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Abstract: Effective monitoring of respiratory disturbances during sleep requires a sensor capable
of accurately capturing chest movements or airflow displacement. Gold-standard monitoring of
sleep and breathing through polysomnography achieves this task through dedicated chest/abdomen
bands, thermistors, and nasal flow sensors, and more detailed physiology, evaluations via a nasal
mask, pneumotachograph, and airway pressure sensors. However, these measurement approaches
can be invasive and time-consuming to perform and analyze. This work compares the performance
of a non-invasive wearable stretchable morphic sensor, which does not require direct skin contact,
embedded in a t-shirt worn by 32 volunteer participants (26 males, 6 females) with sleep-disordered
breathing who performed a detailed, overnight in-laboratory sleep study. Direct comparison of
computed respiratory parameters from morphic sensors versus traditional polysomnography had
approximately 95% (95 ± 0.7) accuracy. These findings confirm that novel wearable morphic sensors
provide a viable alternative to non-invasively and simultaneously capture respiratory rate and chest
and abdominal motions.

Keywords: morphic sensor; respiratory rate; heart rate; wearables; polysomnography

1. Introduction

Wearable devices and flexible sensors have been widely used and investigated as an
emerging technology platform to continuously monitor vital human signs during daily
life and in various clinical applications [1–4]. Several studies have demonstrated that
regular monitoring of critical body parameters such as blood pressure, heart rate (HR),
body temperature, respiratory rate (RR), and inter-breath interval (IBI) variability can be
highly informative for a range of clinical diagnoses [5–8]. While multiple technological
solutions can provide continuous HR monitoring, only a few can provide continuous RR
and IBI monitoring. Continuous RR and IBI monitoring may improve asthma, pneumonia,
chronic obstructive pulmonary disease (COPD), hypertension, and sleep apnea diagnosis
and monitoring [8–11]. Respiration can be detected via rhythmic chest/abdomen move-
ment or the air moving in/out of the nostrils or mouth. Monitoring changes in respiratory
parameters can be used to detect sleep-disordered breathing events such as snoring, ob-
structive sleep apnea, central sleep apnea (CSA), and hypoventilation syndromes [12–14].
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However, the utility of respiratory parameters (RR and IBI) extends beyond sleep. For
example, elevated RR is a primary predictor of clinical deterioration within two days of
discharge from the emergency department [15]. Similarly, IBI (breathing variability) at rest
is positively associated with 24 h blood pressure [11].

Modern RR monitoring technology includes pulse oximetry, which uses infrared light
and requires a probe linked to the patient’s finger [16]. Some researchers have used the
electrocardiography (ECG)-derived method to estimate RR, which typically also requires an
electrode connection on the patient’s body [17]. Radiofrequency (RF)-based RR monitoring
approaches have been proposed in several studies. For instance, Abdelnasser et al. [18]
proposed UbiBreathe, a ubiquitous non-invasive WiFi-based breathing estimator for sleep
research. Adib et al. [19] integrated breathing and heart rate estimators using smart home
monitors. Liu et al. [20] proposed a method for tracking vital sleep signs using off-the-shelf
WiFi. In another study, Ravichandran et al. [21] presented Wibreathe, a wireless device
designed to estimate respiration in the home environment. In these approaches, RR is
estimated by capturing the variation in the wireless signal’s channel information caused by
chest movement during respiration.

Although in-laboratory polysomnography remains the gold standard for objective
sleep monitoring, at-home sensor systems have recently gained popularity. In polysomnog-
raphy, respiration is measured by nasal airflow and chest wall movements. This includes
sensors worn on the face or abdomen, which can potentially disrupt sleep [22]. In-laboratory
polysomnography requires specially designed facilities, high-cost proprietary wearable
sensors, and professional installation by trained staff. This level of resourcing is impractical
for long-term sleep monitoring and is limited to specialty clinical and research use [23].
Watanabe and Watanabe [24] attempted to solve this problem by using a mattress that
measures heart rate and breath count. The system is unobtrusive. However, it requires
sensor installation on the bed, and the detection accuracies are affected by the user’s height
and weight [25].

