimated accumulated anaerobic energy expenditure. They fitted two

versions of the M-M and two versions of the hydraulic2t model to collected data

during treadmill roller-skiing time trials. According to Lidar et al. (2021), the

hydraulic2t model provided the highest validity and reliability for data it was fitted

to and for predictions on unknown data. Further, Lidar et al. (2021) reported

that optimal parameters for the fitted M-M were likely outside the physiologically

reasonable ranges.

Therefore, hydraulic models promise more realistic predictions but a challenge

remains in determining to what extent model predictions conform to reality. Ap-

plications by Morton (1986a); Behncke (1997); Sundström et al. (2014); Lidar et al.

(2021) could only approximate parameters with optimisation approaches. Behncke

(1997); Lidar et al. (2021) concluded from their approximations that the M-M model

could not fully capture bioenergetic responses of the human body to exercise.
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2.5 Summary

The discussed mathematical models of human performance come with many simpli-

fying assumptions. Exercise performance is reduced to measures of expended and

recovered energy. Hydraulic models represent complex metabolic responses dur-

ing exercise as liquid flow within systems of tanks. However, these simplifications

have resulted in useful models that serve as evidence-based tools for performance

prediction and exercise prescription.

As summarised by Morton (2006) for hydraulic models or by Skiba and Clarke

(2021) for work-balance models: one-size-fits-all performance models do not exist.

For simplicity, let us imagine a spectrum where simple and applicable performance

models are on the left and complex and theoretical models are on the right.

One could say the critical power model is on the far left, because it requires just

a few performance tests to estimate its two parameters CP and W ′. W ′
bal−int and

W ′
bal−ode models would be on the left as well, because they only need CP and W ′

of an athlete to make predictions. The elegant abstraction and simplicity of these

models allow for a relatively easy application to individual athletes. However, recent

research has highlighted they might be too simple and energy recovery predictions

may require further refinement (Caen et al., 2019, 2021).

In contrast, the hydraulic M-M or M-M-S models would be on the far right of the

spectrum. They are complex and require eight or more parameters to be adjusted

according to in-depth knowledge about bioenergetic capacities of an athlete(Morton,

2006; Lidar et al., 2021). Their intricate systems of tanks, pipes and liquid pressure

promise more realistic predictions, but a challenge remains in investigating how

realistic their predictions are.
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Chapter 3

Problem Statement and Research
Questions

3.1 Problem Statement

As research in performance modelling advances, existing models are challenged,

verified, refuted or refined according to new studies and observations. Work-balance

models are also subject to such advances and, as discussed in Section 2.3.2, while

they are promising tools to monitor the energy capacities of an athlete, modifications

to improve energy recovery predictions have been proposed (Caen et al., 2019, 2021).

The foundation of the problem statement of this work is two thought experi-

ments. Both show that the M-M model discussed in Section 2.4.2 already addresses

the improvements to energy recovery predictions of work-balance models discussed

in Section 2.3.2.

3.1.1 Thought experiment 1

Caen et al. (2019) suggested a quicker recovery after short exhaustive exercise at

a high power output is than after long exhaustive exercise at a lower power out-

put. Work-balance models are insensitive to the characteristics of prior exhaustive

exercise and modifications are required to address the suggestions by Caen et al.

(2019).

In contrast, the M-M model is sensitive to these characteristics, as shown in

the example depicted in Figure 3.1. Chosen parameters for this example serve as

an illustration and are not based on real experiments. On the left, the tap of the

M-M model was opened for 60 s according to 600 W. In this example, this can be

considered a large power output over a short time. As a result, the liquid level in

the middle tank dropped fast, and limited by the maximal flow capacity of the pipe

from the right tank, not much liquid could flow from the right tank into the middle

tank.
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Figure 3.1: The M-M model predicts energy capacities after 60 s at a power output
of 600 W (left) and 600 s at 300 W (right). Chosen parameters for this example serve
as an illustration and are not based on real experiments. Left: The maximal flow
capacity of the pipe from AnL limited how much liquid could flow into AnA during
60 s of rapid energy expenditure. Right: During 600 s of slower energy expenditure
more liquid from AnL could flow into AnA.

On the right in Figure 3.1, the tap was opened for 600 s according to 300 W,

such that the fill level of the middle tank dropped more slowly. Thus, there was

more time for liquid to flow from the right into the middle tank. In both depicted

cases, the models predicted that the athlete was exhausted because the middle tank

was depleted and liquid flow out of the tap did not meet the demand any more.

In this situation, if the taps of both models were closed again, flow from the

O tank would refill both limited tanks and the models would mimic recovery. The

model on the left would recovery more quickly because less liquid has flown out

of the system. As a result, the M-M model predicted quicker recovery after short

exhaustive exercise at a high power output than after long exhaustive exercise at

a lower power output. The M-M models is capable of addressing the suggested

improvements of Caen et al. (2019).

3.1.2 Thought experiment 2

Skiba et al. (2012), and more recently, Caen et al. (2021); Skiba and Clarke (2021)

have already noted that predicting energy recovery as a biexponential function might

improve energy recovery predictions. However, established W ′
bal−ode and W ′

bal−int

models predict monoexponential recovery dynamics.

Predictions of the hydraulic M-M model are closer to biexponential dynamics

because it understands power output and recovery as a function of three interacting

tanks and liquid flow. With rising or falling fill levels, liquid pressure increases

or decreases exponentially. The model features two tanks that are connected to

the middle tank; therefore, flow into and out of the middle tank is a biexponential
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function. For example, assuming the tap is fully closed in the situation depicted

in Figure 2.9, Equation 15 of Morton (1986b) defines the level of depletion at that

time t as

h = k′1 exp (r1t) + k′2 exp (r2t) +
c′

b
+ θ. (3.1)

This is a biexponential equation where k′1, r1, k
′
2, r2, c

′, b, θ are constants, which Mor-

ton (1986b) determined from boundary conditions. Therefore, the M-M model can

predict energy recovery as a biexponential function and is capable of addressing the

suggested improvements of Caen et al. (2021).

3.1.3 The problem of using the M-M model

Both thought experiments suggest that the M-M model can predict energy recovery

with the proposed improvements by Caen et al. (2019, 2021); Skiba and Clarke

(2021). By addressing these shortcomings, the M-M model would be able to make

more accurate predictions than work-balance models for remaining energy capacities

of an athlete during intermittent exercise.

However, using the M-Mmodel for intermittent exercise predictions is not straight-

forward. As discussed in Section 2.4.2, the M-M model was designed to predict

oxidative, lactic, and alactic energy production in response to power output. Its pa-

rameters are ascribed to concrete metabolic responses during exercise and Behncke

(1997) reported it to be cumbersome to apply the model to individual athletes. Li-

dar et al. (2021) concluded that the M-M model cannot fully capture the dynamics

of the human bioenergetics system and Behncke (1997) suggested abandoning the

hydraulic model. At this stage, the M-M model cannot be used as an alternative to

work-balance models for intermittent exercise predictions of an athlete.

3.1.4 A new hydraulic model

This work proposes a new hydraulic model, which combines the advantages of work-

balance models and the M-M model for predicting energy expenditure and recovery

during intermittent exercise. The advantage of work-balance models is that they

only require CP and W ′ of an athlete to make predictions. We propose a three-

tank hydraulic model that also only requires CP and W ′. That becomes possible

by defining a generalised three-tank hydraulic model where the parameters are not

ascribed to concrete bioenergetic entities.

Our generalised hydraulic model has three tanks, like the M-M model, and there-

fore it retains the benefits outlined in the thought experiments above. Because its

parameters are not limited by physiological constraints, it allows the development

of an optimisation approach that freely adjusts parameters until the model predicts
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energy expenditure according to the critical power model and recovery ratios accord-

ing to previously published observations. In the following chapters, the new model

will be defined, applied, and validated to answer three main research questions.

3.2 Research Questions

Chapter 4 mathematically defines the new generalised model. Then, the following

chapters answer three research questions:

1. Can the new hydraulic model be a feasible alternative to work-

balance models? The suggested advantages of the new hydraulic model

make a difference only if it can be applied to intermittent exercise with data

similar to those required by work-balance models and makes predictions with

at least comparable accuracy. Chapter 5 presents a proof-of-concept to con-

firm this. We developed a procedure with which the generalised hydraulic

model could successfully predict both energy expenditure and recovery kinet-

ics for one example case. The procedure was designed to use CP and W ′ as

inputs and to enable the generalised hydraulic model to be an alternative to

work-balance models.

2. How accurate are intermittent exercise predictions? After confirming

the feasibility of the hydraulic model in a proof-of-concept, it requires valida-

tion in more detail. The above outlined thought experiments suggest that the

generalised hydraulic model can predict energy recovery more accurately than

work-balance models. In Chapter 6, previously published data were used to

compare model predictions and to confirm more accurate predictions of the

generalised hydraulic model.

3. How accurate are predictions for metabolic responses during exer-

cise? The original M-M model was designed to predict energy production of

oxidative, lactic, and alactic metabolic pathways during exercise. Our gener-

alised hydraulic model resembles the M-M model but does not ascribe param-

eters to human metabolism. Chapter 7 scrutinises predictions for metabolic

responses of our generalised hydraulic model and compares them to collected

data from study participants.
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Chapter 4

The New Hydraulic Model

We published our generalised hydraulic model in Weigend et al. (2021). Henceforth,

the model is referred to as generalised hydraulic model by Weigend et al. (2021)

(hydraulicweig). Hydraulicweig is an abstract version of the M-M model for which all

bionergetic or metabolic context of its parameters has been erased. This chapter

formalises the model in its entirety.

4.1 Generalisation of the M-M model

Behncke (1997); Lidar et al. (2021) fitted the M-M model to metabolic or bioen-

regetic empirical measures. Behncke (1997) concluded that the naive interpretation

of its parameters is not justified and Lidar et al. (2021) that the M-M model was

unlikely to fully capture the human bioenergetic system.

To prevent these issues caused by concrete physiological interpretation, the pa-

rameters of hydraulicweig are defined as being more abstract entities than those

of the M-M model. The sole remaining similarity between the M-M model and

hydraulicweig is that hydraulicweig also quantifies performance as a function of three

energy sources, which are represented as tanks. However, hydraulicweig ignores rela-

tions to oxidative, lactic or alactic energy sources. It re-imagines the left infinitely

big tank as a generic unlimited energy source (U), the middle tank as limited fast

energy source (LF ) and the right tank as limited slow energy source (LS)1.

An example with these generalised labels is depicted in Figure 4.1. Maximal

flow capacities of pipes are labelled maximal flow from the unlimited energy source

(MU), maximal flow from the limited fast energy source (MLF ) and maximal flow

from the limited slow energy source (MLS). Tank positions and sizes are defined by

θ, γ and ϕ. Hydraulicweig does not feature tube B (depicted in Figure 2.9). Tube B

1Initially, in Weigend et al. (2021, 2022a) we referred to the three tanks as aerobic energy source
(Ae), anaerobic fast energy source (AnF ) and anaerobic slow energy source (AnS). Later, these
labels were changed to U , LF , and LS, due to discrepancies between the measured and predicted
oxygen uptake in athletes. These details are reported in Appendix A.1 and Chapter 7
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Figure 4.1: Representative example of hydraulicweig, as published in Weigend et al.
(2021). In comparison with the M-M model in Figure 2.9, tube B was removed and
the tanks renamed as unlimited energy source (U), limited fast energy source (LF )
and limited slow energy source (LS). The maximal flow capacities between tanks
are labelled MU , MLS, MLF .

was included by Margaria (1976); Morton (1986a) to account for early lactate levels

in blood at the onset of exercise.

4.2 A configuration

Hydraulicweig features eight adjustable parameters. As depicted in Figure 4.1, the

parameters θ, γ and ϕ denote tank positions and sizes, LF , LS are adjustable

tank capacities measured in J, and MU , MLF and MLS are maximal flow capacities

measured in W. A configuration for hydraulicweig entails the positions, sizes and

capacities of each tank and is therefore defined as

[LF, LS, MU , MLF , MLS, θ, γ, ϕ]. (4.1)

The parameters LF , LS, MU , MLF and MLS are in the interval [0,∞). The

bounds of tank positions θ, γ and ϕ are [0, 1]. The only constraint on tank positions is

that LS must have a positive cross-sectional area; thus, θ + γ < 1 must be satisfied.

In summary, a configuration defines the parameters with which the liquid flow within

the three tanks of hydraulicweig is computed.

4.3 Liquid flow phases

Liquid flow between tanks can be described in nine distinct phases. In this work,

these phases are named after the tanks involved (U for flow from U and L for flow
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from LS) and flow characteristics (l for limited, f for full, r for recovery). For

example, Ul means that only liquid from U flows into LF and the flow is limited;

that is, flow through the pipe is not at maximal capacity because of liquid pressure

against the pipe exit. This phase Ul occurs when the fill level of LF is above the

pipe exit of U and above the top of LS, and LS is full.

As a second example, Figure 4.1 depicts the phase UlLl. Liquid from U and

liquid from LS flows into LF at limited capacity. Flow from U is limited because

the fill level of LF is above the pipe exit of U . Liquid flows from LS into LF because

the fill level of LF is below the top of LS (h > θ). Flow is limited because the fill

level of LF is above the pipe exit of LS (h ≤ 1− γ).

The phase UlLr is an example of liquid flow during recovery. Liquid flows from

U into LF at limited capacity and liquid from LF re-flows into LS. During this

phase, the fill level of LF is above the pipe exit of U and above the fill level of LS

(h ≤ θ + g). LS is not full (g > 0).

All possible phases are named Ul, Uf , UlLl, UlLr, UlLf , UfLl, UfLr, UfLf and

Lr. Each phase features a distinct differential equation that describes flow out of

the tap at the bottom of LF . Not all three-tank hydraulic models require all of

these liquid flow phases to be defined. Which phases are required depends on the

configuration type.

4.4 Configuration types

As described above, a configuration of hydraulicweig assigns values to tank capacities

LF , LS, to maximal flow capacities MU , MLF , MLS, and tank positions ϕ, θ, and

γ. Configurations can be categorised in types according to the liquid flow phases

that occur in them. The overview in Figure 4.2 depicts all 20 possible configuration

types named from A to T. Table 4.1 summarises what liquid flow phases can occur

with each type.

For example, all configuration types in the top row of Figure 4.2 (types A-D)

feature ϕ = 1, such that the pipe exit of the left unlimited tank U is at the top of

the middle limited tank LF . For these, the fill level of LF cannot rise above the

pipe exit of U . Therefore, flow from the tank U cannot be limited by pressure from

liquid above the pipe exit. As a result, phases that involve Ul cannot occur with

types A-D.

The original hydraulic model by Margaria (1976) was of configuration type T (see

Figure 1.29 in Margaria (1976)). Morton (1986b) argued that the model by Margaria

(1976) is inconsistent with physiological facts, because flow from the left unlimited

tank U can be at maximal capacity, while no liquid flows from the right tank LS.

With the original interpretation that flow from U represents oxygen uptake, this

31



Figure 4.2: All 20 possible configuration types of a three-tank hydraulic model with
adjustable θ, γ, and ϕ

Table 4.1: A summary of the liquid flow phases (rows) that can occur in each
configuration type (columns).

A B C D E F G H I J K L M N O P Q R S T

Ul ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Uf ◦ ◦ ◦ ◦
UlLl ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
UlLr ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
UlLf ◦ ◦ ◦ ◦
UfLl ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
UfLr ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
UfLf ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Lr ◦ ◦ ◦ ◦
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would mean that the model assumes that an athlete can work at a sustainable rate

while being at their maximal oxygen uptake. As pointed out by Morton (1986b),

this is physiologically not possible. Instead, he proposed that the M-M model was

either of configuration type I,K,M or Q (A,B,C,D in Figure 2 in Morton (1986b)).

Subsequently, Morton (1990) presented the in Section 2.4.2 discussed physiological

constraints and concluded that only type I was valid (Figure 1 in Morton (1990)).

Behncke (1993); Sundström et al. (2015); Lidar et al. (2021) each presented different

reasons for why configuration type I is inconsistent with physiological facts and they

introduced changes to the M-M model that resulted in new configuration types.

In contrast, for hydraulicweig, we removed the bioenergetic and metabolic con-

text of the M-M model and therefore removed all physiological constraints on its

parameters. As a result, all 20 configuration types are possible and all liquid flow

phases can occur.

4.5 Model Formalisation

The following sections formally define all possible liquid flow phases of hydraulicweig.

Section 4.5.1 defines these as ordinary differential equations (ODE) in accordance

with how they are presented in Morton (1986b). Section 4.5.2 defines them as dis-

cretised ODEs in accordance with Sundström et al. (2014). The latter formalisation

is practical for step-by-step simulations. We added considerations for extreme cases

when step sizes of are large.

4.5.1 Ordinary differential equations

Morton (1986b) defined ODEs for the liquid flow phases of configuration types I,K,M

and Q. However, he only described phases that are applicable to all four types,

outlining the remaining ones without a rigorous solution. This section describes the

liquid flow equations of hydraulicweig for all flow phases and relates them to Morton

(1986b) where possible. Specifically, our additions to the work of Morton (1986b)

are the formalisation of the phases Uf , Lr, Lf , as well as full solutions for the phases

UlLf , UfLl, UfLr, UfLf .

4.5.1.1 Phase Ul

This phase is characterised by a limited flow from U into LF , while no liquid flows

from LS into LF . This occurs if the fill level of LF is above or at the pipe exit of

U (h <= 1 − ϕ), and at the same time, LS is full (g = 0) and the fill level of LF

is above or at the top of LS (h <= θ). Using the notation of hydraulicweig, Morton
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(1986b) defined in (his) Equation 2 that during this phase, a constant power output

P ; that is, a constant liquid flow from tap p at the bottom of LF , is estimated as

P =
MU

1− ϕ
h(t) + LF h′(t). (4.2)

This is a first-order linear ODE. To estimate tank fill levels at a given time point

t, an applicable equation for h(t) is required. Equation (4.2) has as its general

solution

h(t) =
P (1− ϕ)

MU

+ c1 exp

[
MU

LF (ϕ− 1)
t

]
, (4.3)

where c1 is a constant.

In his examples, Morton (1986b) derived c1 with the assumption that h(t) = 0

at t = 0. The present work defines a more general case where h(t) = hstart for t = 0.

With the condition that hstart does not violate any of the above stated conditions

for phase Ul (hstart <= 1− ϕ and hstart <= θ), the constant is then estimated as

c1 = hstart −
P (1− ϕ)

MU

. (4.4)

Substituting Equation (4.4) into Equation (4.3) results in an applicable form of

h(t) to determine the fill level of LF at any time during phase Ul, given an initial

hstart and a constant power demand P .