In-laboratory polysomnography may disrupt the same sleep parameters one intends to
measure. Furthermore, at-home sensing allows tracking vital sleep signs such as respiratory
and cardiac parameters over time, which is critical to detect night-to-night variability,
whether stochastic or linked to waking behaviors or exposures that vary over time [26]. Our
study focuses on the assessment of respiratory parameters in people with sleep apnea using
in-house built and inexpensive morphic sensors. Our study incorporated wearable, non-
invasive, noncontact, and unobtrusive sensors (embedded in a standard t-shirt) based on
three electro-resistive bands [27]. This paper explains the design and instrumentation of the
sensor, the implementation, evaluation, and comparison of cardiorespiratory parameters
(RR, HR) with gold standard polysomnography airflow measurement.

2. Morphic Sensors

During the past few years, the morphic sensor has evolved since its first inception in
2015 [28]. This section briefly describes the third-generation electro-resistive band (ERB)
morphic sensor, which includes a complete redesign of the electronics and garment.

ERBs require polarisation and signal conditioning. Like our previous designs [27,28],
each ERB is polarized using a small DC current achieved using a dedicated current genera-
tor LT3092 by Linear Technology (Linear Technologies, New York, NY, USA). Due to the
setting constraints of the LT3092, the polarization current is fixed at 500 µA. The elicited
voltage changes due to the ERB stretching are amplified with a gain of 2 v/v by a first-
order active lowpass filter designed for a precision operational amplifier (OPA140 (Texas
Instruments, Dallas, TX, USA, 2015)). The cut-off frequency is set to 500 Hz to comply with
the sampling rate of 1 kHz used. Although the ERB sensors are not in direct contact with
the skin; this sensor does not require skin contact. As the polarization current value is
higher than the micro-shock hazard (J. G. Webster, 2009), to ensure user safety, the final ERB
assembly was enclosed into an isolating sleeve that was subsequently sewn on the outside
of a loose-fit t-shirt. The Bespoke ERB is carbon-doped silicone rubber (Shore hardness 45A)
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cast into a “U-shaped” form factor with clasp/circuit connection eyelets manufactured
to have a base impedance of 1 kΩ (Figure 1). The four eyelets connect the ERB directly
to the signal conditioning circuit fabricated on a small dual-layer printed circuit board.
Being U-shaped, there is no need for a return wire. To avoid the overstretching and ripping
of the ERB, a thin safety line matching the maximum permitted stretching for the ERB is
affixed to the printed circuit board and a holding clasp on the other side (Figure 1). The
maximum permitted elongation for the ERB sensor was determined using a bespoke stress
testing device [22,29,30]. The stress testing device enabled the determination of the sensor
breaking point and was also employed to characterise the sensor and fine-tune the circuit
parameters leading to this new front end. A direct comparison between the bills of material
for the current and previously used front ends is reported in Table 1.
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Figure 1. Electro-resistive band (ERB) assembly. (Top) ERB. (Left) Front-end PCB. (Right) Wiring
loom, clasps, and straps.

Table 1. Bill of material comparison.

Component Type ERB Front-End Mark I [28] ERB Front-End Mark II [27] ERB Front-End Mark III

Instrumentation amplifier 4 (INA118) 1 (INA116) none

Current bias generator 2 (REF200) 1 (REF200) 3 (LT3092)

Operational amplifier 4 (OPA129) none 3 (OPA140)

Power supply 1 (DHC10512D) 1 (DHC10512D) none

Passive resistors 12 (several different values) 1 (5 kΩ) 12 (several different values)

Capacitors 1 (2.2 µF); 2 (10 µF); 16 (100 nF) 1 (2.2 µF); 2 (10 µF); 2 (100 nF) 18: 9 (100 nF)
3 × 3 (several different values)

ERB 4 (1 m) 1 (1 m) 3 (bespoke)

Like the previous versions, the morphic sensor exploits the electro-resistive nature
of the material, whereby resistance varies with the stretching impressed to the sensor by
the moving ribcage during respiration. Resistance variations are transformed into voltage
variations by the polarization circuit. To cover the entire chest area, for this application,
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we employed three ERBs (see Figure 2). Summation of ERB voltages (un-calibrated chest
volume signal) is achieved during post processing. The three wire connections from each
ERB front end are threaded into a dedicated pocket positioned not to obstruct the other
sensors necessary for sleep monitoring. Connection with the acquisition system and the
sensor power supply is achieved via a multicore flexible shielded cable threaded through
the dedicated wall data interface shared with the polysomnography system. The t-shirt is
designed to be worn over the top of the user’s clothing, sensor fitting, with specific wearer
adjustment, and ERB tension is achieved via securing the non-conductive ERB harness
which, once worn, should be snug but not restrictive.
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Figure 2. Third-generation ERB morphic sensors fully assembled in a t-shirt (image courtesy of
Medical Monitoring Solutions Pty Ltd., Sydney, Australia).

3. Methods
3.1. Participants

Thirty-two people (26 male and 6 female) with previously diagnosed sleep apnoea (via
overnight polysomnography) volunteered to wear the morphic sensor during a research
polysomnography study. Inclusion criteria were: (i) 18–70 yr and (ii) apnea-hypopnea
index (AHI) > 10 events/h sleep. Exclusion criteria were: (i) cardiovascular disease,
(ii) neurological disorder, and (iii) pregnant or breastfeeding women. The anthropometric
data of the study participants are summarized in Table 2. Ethical approval was obtained
from the Southeastern Sydney Local Health District (HREC No. 16/356) and the Western
Sydney University Human Research Ethics Committees. All participants provided written
informed consent.
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Table 2. Anthropometric data expressed as mean ± SD.

Anthropometric Variables Values

Age (years) 42.2 ± 12.5

Height (cm) 162.3 ± 15.7

Weight (kg) 87.3 ± 16.5

BMI (kg m−2) 32.9 ± 1

3.2. Data Collection

Sleep data were collected from patients using both polysomnography (Philips Respiron-
ics Alice 6 LDx 31 channel sleep data acquisition system) and the ERB embedded t-shirt
(Figure 2). The t-shirt design allows the topmost band to be positioned below the ax-
illa while the bottom band is just below the diaphragm. This configuration allows for
full coverage of the thoracic cage. The t-shirt was worn for the entire overnight sleep
study, and the respiratory-related information was recorded with a sampling rate of 1 kHz.
Polysomnography-derived nasal airflow was also recorded at a 1 kHz sampling rate.

4. Data Analysis
4.1. Pre-Processing, Artifact Removal (Groundtruth GUI)

Data from the neuromorphic sensors and airflow polysomnography data are contami-
nated by artifacts generated due to participants’ body movements. Data were filtered using
a lowpass filter with a cut-off frequency of 1 Hz. Respiration peaks were initially detected
using the inbuilt window-based threshold method (Peak Detect). However, automated
peak detection identifies more features in the data than those of interest (i.e., respiration
cycles). Hence, incorrect features (peaks) were removed using our own “Groundtruth
GUI” MATLAB software developed for artifact and feature identification of physiological
data [31]. Pre-processed (Groundtruth GUI) clean morphic sensors and polysomnography
sensor respiration data were considered for respiratory parameters calculations.

4.2. Respiratory Rate

Instantaneous breath-by-breath respiratory rates were obtained from the position of
two consecutive respiratory peaks (Pi and Pj) and the sampling rate (FS = 1000 Hz). The
time difference Td between the two peaks is calculated using the following formula:

Td =

∣∣Pi − Pj
∣∣

Fs
(1)

The instantaneous respiration rate (FR) from both raw and pre-processed (using
Groundtruth GUI) data were then calculated by taking the inverse of T_(d,), i.e., FR = 1/Td.
The respiration rate was then calculated for 60 s intervals (breaths/min) and averaged
(multiple 60 s intervals) over the entire data length. An example of the RR derived from
the morphic sensor and polysomnography airflow signal in one participant is shown in
Figure 3.