4.5.1.2 Phase Uf

This phase is characterised by flow from U into LF at full capacity while no liquid

flows from LS into LF . During this phase, the fill level of LF is below or at the

pipe exit of U (h ≤ 1−ϕ). At the same time LS is filled (g = 0) and the fill level of

LF is above or at the top of LS (h ≤ θ). Morton (1986b) did not define this phase

because it did not occur in the hydraulic model configurations he investigated. For

this phase, a constant power demand P is defined as

P =MU + LF h′(t). (4.5)

The depletion or refilling of LF is linear; therefore, h′(t) is a constant. From

a given h(t) = hstart at t = 0, the fill level at any time during this phase can be

estimated as

h(t) = hstart +
P −MU

LF
t. (4.6)

4.5.1.3 Phase UlLl

During this phase, liquid flows from U and from LS into LF . Both flows are limited

by pressure from liquid in LF above the pipe exits of U and LS. This occurs if

the fill level of LF is above or at pipe exit of U (1 − ϕ ≤ h) and above or at pipe
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exit of LS (θ ≤ h). Further, the fill level of LS must be above the fill level of LF

(g + θ ≤ h). This phase corresponds to the phases that Morton (1986b) defined as

A2 and 2R1. In accordance with his Equation 8, a constant liquid flow out of tap p

is defined as

P =
MU

1− ϕ
h(t) + LF h′(t) + LS g′(t) (4.7)

with

LS g′(t) =MLS
h(t)− g(t)− θ

1− θ − γ
, (4.8)

i.e.,

h(t) =
LS(1− θ − γ)

MLS

g′(t) + g(t) + θ. (4.9)

As already outlined by Morton (1986b), to derive an applicable form of g(t)

and h(t), one can substitute Equation (4.9), together with its derivative h′(t), into

Equation (4.7). This yields a second-order differential equation of the form

g′′(t) +

[
MU

LF (1− ϕ)
+

MLS(LF + LS)

LF LS(1− θ − γ)

]
g′(t) +

MU MLS

LF LS(1− ϕ)(1− θ − γ)
g(t)

=
MLS(P (1− ϕ)−MU θ)

LF LS(1− ϕ)(1− θ − γ)

,

(4.10)

which corresponds to Equation 11 in Morton (1986b). By summarising constants

into a, b, and c, the above equation is of the form

g′′(t) + a g′(t) + b g(t) = c (4.11)

and has as its general solution

g(t) = c1 exp

[
1

2

(
−
√
a2 − 4b− a

)
t

]
+ c2 exp

[
1

2

(√
a2 − 4b− a

)
t

]
+
c

b
. (4.12)

As per Morton (1986b) in Equation 12 of his paper, the constants in the exponents

are summarised as r1 and r2. This results in

g(t) = c1 exp (r1 t) + c2 exp (r2 t) +
c

b
. (4.13)

From here, the present work diverts from the procedure outlined in Morton

(1986b). Morton (1986b) derived c1 and c2 by setting the initial conditions g(0) =

g′(0) = 0, which assumes that LS is filled at the beginning of the simulation, and

h(0) = g(0) + θ. To apply the equations to simulations with more broadly defined

initial conditions, this work instead determines c1 and c2 from set initial fill levels

hstart and gstart. By substituting the derivative of Equation (4.13) into Equation (4.9)

and with h(t) = hstart and g(t) = gstart at t = 0, this arrangement yields

c2 =
MLS(hstart − gstart − θ)

r2 LS(1− θ − γ)
− r1 c1

r2
. (4.14)
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Now substituting into Equation (4.13) and solving for c1 yields

c1 =

[
gstart −

MLS(hstart − gstart − θ)

r2 LS(1− θ − γ)
− c

b

]
1

1− r1
r2

, (4.15)

which results in an applicable version of Equation (4.13) for g(t).

For an applicable version of h(t), Equation (4.13) and its derivative g′(t) are

substituted into Equation (4.9):

h(t) =

[
LS(1− θ − γ)

MLS

c1r1 + c1

]
exp(r1 t)+

[
LS(1− θ − γ)

MLS

c2r2 + c2

]
exp(r2 t)+

c

b
+θ.

(4.16)

4.5.1.4 Phase UlLr

This phase is characterised by limited liquid flow from U into LF and flow from LF

into LS, which causes the liquid level in LS to rise. This occurs if the fill level of

LF is above or at the pipe exit of U (h ≥ 1− ϕ), the fill level of LS is above or at

the fill level of LF (θ + g ≥ h), and LS is not full (g > 0). Because of the re-flow

into LS, the change in the fill level of LS is negative. Morton (1986b) defined this

as

LS g′(t) = −MLF
g(t) + θ − h(t)

1− γ
. (4.17)

To derive applicable forms of the equations h(t) and g(t), this work follows a sim-

ilar procedure to the previous Section 4.5.1.3. First, Equation (4.17) is rearranged

to

h(t) =
LS(1− γ)

MLF

g′(t) + g(t) + θ. (4.18)

Then, Equation (4.18) and its derivative are substituted into Equation (4.7), yielding

the second-order differential equation

g′′(t) +

[
MU

LF (1− ϕ)
+
MLF (LF + LS)

LF LS(1− γ)

]
g′(t) +

MUMLF

LF LS(1− ϕ)(1− γ)
g(t)

=
MLF (P (1− ϕ)−MU θ)

LF LS(1− ϕ)(1− γ)
.

(4.19)

With constants summarised into x, y and z, it is of the form

g′′(t) + x g′(t) + y g(t) = z. (4.20)

With the same procedure as Equation (4.11) to Equation (4.13), previously in

Section 4.5.1.3, a general solution can be derived as

g(t) = c1 exp(r1t) + c2 exp(r2t) +
z

y
, (4.21)

where now c1, c2, r1 and r2 are constants of different values than in Section 4.5.1.3.
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Again, c1 and c2 can be derived with initial fill levels hstart and gstart. The

derivative of Equation (4.21) g′(t) is substituted into Equation (4.18), and with

t = 0 and h(t) = hstart and g(t) = gstart, this arrangement results in

c2 =
MLF (hstart − gstart − θ)

LS(1− γ)r2
− r1
r2
c1. (4.22)

This is then substituted into Equation (4.21), yielding

c1 =

[
gstart −

MLF (hstart − gstart − θ)

LS(1− γ)r2
− c

b

]
1

1− r1
r2

, (4.23)

which is a solution for c1 and c2 and is therefore an applicable version of g(t) with

Equation (4.21).

The applicable version of h(t) is derived with the same procedure as in Sec-

tion 4.5.1.3 and of the same from as Equation (4.16) but with the updated c1, c2, r1

and r2 from this subsection.

4.5.1.5 Phase UlLf

This phase is characterised by limited liquid flow from U into LF and flow from LS

into LF at full capacity. This phase occurs if the fill level of LF is above or at the

pipe exit of U (h ≤ 1− ϕ) and below or at the pipe exit of LS (h ≥ 1− γ). During

this phase, the flow from LS is only affected by the pressure of the remaining liquid

in LS. The change in the fill level of LS was defined by Morton (1986b) as

LS g′(t) =MLS
1− θ − γ − g(t)

1− θ − γ
. (4.24)

This is a first-order differential equation with the general solution

g(t) = (1− θ − γ) + c1 exp

[
− MLS t

LS(1− θ − γ)

]
, (4.25)

where c1 is a constant. With a given g(t) = gstart at t = 0, this equation can be

solved for c1 and therefore is an applicable form of g(t).

To obtain an applicable form of h(t), the derivative of Equation (4.25) is substi-

tuted into Equation (4.7), which yields

h′(t) = − MU

LF (1− ϕ)
h(t)+

MLS

LF (1− θ − γ)
c1 exp

[
− MLS t

LS(1− θ − γ)

]
+

P

LF
, (4.26)

i.e.

h′(t) = a h(t) + b exp(k t) + c, (4.27)

where a, b, c, k are constants. This is a first-order differential equation with the

general solution

h(t) = −b exp(k t)

a− k
+ c2 exp(a t)− c

a
. (4.28)

Using a known initial fill level h(t) = hstart at t = 0, this equation can be solved for

c2. Then, with this given constant c2, we have an applicable form of h(t).
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4.5.1.6 Phase UfLl

This phase is characterised by liquid flow from U into LF at full capacity and limited

flow from LS into LF . During this phase, the fill level of LF is below or at the pipe

exit of U (h ≥ 1− ϕ), above or at the pipe exit of LS, and below or at the fill level

of LS (g + θ ≤ h ≤ 1− γ). Because flow from U is at full capacity, flow from U is

a constant of value MU and total power output of the model is estimated as

P =MU + LF h′(t) + LS g′(t). (4.29)

Because flow from LS is limited Equation (4.8) for Ll from Section 4.5.1.3 above

applies:

LS g′(t) =MLS
h(t)− g(t)− θ

1− θ − γ
;

that is,

h(t) =
LS(1− γ)

MLS

g′(t) + g(t) + θ,

which has the first derivative

h′(t) =
LS(1− θ − γ)

MLS

g′′(t) + g′(t). (4.30)

To obtain an applicable version of g(t), Equation (4.30) is substituted into Equa-

tion (4.29), yielding the second-order differential equation

g′′(t) +
MLS(LF + LS)

LF LS(1− θ − γ)
g′(t) =

MLS(P −MU)

LF LS(1− θ − γ)
, (4.31)

which has as its general solution

g(t) =
P −MU

LF + LS
t+c1 exp

[
− MLS(LF + LS)

LF LS(1− θ − γ)
t

]
LF LS(1− θ − γ)

MLS(LF + LS)
+c2, (4.32)

where c1 and c2 are constants. The derivative of Equation (4.32) is

g′(t) =
P −MU

LF + LS
− c1 exp

[
− MLS(LF + LS)

LF LS(1− θ − γ)
t

]
. (4.33)

With a given g(t) = gstart and h(t) = hstart at t = 0, Equation (4.33) can be solved

for c1 by substituting it into Equation (4.8), which yields

c1 =
P −MU

LF + LS
− MLS(hstart − gstart − θ)

LS(1− θ − γ)
. (4.34)

Then, substituting Equation (4.34) into Equation (4.32) allows a solution for c2

c2 = gstart −
LF LS(P −MU)(1− θ − γ)

MLS(LF + LS)2
+
LF (hstart − gstart − θ)

LF + LS
. (4.35)

The solutions for c1 and c2 result in an applicable form of g(t) and g′(t) under the

condition that at t = 0 and g(t) = gstart and h(t) = hstart. To obtain an applicable

form of h(t), we substitute Equation (4.32) and Equation (4.33) with Equation (4.34)

and Equation (4.35) into Equation (4.9).
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4.5.1.7 Phase UfLr

This phase is characterised by liquid flow from U into LF at full capacity and flow

from LF into LS, which causes the fill level of LS to rise. During this phase, the

fill level of LF is below or at the pipe exit of U (h ≥ 1− ϕ) and above or at the fill

level of LS (h ≤ θ + g). As in Section 4.5.1.4, this phase uses Equation (4.17) for

re-flow into LS, which is

LS g′(t) = −MLF
g(t) + θ − h(t)

1− γ
,

i.e.,

h(t) =
LS(1− γ)

MLF

g′(t) + g(t) + θ.

Thus, the procedure to obtain applicable forms of h(t) and g(t) is similar to the

procedure in Section 4.5.1.4. The difference lies in the contribution from U , which is

now a constant. As such, total power output is determined by Equation (4.29). We

substitute the first derivative h′(t) of the above equation h(t) into Equation (4.29)

and yield the second-order differential equation

g′′(t) +
MLF (LF + LS)

LF LS(1− γ)
g′(t) =

MLF (P −MU)

LF LS(1− γ)
. (4.36)

The general solution is

g(t) = − LF LS(1− γ)

MLF (LF + LS)
c1 exp

[
−MLF (LF + LS)

LF LS(1− γ)
t

]
+

P −MU

LF + LS
t+ c2, (4.37)

where c1 and c2 are constants.

To estimate these constants, the first derivative g′(t) of Equation (4.37) is sub-

stituted into Equation (4.18), and solved for c1 with defined h(t) = hstart and

g(t) = gstart at t = 0:

c1 = −MLF
gstart + θ − hstart

LS(1− γ)
− P −MU

LF + LS
. (4.38)

This solution for c1 then allows a solution to Equation (4.37) for c2:

c2 = gstart −
LF LS(Pwork −MU)(1− γ)

MLF (LF + LS)2
− LF (gstart + theta− hstart)

LF + LS
. (4.39)

These solutions for c1 and c2 result in an applicable form of g(t) as Equa-

tion (4.37). For an applicable form of h(t), Equation (4.37) and its first derivative

g′(t) are substituted into Equation (4.18).
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4.5.1.8 Phase UfLf

This phase is characterised by liquid flow from U into LF at full capacity and flow

from LS into LF at full capacity. This phase occurs if the fill level of LF is below or

at the pipe exit of U and below or at the pipe exit of LS (h ≥ 1−ϕ and h ≥ 1− γ).

During this phase, LS is only affected by the pressure of the remaining liquid in LS.

Thus, the same Equation (4.24) as in Section 4.5.1.5 is used to estimate the change

in the fill level of LS:

LS g′(t) =MLS
1− θ − γ − g(t)

1− θ − γ

with its general solution

g(t) = (1− θ − γ) + c1 exp

[
− MLS t

LS(1− θ − γ)

]
,

where c1 is a constant that can be derived from a given g(t) = gstart at t = 0.

Thus, we have an applicable form of g(t). To obtain an applicable form of h(t),

the derivative g′(t) of the above equation for g(t) is substituted into Equation (4.29).

This yields

h′(t) =
P −MU

LF
+

MLS

LF (1− θ − γ)
c1 exp

[
− MLS

LS(1− θ − γ)
t

]
, (4.40)

which then is integrated to obtain

h(t) =
P −MU

LF
t− LS

LF
c1 exp

[
− MLS

LS(1− θ − γ)
t

]
+ c2, (4.41)

where c1 is the constant derived with g(t) = gstart at t = 0 above, and c2 can be

derived with h(t) = hstart at t = 0.

4.5.1.9 Phase Lr

This phase is characterised by flow from U through LF directly into LS. During

this phase the fill level of LS rises but LF remains full. This phase only occurs if the

pipe exit of U is at the top of LF (ϕ = 1), LS is not yet full (g > 0), and the sum

of flow from the tap (P ) plus flow into LS is less than the maximal flow capacity

from U (h′ ≤ 0). During this phase, h(t) = 0 always applies and Equation (4.17)

changes to

LS g′(t) = −MLF
g(t) + θ

1− γ
, (4.42)

which is a first-order differential equation with its general solution

g(t) = c1 exp

[
− MLS

LS(1− γ)
t

]
− θ, (4.43)

where c1 is a constant that can be derived from g(t) = gstart at t = 0.
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With this, all possible liquid flow phases are defined and solved. The separa-

tion in distinct phases makes using the hydraulic model cumbersome because exact

transition points between phases have to be found. For example, when a model of

configuration type M predicts liquid flow dynamics during a TTE trial at a high

intensity, it will start with phase Ul. Then, when h(t) = θ, it will switch into the

phase UlLl. As h(t) drops further to h(t) = ϕ, the model will switch into the phase

UfLl. Then, h(t) will reach γ and the model will commence the final phase, UfLf ,

where h(t) will reach 0.

Each switch between phases requires solving a mathematical problem. For exam-

ple, to find the time when UlLl switches to UfLl requires a solution to Equation (4.9)

with h(t) = ϕ for t. That t is when phase UlLl ends. For this example, it is called

tend. The tend is used to estimate h(tend) and g(tend) with Equation (4.16) and Equa-

tion (4.13). The resulting values are used as hstart and gstart for the subsequent

UfLl.

The following section formalises liquid flow phases in an alternative way as dis-

cretised equations.

4.5.2 Discretised equations

Typically, digital data describes power outputs of an athlete in discrete time steps;

for example, measured power output per second on a cycle ergometer. Further, real-

athlete data are subject to natural variation. Even during a TTE test, true power

outputs may vary slightly from second to second. With the goal of investigating

hydraulicweig on real-athlete data, this section summarises liquid flow equations as

discretised equations that are convenient for application with computer programs.

Sundström et al. (2014) also presented discretised liquid flow equations. For this

work, we updated the notation and presentation to match the generalised assump-

tions of hydraulicweig. Further, we extend the discretised equations with extreme

case handling in Section 4.5.2.1 to avoid estimation errors for large step sizes or ex-

treme parameter combinations. Henceforth, estimations assume discrete time steps

and the time difference between two time steps t and t+ 1 is denoted as ∆t. Power

demand P is assumed to be constant for ∆t between two steps.

For the estimations of fill levels and flows at time step t, first the previous fill

level of LF defined by ht−1 drops according to the current power demand Pt. This

results in the intermediate level hP,t, which is estimated as

hP,t = ht−1 +
Pt

LF
·∆t. (4.44)
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Then, the entire system of hydraulicweig reacts to the new intermediate fill level

of LF and flows are estimated. Flow from U (PU) at time point t is estimated as

PU,t =

{
MU · hP,t

1−ϕ
, if 0 ≤ hP,t ≤ (1− ϕ).

MU , otherwise.
(4.45)

The flow capacity MU is scaled with the ratio of the fill level of LF to (1−ϕ). This

means that maximal flow is reached as soon as hP,t ≥ (1−ϕ). Because the size of U

is infinite, liquid will never flow back into U and thus the interval of PU,t is [0,MU ].

Estimations of flow from LS (PLS) require more definition. Because liquid can

refill LS or flow out of it, the interval of PLS is [−MLF ,MLS]. The height of LS is

henceforth referred to as gmax. It amounts to

gmax = 1− θ − γ. (4.46)

To introduce all possible flows for PLS, calculations are organised in categories.

The full Equation (4.50) for PLS is the combination of Equation (4.47), Equa-

tion (4.48), and Equation (4.49). The first category describes cases during which no

flow between LS and LF occurs. Thus, PLS at these time points t equals 0:

PLS,t =



0, if hP,t ≤ θ

and gt−1 = 0.

0, if hP,t ≥ (1− γ)

and gt−1 = gmax.

0, if hP,t = (gt−1 + θ).

(4.47)

In the first case, the tank LS is full and the fill level of LF is above the top of tank

LS. In the second case, the fill level of LF is below the bottom end of LS and LS

is empty. Finally, in the third case, the fill level of LF is exactly equal with the fill

level of LS, causing equilibrium between both.

The second category includes cases during which liquid flows out of LS into LF :

PLS,t =


MLS · hP,t−(gt−1+θ)

gmax
, if hP,t > (gt−1 + θ)

and hP,t < (1− γ).

MLS · gmax−gt−1

gmax
, if hP,t ≥ (1− γ)

and gt−1 < gmax.

(4.48)

If the fill level of LF is below the fill level of LS and above the bottom end of LS,

the maximal possible flow is scaled according to the ratio of the difference between

fill levels and the total height of LS. If the fill level of LF is below the bottom end

of LS and LS is not empty, the maximal flow is scaled according to the amount of

the remaining liquid, to consider the pressure of remaining liquid in the tank.
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The third category describes the flow back from LF into LS.

PLS,t =

{
MLF · hP,t−(gt−1+θ)

1−γ
, if hP,t < (gt−1 + θ)

and gt−1 > 0.
(4.49)

Here the fill level of LF is above the fill level of LS and LS is not full, which causes

liquid to flow back into LS. The maximal flow MLF from LF into LS is scaled

according to the ratio between the difference of fill levels and the height of LS.

Because hP,t is smaller than gt−1+θ, the result will be negative. This indicates, that

a re-flow into LS occurs.

As the result, the full equation for PLS,t is the combination of Equation (4.47),

Equation (4.48) and Equation (4.49):

PLS,t =



0, if hP,t ≤ θ

and gt−1 = 0.

0, if hP,t ≥ (1− γ)

and gt−1 = gmax.

0, if hP,t = (gt−1 + θ).

MLS · hP,t−(gt−1+θ)

gmax
, if hP,t > (gt−1 + θ)

and hP,t < (1− γ).

MLS · gmax−gt−1

gmax
, if hP,t ≥ (1− γ)

and gt−1 < gmax.

MLF · hP,t−(gt−1+θ)

1−γ
, if hP,t < (gt−1 + θ)

and gt−1 > 0.

(4.50)

Then, the effect of both flows PU,t and PLS,t on the tank-fill levels of this time

step are estimated as

ht = hP,t +
PLS,t + PU,t

LF
·∆t (4.51)

and

gt = gt−1 +
PLS,t

LS
·∆t. (4.52)

Together, these equations allow us to estimate tank fill levels and liquid flows for a

time step t with power demand Pt.

4.5.2.1 Handling extreme cases

Large values for ∆t, or extreme parameter values, can cause flows to be overesti-

mated. To handle these cases, limitations to the flow PLS are applied:

It can happen that PLS becomes larger than the remaining capacity of LS, or a

negative PLS refills more liquid into LS than the tank has capacity for. In case not

enough liquid remains in LS, PLS,t is capped at the remaining amount by

PLS,t = min

(
PLS,t ,

(gmax − gt−1) · LS
∆t

)
. (4.53)
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Accordingly, if PLS,t ·∆t amounts to more re-flow into LS than the available capacity,

it is capped to fill LS just to the top:

PLS,t = max

(
PLS,t ,

−gt−1 · LS
∆t

)
. (4.54)

Further, extreme values can cause flows that overshoot an equilibrium between

fill levels of LF and LS. The difference in liquid between the fill levels of LF and

LS at time step t (Dt) is estimated as

Dt =
hP,t − (gt−1 + θ)

1
LS

+ 1
LF

. (4.55)

This difference is positive if the fill level of LF is above or at the fill level of LS

and negative otherwise. Because both PLS,t and Dt can be negative or positive, the

limitation applies in the following manner:

PLS,t =

{
max

(
PLS,t ,

Dt

∆t

)
, if PLS,t < 0.

min
(
PLS,t ,

Dt

∆t

)
, if PLS,t > 0.

(4.56)

Applying these limits, computer simulations of hydraulicweig with discrete time

steps are robust, even with extreme values.

4.6 Summary

This chapter introduced and fully defined the hydraulicweig model. A so-called model

configuration assigns values to the eight adjustable parameters of hydraulicweig.

These parameters affect the way in which the model predicts energy expenditure

and recovery as liquid flow. Configurations were categorised into configuration types

depending on what liquid flow phases can occur with them.

Section 4.5.1 formalised liquid flow phases of hydraulicweig in accordance with

how Morton (1990) defined the M-M model. Section 4.5.2 formalised liquid flow in

discretised equations, which are convenient for step-by-step computer simulations

and align with how Sundström et al. (2014) defined the M-M model. We extended

the discretised equations with extreme case handling to avoid estimation errors for

large step sizes or extreme parameter combinations.

All equations of Sections 4.5.1 and 4.5.2 were implemented and published in

Weigend et al. (2021), and in the python package threecomphyd2. The package

provides scripts to run model simulations, animations, and to fit the model to real-

athlete data with an optimisation approach introduced in the next chapter.

2https://github.com/faweigend/three_comp_hyd
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Chapter 5

Fitting the Model

The first research question in Section 3.2 asked whether hydraulicweig could be a fea-

sible alternative to work-balance models. This chapter provides a proof-of-concept

that hydraulicweig can be fitted to the same input data as work-balance models,

such that it is capable of making accurate predictions for energy expenditure and

recovery of an athlete during intermittent exercise. Furthermore, the presented

proof-of-concept confirms the first thought experiment presented in Section 3.1.1.

Specifically, it confirmed that hydraulicweig can address the proposed improvements

for work-balance models by Caen et al. (2019).

To achieve this, we developed a pathway to fit hydraulicweig to CP and W ′ of an

athlete and to recovery observations published by Caen et al. (2019). The developed

pathway was published in Weigend et al. (2021). The present chapter introduces the

procedure and adds more detail to our publication. Specifically, we expand further

on the quality of fitting results in Section 5.3 and how our findings relate to the

overarching research questions of this thesis. Furthermore, we present convergence

plots and more example Pareto fronts in Appendix A.2.

5.1 Objective functions

Currently established work-balance models use the CP and W ′ of an athlete to

predict remaining energy capacities of an athlete during intermittent exercise (Skiba

and Clarke, 2021). Generally, intermittent exercise can be separated into phases of

energy expenditure during high power outputs and phases of energy recovery during

low power outputs. Therefore, to use hydraulicweig as an alternative to work-balance

models, a pathway is needed that uses CP and W ′ to optimise the parameters of

hydraulicweig for predicting energy expenditure and recovery during intermittent

exercise. Specifically, fitting hydraulicweig requires finding optimal values for LS,

LF , MU , MLS, MLF , θ, γ and ϕ to make the model predict energy expenditure and

recovery of an athlete.
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This separates the task of fitting hydraulicweig to an athlete into two objectives.

The first objective is to predict energy expenditure as accurately as possible; the

second is to predict energy recovery as accurately as possible. To achieve this, the

present work defines the following two objective functions that assign a measure

of prediction error to hydraulicweig predictions for energy expenditure and recovery.

Both functions require the inputs CP and W ′ and a hydraulicweig configuration,

consisting of values for LS, LF , MU , MLS, MLF , θ, γ and ϕ. Both functions return

a single value as a measure of the prediction error. The smaller the returned value,

the higher the prediction accuracy.

5.1.1 Energy expenditure

CP andW ′ are parameters of the critical power model. Work-balance models use the

critical power model for energy expenditure predictions (Skiba and Clarke, 2021).

Therefore, the energy expenditure objective function of this work compares the

TTE predictions of hydraulicweig to TTE predictions of the critical power model.

The lower the error measurement returned, the more accurately does a hydraulicweig

model with the given input configuration resemble the predictions of the critical

power model with the given input CP and W ′.

The returned prediction error measurement is estimated from TTE test predic-

tions. With the given input values for CP and W ′, the objective function uses

Equation (2.6) to estimate 12 power outputs that lead to exhaustion after 120 s,

130 s, 140 s, 150 s, 170 s, 190 s, 210 s, 250 s, 310 s, 400 s, 600 s and 1200 s. This

range features more intensities for shorter times, such that the hydraulicweig model

is optimised to resemble the critical power model especially closely between 2 min

and 5 min. During intermittent exercise, such ranges of energy expenditure are more

likely to occur.

Then, the hydraulicweig model with the given configuration simulates constant

exercise at these power outputs. At the start of a simulation, all tanks are filled.

Then the tap of hydraulicweig is opened according to the constant power output to be

tested. When liquid flow from the tap cannot match demand, exhaustion is reached,

and the predicted time to exhaustion is compared with the expected time.

These tests yield 12 differences between the expected TTEs according to the

critical power model and the predicted TTEs of a hydraulicweig model with the

given input configuration. The energy expenditure objective function then returns

the normalised root mean squared error (NRMSE) of these differences as the error

measurement.
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Table 5.1: WB1→RB→WB2 test conditions and observed recovery ratios extracted
from Figure 3 of Caen et al. (2019).

Pwork (W) Prec (W) Trec (s) recovery ratio (%)

P240 CP33 120 55
P240 CP33 240 61
P240 CP33 360 70.5

P240 CP66 120 49
P240 CP66 240 55
P240 CP66 360 58

P480 CP33 120 42
P480 CP33 240 52
P480 CP33 360 59.5

P480 CP66 120 38
P480 CP66 240 37.5
P480 CP66 360 50

5.1.2 Energy recovery

The recovery dynamics of work-balance models W ′
bal−int, W

′
skib and W ′

bart were fitted

to small groups of tested participants (7 participants for W ′
bal−int; 10 participants

for W ′
skib; 4 participants for W ′

bart). The energy recovery objective function of this

work uses a similar approach for the hydraulicweig model.

Caen et al. (2019) reported averaged recovery ratios of 11 participants during

12 distinct conditions for the earlier introduced WB1→RB→WB2 test protocol.

The present work chose the data of Caen et al. (2019) due to the diversity of test

conditions. We extracted the ratios summarised in Table 5.1 from Figure 3 of Caen

et al. (2019). The conditions P240 and P480 are intensities predicted by the critical

power model to lead to exhaustion after 240 s and 480 s respectively. CP33 and

CP66 are 33 % and 66 % of CP. Recovery ratios in % denote how much of W ′

was recovered during a WB1→RB→WB2 test with the given Pwork, Prec, and Trec

conditions.

The energy recovery objective function of this work estimates P240, P480, CP33,

and CP66 from the CP and W ′ given as inputs to the function. Using these, it

simulates the 12 WB1→RB→WB2 tests with a hydraulicweig model with the given

configuration and compares the predicted recovery ratios to the observations of

Table 5.1. For this simulation, the tap of hydraulicweig is opened according to Pwork

until the model predicts exhaustion. Then the tap is opened according to Prec for

Trec. Subsequently, the tap is opened according to Pwork again until the model

predicts exhaustion for the second time. The ratio of both times to exhaustion is
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the ratio of recovery.

This procedure yields 12 differences in predicted to expected recovery ratios. The

energy recovery objective function returns the NRMSE of these differences as the

error measurement. The smaller the error, the more accurate the energy recovery

predictions for Table 5.1 by a hydraulicweig model with the given configuration.

5.2 The evolutionary algorithm

As discussed earlier, a configuration of hydraulicweig consists of eight real-valued

parameters for LS, LF , MU , MLS, MLF , θ, γ and ϕ. Given CP and W ′ of an

athlete, an optimal configuration entails the values that yield the lowest possible

NRMSE from the two objective functions defined above. In Weigend et al. (2021),

we showed (in a proof-of-concept) that a successful strategy to approximate an

optimal configuration in this search space is evolutionary computation (Eiben and

Smith, 2015; Bäck and Schwefel, 1993; Biscani and Izzo, 2020).

Specifically, we fitted optimal configurations with the established Multi-Objective

Evolutionary Algorithm with Decomposition (MOEA/D) approach as implemented

in Pygmo1(Qingfu Zhang and Hui Li, 2007; Biscani and Izzo, 2020). A common

underlying idea behind evolutionary computation approaches, such as MOEA/D, is

that a population of individuals is evaluated using objective functions (Eiben and

Smith, 2015). In the case of this work, individuals are hydraulicweig configurations;

their performance is measured with the energy expenditure and recovery objec-

tive functions defined above. Such a performance evaluation allows to implement a

‘survival-of-the-fittest’ approach. The well-performing hydraulicweig configurations

of a population are selected as parents. They pass on their mixed and slightly

mutated parameters to a new generation of offspring individuals. Over multiple

generations of survival of the fittest, recombination, and mutation, the evolving

population contains increasingly optimised hydraulicweig configurations for the ob-

jective functions.

MOEA/D was chosen because of its popularity and robust results in our initial

experiments. Other global optimisers could be equally suitable. For example, Lidar

et al. (2021) chose the non-linear grey-box parameter estimation solver nlgreyest of

MATLAB2. Many more appropriate algorithms could be explored, but the engineer-

ing of a problem-specific and fine-tuned fitting algorithm was not the main purpose

of this work.

Nevertheless, global optimisation algorithms, such as MOEA/D or nlgreyest of

MATLAB3, are tools for a wide range of applications. Therefore, even if fine-tuning

1https://esa.github.io/pygmo2/
2https://au.mathworks.com/products/matlab.html
3https://au.mathworks.com/products/matlab.html
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Table 5.2: Initial guesses for hydraulicweig configuration parameters and bounds applied
to them.

parameter normal distribution lower bound upper bound

LF N (0.3, 0.12) ·W ′ 1 500 000
LS N (1, 0.4) ·W ′ 1 500 000
MU N (1, 0.4) · CP 1 5 000
MLS N (1, 0.4) · CP 1 5 000
MLF N (0.1, 0.04) · CP 1 5 000
θ N (0.25, 0.1) 0 1
γ N (0.25, 0.1) 0 1
ϕ N (0.5, 0.2) 0 1

the fitting algorithm was not the focus of this work, it was necessary to customise

settings to some extent to fit hydraulicweig. Here, it was vital to develop a fitting

procedure that was reliable at obtaining accurate results, with speed and efficiency

as secondary concerns. The following subsections describe our algorithm design

choices and customised MOEA/D settings.

5.2.1 Initial random population

The evolutionary optimisation procedure of MOEA/D starts with a population of

random hydraulicweig configurations. This work defines that the random parameters

of these initial configurations are chosen the from normal distributions summarised

in Table 5.2.

Initial test runs revealed, that W ′ was an appropriate starting point for LF and

LS, from where the evolutionary algorithm could approximate the optimal values

for these parameters. In addition, LF was generally smaller in optimised solutions

than LS. Therefore, LF was set to be randomly chosen from a normal distribution

with mean 0.3 and standard deviation 0.12, multiplied byW ′ and LS from a normal

distribution with mean 1 and standard deviation 0.4, also multiplied by W ′.

As can be seen in entries forMU ,MLS,MLF in Table 5.2, CP was an appropriate

starting point for maximal flow capacities. MLF was generally relatively small com-

pared with MU and MLS in optimised configurations. The values of θ and γ were

set to be randomly chosen from a normal distribution with mean 0.25 and standard

deviation of 0.1, so that LS generally had a positive size. If (θ+γ) < 1 was violated,

the configuration was dismissed.

Normal distributions retain a small probability that extreme values will occur.

These extreme values can be useful for exploring the search space, but this work

limited them by upper and lower bounds to ensure the computations were feasible.

Also these boundaries are summarised in Table 5.2. The lower bounds were set at 1 J

for tank capacities, 1 W for maximal flow capacities, and 0 for tank positions θ, γ, ϕ.
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Figure 5.1: An example Pareto front of hydraulicweig configurations. This work
defines the configuration with the best trade-off as the one with minimal distance
to point (0, 0). It is marked as a blue diamond.

The upper bounds were set to exceed the average CP and W ′ of elite athletes more

than ten times; for example, Bartram et al. (2018) reported World Championships

winners in a track cycling endurance discipline had an averaged CP of 393 W±14 W

and W ′ of 23 300 J ± 3 300 J. Therefore, the chosen upper bounds far exceed what

a human body is capable of, and none of the optimised fittings throughout this

research of this work came close to them.

Starting with an initial random population of hydraulicweig configurations, the

evolutionary optimisation algorithm optimised configurations within the defined pa-

rameter boundaries.

5.2.2 Best trade-off

MOEA/D was used to optimise the initial random population of hydraulicweig con-

figurations to minimise two objectives: NRMSE of the energy expenditure objective

function and NRMSE of the recovery objective function. During initial experiments,

it became apparent that it was not possible to configure a hydraulicweig model such

that it achieved the optimal NRMSE of 0 for both objectives simultaneously. Some

prediction error for energy expenditure must be accepted to minimise energy recov-

ery error and vice versa. An optimal trade-off had to be defined.

A hydraulicweig configuration is on the so-called Pareto front if it has been opti-

mised so far that the NRMSE of one objective function cannot be reduced without

increasing the other. Figure 5.1 displays an example Pareto front. NRMSE of the

energy expenditure objective function is on the x-axis, and that of the energy re-

covery objective function on the y-axis. A configuration on the top left on the front

achieves a low NRMSE of < 0.02 from the energy expenditure objective function
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but a relatively high NRMSE > 0.09 for energy recovery. For a configuration on the

bottom right on the front, it is the other way around.

As defined above, objective functions return a NRMSE of 12 differences, which

makes NRMSE values directly comparable. Both energy expenditure and energy re-

covery predictions are equally important for simulating intermittent exercise. There-

fore, the best trade-off balances them equally weighted. This work defined that the

optimal trade-off is maintained by the configuration with minimal Euclidean dis-

tance to the point (0, 0), marked as a blue diamond in the example in Figure 5.1.

The hydraulicweig configuration with minimal distance is referred to as the ‘best-fit

solution’.

5.2.3 Asynchronous islands

Because of the initial random population, and the random factors that affect the

optimisation steps of the evolutionary fitting procedure, the algorithm occasionally

became stuck in local optima during experiments. This caused all individuals of

a population to approximate a solution that was less accurate than the best-fit

solutions of other runs of the same algorithm. As a result, we observed considerable

variance in the best-fit solutions of consecutive algorithm runs on the same problem.

To ensure that each run of the algorithm resulted in best-fit solutions of consistently

high quality, MOEA/D was coupled with the asynchronous islands functionality of

Pygmo (Biscani and Izzo, 2020).

Evolving an optimal solution using the asynchronous islands functionality means

that several instances (one for each island) of the evolutionary algorithm were run

at the same time, but were isolated from each other (Biscani and Izzo, 2020). After

a set number of evolution steps (generations), solutions from each of the island

populations travelled in between islands. Then each algorithm continued to evolve

its population, which now contained a few migrant solutions from the populations

of the other algorithms. This step of evolving for a set number of generations and

then exchanging solutions is henceforth referred to as a cycle.

The exchange of intermediate solutions between multiple algorithms diversifies

their populations and makes it less likely that they become stuck in a local optimum.

The following subsection demonstrates the robustness of the algorithm over 10 con-

secutive runs and across distinct parameter settings. An example fitting showing

the evolving fronts of 7 islands is depicted in Appendix A.2.

5.2.4 Algorithm settings

As outlined earlier, comparison of hydraulicweig with work-balance models requires a

reliable fitting algorithm, but fine-tuning the fitting for speed was only of secondary
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Table 5.3: Used Pygmo default settings for MOEA/D and asynchronous islands (Biscani
and Izzo, 2020).

algorithm settings default

weight generation “grid”
decomposition “tchebycheff”
neighbors 20
CR 1
F 0.5
eta m 20
realb 0.9
limit 2
preserve diversity True
seed random
migration type “p2p”
topology “fully connected”

importance. Therefore, future work will need to improve the algorithm settings

further.

Most algorithm settings of MOEA/D and the asynchronous islands functionality

remained at the default that Pygmo provided; these are summarised in Table 5.3.

These settings affect algorithm specifics, such as the recombination of parents for a

new generation, random mutation, or migration between islands. We report them for

documentation purposes; their elaboration and fine-tuning would exceed the scope

of this work.

Nevertheless, value ranges for four settings were investigated to ensure best-fit

solutions of consistent quality. This work used a grid search approach to investigate

combinations of settings for cycles (10,40,80), generations (10,20,30), population

size (32,64), and islands (7,14,21). These value ranges were chosen from initial

experiments. The group averages published by Caen et al. (2019) were CP of 248 W

and W ′ of 18 200 J. Using these as the input, the algorithm was run 10 times with

each of the possible combinations of settings for cycles, generations, population size

and islands.