4.3. Inter-breath Interval Variability

A healthy individual’s standard respiratory rhythm can be seen during normal breath-
ing, with a relatively constant RR and tidal volume. However, any variations within this
respiratory rhythm are characterised as inter-breath interval (IBI) variability [32]. Changes
in RR are a vital indicator that often precedes major clinical manifestations of serious
complications, such as respiratory depression and respiratory tract infections. Marked
changes in IBI, (the period in seconds between 2 consecutive peaks—the interval between
successive breaths), is a surrogate marker of adverse outcomes in multiple pathological
states. For example, sepsis [33,34].
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5. Results

The individual results for RR calculated after pre-processing (using Groundtruth GUI)
are reported in Table 3. Similarly, the results for IBI variability after pre-processing (using
Groundtruth GUI) are reported in Table 4. Data are summarized as mean ± SD.

Table 3. Anthropometric data expressed as mean ± SD.

Subject
Number

Morphic
Sensor

Respiration
Rate

(Breaths/Min)

Airflow
(PSG)

Respiration
Rate

(Breaths/Min)

Subject
Number

Morphic
Sensor

Respiration
Rate

(Breaths/Min)

Airflow
(PSG)

Respiration
Rate

(Breaths/Min)

1 13.07 ± 0.08 13.09 ± 0.07 17 14.56 ± 0.09 14.12 ± 0.08

2 16.75 ± 0.12 16.70 ± 0.10 18 15.68 ± 0.10 16.34 ± 0.07

3 13.12 ± 0.21 13.15 ± 0.18 19 14.34 ± 0.12 13.34 ± 0.10

4 14.33 ± 0.06 14.32 ± 0.08 20 13.78 ± 0.10 14.56 ± 0.09

5 13.69 ± 0.09 13.72 ± 0.08 21 17.69 ± 0.07 16.98 ± 0.06

6 19.03 ± 0.03 19.04 ± 0.04 22 21.98 ± 0.02 21.54 ± 0.04

7 20.08 ± 0.04 20.10 ± 0.05 23 23.04 ± 0.03 23.21 ± 0.05

8 21.23 ± 0.08 19.89 ± 0.09 24 15.15 ± 0.14 16.13 ± 0.10

9 20.14 ± 0.02 21.06 ± 0.04 25 16.76 ± 0.10 17.12 ± 0.09

10 21.56 ± 0.08 20.89 ± 0.06 26 18.13 ± 0.04 17.56 ± 0.06

11 16.78 ± 0.18 15.64 ± 0.10 27 19.17 ± 0.04 19.15 ± 0.02

12 17.09 ± 0.12 16.07 ± 0.08 28 19.26 ± 0.09 19.10 ± 0.08

13 18.43 ± 0.10 19.01 ± 0.05 29 20.19 ± 0.03 21.12 ± 0.05

14 19.01 ± 0.07 18.99 ± 0.08 30 22.10 ± 0.01 22.56 ± 0.03

15 21.04 ± 0.03 21.36 ± 0.05 31 18.16 ± 0.07 19.12 ± 0.08

16 21.78 ± 0.02 20.98 ± 0.04 32 17.68 ± 0.11 18.34 ± 0.10
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Table 4. IBI variability (mean ± SD) of pre-processed (Groundtruth GUI) data.

Subject
Number

Morphic
Sensor

IBI
Variability

Airflow
(PSG)