Table 5.4 summarises a total of 540 fittings of hydraulicweig to CP of 248 W and

W ′ of 18 200 J. Each row represents one algorithm setting combination and sum-

marises the results of 10 runs by listing the best (min), average (mean), and worst

(max) distances to (0,0) of the resulting 10 best-fit solutions and the configuration

of the solution with minimal distance.

The parameters of the optimised hydraulicweig configurations in Table 5.4 display

values for LF that were typically within 2 000 J of W ′. LS could be up to three

times larger than LF and the larger it was, the more likely that MLS was below

100 W. MU had values very close to CP. In comparison, MLF was smaller, with
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Table 5.4: Hydraulicweig fitted to CP of 248 W and W ′ of 18 200 J. The results of distinct
settings for MOEA/D with the asynchronous islands functionality are summarised. Each
combination of algorithm settings was run 10 times. The smaller the minimal distance
to (0,0), the more accurate the hydraulicweig configuration, according to the objective
functions defined in Section 5.1. Distances are shown as the best (min), average (mean),
and worst (max). Furthermore, the configuration that achieved the minimal distance (best
hydraulicweig configuration) is shown. The algorithm setting combination with the lowest
mean distance is highlighted in grey.

algorithm settings distance to (0,0) best hydraulicweig configuration

gens cycles pop islands min mean max LF (J) LS(J) MU (W) MLS(W) MLF (W) θ γ ϕ

10 10 32 7 0.0777 0.0923 0.1156 14 450 29 026 247 108 20 0.51 0.04 0.35
10 10 32 14 0.0759 0.0834 0.1047 18 706 37 041 250 90 16 0.64 0.04 0.2
10 10 32 21 0.0725 0.0793 0.0853 17 679 44 187 247 112 17 0.7 0.01 0.26
10 10 64 7 0.0734 0.0822 0.1055 15 584 39 288 247 116 19 0.65 0.01 0.32
10 10 64 14 0.0737 0.0757 0.0833 15 992 38 930 247 101 19 0.62 0.04 0.3
10 10 64 21 0.0731 0.0747 0.0783 17 651 45 559 247 103 17 0.7 0.03 0.25
10 40 32 7 0.073 0.0772 0.0849 17 413 51 320 248 99 16 0.7 0.07 0.26
10 40 32 14 0.0732 0.0761 0.0921 17 255 76 750 247 96 17 0.74 0.1 0.27
10 40 32 21 0.0724 0.0734 0.0748 16 736 44 441 246 109 19 0.68 0.02 0.29
10 40 64 7 0.0722 0.0735 0.0776 17 108 47 178 247 111 18 0.7 0.02 0.28
10 40 64 14 0.0724 0.0731 0.0743 18 269 53 241 247 107 17 0.74 0.02 0.25
10 40 64 21 0.0721 0.0726 0.073 17 457 46 236 247 105 19 0.69 0.02 0.26
10 80 32 7 0.0733 0.0764 0.0873 16 221 36 450 247 111 19 0.62 0.02 0.31
10 80 32 14 0.0725 0.075 0.0796 16 776 43 518 247 110 18 0.69 0.01 0.29
10 80 32 21 0.0726 0.074 0.0796 16 923 41 780 247 110 18 0.67 0.01 0.29
10 80 64 7 0.0725 0.0734 0.0778 16 749 41 432 247 109 19 0.66 0.01 0.28
10 80 64 14 0.0723 0.0733 0.0777 17 848 48 139 247 107 17 0.72 0.01 0.25
10 80 64 21 0.0724 0.0726 0.0731 16 250 42 734 247 111 20 0.66 0.03 0.3

20 10 32 7 0.0729 0.0802 0.1038 16 374 48 532 247 103 20 0.68 0.05 0.28
20 10 32 14 0.0736 0.0769 0.0832 16 898 35 465 247 108 18 0.62 0.01 0.28
20 10 32 21 0.0734 0.0758 0.0781 15 573 77 767 247 94 18 0.69 0.16 0.32
20 10 64 7 0.0727 0.0755 0.0795 16 911 45 622 247 110 18 0.7 0.02 0.27
20 10 64 14 0.0726 0.073 0.0734 17 275 71 979 248 99 16 0.75 0.09 0.27
20 10 64 21 0.0722 0.0733 0.0752 18 264 49 095 247 110 17 0.73 0.01 0.24
20 40 32 7 0.0731 0.0772 0.0993 15 940 40 369 247 105 19 0.63 0.05 0.31
20 40 32 14 0.0728 0.0744 0.0769 16 458 41 725 247 108 17 0.66 0.03 0.3
20 40 32 21 0.0731 0.074 0.0748 15 481 37 680 247 112 19 0.62 0.03 0.33
20 40 64 7 0.0722 0.0729 0.0761 17 626 58 034 247 96 17 0.71 0.07 0.26
20 40 64 14 0.0721 0.0725 0.0731 18 128 45 966 247 106 17 0.71 0.02 0.24
20 40 64 21 0.0718 0.0723 0.0725 18 042 46 718 247 107 17 0.72 0.02 0.25
20 80 32 7 0.0724 0.074 0.0764 17 569 49 817 247 105 18 0.72 0.03 0.26
20 80 32 14 0.0727 0.0733 0.0767 19 167 53 078 248 104 15 0.76 0.01 0.21
20 80 32 21 0.0727 0.0732 0.0745 16 688 48 099 247 105 18 0.69 0.05 0.27
20 80 64 7 0.0722 0.0726 0.0731 16 682 44 357 247 112 19 0.68 0.02 0.29
20 80 64 14 0.0721 0.0725 0.0728 18 053 50 179 247 106 16 0.73 0.03 0.25
20 80 64 21 0.0722 0.0724 0.0728 16 777 45 583 247 108 19 0.69 0.02 0.28

30 10 32 7 0.0747 0.0809 0.093 14 619 57 423 247 94 19 0.6 0.18 0.35
30 10 32 14 0.0728 0.075 0.078 16 950 57 304 247 96 18 0.69 0.09 0.27
30 10 32 21 0.0729 0.0742 0.0756 16 606 42 383 246 112 19 0.67 0.01 0.29
30 10 64 7 0.0721 0.0734 0.076 18 292 48 369 247 108 16 0.73 0.02 0.25
30 10 64 14 0.072 0.0727 0.0733 18 024 53 422 247 106 18 0.74 0.02 0.25
30 10 64 21 0.072 0.0727 0.0738 17 285 45 790 247 111 18 0.7 0.01 0.27
30 40 32 7 0.0728 0.0747 0.0795 18 208 54 965 248 97 16 0.72 0.06 0.24
30 40 32 14 0.0727 0.0734 0.0742 16 770 42 517 246 112 18 0.67 0.01 0.3
30 40 32 21 0.0725 0.0729 0.0733 16 577 41 662 247 115 19 0.68 0.01 0.3
30 40 64 7 0.0718 0.0726 0.0743 16 770 44 997 247 112 18 0.69 0.02 0.29
30 40 64 14 0.0719 0.0722 0.0728 17 571 43 403 247 108 17 0.69 0.01 0.26
30 40 64 21 0.0719 0.0723 0.0729 16 574 42 663 247 112 19 0.67 0.01 0.29
30 80 32 7 0.072 0.0742 0.0803 17 037 41 622 247 110 19 0.67 0.01 0.28
30 80 32 14 0.0728 0.0729 0.0731 17 431 73 419 248 98 17 0.76 0.08 0.26
30 80 32 21 0.0721 0.0729 0.0743 17 574 43 129 247 109 17 0.69 0.01 0.26
30 80 64 7 0.0722 0.0725 0.0729 16 748 48 486 247 104 19 0.69 0.05 0.28
30 80 64 14 0.072 0.0723 0.0726 16 313 47 535 247 106 19 0.68 0.05 0.3
30 80 64 21 0.0719 0.0723 0.0726 16 381 53 690 247 105 18 0.7 0.07 0.3
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values between 15 W and 22 W. An optimal value for θ seemed to revolve around

0.7, for γ around 0.05, and for ϕ around 0.28. Each configuration was obtained with

distinct algorithm settings. Of these, some where more suitable than others.

We can observe that the 10 consecutive runs with settings featuring 20+ gen-

erations, 40+ cycles, and 14+ islands, were of especially consistent quality with

differences < 0.005 between the minimum and maximum distance to (0,0). The

setting combination featuring 30 generations, 40 cycles, 64 population size, and

14 islands had the (on average) most accurate best-fit solutions. This is highlighted

in grey in Table 5.4. Based on these results, we recommend to run the outlined

algorithm with these settings; this was done for the remainder of this work.

5.2.5 Computation time

The described evolutionary algorithm is a time-demanding fitting process. As an

example, fitting a configuration with the default parameters from Table 5.3 and 30

generations, 40 cycles, 64 population size, and 7 islands to CP of 248W and W ′ of

18 200 J took on average 8 h 46 min and 16 s on 7 cores of an Intel® Xeon® CPU

E5-2650 v4 @ 2.20GHz.

To decrease the computation time, we implemented a so-called early stopping

approach. If during an algorithm run the current best-fit solution did not improve

for more than 10 cycles, computations were stopped, and the best-fit solution of the

last cycle was returned as the result. This saved computation time by preventing

the algorithm from continuing to optimise solutions that had already converged to

an optimum. As an example, early stopping was triggered for 8 of 10 fittings to

CP 285 W and W ′ 21 296 J and the average computation time was 5 h 27 min and

41 s. This is an improvement from the average 8 h 46 min and 16 s of the previous

example.

For this work, the main objective was to design a reliable fitting procedure that

produced fittings with minimal error. Therefore, more fine-tuning of algorithm

settings to improve computation times should be the subject of future work.

5.3 Quality of fitting results

The above sections introduced an evolutionary algorithm and objective functions

to fit a hydraulicweig configuration to given CP and W ′, such that the hydraulicweig

model predicts energy expenditure and recovery, the former according to the critical

power model and the latter according to observations from Caen et al. (2019). To

show that this procedure produces reliable results, 10 independent fittings and their

predictions were analysed in detail. Further we provide additional convergence plots

in Appendix A.2.
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Table 5.5: A summary of 10 independent fitting results to CP of 248 W and W ′

of 18 200 J. Each row is a hydraulicweig configuration obtained from an independent
evolutionary algorithm run with the settings discussed in Section 5.2.4. The columns
expNRMSE and recNRMSE are NRMSE errors of the energy expenditure and energy
recovery objective functions. The entries in the bottom row are the mean and
standard deviation of the respective column.

LF (J) LS(J) MU (W) MLS(W) MLF (W) θ γ ϕ expNRMSE recNRMSE dist (0,0)

17 457 46 236 247 105 19 0.69 0.02 0.26 0.0426 0.0582 0.0721
17 571 43 403 247 108 17 0.69 0.01 0.26 0.0395 0.0601 0.0719
18 053 50 179 247 106 16 0.73 0.03 0.25 0.0361 0.0624 0.0721
16 684 44 888 247 113 18 0.69 0.02 0.29 0.0429 0.0576 0.0718
16 852 42 910 247 109 19 0.68 0.02 0.28 0.0432 0.0578 0.0721
16 606 39 680 247 112 18 0.66 0.01 0.29 0.0425 0.0584 0.0722
16 899 41 130 247 109 19 0.66 0.01 0.28 0.0423 0.0587 0.0724
17 532 45 987 247 111 18 0.71 0.01 0.27 0.04 0.0597 0.0718
16 312 38 982 247 112 19 0.64 0.01 0.3 0.0449 0.0565 0.0722
16 891 45 521 247 116 17 0.7 0.01 0.29 0.0407 0.0595 0.0721

17 086 43 892 247 110 18 0.69 0.01 0.28 0.0415 0.0589 0.0721
±512 ±3 221 ±0 ±3 ±1 ±0.02 ±0.01 ±0.01 ±0.0023 ±0.0016 ±0.0002

5.3.1 Ten independent fittings

Table 5.5 summarises the parameters and errors of 10 hydraulicweig configurations

fitted to the reported group averages of CP of 248 W and W ′ of 18 200 J by Caen

et al. (2019). The fittings were obtained from independent consecutive runs of the

presented evolutionary algorithm with the default settings summarised in Table 5.3

and the recommended settings of 30 generations, 40 cycles, 64 population size, and

14 islands. The bottom row of Table 5.5 summarises the mean and standard error of

the respective column. NRMSE errors of the energy expenditure and energy recovery

objective functions are summarised in expNRMSE and recNRMSE columns. The

last column details the resulting Euclidian distance to (0,0).

The configuration parameters were of magnitudes comparable to those previously

reported in Table 5.4. LF had values close to W ′. LS was more than two times

larger than LF . For every configuration, MU was 1 W below CP, MLS was (on

average) 110 W, and MLF was the smallest maximal flow capacity, with an average

of 18 W.

Examining the configuration types introduced in Section 4.4, all fitted configura-

tions summarised in Table 5.5 were of type M. However, their γ, as well as distances

between ϕ and 1−θ, were small. Therefore, although the liquid flow phases UlLl and

UfLf did occur in these configurations, they had limited influence on model predic-

tions. This applied to all fitted configurations. Hence, the 10 independent fittings

in Table 5.5 are consistent in their configuration types and liquid flow dynamics.
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Figure 5.2: Energy expenditure and recovery dynamics of 10 hydraulicweig models
fitted to CP of 248 W and W ′ of 18 200 J. Predictions of all 10 hydraulicweig models
are plotted in green. Left: Predicted power output to TTE relationship in compari-
son to the critical power model. Right: Predicted recovery dynamics in comparison
to published observations by Caen et al. (2019).

As an additional observation, the NRMSE values in Table 5.5 indicate that the

best possible trade-off between energy expenditure and energy recovery error was

not an equal balance. The 10 configurations favoured a smaller error for energy

expenditure at the cost of a larger error for energy recovery predictions. The result-

ing Euclidean distances to (0,0) varied only marginally with a standard deviation of

0.0002.

In conclusion, all 10 configurations in Table 5.5 had parameters of magnitudes

similar to previously observed results, were of the same configuration type, and made

a very similar trade-off between energy expenditure and recovery error. This strongly

indicates that the outlined evolutionary algorithm produces fittings of consistent

quality in consecutive runs. However, the fittings are not exactly the same and the

standard deviations reported in Table 5.5 show that some variations remained. In

the following, we show that variations are too small to have a considerable effect on

model predictions.

5.3.2 Impact of variations on predictions

To investigate the effect of the remaining variations between independent fittings,

Figure 5.2 depicts a comparison of predictions of the critical power model and ob-

servations of Caen et al. (2019) with predictions of hydraulicweig models with the 10

configurations of Table 5.5.

As observable on the left in Figure 5.2, overall the by the critical power concept

suggested hyperbolic relationship of constant power output and TTE was closely

matched by all 10 hydraulicweig models. However, deviations in the predictions for

high power outputs were observable. The hydraulicweig models predicted up to 20 s

shorter TTEs at power outputs that led to exhaustion earlier than 3.5 min. This
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was the case for all hydraulicweig models, and variations in their configurations had

little influence on prediction results. These shorter TTE predictions at high power

outputs were part of the necessary trade-off between energy expenditure and energy

recovery predictions.

Depicted on the right in Figure 5.2 are the recovery ratios predicted by hydraulicweig

models, and the observations reported by Caen et al. (2019). As summarised in Sec-

tion 2.3.3.2, constant power outputs that were predicted to lead to exhaustion after

240 s (P240) and 480 s (P480) were the Pwork intensities for their WB1→RB→WB2

protocol (Caen et al., 2019). Their Prec was either 33 % of CP or 66 % of CP. Their

investigated Trec were 2 min, 4 min, and 6 min. Caen et al. (2019) reported means

and standard deviations of the observed recovery ratios.

The 10 hydraulicweig models simulated the test protocol by Caen et al. (2019). As

observable on the right in Figure 5.2, except for recovery after 4 min from exhaustive

exercise at P480, the predictions of all models were close to the reported means and

within their standard deviation ranges.

Despite the variations in their configurations, the predictions of the hydraulicweig

models were nearly identical and all were equally able to account for the character-

istics of prior exhaustive exercise. These results show that hydraulicweig models are

capable of addressing the improvements for energy recovery predictions suggested by

Caen et al. (2019). Therefore, they confirm the first thought experiment presented

in Section 3.1.1.

5.4 Summary

This chapter completed a proof-of-concept that hydraulicweig models can be used as

an alternative to work-balance models. The fitting of hydraulicweig was formalised as

a two-objective evolutionary optimisation procedure that has CP and W ′ as inputs,

and returns a hydraulicweig configuration. The returned configuration optimises two

objectives: to predict energy expenditure similar to the critical power model and

to predict energy recovery similar to the recovery ratios published by Caen et al.

(2019).

Using published group averages for CP and W ′ of Caen et al. (2019) for our

proof-of-concept, we showed that the fitting algorithm produces consistent results.

Fitted hydraulicweig models were capable of addressing the by Caen et al. (2019)

proposed improvements for energy recovery predictions and thus confirmed the first

thought experiment from Section 3.1.1. TTE predictions at high intensities that lead

to exhaustion within less than 3.5 min were underpredicted by up to 20 s; however,

overall the hyperbolic critical power model was closely matched.
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The presented proof-of-concept motivated further investigations as a validation

strategy for hydraulicweig. The next chapter validates and scrutinises energy re-

covery predictions of fitted hydraulicweig models on more data. The evolutionary

fitting approach of this chapter is part of our python package threecomphy4 and

was published in Weigend et al. (2021).

4https://github.com/faweigend/three_comp_hyd
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Chapter 6

Validation and Comparison

The hydraulicweig model allows the fitting of its parameters using an optimisation

approach that only requires CP and W ′ as inputs. In the previous chapter, a

hydraulicweig model could be fitted to predict both energy expenditure and recovery

kinetics for one example case. This chapter further contributes to the investigation

and validation of the hydraulicweig model and compares it to work-balance models

and to data compiled from previous studies.

This chapter addresses the second research question in Section 3.2 and confirms

both thought experiments in Sections 3.1.1 and 3.1.2. The findings have been ac-

cepted for publication in Annals of Operational Research (ANOR). We published

the preprint as Weigend et al. (2022a).

6.1 Model comparison on published data

Thought experiments of Sections 3.1.1 and 3.1.2 and the proof-of-concept in the

previous Chapter 5 suggest that hydraulicweig can address improvements for energy

recovery predictions of work-balance models proposed by Caen et al. (2019, 2021).

To validate this, we compared hydraulicweig energy recovery predictions to those

of three work-balance models on published data of five studies (Weigend et al.,

2022a). This comparison was possible because the evolutionary fitting procedure for

hydraulicweig only requires CP andW ′ as inputs, which are measurements commonly

reported in previous studies. We compiled observed recovery ratios from previous

studies and hypothesised that the hydraulicweig model would predict them overall

more accurately than the work-balance models.

This section summarises the methodology and results of our Weigend et al.

(2022a) comparison study and is structured as follows: Sections 6.1.1 and 6.1.2

introduce the work-balance models with which the hydraulicweig predictions were

compared. Section 6.1.3 lists the previously published studies on the recovery from

exercise, from which data were extracted to compare models on. Section 6.1.4
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describes the metrics used to assess the model goodness-of-fits and prediction capa-

bilities. Extracted data points and prediction results are detailed in Section 6.1.5.