IBI
Variability

Subject
Number

Morphic
Sensor

IBI
Variability

Airflow
(PSG) IBI
Variability

1 1.87 ± 0.01 1.78 ± 0.02 17 2.09 ± 0.01 2.12 ± 0.01

2 1.73 ± 0.02 1.67 ± 0.03 18 2.39 ± 0.01 2.23 ± 0.01

3 1.92 ± 0.01 1.93 ± 0.02 19 2.44 ± 0.01 2.32 ± 0.01

4 1.45 ± 0.03 1.38 ± 0.04 20 2.56 ± 0.01 2.45 ± 0.01

5 1.56 ± 0.03 1.67 ± 0.02 21 1.98 ± 0.02 2.06 ± 0.03

6 1.63 ± 0.01 1.60 ± 0.02 22 1.76 ± 0.02 1.74 ± 0.02

7 1.71 ± 0.01 1.63 ± 0.04 23 1.55 ± 0.04 1.56 ± 0.02

8 1.67 ± 0.02 1.58 ± 0.03 24 2.34 ± 0.01 2.32 ± 0.01

9 1.78 ± 0.01 1.73 ± 0.02 25 2.43 ± 0.01 2.41 ± 0.01

10 1.64 ± 0.03 1.63 ± 0.03 26 2.61 ± 0.01 2.63 ± 0.02

11 1.73 ± 0.01 1.74 ± 0.01 27 2.47 ± 0.02 2.43 ± 0.03

12 1.74 ± 0.01 1.81 ± 0.01 28 2.34 ± 0.02 2.31 ± 0.02

13 1.63 ± 0.02 1.56 ± 0.04 29 2.14 ± 0.03 2.12 ± 0.02

14 1.61 ± 0.04 1.73 ± 0.03 30 2.16 ± 0.02 2.24 ± 0.01

15 1.48 ± 0.04 1.54 ± 0.03 31 2.09 ± 0.03 2.12 ± 0.02

16 1.65 ± 0.01 1.62 ± 0.03 32 2.34 ± 0.02 2.33 ± 0.02

Statistical Analysis—Bland–Altman Evaluation

The Bland–Altman method was used to determine bias (mean difference between
methods) and limits of agreement (±95% confidence around bias) to compare RR from
original and Groundtruth GUI processed data. This method provides a quantitative and
visual comparison of two measurements by plotting the differences between the two
techniques against the average of the two methods. It supplements correlational analyses
by determining the limits of agreement between methods (in which the mean level ±1.96 SD
represents a bias ±95% confidence interval range of agreement).

The Bland–Altman plot (Figure 4) showed that the mean difference between the mor-
phic sensor and the polysomnography flow for the Groundtruth GUI processed (cleaned
data) data was negligible with a narrow confidence interval (95% agreement limit −1.27,
1.30; Spearman rank correlation between mean and difference 0.003), indicating a high
degree of agreement between the derived estimates from the two sensors.

Similarly, Bland–Altman results for the IBI variability values displayed in Figure 5
showed that the mean difference between the morphic sensor and the polysomnography air-
flow for the Groundtruth GUI processed (cleaned data) data was small at 0.13 breaths/min
(95% agreement limit—0.116, 0.147; Spearman rank correlation between mean and differ-
ence 0.0845).

The relationship between averaged values of RR computed from morphic sensors
and polysomnography, computed over 60 s intervals, was also assessed using a linear
regression scatter plot. The scatter plot of RR and the processed data is shown in Figure 6.
Ideally, the two techniques would exhibit perfect agreement, and when the data is plotted
as a scatter plot, all points will lie on the line of equality. From the results, the two methods
are in good agreement following Groundtruth analysis.
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The scatter plot of IBI variability for processed data is shown in Figure 7. From
the results, the two methods are in good agreement following pre-processing of data
(Groundtruth analysis).
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6. Discussion

The use of wearable devices to monitor breathing activity has made a pathway for
many new medical services, enabling remote, accurate, and local monitoring of a patient’s
conditions. Many wearable sensors have been proposed in the literature and are on the
market to detect respiratory parameters using various methods, including chest movements,
exhaled gases, blood oxygenation changes, and chest sounds. Likewise, both time and
frequency domain signal processing methods have been reported as capable of extracting
useful information from the various sensors.

The respiratory parameters (RR and IBI) computed from our proposed method repre-
sent a more efficient and potentially more tolerable approach for overnight polysomnog-
raphy. In Table 5, we compare our results with similar methods reported in the literature
regarding sensor types, signal processing techniques, respiratory parameter computation,
and efficiency.

Table 5. Summarized scientific works based on work, sensor’s location, signal processing method,
respiratory parameter computation, and accuracy.