Finally, Section 6.1.6 summarises model performance on all data and goodness-of-fit

metric scores.

6.1.1 Work-balance models to compare with

As outlined in Section 2.3.2, the initial W ′
bal−int model by Skiba et al. (2012) was

later updated in Skiba et al. (2015). Substantial differences between these versions

exist. As shown by Skiba and Clarke (2021), the original model by Skiba et al. (2012)

contradicts the assumption of the critical power model that W ′ linearly depletes.

This contradiction interferes with the WB1→RB→WB2 protocol with which most

recovery ratios were estimated in this work as well as in several previous studies,

such as Caen et al. (2019, 2021). Therefore, we did not compare the W ′
bal−int model,

instead focusing on the updated version W ′
skib and the W ′

bart models. Henceforth,

W ′
skib and W ′

bart are also referred to as W ′
bal−ode models. We also introduced a third

work-balance model, which also falls into the category of W ′
bal−ode models.

6.1.2 An additional work-balance model

W ′
skib, W

′
bart, and the hydraulicweig model of this work were each created by fitting

to different sets of recovery observations. Objective metrics to compare model qual-

ity; for example, the Akaike Information Criterion (Burnham and Anderson, 2004),

require that models are fitted to the same data. Therefore, to allow a more com-

prehensive comparison, we added a third W ′
bal−ode model with a new Tt by Weigend

et al. (2022a) (Tweig,t). We derived this Tweig,t with a procedure as close as possible

to those of Skiba et al. (2012) and Bartram et al. (2018).

As the first step, a constant value for Tt in Equation (2.13) was fitted to each re-

covery ratio and recovery time combination from Table 1 of the Appendix of Weigend

et al. (2021). For these observations power output was constant for every discrete

time step t during recovery and thus Tt was constant with the same value for all

t. We used the standard Broyden-Fletcher-Goldfarb-Shanno algorithm implementa-

tion of SciPy (SciPy 1.0 Contributors et al., 2020), with 200 as the initial guess, to

fit a constant Tt, which enabled Equation (2.13) to best reproduce the observed re-

covery ratio. This resulted in twelve pairs of fitted constant Tts to constant recovery

intensities.

As the next step, we then fitted an exponential function to these twelve pairs

using the non-linear least squares implementation of SciPy (SciPy 1.0 Contribu-

tors et al., 2020). With the recovery intensity as DCP,t, the function was of the

form Tt = a · eDCP,t·b + c. With the values of Skiba et al. (2012) as the initial guess
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(546, -0.01, 316), the resulting optimal constants were a = 1274.45, b = −0.0308,

and c = 266.65. Thus, given any DCP,t at a discrete time step t, Tweigt can be

estimated as

Tweig,t = 1274.45 · e−0.0308·DCP,t + 266.65. (6.1)

Unfortunately, this fitted equation failed to fit the data satisfactorily (R2 = 0.14).

Nevertheless, we used it because it was developed using a procedure that closely

resembled those used to estimate Tskib,t and Tbart,t. The introduction of Tweig,t is

valuable because it allows the application of the Akaike Information Criterion metric,

which requires compared models to be fitted to the same data points. Henceforth,

Equation (2.13) with Equation (6.1) is referred to as work-balance model with Tt

fitted by Weigend et al. (2022a) (W ′
weig).

6.1.3 Data extraction for model comparisons

We extracted data from previous studies that investigated energy recovery dynamics

and used these to compare and evaluate recovery ratio predictions of all models. The

studies for comparison were identified from Table 1 of the comprehensive review

by Chorley and Lamb (2020). From these studies, we retained those that featured

appropriate data, except those that met the following exclusion criteria:

• Featured a mode of exercise other than cycling. Cycle ergometers measure

power output directly. Power outputs during modes of exercise such as running

or swimming are not directly comparable because they are estimated using

different methods or are approximated; e.g., (Morton and Billat, 2004) focused

only on speed instead of power.

• The observations were made under extreme conditions (e.g., hypoxia or alti-

tude).

• Insufficient information was reported to simulate the prescribed protocol in

and/or to infer a recovery ratio of W ′ in percent; e.g., the integral version

of the work-balance model by Skiba et al. (2012) assumes recovery during

high-intensity exercise such that recovery ratios cannot be straightforwardly

inferred.

• The prescribed protocol leaves doubt if reported recovery ratios are comparable

to the WB1→RB→WB2 protocol (e.g, repeated ramp tests until exhaustion,

50% W ′ depletion followed by a 3-min all-out test, or knee-extension maximal

voluntary contraction (MVC) test during recovery).
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Five studies were included for comparison, four of which were obtained from the

review by Chorley and Lamb (2020): (Bartram et al., 2018), (Chidnok et al., 2012),

(Ferguson et al., 2010), and (Caen et al., 2019). After the summary of Chorley and

Lamb (2020) was published, Caen et al. (2021) published a study that investigated

the W ′ reconstitution dynamics in even more detail and which was thus added to

the list.

The data in the listed studies were presented in diverse ways, such that mod-

ifications were made to some of the data to enable model comparison. The study

by Caen et al. (2019) did not report distinct mean values for every investigated

condition, such that we derived approximate values in Weigend et al. (2021) to fit

our hydraulicweig to their conditions. Hence, the data for comparison are the values

from Weigend et al. (2021). Further, the study by Bartram et al. (2018) fitted their

own W ′
bart model, where Tt was defined according to Equation (2.15). Therefore, we

used W ′
bart model predictions for prescribed intensities of Bartram et al. (2018) as

the observations against which the other models were compared.

The study by Chidnok et al. (2012) reported times to exhaustion from their inter-

mittent exercise protocol instead of recovery ratios. Power output during recovery

was constant in their tests. Therefore, to derive recovery ratio estimations that are

comparable with the WB1→RB→WB2 procedure, we fitted a constant value for Tt

of the W ′
bal−ode model to each of their prescribed protocols and times to exhaustion.

These constant values for Tt were fitted with the Brent method implementation by

SciPy (SciPy 1.0 Contributors et al., 2020) to find a local minimum in the interval

between [100, 1 000]. We then used WB1 → RB → WB2 recovery ratio estimations

ofW ′
bal−ode models with fitted constant Tt as the observations with which to compare

W ′
skib, W

′
bart, W

′
weig, and hydraulicweig.

6.1.4 The metrics of goodness of fit

The metrics of goodness of fit used to compare the models were root mean squared

error (RMSE), mean absolute error (MAE), and the small-sample version of the

Akaike Information Criterion (AICc). Chai and Draxler (2014) discussed RMSE

and MAE as widely adopted metrics for assessing model prediction capabilities. We

compared predictive accuracy by comparing RMSE and MAE on data to which com-

peting models were not fitted. Lower values for RMSE and MAE were interpreted

as more accurate predictions.

To statistically compare prediction error distributions between models, we used

a bootstrap hypothesis test (Efron and Tibshirani, 1993; Good, 2000). We did so be-

cause only small data sets were available and we could not assume normal distributed

prediction errors with equal variances for every compared model. The null hypoth-

esis of our bootstrap test was that prediction error distributions of two compared
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models are the same. Because we used two prediction error metrics (RMSE and

MAE) we investigated the null hypothesis on both. We used the absolute difference

between RMSE and also between MAE of compared groups as our test statistics.

With the null hypothesis that error distributions are the same, we could bootstrap

new samples by randomly selecting with replacement from all pooled observations.

We created a distribution of test statistics from 1 000 000 bootstrap samples to re-

liably approximate the p-value of our observed test statistic at high precision. We

rejected the null hypothesis if the p-value < .05.

We also compared models with the AICc, which was first proposed by Sugiura

(1978). The AICc is a model selection tool used to investigate the balance between

model complexity and explanatory capability (Burnham and Anderson, 2004). AICc

penalises the number of parameters of the model and thus provides insight into the

balance between model complexity and goodness of fit. The lower the AICc score,

the better this balance is met. The AICc was calculated as

AICc = n · ln(MSE) + 2k +
2k · (k + 1)

n− k − 1
, (6.2)

where MSE is the mean squared error, n is the number of data points and k is the

number of parameters of the model. Models have to be fitted to and applied to the

same data in order to obtain comparable AICc scores. Therefore, only W ′
weig and

hydraulicweig were comparable with this criterion in this work.

Altogether, the hypothesis that the more complex hydraulicweig model fits the

data better than the established W ′
bal−ode models will be supported if the overall

RMSE, MAE and AICc scores are lower for hydraulicweig than for other models, and

if prediction error distributions are significantly different to those of other models.

6.1.5 Results

This section presents the extracted data and the prediction results of W ′
bal−ode, and

hydraulicweig models for each listed previous study. We refer to extracted data from

studies by the last name of the first author; for example, the extracted data from

Bartram et al. (2018) are referred to as ‘Bartram data set’. All studies collected their

data through performance tests that required athletes to exercise until volitional ex-

haustion. Such tests are affected by circumstances that are difficult to measure and

control (e.g., motivation, nutrition and state-of-mind). Therefore, recovery ratio

observations are noisy and the extracted group averages were accompanied by large

standard deviations. These uncertainties prevented us from drawing conclusions

about model quality on averages of individual data sets and instead necessitated to

perform the comparison between models across all available data. We begin by pre-

senting the extracted data and model predictions of individual data sets throughout
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Figure 6.1: Comparison of model predictions with the WB1→RB→WB2 protocol.
Depicted are the recovery dynamics around 60 s at various DCP recovery intensities
after a preceding exhaustive exercise at the intensity that was predicted to lead to
exhaustion after 100 s (P100). Chosen intensities and time frames stem from the
protocol prescribed by Bartram et al. (2018) and predictions of W ′

bart were used as
the observations with which to compare models.

Table 6.1: The left part of the table summarises extracted data and conditions
from Bartram et al. (2018). The right part of the table displays model predictions.
Predictions of W ′

bart were taken as the observed recovery ratios.

Parameters from Bartram et al. (2018) recovery ratios (%)

CP(W) W ′(J) Pwork(W) Prec(W) Trec(s) observed W ′
skib W ′

weig hydraulicweig

393 23 300 626 393 60 0.0 0.0 0.0 22.7
393 23 300 626 343 60 33.0 12.1 10.6 33.9
393 23 300 626 293 60 47.0 22.8 16.9 44.8
393 23 300 626 243 60 57.0 32.1 19.4 52.7
393 23 300 626 193 60 64.0 40.3 20.0 59.3

Sections 6.1.5.1 to 6.1.5.5. This is followed by summarising all prediction errors and

resulting RMSE, MAE, and AICc scores in the final Section 6.1.6.

6.1.5.1 Bartram data set

The protocol prescribed by Bartram et al. (2018) consisted of three work bouts

interspersed with two 60-s recovery bouts. The first two work bouts each lasted

for 30 s, and the final one until volitional exhaustion. Work bout exercise intensity

(Pwork) was set to P100; that is, the intensity that was predicted to lead to exhaustion

after 100 s. The recovery bout intensity (Prec) was set to differences to CP (DCP) of

200 (i.e., CP - 200 W), or 150, 100, 50, or 0. The group averaged CP and W ′ for the

four world-class cyclists featured in Bartram et al. (2018) were 393 W and 23 300 J.

Altogether, these input values resulted in an estimated P100 exhaustive intensity of
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Figure 6.2: Comparison of model predictions with published observations by Caen
et al. (2021). After an exhaustive exercise bout at P240, recovery dynamics at
an intensity of 161 W were simulated using the defined WB1→RB→WB2 recovery
estimation protocol. The published observed recovery ratios by Caen et al. (2021)
are depicted in blue.

626 W and recovery intensities DCP0 of 393 W, DCP50 of 343 W, DCP100 of 293 W,

DCP150 of 243 W, and DCP200 of 193 W, respectively.

The resulting recovery predictions of W ′
bal−ode and hydraulicweig models are sum-

marised in Figure 6.1 and Table 6.1. The W ′
bart model was not compared because it

was the model that Bartram et al. (2018) fitted to their observations. We used it to

create the observations against which the other models were compared. The fitted

hydraulicweig configuration to CP and W ′ by Bartram et al. (2018) was: [23 112 J,

65 845 J, 392 W, 149 W, 24 W, 0.73, 0.01, 0.24] in the order of Equation (4.1).

Figure 6.1 and Table 6.1 show that in all cases except DCP0 the recovery ratios

predicted by hydraulicweig model were closest to the ones observed by Bartram et al.

(2018), followed by W ′
skib and then W ′

weig. On the contrary, the hydraulic model is

the only model to predict recovery at DCP0.

6.1.5.2 Caen data set

The protocol by Caen et al. (2021) investigated the recovery dynamics following ex-

haustive exercise at P240 (published average of 349 W). They prescribed a recovery

intensity of 161 W on average, which was determined by selecting 90 % of the power

at the gas exchange threshold (Binder et al., 2008) of their participants. The average

CP of their participants was 269 W, and the average W ′ was 19 200 J. The reported
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Table 6.2: The left part of the table summarises extracted data and conditions from
Caen et al. (2021). The right part of the table displays model predictions.

Parameters from Caen et al. (2021) recovery ratios (%)

CP(W) W ′(J) Pwork(W) Prec(W) Trec(s) observed W ′
bart W ′

skib W ′
weig hydraulicweig

269 19 200 349 161 30 28.6 28.0 15.5 9.2 26.9
269 19 200 349 161 60 34.8 48.2 28.7 17.5 41.2
269 19 200 349 161 120 44.2 73.2 49.1 31.9 49.8
269 19 200 349 161 180 50.5 86.1 63.7 43.8 52.8
269 19 200 349 161 240 55.1 92.8 74.1 53.6 54.7
269 19 200 349 161 300 56.8 96.3 81.5 61.8 56.3
269 19 200 349 161 600 73.7 99.9 96.6 85.4 64.9
269 19 200 349 161 900 71.3 100.0 99.4 94.4 73.8

observed recovery ratios were 28.6 %± 8.2 % after 30 s, 34.8 %± 11.1 % after 60 s,

44.2 %± 9.7 % after 120 s, 50.5 %± 12.1 % after 180 s, 55.1 %± 13.3 % after 240 s,

56.8 %± 16.4 % after 300 s, 73.7 %± 19.3 % after 600 s, and 71.3 %± 20.8 % after

900 s.

The simulation parameters and results of the defined recovery estimation pro-

tocol are summarised in Figure 6.2 and Table 6.2. Fitting hydraulicweig to CP and

W ′ group averages resulted in the configuration [17 631 J, 46 246 J, 267 W, 118 W,

21 W, 0.68, 0.01, 0.29] in the order of Equation (4.1). The recovery ratios predicted

by the hydraulicweig model matched the observed values better compared with all the

other models. Nevertheless, some lack of fit for the hydraulicweig model was observed:

the model overpredicted the recovery ratios at early time points and underpredicted

those at longer time points except for the last one. W ′
skib, W

′
bart, and W

′
weig model

predictions consistently overestimated recovery for longer recovery times.

6.1.5.3 Chidnok data set

Chidnok et al. (2012) prescribed a protocol that alternated between 60-s work bouts

and 30-s recovery bouts until the athlete reached exhaustion. With their protocol,

the work-bout intensity Pwork was set to P240. The protocol prescribed four trials

each with a different recovery intensity Prec (20 W as the ‘low’ recovery intensity,

95 W as ‘medium’, 173 W as ‘high’, and 270 W as the ‘severe’ recovery intensity).

The participants had an average CP of 241 W and W ′ of 21 100 J. Their recorded

times to exhaustion were 1 224 s± 497 s with ‘low’ recovery intensity, 759 s± 243 s

with ‘medium’, 557 s± 90 s with ‘high’, and 329 s± 29 s with ‘severe’.

As described in Section 6.1.3, to compare observations of Chidnok et al. (2012)

to WB1→RB→WB2 protocol estimations, a constant value for Tt for the W
′
bal−ode

model was fitted to the protocol by Chidnok et al. (2012) for each of their recovery

conditions. The resulting Tt values were 165.19 s for the ‘low’ recovery intensity
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Figure 6.3: Predicted recovery dynamics of compared models up to 60 s after a
preceding exhaustive exercise at P240 and at three different recovery intensities
(20 W, 95 W, and 173 W). Observations were predicted recovery ratios of W ′

bal−ode

models with a constant T fitted to reported times to exhaustion by Chidnok et al.
(2012).

Table 6.3: The left part of the table summarises extracted data and conditions from
Chidnok et al. (2012). The right part of the table displays model predictions.

Parameters from Chidnok et al. (2012) recovery ratios (%)

CP(W) W ′(J) Pwork(W) Prec(W) Trec(s) observed W ′
bart W ′

skib W ′
weig hydraulicweig

241 21 100 329 20 30 16.6 41.6 27.0 10.6 40.6
241 21 100 329 95 30 21.4 33.3 18.8 10.1 30.9
241 21 100 329 173 30 24.4 21.3 9.2 6.8 20.5
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Figure 6.4: A comparison of predicted recovery dynamics after an exhaustive exercise
bout at P360 and at a recovery intensity of 20W. Recovery ratios are estimated with
theWB1→RB→WB2 protocol, which resembles the prescribed protocol by Ferguson
et al. (2010). Published observations by Ferguson et al. (2010) are depicted in blue.

protocol, a Tt of 124.81 s for ‘medium’, and a Tt of 107.45 s for ‘high’. The ‘severe’

recovery intensity was left out because 270 W lies above the average CP of 241 W.

In this case, no recovery should occur if the assumptions of W ′
bal−ode model hold

true. Chidnok et al. (2012) prescribed recovery bouts of 30 s and WB1→RB→WB2

protocol estimations with corresponding fitted Tts and with a Trec of 30 s were 24.6 %

at the ‘low’ intensity, 21.7 % at ‘medium’, and 16.7 % at the ‘high’ recovery intensity.

The fitted hydraulicweig configuration to CP and W ′ by Chidnok et al. (2012)

was: [18 919 J, 48 052 J, 240 W, 115 W, 19 W, 0.68, 0.05, 0.31], in the order of

Equation (4.1). Predictions of all models and extracted conditions for the recovery

estimation protocol are summarised in Figure 6.3 and Table 6.3. In the case of the

‘low’ recovery intensity predictions of the W ′
skib and W ′

weig models were the most

accurate. In the case of the ‘medium’ recovery intensity the W ′
skib model was the

most accurate, and in the remaining ‘high’ condition hydraulicweig and W ′
bart model

predictions were closest to the data. None of the models made predictions that were

close to all three observations.

6.1.5.4 Ferguson data set

Ferguson et al. (2010) prescribed a protocol with an initial time to exhaustion bout

at the intensity that was predicted to lead to exhaustion after 360 s (P360), followed

by a recovery at 20 W for 2 min, 6 min, or 15 min. After recovery, exercise intensity

was then increased back to one of three possible high-intensity work rates. Thus,
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Table 6.4: The left part of the table summarises extracted data and conditions from
Ferguson et al. (2010). The right part of the table displays model predictions.

Parameters from Ferguson et al. (2010) recovery ratios (%)

CP(W) W ′(J) Pwork(W) Prec(W) Trec(W) observed W ′
bart W ′

skib W ′
weig hydraulicweig

212 21 600 269 20 120 37.0 85.8 65.6 35.9 54.2
212 21 600 269 20 360 65.0 99.7 95.9 73.6 69.4
212 21 600 269 20 900 86.0 100.0 100.0 96.4 98.4

each participant performed nine tests in total with three different constant work

rates after three different recovery times. The CP model was fitted to these three

times to exhaustion after each recovery period to determine changes in CP and

W ′. Ferguson et al. (2010) published their group averages for CP as 212 W, W ′

as 21 600 J, the P360 as 269 W, and the observed recovery ratios after 2 min as

(37 %± 5 %), 6 min (65 %± 6 %), and 15 min (86 %± 4 %).

Extracted parameters for the recovery intensity protocol and model prediction

results are summarised in Figure 6.4 and Table 6.3, together with reported means

by Ferguson et al. (2010). The fitted hydraulicweig configuration to CP andW ′ group

averages by Ferguson et al. (2010) was [18 730 J, 81 031 J, 212 W, 94 W, 19 W,

0.63, 0.21, 0.34], in the order of Equation (4.1). In this set-up W ′
weig predictions

were overall closest to the published observations. Hydraulicweig overestimated the

recovery after 120 s and after 900 s. W ′
skib andW

′
bart overestimated recovery in every

instance.

6.1.5.5 Weigend data set

The values for this data set are those of Table 5.1, or Table 1 in the Appendix of

Weigend et al. (2021). Reported measures recreate the depicted means in Figure 3

of Caen et al. (2019). They consist of three recovery ratios for four conditions each:

preceding exhausting exercise at P240 or P480, followed by recovery at 33 % of CP

or 66 % of CP. The participants of Caen et al. (2019) had an average CP of 248 W

and W ′ of 18 200 J, which results in a P240 of 285 W, a P480 of 323 W, 33 % of CP

as 81 W, and 66 % of CP as 163 W.

Extracted parameters for the recovery ratio estimation protocol and model pre-

dictions are summarised in Figure 6.5 and Table 6.5. The best fit hydraulicweig

configuration to CP and W ′ group averages was [18 042 J, 46 718 J, 247 W, 107 W,

17 W, 0.72, 0.02, 0.25], ordered as in Equation (4.1). As described earlier, the re-

covery ratio values by Weigend et al. (2021) were used to fit the Tweig,t for the W
′
weig

model and are used in the evolutionary fitting process for hydraulicweig to fit re-

covery dynamics. Therefore, both W ′
weig and hydraulicweig were not scrutinised for

predictive accuracy on this data set. Their predicted recovery ratios were recorded
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Figure 6.5: Predicted recovery dynamics in comparison with measures that we de-
rived from observations of Caen et al. (2019). We derived three recovery ratios for
four conditions each: preceding exhausting exercise at P240 or P480 followed by
recovery at 33 % of CP or 66 % of CP. Depicted observations are the values from
Table 5.1 and approximate Figure 3 of the publication by Caen et al. (2019). W ′

weig

and hydraulicweig were fitted to these observations.
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Table 6.5: The left part of the table summarises extracted data and conditions
that Weigend et al. (2021) derived from Caen et al. (2019). The right part of the
table displays model predictions. Both W ′

weig and hydraulicweig were fitted to these
observations. Their predicted recovery ratios were recorded for the AICc goodness
of fit estimation metric in Section 6.1.4.

Parameters from Weigend et al. (2021) recovery ratios(%)

CP(W) W ′(J) Pwork(W) Prec(W) Trec(s) observed W ′
bart W ′

skib W ′
weig hydraulicweig

248 18 200 323 81 120 55.0 83.1 66.7 35.5 58.3
248 18 200 323 81 240 61.0 97.1 89.0 58.3 65.0
248 18 200 323 81 360 70.5 99.5 96.3 73.1 70.1
248 18 200 323 163 120 49.0 67.2 42.9 28.4 46.5
248 18 200 323 163 240 55.0 89.2 67.4 48.7 51.5
248 18 200 323 163 360 58.0 96.5 81.4 63.3 54.2
248 18 200 285 81 120 42.0 83.0 66.8 35.5 46.8
248 18 200 285 81 240 52.0 97.1 89.0 58.3 54.0
248 18 200 285 81 360 59.5 99.5 96.3 73.1 60.4
248 18 200 285 163 120 38.0 67.2 42.9 28.4 38.5
248 18 200 285 163 240 37.5 89.3 67.4 48.7 43.6
248 18 200 285 163 360 50.0 96.5 81.4 63.3 47.4

for the AICc goodness of fit estimation metric in covered in the next subsection. Out

of the remaining two models predictions of W ′
skib were closer to the observations but

both overpredict in nearly all instances.

6.1.6 Summary of metrics of goodness of fit

Table 6.6 summarises the prediction errors of the competing models and the re-

sulting metric scores on our investigated data sets. RMSE and MAE were defined

as the metrics to assess predictive accuracy. Their MAE scores were 24.87 with a

standard deviation of absolute errors (SD) of 14.35 for W ′
bart and 7.11 (SD = 6.83)

for hydraulicweig (p < .001 for the difference in MAEs, bootstrap hypothesis test).

The RMSE scores on Caen, Chidnok, and Ferguson data sets were 28.46 for W ′
bart

and 9.69 for hydraulicweig. Also the bootstrap hypothesis test with the absolute

difference in RMSEs as its test statistic resulted in p < .001.

Both remaining modelsW ′
skib andW

′
weig could be compared with hydraulicweig on

the Bartram, Caen, Chidnok, and Ferguson data sets. The hydraulicweig featured the

lowest MAE with 7.07, the lowest SD with 7.17, and lowest RMSE with 9.94. W ′
skib

predictions were significantly different to hydraulicweig (p < .001 with the MAE test

statistic and p = .001 with RMSE). W ′
weig predictions were significantly different to

hydraulicweig (p = .019 with the MAE test statistic and p = .031 with RMSE).

AICc was chosen as the metric to assess which model provides the best trade-

off between predictive capabilities and complexity. Models must be fitted to and

tested on the same data for AICc scores to be comparable. Hence, as reflected in
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Table 6.6: Summary of the model prediction errors and estimated metric scores. The first
two columns summarise the prediction errors used to compare predictive accuracy of W ′

bart and
hydraulicweig via MAE, standard deviation of absolute errors (SD), and RMSE. Prediction accuracy
had to be assessed using data to which models were not fitted, such that we had to exclude the
Bartram and Weigend data sets. In the subsequent three columns, the Weigend data set was
excluded because W ′

weig and hydraulicweig were fitted to it. Finally, the AICc metric requires
models to be fitted to and be evaluated on the same data. Therefore, we compared AICc scores
estimated from prediction errors of W ′

weig and hydraulicweig on all data sets. We approximated p-
values for absolute differences in MAE and RMSE with a bootstrap hypothesis test and considered
p < .05 as significant. For every metric, a lower score means a better result.

data for prediction scores 1 (%) data for prediction scores 2 (%) data for AICc scores (%)

W ′
bart hydraulicweig W ′

skib W ′
weig hydraulicweig W ′

weig hydraulicweig

B
ar
tr
am

0 0.0 0.0 22.7 0.0 22.7
1 −20.9 −22.4 0.9 −22.4 0.9
2 −24.2 −30.1 −2.2 −30.1 −2.2
3 −24.9 −37.6 −4.3 −37.6 −4.3
4 −23.7 −44.0 −4.7 −44.0 −4.7

C
ae
n

0 −0.6 −1.7 −13.1 −19.4 −1.7 −19.4 −1.7
1 13.4 6.4 −6.1 −17.3 6.4 −17.3 6.4
2 29.0 5.6 4.9 −12.3 5.6 −12.3 5.6
3 35.6 2.3 13.2 −6.7 2.3 −6.7 2.3
4 37.7 −0.4 19.0 −1.5 −0.4 −1.5 −0.4
5 39.5 −0.5 24.7 5.0 −0.5 5.0 −0.5
6 26.2 −8.8 22.9 11.7 −8.8 11.7 −8.8
7 28.7 2.5 28.1 23.1 2.5 23.1 2.5

C
h
id
. 0 25.0 24.0 10.4 −6.0 24.0 −6.0 24.0

1 11.9 9.5 −2.6 −11.3 9.5 −11.3 9.5
2 −3.1 −3.9 −15.2 −17.6 −3.9 −17.6 −3.9

F
er
g.

0 48.8 17.2 28.6 −1.1 17.2 −1.1 17.2
1 34.7 4.4 30.9 8.6 4.4 8.6 4.4
2 14.0 12.4 14.0 10.4 12.4 10.4 12.4

W
ei
ge
n
d

0 −19.5 3.3
1 −2.7 4.0
2 2.6 −0.4
3 −20.6 −2.5
4 −6.3 −3.5
5 5.3 −3.8
6 −6.5 4.8
7 6.3 2.0
8 13.6 0.9
9 −9.6 0.5
10 11.2 6.1
11 13.3 −2.6

MAE 24.87* 7.11 17.23* 15.06* 7.07
± SD ±14.35 ±6.83 ±9.34 ±12.19 ±7.17

RMSE 28.46* 9.69 19.48* 19.17* 9.94

AIC 181.03 151.85

∗ significantly different to hydraulicweig predictions
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the last two columns of Table 6.6, W ′
weig and hydraulicweig could be compared on the

combined data points of all covered data sets. With a k of 3 for W ′
weig and a k of

8 for hydraulicweig the resulting scores were 151.85 for hydraulicweig and 181.03 for

W ′
weig. The hydraulicweig achieved the lower AICc score.

6.2 Discussion

The in this chapter presented study compared the prediction capabilities and goodness-

of-fit of hydraulicweig to that of work-balance models. We hypothesised that the hy-

draulic model would more accurately predict the observed recovery ratios from past

studies. The hydraulicweig model outperformed the W ′
skib, W

′
bart, and W

′
weig models

with respect to objective RMSE, MAE, and AICc metrics on data from five studies.

Our findings therefore support the hypothesis. This section discusses the results in

more detail, interprets them in the context of findings from the previous literature,

and relates them to the thought experiments of Chapter 3 of this work.

6.2.1 Multiple vs. isolated data sets

As presented in Section 6.1.6, the standard deviations of absolute prediction errors

as well as the overall MAE and RMSE, were considerably lower for the hydraulicweig

than for the W ′
bal−ode models. But when averaging the prediction errors on isolated

data sets listed in Table 6.6, hydraulicweig only made more accurate predictions than

its competitors on the Bartram and Caen data sets. For the Bartram data set, the

MAE of hydraulicweig was 6.96, compared with 18.74 for W ′
skib, and 26.82 for W ′

weig

respectively. For the Caen data set, the MAE of hydraulicweig was the lowest with

3.52. On the remaining Chidnok data set it wasW ′
skib that achieved the lowest MAE

with 9.4 and on the Ferguson data set it was W ′
weig with 6.7.

As highlighted by Skiba and Clarke (2021) and Sreedhara et al. (2019), W ′
bal−ode

models are meant to be applied to any athlete on a wide range of possible conditions.

A lower MAE score for W ′
weig on the Ferguson data set means that W ′

weig predicted

recovery ratios more closely for the particular group (six recreational active men)

under the particular test conditions that Ferguson tested. However, to determine

the usefulness of a model for predicting performance for high-intensity intermittent

exercise in a more general sense, models should be evaluated on a multitude of

scenarios. After combining all data sets, hydraulicweig achieved the overall lowest

MAE score, which means that hydraulicweig could predict recovery ratios overall

more accurately for a range of groups and settings.
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6.2.2 Confirmation of proposed improvements

The observed less consistent prediction quality across data sets of theW ′
bal−ode mod-

els confirms the findings by Caen et al. (2019), who proposed that the predictive

capabilities of work-balance models may improve with modifications that account

for intensity and duration of prior exhaustive exercise. As an example, out of all

compared studies in this work, Bartram et al. (2018) prescribed the highest work

bout intensity for their experimental setup (Pwork = P100). Considering the sug-

gestion by Caen et al. (2019) that a shorter time to exhaustion at a high intensity

allows a quicker recovery, it seems reasonable that the W ′
bart model estimated the

fastest recovery kinetics out of all recovery models.

Conversely, the Caen et al. (2019) study prescribed the lowest work bout intensity

out of all compared studies (Pwork = P480). Their observed recovery ratios are

summarised in the Weigend data set and were slower than the W ′
bart predictions.

This observation again matches the assumption that a longer exhaustive exercise at

a lower intensity requires a longer recovery.

Despite the differences in observed recovery rates, the W ′
bal−ode models allow for

only a single recovery rate no matter the nature of the prior exercise. To illustrate

this, we conducted simulations to depict the influence of prior exercise intensity on

the recovery ratios predicted by the W ′
bal−ode and hydraulicweig. Figure 6.6 depicts

four simulations. All simulations shared the same test setup except for differing Pwork

intensities. The simulation on the left had Pwork = P100, as prescribed by Bartram

et al. (2018), the simulation on the right featured the lowest Pwork = P480, as found

in the Weigend data set. From left to right, Pwork of the simulations decreased

step wise. Bartram et al. (2018) investigated recovery after 60 s and therefore the

W ′
bart prediction after 60 s is marked as the observation on the left. Recovery ratios

with Pwork = P480 and Prec = 33 % of CP of the Weigend data set are marked

as observations on the right. The recovery ratios predicted by the W ′
bal−ode models

were the same for each Pwork and their predictions were therefore unable to fit all

observations equally well. In contrast, the hydraulic model could account for such

characteristics.

In conclusion, the comparison on multiple data sets and conditions further con-

firms the findings by Caen et al. (2019). The characteristics of prior exhaustive

exercise have an effect on recovery ratios. The presented compiled data and the

simulation in Figure 6.6, suggest that hydraulicweig made more accurate predictions

because it could account for these characteristics and thus addressed the improve-

ments proposed by Caen et al. (2019). Specifically, we suggest that standard devia-

tions of MAE, as well as overall MAE and RMSE scores of hydraulicweig model, were
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Figure 6.6: Simulated recovery ratios using the hydraulicweig and W ′
bal−ode models

in response to prior exercise of differing intensities. The plots show that W ′
bal−ode

models are insensitive to the properties of prior exhausting exercise; that is, their
predictions were not affected by Pwork. In contrast, the hydraulicweig was sensitive to
the prior exercise properties. Performance models W ′

bal−ode were configured with a
CP = 393 W, W ′ = 23 300 J and hydraulicweig featured the configuration [23 112 J,
65 845 J, 392 W, 149 W, 24 W, 0.73, 0.01, 0.24]. All simulations differed only in
Pwork, which decreased from P100 to P480 in the simulations depicted from left to
right. Pwork = P100, prescribed by Bartram et al. (2018), was the highest intensity
out of compared studies. They investigated recovery after 60 s, therefore the W ′

bart

model prediction after 60 s is marked as the observation. Pwork = P480 was the
lowest prescribed intensity out of compared studies and recovery ratios for Pwork =
P480, Prec = 33 % of CP from the Weigend data set were marked as observations
on the right.
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smaller than those of W ′
bal−ode models because the hydraulic model could account

for characteristics of prior exhaustive exercise.

6.2.3 Confirmation of thought experiments

Furthermore, the above findings confirm the thought experiments presented in Sec-

tions 3.1.1 and 3.1.2. The first thought experiment states that the hydraulicweig

model can address the findings by Caen et al. (2019) because of the interactions

between the three tanks it uses to model energy recovery. For example, using the

notation in Figure 4.1, during high-intensity exercise, the liquid level in LF would

rapidly decrease and the contribution of LS would be less than during low-intensity

exercise when the liquid level in LF would decrease more slowly. Differences in fill

states of LS affected recovery estimations and the above findings confirmed that it

enabled hydraulicweig to predict rapid recovery after high-intensity exercise and a

slower recovery after exercise at a lower intensity in a variety of situations.

The second thought experiment in Section 3.1.2 suggests that hydraulicweig is

capable of modelling energy recovery as a bi-exponential function. Caen et al. (2021)

showed that their observations were well explained with a bi-exponential model that

implements a steeper slope during the beginning of recovery. Indeed, the observed

recovery ratios of the Caen data set increased rapidly from 0 s to 120 s and then

continued to rise more slowly at longer durations (Figure 6.2). Also, the first work-

balance model paper by Skiba et al. (2012) proposed an alternative bi-exponential

version of their W ′
bal−int model with two Tts. However, bi-exponential work-balance

models have yet to be applied in practice. As for hydraulic models, the comparison

in Figure 6.2 confirmed, that hydraulicweig is capable of capturing the bi-exponential

nature of energy recovery and it therefore addresses proposed work-balance model

improvements.

6.3 Summary

Our model comparison on data from five previous studies allows a more holistic

view on recovery dynamics and confirms limitations of work-balance models that

have been suggested in previous literature (Caen et al., 2019, 2021). The results of

this chapter imply that more complex models, such as hydraulicweig, can improve

energy recovery predictions.

The findings have been reported in Weigend et al. (2022a), where we proposed

that further efforts to merge and compare data are significant steps to advance the

research of energy recovery modelling. We further proposed that the predictive

capabilities of hydraulic models look strong and that they have to be considered as

a possible future direction to advance energy recovery modelling.
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However, hydraulicweig represents a different pathway for how hydraulic models

can be used. Hydraulicweig was specifically designed and fitted to predict energy

recovery during intermittent exercise. But it was also derived from the M-M model,

which necessitates that hydraulicweig predictions are also investigated in the context

that the M-M model was designed for (e.g., oxygen uptake). Therefore, the next

chapter further highlights the differences between the hydraulicweig and M-M model

and scrutinises metabolic predictions.
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Chapter 7

Metabolic Prediction Limitations

As discussed in Chapter 4, hydraulicweig is different from the original M-M model

because all bioenergetic and metabolic contexts were erased. As presented in the

previous Chapter 6, the removal of physiological constraints allowed hydraulicweig to

serve as a promising alternative to work-balance models for energy recovery predic-

tions during high-intensity intermittent exercise.

However, because the origin of hydraulicweig lies in the M-M model, it is tempt-

ing to interpret parameters of fitted hydraulicweig models in the metabolic contexts

ascribed by the M-M model. This chapter confirms that the hydraulicweig model

cannot be used to predict metabolic responses during exercise on the example of

collected oxygen uptake measurements.

This chapter addresses the third research question in Section 3.2. It emphasises

the distinction between hydraulicweig and the M-M model and discusses the limita-

tions of hydraulicweig should it be regarded for metabolic predictions. The findings

of this chapter have been published as a preprint as Weigend et al. (2022b).

7.1 Oxygen uptake predictions

According to the definitions of Morton (2006), the left tank of the M-M model rep-

resents the aerobic contribution, and therefore the flow from the left tank represents

oxygen uptake (V̇O2). Morton (2006) detailed V̇O2 predictions of the M-M model in

his work and V̇O2 can be measured via breath-by-breath indirect calorimetry over

the course of an exercise trial. Therefore, this flow from the left tank is a suitable

measurement to highlight the differences between hydraulicweig and the M-M model

on collected data from participants.