Sensor Type Signal Processing Method Respiratory Parameter
Computed Accuracy

Our proposed method Morphic sensor Groundtruth (artefact removal)
and Peak detection RR and IBI 95%

Huang et al. [35]. Accelerometer Peak detection RR 95%

Antony Raj et al. [36] Accelerometer Peak detection RR 97.4%

Jarchi et al. [37] Accelerometer
Singular Spectral Analysis

(SSA) and Fast Fourier
Transform (FFT)

RR NA

Dan et al. [38] CO2 Peak detection RR 99.8%

Manoni et al. [39] Photoplethysmography
(PPG)

Power Spectral Density (PSD),
Periodic Waveform Analysis

(PWA)
RR 93%

Wang et al. [40] Accelerometer and
gyroscope

Variance Characterisation
Series (VCS), Kalman Filter RR NA

Jafari Tadi et al. [41] Seismocardiogram
(SCG) Peak detection, FFT RR 99%

From Table 5, we can infer that the time domain methods, such as [35,36,42], depend
on analyzing the acceleration trends for detecting the peaks related to the respiratory move-
ments, offering good performance accuracy and low computational complexity. However,
the detected acceleration waveforms are subject to artefacts due to body movements and
other physiological signals with a size comparable to those associated with breathing, induc-
ing potential errors in RR measurement [43]. The frequency domain approaches [37,41,44],
based on popular FFT-based estimators and peak detection, represent an alternative solu-
tion, allowing for a straightforward reduction of motion-induced artefacts, but requiring a
higher computational load [45]. Our proposed method uses the artefact detection method
“Groundtruth”, followed by simple peak detection to compute RR parameters. The method
is reliable and consistent for the duration of an entire overnight sleep study. Moreover,
our approach reports IBI from RR, which is the first study of its kind and allows for the
potential to extract cardiac parameters simultaneously accurately from the morphic sensors.

7. Conclusions

Wearables and sleep trackers are gathering traction among the public, often due to
their seamless integration with personalized electronic devices. Wearables offer more
feasible and reliable alternatives to measure sleep and cardiorespiratory patterns compared
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to traditional in-laboratory approaches. Wearable devices are revolutionizing how we
treat, manage, and prevent diseases, enabling integrated and accurate monitoring of
the patient’s health, with the potential to lower management costs and provide more
accurate and timely diagnosis, including early prevention, continuous tracking, and quicker
intervention. Monitoring respiratory activity is crucial to determine the user’s physical
status and minimize the potential impact of acute exacerbations from respiratory diseases
such as pneumonia, emphysema, and pulmonary embolism.

The demand for wearable devices to measure respiratory activity continues to grow,
finding applications in various settings (e.g., clinical environments and workplaces, out-
doors for monitoring sports activities, etc.). The respiration rate (RR) is vital since it may
represent an early marker of serious illness (e.g., pneumonia, emphysema, pulmonary
embolism, etc.). Wearables such as morphic sensors may have a role in better characterising
and understanding cardiorespiratory and sleep, and, within the framework of precision
medicine, ultimately improve health, safety, and well-being for people with cardiorespira-
tory disease via non-invasive monitoring and early detection of marked cardiorespiratory
changes that may be a marker of ill health.

This paper evaluates a novel electro-resistive band morphic sensor-based wearable
device designed for vital signal monitoring, specifically targeting respiratory parameters.
The results from this research confirmed that the morphic sensors accurately measure
RR and IBI intervals with a degree of accuracy comparable to or superior to traditional
polysomnography sensors.

One of the limitations of the proposed method is that artefact and body movements can
impact the performance of respiratory parameter calculations. The sensor’s position is also
crucial, and body movements can adversely affect their performance. For this paper, we
have used our artefact detection method, “Groundtruth GUI” to identify body movement
artefacts and pre-process the signal. Hence, the RR and IBI calculated from the method
showed greater efficiency. In the future, we plan to integrate and automate “Groundtruth
GUI” to automate the whole process. Body position did not affect the outcome of RR and
IBI calculations.

In conclusion, we can infer that morphic sensors are designed with user comfort
as a priority. Further work is warranted to investigate morphic sensors’ potential util-
ity, performance, and limitations across different populations beyond those with sleep-
disordered breathing.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios13070703/s1, Figure S1: Bland–Altman plots—RR. Difference
between morphic sensor data and polysomnography airflow breaths/min plotted against the average
value of the two methods. Solid horizontal lines indicate mean difference and upper/lower limits
of agreement, sd: standard deviation. Figure S2: Bland–Altman plot—IBI variability. Difference
between morphic sensor data and polysomnography airflow breaths/min plotted against the average
value of the two methods. Solid horizontal lines indicate mean difference and upper/lower limits of
agreement, sd: standard deviation.
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