To elaborate how V̇O2 predictions of hydraulic models were computed, we use

the example in Figure 7.1, which displays snapshots of a hydraulicweig model that

simulates an exercise with constant intensity.

At the beginning of exercise at second 0, all tanks were filled. Then, the tap

at the bottom of the middle tank was opened according to the energy demand.
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(a) 10 s (b) 20 s (c) 80 s

Figure 7.1: Snapshots of a hydraulicweig model simulating exercise at a constant
power output of 400 W. Depicted are fill levels of tanks and the flows between them
after 10 s, 20 s and 80 s.

Liquid flowed out, and the fill level of the middle tank dropped accordingly. As a

consequence, liquid pressure against the pipe exit of the left tank dropped. Thus,

the liquid flow from the left tank increased.

In the example from Figure 7.1, the tap was opened according to 400 W and

after 10 s, the fill level of the middle tank dropped halfway to the top of the right

tank. Flow from the left tank increased to an equivalent of 47.3 W. As observable

in the snapshot at 20 s, when the fill level of the middle tank dropped below the top

of the right tank, liquid from the right tank also flowed into the middle tank. In the

snapshot at 80 s, the fill level of the middle tank dropped below the exit of the pipe

of the left tank, and thus the flow from the left tank was at maximum capacity MU .

With this understanding, we used predicted flow from the left tank as V̇O2 pre-

dictions of hydraulicweig and compared them with collected data in Weigend et al.

(2022b).

7.2 Comparison with data from participants

We designed our work Weigend et al. (2022b) to investigate and confirm the limi-

tations of hydraulicweig should it be considered for predicting rates of aerobic and

anaerobic metabolism. To verify hydraulicweig limitations, we compared V̇O2 predic-

tions of hydraulicweig with the collected V̇O2 data of exercising participants. Then,

we related the observations to assumptions and constraints of the M-M model.
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CP and W ′ are required to apply hydraulicweig. These parameters are estimated

from TTE performance tests during which participants exercise at constant high

intensities until volitional exhaustion. We scrutinised hydraulicweig V̇O2 predictions

on collected data from these TTE tests.

7.2.1 Data collection

Data collection was approved by the Human Research Ethics Committee at Western

Sydney University (HREC Approval Number: H13975). Five recreationally active

participants (4 males and 1 female, age 32 years ± 7.8 years, weight 73.6 kg ±
5.81 kg, V̇O2max = 3.59 L/min ± 0.62 L/min) gave informed and written consent

to participate and to have their anonymised data published. All participants were

familiar with maximal exercise efforts. Exercise tests were conducted on an SRM

- High Performance Ergometer (Jülich, Germany) in hyperbolic operation mode,

which adjusts power dynamically to cadence changes to maintain a constant power

output. Breath-by-breath V̇O2 data were collected using the Quark CPET system

by COSMED (Rome, Italy). The equipment was calibrated prior to each trial.

Each of the 5 participants completed 6 exhaustive exercise trials. To ensure that

participants were fully rested, they were asked to avoid strenuous exercise 24 h prior

to the tests. Tests were scheduled more than 24 h apart, at roughly the same time

of day. The tested population of five participants is small because the investigated

V̇O2 predictions of the hydraulicweig model showed a large error for 100% of the tests.

This error is large enough to conclude that our model should not be used to obtain

accurate V̇O2 predictions without collecting further evidence.

7.2.1.1 Ramp test

All participants had to perform an initial ramp test to obtain the appropriate power

settings for subsequent TTE tests. After a 3-min warm-up at 50 W, the power

increased by 30 W per min for males and by 20 W per min for the female. Once

power rose above 110 W, participants were instructed to maintain a self-chosen

cadence between 80 RPM and 100 RPM. The point of volitional exhaustion was

defined as the first time point when the cadence dropped by more than 10 % below

the intended cadence for more than 3 s. This definition is similar to procedures by

Caen et al. (2019, 2021); Sreedhara et al. (2020). The highest 10-s moving average

power output achieved was defined as the peak power output (Ppeak).

7.2.1.2 TTE tests

After the ramp test, each participant completed 5 constant power TTE trials at

distinct powers in random order. The powers were set to 100 %, 92.5 %, 85 %, 80 %

80



and 77.5 % or 75 % of Ppeak to obtain a range of TTEs between 2 min and 12 min.

Participants were blinded to their exercise power. Again, each test started with a

3-min warm-up at 50 W before power was set to the randomly chosen percentage of

Ppeak. During exercise, participants were asked to cycle at their self-chosen cadence

from the ramp test. The point of volitional fatigue was defined as the first time

point when cadence dropped by more than 10 % below the intended cadence for

more than 3 s. Throughout all tests, breath-by-breath V̇O2 data were collected. For

each test, the highest achieved 30-s moving average of measured V̇O2 was considered

as the peak oxygen uptake (V̇O2peak) of that test. TTEs, as well as the power-meter

data of the SRM ergometer, were also recorded for later analysis.

7.2.2 Data analysis

Hydraulicweig and its evolutionary fitting process require CP and W ′ to make pre-

dictions. These parameters were obtained by fitting the critical power model to

conducted TTE tests of a participant.

7.2.2.1 Fitting the models

To obtain CP and W ′ that best fitted a participant, as the Section 2.2.1 describes,

three forms of the critical power model were fitted to conducted TTE tests. These

forms were Equation (2.5) as the nonlinear power-time relationship, Equation (2.6)

as the linear power-1/time relationship, and Equation (2.3) as the linear work-time

relationship.

The goodness-of-fit of each of these equations was determined from the SEE

associated with fitted CP and W ′. The goodness-of-fit of a model was considered

sufficient if SEE associated with CP was < 5 % of CP and the SEE associated with

W ′ was < 10 % of W ′ (Jones et al., 2019; Caen et al., 2021). The best individual

fit for a participant was selected by whatever model resulted in the smallest sum of

the SEE associated with CP as % of CP, plus the SEE associated with W ′ as % of

W ′ (Black et al., 2015; Jones et al., 2019; Caen et al., 2021).

Then, hydraulicweig was fitted to CP and W ′ derived from the best individ-

ual fit using the evolutionary algorithm outlined in Chapter 5. Considering the

notation in Figure 4.1, fitting hydraulicweig meant finding a set of parameters for

[LF,LS,MU ,MLS,MLF , θ, γ, ϕ] that made the hydraulic model resemble expected

exercise responses according to the critical power model for energy expenditure, and

according to the published recovery ratios for energy recovery (Caen et al., 2019;

Weigend et al., 2021). To determine these parameters for our participants, we used
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the automatised evolutionary computation procedure of our threecomphyd1 Python

package, which was published in Weigend et al. (2021).

7.2.2.2 Oxygen uptake predictions

To assess the quality of predicted V̇O2 kinetics of fitted hydraulicweig models, the pre-

dictions were compared with the collected breath-by-breath V̇O2 data of the TTE

tests. Specifically, we opened and closed the tap of hydraulicweig according to col-

lected SRM power-meter data and recorded flow from the left tank as predicted

V̇O2 .

Our objective measure to assess the quality of V̇O2 predictions was the difference

between the time at which the simulated flow from the left tank (U) was predicted

to reach its peak, and the time at which the observed breath-by-breath V̇O2 data

reached V̇O2peak. As an additional visual comparison, we plotted normalised pre-

dicted flow from U together with normalised actual V̇O2 dynamics. Predicted V̇O2

dynamics (flow from U) were normalised with the maximal flow MU . The 30-s av-

eraged real V̇O2 uptake measurements were normalised with the observed V̇O2peak of

that test.

7.2.3 Results

This section presents the by Weigend et al. (2022b) reported model fittings and

predictions with little comment. Prediction shortcomings and causes are discussed

in detail in Section 7.3.

7.2.3.1 Ramp test results and model fittings

The average Ppeak of the ramp tests of all participants was 327 W ± 52 W. The

shortest TTE was excluded from the estimation of CP and W ′ for one participant

because it was too short (113 s). For all participants, the linear power-1/time model

resulted in the best individual fit and resulted in an averaged CP of 223 W± 40 W

and W ′ of 14 8912 J ± 2 869 J. Individual critical power model fitting results and

associated SEEs are summarised in Table 7.1.

Using the notation of Figure 4.1, the fitted hydraulicweig models had an average

LF of 14 330 J ± 2 463 J, LS of 38 575 J ± 6 605 J, MU of 222 W ± 40 W, MLS of

90 W ± 15 W, MLF of 15 W ± 3 W, θ of 0.7 ± 0.05, γ of 0.02 ± 0.01, and ϕ of

0.26± 0.04. Individual results for these parameters are summarised in Table 7.2.
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Table 7.1: An overview of critical power model fitting results for all participants.
SEE% denotes the standard error associated with the parameter as a percentage of
the parameter, e.g, SEE% of CP is the SEE associated with CP divided by CP.

CP W ′

participant best fit model W SEE% J SEE%

1 linear power-1/time 211 3.1 13 240 8.7
2 linear power-1/time 292 2.4 19 143 8.0
3 linear power-1/time 238 0.7 10 820 3.6
4 linear power-1/time 199 1.8 16 790 6.3
5 linear power-1/time 174 1.5 14 469 3.8

avg±std 223± 40 1.9± 0.8 14 892± 2 869 6.1± 2.1

Table 7.2: An overview of parameters of fitted hydraulicweig models.

participant LF (J) LS(J) MU (W) MLS(W) MLF (W) θ γ ϕ

1 12 562 36 679 210 82 14 0.71 0.02 0.27
2 18 245 50 537 291 117 20 0.7 0.02 0.27
3 11 914 38 269 238 71 11 0.79 0.02 0.2
4 16 196 37 141 198 95 15 0.68 0.01 0.27
5 12 733 30 250 173 87 14 0.64 0.02 0.31

avg ± std 14 330± 2 463 38 575± 6 605 222± 40 90± 15 15± 3 0.7± 0.05 0.02± 0.01 0.26± 0.04

Figure 7.2: Measured power-meter output and V̇O2 of Participant 2 during warm-up
and a TTE test at 364 W. Measurements before second 0 are part of the 3-min
warm-up at 50 W. The plotted line displays predicted V̇O2 uptake (flow from U) of
a hydraulicweig model fitted to CP and W ′ of Participant 2. The averaged collected

breath-by-breath V̇O2 data is depicted as dots. The x-symbols mark the time points
when hydraulicweig predicted V̇O2peak (63 s) and when collected averaged breath-by-

breath reached V̇O2peak (258 s). The prediction error was 195 s.
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7.2.3.2 Oxygen uptake predictions

Of all 25 constant power tests, the tests of Participant 4 at 288 W and Participant 5

at 255 W were excluded from the V̇O2 analysis. In these two cases, unrealistic drops

in V̇O2 indicated that the breathing mask was not fixed tightly enough and leaked

air when participants lowered their head too far. The unrealistic drops are clearly

recognisable and depicted in Figures A.4 and A.5 in the Appendix.

The defined objective measure to assess the quality of V̇O2 predictions was the

time difference between predicted and observed V̇O2peak. Furthermore, normalised

flow from Ae and measured breath-by-breath data were plotted for visual compari-

son. An example is depicted in Figure 7.2. The power output measured by the SRM

power-meter is plotted as the grey area in the background. It is overlayed with pre-

dicted and observed V̇O2 kinetics. The time at which hydraulicweig predicted V̇O2peak

was 63 s after the commencement of exercise. The time at which the actual V̇O2peak

was observed was 258 s after the commencement of exercise. Therefore, the predic-

tion error was 195 s. In addition, it is observable that the predicted V̇O2 started at

0 and increased slowly during the warm-up.

The example Figure 7.2 is representative for all tests. As summarised in Ta-

ble 7.3, on average, V̇O2peak was observed after 282 s ± 134 s of exercise, while

hydraulicweig predicted V̇O2peak after 65 s ± 24 s of exercise in the respective test.

In all the tests investigated, hydraulicweig predicted a much faster rise in V̇O2 and a

too early V̇O2peak with an average prediction error of 216 s ± 113 s. Table 7.3 sum-

marises our results. The best hydraulicweig prediction was 67 s too early. The worst

prediction was 461 s too early. The prediction error decreased as the exercise power

increased.

7.3 Discussion

Previously, the theoretical hydraulic performance models of Morton (2006) and

Sundström (2016) promised predictions for metabolic responses during exercise; for

example, for lactic, alictic, and aerobic energy sources. But their models were not

suitable for real-world applications because the required parameters to apply these

models, such as, precise lactic energy capacities in joules, were impossible to obtain

from individual athletes (Morton, 2006).

Hydraulicweig was designed to predict energy expenditure and recovery during

intermittent exercise, but because its tanks and pipes resemble the M-M model so

closely, it is tempting to interpret hydraulicweig in a metabolic context. With our

study Weigend et al. (2022b), we confirmed, on data collected from 23 performance

1https://github.com/faweigend/three_comp_hyd

84



Table 7.3: The summary of hydraulicweig prediction errors for V̇O2peak. The example
from Figure 7.2 (Participant 2 with 364 W) is in row 8. The column ‘observed’
details the seconds it took from the onset of exercise to reach V̇O2peak (blue x-symbol
at 258 s in Figure 7.2). The column ‘predicted’ details the seconds hydraulicweig
predicted it would take (azure x-symbol at 63 s in Figure 7.2). The prediction error
in the last column is the difference between these two times.

time until V̇O2peak (s)

participant power (W) observed predicted prediction error (s)

1 243 481 72 409
1 259 230 53 177
1 275 196 45 151
1 299 156 41 115
1 324 120 34 86
2 332 484 88 396
2 343 297 78 219
2 364 258 63 195
2 396 169 54 115
2 428 137 44 93
3 252 479 113 366
3 265 355 85 270
3 280 230 72 158
3 307 154 53 101
3 330 109 42 67
4 224 581 120 461
4 230 445 94 351
4 245 330 85 245
4 265 266 67 199
5 214 309 68 241
5 221 292 55 237
5 234 249 44 205
5 276 152 32 120

avg±std 282±134 65±24 216±113
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tests of 5 participants, that hydraulicweig is not suitable for V̇O2 predictions. The

following discussion provides further information on the causes of poor metabolic

predictions and highlights differences to the assumptions of the M-M model.

7.3.1 Predictions of the oxygen uptake slow component

From the onset of high-intensity exercise, hydraulicweig consistently predicted V̇O2

to rise too quickly. As summarised in Table 7.3, V̇O2 was predicted to reach its

peak after an average of 65 s ± 24 s while observed kinetics were slower and took

282 s ± 134 s. The average difference between V̇O2peak predictions and observations

was 216 s ± 113 s. Considering that TTE tests lasted between 2 min to 12 min,

prediction errors of more than 3 min on average made clear that hydraulicweig could

not predict realistic V̇O2 kinetics.

Further, it is observable in Table 7.3 that the prediction error increases with

decreasing power. Thus, the longer the exercise, the larger the error in predicted

V̇O2 . These results are in contrast to remarks by Morton (2006) for V̇O2 prediction

capabilities of his M-M model. We elaborate the reasons for such poor predictions

in the following section.

7.3.1.1 M-M model

Tank positions and sizes of the M-M model are determined by the values θ, γ and

ϕ. As summarised in Section 2.4.2, Morton (1990) developed several constraints on

these parameters to determine a realistic arrangement of tanks. From his developed

constraints, Morton (1990) argued that the only realistic configuration of the three

component hydraulic model is the one depicted in Figure 2.9, which corresponds to

configuration type M in Section 4.4.

In his review, Morton (2006) highlighted how the M-M model predicts the V̇O2

slow component phenomenon. Barstow and Mole (1991) empirically showed that

V̇O2 uptake quickly reaches a steady state at a constant exercise intensity below the

moderate-heavy boundary (LAT). However, at exercise above LAT, an initial rapid

increase in V̇O2 uptake is followed by a slower continuous rise. This slower rise is

called the V̇O2 slow component.

As observable in Figure 7.3, the slow component is well captured by a hydraulic

model that is configured according to type M and satisfies the constraints on the

M-M model by Morton (1990). Depicted on the right in Figure 7.3 are the predicted

V̇O2 dynamics (flow from U) during constant high-intensity exercise. With all tanks

filled at the beginning, the dynamics play out as follows: during the warm-up, the

tap is not opened wide and thus liquid level in the middle tank drops slowly and

flow from U increases slowly. Then exercise starts after one min, the fill level in
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Figure 7.3: Left: A hydraulicweig model configured in a way that follows the phys-
iological constraints on the M-M model discussed in Section 7.3.1.1. Right: The
top plot displays flow from the left tank (U) into the middle tank (LF ). The dis-
played model simulates constant intensity exercise at 275 W with a warm-up at
50 W until maximal flow through U is reached (x-symbol). We interpreted this flow
as V̇O2 uptake predictions. The V̇O2 slow component is observable in predicted V̇O2

dynamics.

the middle tank drops quickly and therefore flow from U increases quickly. The

exercise intensity is high enough so that the dropping fill level of the middle tank

reaches the top of the right tank, and the right tank also starts to contribute. This

additional flow makes the fill level of the middle tank drop slower and therefore,

flow from U increases slower from this point. Morton (2006) state that the way in

which the M-M model simulates the V̇O2 slow component can be compared with the

mathematical formulation by Barstow and Mole (1991).

7.3.1.2 Hydraulicweig model

Because of the evolutionary fitting procedure that adjusts hydraulicweig model pa-

rameters freely, it is not guaranteed that hydraulicweig conforms to the constraints

on the M-M model. Fittings can be of all of the 20 configuration types in Section 4.4.

As reported in Section 7.2.3, the average parameter γ of the fitted hydraulicweig was

0.017± 0.005 and the average ϕ was 0.263± 0.038. These values indicate that none

of the hydraulicweig models adhered the constraint of Morton (1990) that γ > ϕ.

This had a direct effect on V̇O2 predictions of hydraulicweig.

As an example, on the left in Figure 7.4 is the system of tanks fitted to Partic-

ipant 1. Here, the parameters are γ = 0.02 and ϕ = 0.27, so γ < ϕ. In addition,

the top of the right tank is much lower than the tank of the model depicted in

Figure 7.3. The second constraint of Morton (1990) suggests that the top of the
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Figure 7.4: Left: A three component hydraulic model fitted to CP 211 W and W ′

13 240 J of Participant 1. Values of all fitted parameters are in Table 7.2 in the
Appendix. Right: Flow from U when the left model simulates a warm-up at 50 W
and then a constant high-intensity exercise at 275 W until maximal flow through U
is reached (x-symbol).

right tank has to be at approximately 40 % of the height of the left tank, which is

also not satisfied with the fitted model in Figure 7.4.

As a result, V̇O2 predictions of the model fitted to Participant 1 did not resemble

the V̇O2 slow component. The onset of flow from the right tank had almost no

effect on the exponential increase of flow from the left tank. This explains the

prediction errors in Table 7.3 and confirms on the example of V̇O2 predictions that

the hydraulicweig model allows for unrealistic predictions for metabolic responses

during exercise.

7.3.2 Warm-up oxygen uptake predictions

Another example of unrealistic V̇O2 predictions occurs at the beginning of exercise

during the warm-up. Because the middle tank of hydraulicweig is filled initially, it

will always predict the complete absence of V̇O2 at the first time step of a simu-

lation. As observable in Figures 7.2 to 7.4, this caused unrealistic V̇O2 predictions

at the beginning of exercise tests. Predicted V̇O2 started at 0 and increased slowly

throughout the 3 min of warm-up at 50 W. The size of the middle tank was fixed

for the M-M and hydraulicweig models. Therefore, if the flow from U is interpreted

as V̇O2 , these models are guaranteed to predict the absence of V̇O2 at the beginning

of exercise and when the athlete is fully recovered.

Lidar et al. (2021) acknowledged this issue and introduced a new parameter to

reduce the size of the middle tank. Using the notation in Figure 4.1, Lidar et al.

(2021) made the top of LF adjustable and introduced a parameter ψ, which defines
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the distance between the top of LF and the top of U . The closer ψ to 1 − ϕ, the

larger the possible flow from U , even if LF is filled. This additional parameter is

not present in the M-M or hydraulicweig models and is another argument for why

hydraulicweig cannot make realistic predictions for V̇O2 .

7.4 Summary

The findings presented in this chapter confirm that the M-M model and hydraulicweig

have to be seen as distinct models for distinct purposes. The M-M model was de-

signed to predict metabolic processes during exercise. Hydraulicweig failed to make

realistic metabolic predictions by deviating considerably from V̇O2 observations of

all investigated 23 performance tests of 5 participants (Weigend et al., 2022b). Fur-

thermore, the fitted hydraulicweig model configurations did not adhere to the physi-

ological constraints of Morton (1990) for the M-M model.

This chapter addressed the third research question from Section 3.2 and con-

cluded that hydraulicweig cannot predict metabolic responses. Instead, as shown in

the previous Chapter 6, hydraulicweig was optimised such that it addresses short-

comings of established work-balance models for energy recovery predictions during

intermittent exercise. In conclusion, the findings of this chapter and the previous

Chapter 6 suggest that hydraulic models cannot be optimised to predict energy re-

covery and metabolic processes at the same time. Currently, hydraulicweig can only

be recommended for predicting energy recovery during intermittent exercise.

Many opportunities remain for future work to improve the hydraulicweig or the

M-M model. These are outlined, together with the final conclusion of this work, in

the next chapter.
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Chapter 8

Conclusions

This work developed and investigated the hydraulicweig model, which represents a

new approach for how hydraulic performance models can be used. The code and col-

lected data are publicly available in the repositories pypermod1 and threecomphyd2.

The established work-balance models predict energy recovery during intermittent

exercise from CP and W ′ of an athlete (Skiba and Clarke, 2021). Physiologically,

CP is defined as the threshold between heavy- and severe-intensity exercise (Jones

et al., 2019). The capacity W ′ limits the time an athlete can exercise at a severe

intensity above CP. In recent literature, work-balance models have been found to

overly simplify recovery dynamics (Caen et al., 2019; Skiba and Clarke, 2021).

We designed hydraulicweig to predict energy recovery during intermittent exer-

cise and to address the shortcomings of established work-balance models. Chapter 5

defined a pathway to obtain hydraulicweig predictions from CP and W ′. Chap-

ter 6 retrospectively compared energy recovery predictions of work-balance and

hydraulicweig models on published data from five studies. The prediction capabilities

of hydraulicweig outperformed established work-balance models on all metrics and

rendered it a strong direction for future research in performance modelling. Chap-

ter 7 highlighted the differences of hydraulicweig to the original M-M model and

confirmed that it cannot be used to predict metabolic responses during exercise.

In the following sections, the opportunities and challenges for future research are

outlined. Then, this work concludes with the significance and implications of the

presented findings.

8.1 Future Work

In the following section, opportunities for future research directions are divided into

three categories and related to the findings of the previous chapters.

1https://github.com/faweigend/pypermod
2https://github.com/faweigend/three_comp_hyd
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8.1.1 More comparable studies

Because W ′
bal−ode models and hydraulicweig are intended to be applied to a wide

range of athletes and conditions, it is important to scrutinise model predictions on

various data sets that cover a range participants and test conditions. The various

formats of observations extracted from previous studies in Chapter 6 highlight the

need for more and more comparable studies on energy recovery dynamics.

In Chapter 6 we combined extracted recovery observations, which came with

associated uncertainties that could not be considered in MAE, RMSE and AICc

scores. As an example, the standard deviations of observed recovery ratios by Caen

et al. (2021) depicted in Figure 6.2 were greater than reported standard deviations

by Ferguson et al. (2010) depicted in Figure 6.4.

We could not incorporate these standard deviations into goodness-of-fit metrics

because of how different recovery ratios were reported. Caen et al. (2021) and

Ferguson et al. (2010) reported averaged observed recovery ratios with standard

deviations, for the Bartram data set we had to use W ′
bart predictions as observations

for comparison. In Weigend et al. (2021), we derived our values from Caen et al.

(2019) without standard deviations, and for the Chidnok data set we fitted constant

values for Tt for W ′
bal−ode models to their reported times to exhaustion to obtain

comparable recovery ratios in percent.

Larger data sets are vital for more educated investigations of recovery models

and their improvement in future work. We see the combination of data sets in

Chapter 6 as a step towards this direction. In order to improve and compare models

more holistically, it is important that more comparable studies are conducted in the

future and combined into a larger test bed for performance models.

8.1.2 Fitting procedure

Chapter 6 observed the improved prediction quality of hydraulicweig, but this came

at the cost of a time-demanding fitting process. The evolutionary fitting proce-

dure outlined in Chapter 5 requires CP and W ′ of an athlete as inputs and then

obtains fitted hydraulicweig configurations using an evolutionary computation ap-

proach. Different CP and W ′ values require a new hydraulicweig configuration to be

fitted. Additionally, as reported in Section 5.2.5, fittings require computation times

of 5 hours or more on 7 cores of an Intel® Xeon® CPU E5-2650 v4 @ 2.20GHz each.

On the contrary, obtaining Tt for work-balance models can be solved in millisec-

onds and they can be applied to any CP and W ′ combination without fitting Tt

anew. Therefore, the application of hydraulicweig is a time consuming task in com-

parison with the application of work-balance models. To improve the feasibility of
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application, it will be worthwhile to optimise the hydraulic model fitting process in

future work.

8.1.3 Hydraulicweig predictions

Although Chapter 6 showed that hydraulicweig achieved overall promising accuracy in

energy recovery predictions and could address shortcomings of work-balance models,

several prediction dynamics require further investigation.

The comparison on the DCP0 case of the Bartram data set (see Figure 6.1)

revealed that hydraulicweig predicts a slight recovery during exercise at CP. No

liquid from U flowed back into the system but the ongoing flow from LS to LF

still caused the fill level of LF to rise during the recovery bout. Recovery while

exercising at CP intensity is a controversial assumption that is made to an even

stronger extent by the original work-balance model of Skiba et al. (2012). Such

dynamics have to be considered when the models are used for predictions and are

an important direction for future investigation.

Additionally, the analysis of fitting results in Section 5.3 reported that hydraulicweig

consistently underpredicted TTEs at high power outputs by up to 20 s. These

shorter predictions are part of the in Section 5.2.2 outlined necessary trade-off

between energy expenditure and recovery prediction accuracy. Adjustments to

hydraulicweig may allow a more favourable trade-off. For example, as discussed

in Section 7.3.2, Lidar et al. (2021) introduced an additional parameter ψ to their

version of the M-M model, which, when introduced to the hydraulicweig model, could

improve short TTE predictions in future work.

8.2 Significance and Implications

The current focus and strength of hydraulicweig are energy recovery predictions dur-

ing intermittent exercise, where promising new investigation opportunities emerge.

Platforms such as Strava3 or Golden Cheetah4 provide constantly growing databases

of real-world intermittent exercise training and competition data. With affordable

power metres, smartwatches, and online cycling apps such as Zwift5, the interest

in intermittent exercise performance models and the amount of available data will

grow.

Therefore, the future holds exciting possibilities for new iterations of work-

balance or hydraulic models. The earlier we begin to develop pathways to investigate

3https://www.strava.com
4https://www.goldencheetah.org
5https://www.zwift.com
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these models on such real-world data, the better. Hydraulicweig is one model iter-

ation of this pursuit. It is applicable to limited real-world data and promises to

enable athletes to predict their performance capabilities more accurately, such that

they can make more educated decisions about pacing strategies and training goals.

8.3 Roundup

Depending on focus and setup, different available performance models become more

or less suitable for the analysis. Automated solutions like Automated Machine

Learning (AutoML) can help users to select models, which make the most accurate

predictions for their data (He et al., 2021). Next to the comparison of prediction

accuracy for energy recovery during intermittent exercise, we also scrutinise the ad-

vantages and limitations of hydraulicweig regarding the physiological interpretations

of its parameters.

As previously reported by Skiba and Clarke (2021); Morton (2006), and also as

discussed in this work, there is no one-size-fits-all performance model. Figure 8.1

depicts a simplified spectrum, where simple and applicable performance models are

on the left and complex and theoretical models are on the right, one could say that

the critical power model is on the far left, because it has only two parameters and

requires just a few performance tests to be applied. Then, the hydraulic models

of Morton (2006); Lidar et al. (2021) and Sundström (2016) would be on the right

because they have eight or more parameters and are cumbersome to apply to ath-

letes due to their required in-depth knowledge about metabolic and bioenergetic

capacities.

On this spectrum, the hydraulicweig model bridges the gap and remains some-

where in the middle. It can be applied to CP and W ′ and outperforms W ′
bal−ode

models in intermittent exercise predictions. However, it should not be used for pre-

simple and
applicable

complex and
theoreticalhydraulicweigCP

model

W ′
bal−ode

W ′
bal−int

M-M
model

M-M-S
model

Figure 8.1: A simplified spectrum where simple and applicable models are on the
left and complex and theoretical models are on the right. The critical power model
(CP model) is on the far left. Work-balance models by Skiba and Clarke (2021) in-
clude energy recovery predictions and therefore are slightly further towards the right
(W ′

bal−ode and W ′
bal−int). The hydraulic models by Morton (2006) and Sundström

(2016) are on the far right (M-M model and M-M-S model) because they predict
metabolic processes. Our hydraulicweig model fits in the middle.
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dictions of V̇O2 or alactic or lactic energy sources as the original hydraulic models

were intended to be used.

We strive to progress performance model development and to help users make

informed decisions for their analysis. As summarised in this chapter, there are many

directions for creating new models and improving existing ones. To support this

pursuit, we embedded all our data, the code of compared models and hydraulic model

advances in the open-source python packages pypermod6 and threecomphyd7.

6https://github.com/faweigend/pypermod
7https://github.com/faweigend/three_comp_hyd
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Appendix A

Supplementary Information

A.1 Label update

When the hydraulicweig model was first proposed inWeigend et al. (2021), we chose to

name the left infinitely big tank the aerobic energy source (Ae) and the two limited

tanks the anaerobic fast (AnF ) and anaerobic slow energy source (AnS). These

names have a bioenergetic connotation and imply that the flow from the aerobic

source still represents V̇O2 uptake as it did in the M-M model and the model of

Margaria (1976). The results of Chapter 7 show that hydraulicweig does not predict

realistic V̇O2 dynamics and should not be used for V̇O2 predictions.

Therefore, it was sensible to change the labels of hydraulicweig to more abstract

names. The new labels are those depicted in Figure 4.1. Instead of Ae, we re-labelled

the left tank as an unlimited energy source (U). Instead of AnF , the middle tank

is now a limited fast energy source (LF ), and instead of AnS, the right tank is a

limited slow energy source (LS). These changes do not apply to any other hydraulic

models and only affect hydraulicweig. They are an important step to protect users

from misinterpreting fitted hydraulicweig models and their prediction results.
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A.2 Convergence plots

This section presents additional convergence plots of an example run of our evo-

lutionary fitting algorithm from Chapter 5. With reference to the hyperparemters

discussed in Chapter 5, we set the parameters to 30 generations, 40 cycles, 64 pop-

ulation size and 7 islands. For each of the 40 cycles Figure A.1 shows the minimal

distance to (0,0), i.e., the most accurate solution. We can observe that the accuracy

of the best solution improved rapidly over the first 5 cycles and then levelled off.

The last five cycles (34-39) do not show any improvement and it is reasonable to

state that the algorithm converged to an optimum.

Figure A.1: The accuracy of the evolving best solutions during an example fitting
with our evolutionary algorithm from Chapter 5. The minimal distance is our es-
tablished accuracy measure from Section 5.2.2. It improves quickly during the first
cycles and then levels off as the algorithm approaches an optimum.

The evolving Pareto fronts are depicted in Figures A.2 and A.3. The plots are in

direct reference to Figure 5.1 and we refer to Section 5.2.2 for more explanations on

the error measurements along the two axis. Figure A.2 shows the Pareto fronts of

all 7 islands and their most accurate solutions when the fitting algorithm completed

the first cycle and the final results after 40 cycles are shown in Figure A.3. We

observe that all islands converged to a very similar optimal solution.
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Figure A.2: Pareto fronts of the evolutionary fitting after the first cycle.

Figure A.3: Pareto fronts of the evolutionary fitting after after 40 cycles. All islands
converged to a very similar optimum.
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A.3 Oxygen uptake study

Figure A.4: Measured power output (grey area) and V̇O2 uptake (dots) of Par-
ticipant 4 during a constant intensity exercise trial at 288 W. V̇O2 drops occurred
because the face mask leaked air when the athlete lowered their head too far.

Figure A.5: Measured power output (grey area) and V̇O2 uptake (dots) of Par-
ticipant 5 during a constant intensity exercise trial at 255 W. V̇O2 drops occurred
because the face mask leaked air when the athlete lowered their head too far.
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Bäck, T. and Schwefel, H.-P. (1993). An overview of evolutionary algorithms for

parameter optimization. Evolutionary Computation, 1(1):1–23.

99



Caen, K., Bourgois, G., Dauwe, C., Blancquaert, L., Vermeire, K., Lievens, E.,

Van Dorpe, J., Derave, W., Bourgois, J. G., Pringels, L., and Boone, J. (2021).

W’ recovery kinetics after exhaustion: a two-phase exponential process influenced

by aerobic fitness. Medicine & Science in Sports & Exercise, 53(9):1911–1921.

Caen, K., Bourgois, J. G., Bourgois, G., Van Der Stede, T., Vermeire, K., and

Boone, J. (2019). The reconstitution of W’ depends on both work and recovery

characteristics. Medicine & Science in Sports & Exercise, 51(8):1745–1751.

Chai, T. and Draxler, R. R. (2014). Root mean square error (RMSE) or mean

absolute error (MAE)? – arguments against avoiding rmse in the literature. Geo-

scientific Model Development, 7(3):1247–1250.

Chidnok, W., Dimenna, F. J., Bailey, S. J., Vanhatalo, A., Morton, R. H., Wilker-

son, D. P., and Jones, A. M. (2012). Exercise tolerance in intermittent cycling:

application of the critical power concept. Medicine & Science in Sports & Exer-

cise, 44(5):966–976.

Chorley, A. and Lamb, K. L. (2020). The application of critical power, the work

capacity above critical power (W’), and its reconstitution: a narrative review

of current evidence and implications for cycling training prescription. Sports,

8(9):123.

Clarke, D. C. and Skiba, P. F. (2013). Rationale and resources for teaching the math-

ematical modeling of athletic training and performance. Advances in Physiology

Education, 37(2):134–152.

de Jong, J., Fokkink, R., Olsder, G. J., and Schwab, A. (2017). The individual time

trial as an optimal control problem. Proceedings of the Institution of Mechanical

Engineers, Part P: Journal of Sports Engineering and Technology, 231(3):200–206.

Dekerle, J., Brickley, G., Hammond, A. J. P., Pringle, J. S. M., and Carter, H.

(2006). Validity of the two-parameter model in estimating the anaerobic work

capacity. European Journal of Applied Physiology, 96(3):257–264.

Drake, J., Finke, A., and Ferguson, R. (2022). Modelling human endurance: Power

laws vs critical power. preprint, Physiology.

Efron, B. and Tibshirani, R. (1993). An introduction to the bootstrap. Number 57 in

Monographs on statistics and applied probability. Chapman & Hall, New York.

Eiben, A. and Smith, J. (2015). Introduction to evolutionary computing. Natural

Computing Series. Springer Berlin Heidelberg, Berlin, Heidelberg.

100



Ferguson, C., Rossiter, H. B., Whipp, B. J., Cathcart, A. J., Murgatroyd, S. R., and

Ward, S. A. (2010). Effect of recovery duration from prior exhaustive exercise on

the parameters of the power-duration relationship. Journal of Applied Physiology,

108(4):866–874.

Gastin, P. B., Costill, D. L., Lawson, D. L., Krzeminski, K., and McConell, G. K.

(1995). Accumulated oxygen deficit during supramaximal all-out and constant

intensity exercise. The American College of Sports Medicine, 27(2):255–263.

Good, P. I. (2000). Permutation tests: a practical guide to resampling methods for

testing hypotheses. Springer, New York. OCLC: 681912126.

Gorostiaga, E. M., Garcia-Tabar, I., and Sánchez-Medina, L. (2022). Critical power:

Over 95 years of” evidence” and” evolution”. Scandinavian journal of medicine

& science in sports, 32(6):1069–1071.

He, X., Zhao, K., and Chu, X. (2021). AutoML: A survey of the state-of-the-art.

Knowledge-Based Systems, 212:106622.

Hill, A. V. (1925). The physiological basis of athletic records. Nature, 116:544–548.

Hill, D. W. (1993). The critical power concept: a review. Sports Medicine, 16(4):237–

254.

Hoogkamer, W., Snyder, K. L., and Arellano, C. J. (2018). Modeling the benefits

of cooperative drafting: is there an optimal strategy to facilitate a sub-2-hour

marathon performance? Sports Medicine, 48(12):2859–2867.

Housh, D. J., Housh, T. J., and Bauge, S. M. (1989). The accuracy of the critical

power test for predicting time to exhaustion during cycle ergometry. Ergonomics,

32(8):997–1004.

Hunter, S. K., Duchateau, J., and Enoka, R. M. (2004). Muscle Fatigue and the

Mechanisms of Task Failure:. Exercise and Sport Sciences Reviews, 32(2):44–49.

Jones, A. M., Burnley, M., Black, M. I., Poole, D. C., and Vanhatalo, A. (2019).

The maximal metabolic steady state: redefining the ‘gold standard’. Physiological

Reports, 7(10):e14098.

Jones, A. M. and Vanhatalo, A. (2017). The ‘critical power’ concept: applications

to sports performance with a focus on intermittent high-intensity exercise. Sports

Medicine, 47(S1):65–78.

101



Jones, A. M., Vanhatalo, A., Burnley, M., Morton, R. H., and Poole, D. C. (2010).

Critical power: implications for determination of VO2max and exercise tolerance:.

Medicine & Science in Sports & Exercise, 42(10):1876–1890.

Karatzaferi, C., de Haan, A., Ferguson, R., van Mechelen, W., and Sargeant, A.

(2001). Phosphocreatine and ATP content in human single muscle fibres before

and after maximum dynamic exercise. Pflügers Archiv, 442(3):467–474.
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