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Abstract: Abiotic stresses, such as high temperature and drought conditions, greatly influence the
development of plants and the quality and quantity of products. Barley (Hordeum vulgare L.) crop
production is largely impacted by drought, affecting growth, yield, and ultimately the productivity
of the crop in hot arid/semi-arid conditions. The current pot experiment was directed to observe the
outcome of nicotinic acid (NA) treatments on barley’s physiological, biochemical, and production
attributes at two capacity levels, i.e., 100% normal range and withholding water stress. Randomized
complete block design (RCBD) was used during the experimentation with the two-factor factorial
arrangement. NA was applied exogenously by two different methods, i.e., foliar and soil application
(fertigation). NA solution contained various application levels, such as T1 = control, foliar applications
(T2 = 0.7368 gL−1, T3 = 1.477 gL−1, T4 = 2.2159 gL−1), and soil applications (T5 = 0.4924 gL−1,
T6 = 0.9848 gL−1, and T7 = 1.4773 gL−1). Results depicted that, overall, foliar treatments showed
better effects than control and soil treatments. Plant growth was preeminent under T4 treatment,
such as plant height (71.07 cm), relative water content (84.0%), leaf water potential (39.73-MPa), leaf
area index (36.53 cm2), biological yield (15.10 kgha−1), grain yield (14.40 kgha−1), harvest index
(57.70%), catalase (1.54 mmolg−1FW−1), peroxidase (1.90 g−1FWmin−1), and superoxide dismutase
(52.60 µgFW−1) were superior under T4 treatment. Soil plant analysis development (54.13 µgcm−2)
value was also higher under T4 treatment and lowest under T7 treatment. In conclusion, NA-treated
plants were more successful in maintaining growth attributes than non-treated plants; therefore,
the NA foliar treatment at the rate of 2.2159 gL−1 is suggested to find economical crop yield under
drought conditions. The present study would contribute significantly to improving the drought
tolerance potential of barley through exogenous NA supply in water deficit areas.

Keywords: growth; yield; anatomical attributes; physicochemical characters; barley; water deficit

1. Introduction

Drastic climate changes and increased water scarcity challenge global food security,
which is further exacerbated due to the need to feed a growing global population. Global
agricultural production might need to increase by 60–110% to meet the increasing demands
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of food security. Barley (Hordeum vulgare L.) is a tough grain crop of significant importance
worldwide, grown in several environments where other grains cannot grow [1]. It has
broad flexibility to various agro-climatic circumstances and distinctive soil attributes [2]. It
is utilized as food for innumerable creatures. Its success is due to its capacity to produce in
unfavorable atmospheres, such as dry seasons, low temperatures, and salt [3]. This grain is
the fourth biggest nutrition crop. Among the primary oats, its global total grain planting
area is 47 million hectares, and the annual output is 147.4 million tons, whereas the typical
efficiency is 3136 kgha−1 [1]. Moreover, the yield of winter grain is 19–33% higher than that
in spring, which expands the financial aspects of the harvest [4].

Nicotinic acid (NA) is a fundamental water-solvent plant nutrient. It normally ex-
ists in two structures, niacin, and nicotine amide [5]. NA can be obtained through both
endogenous and exogenous sources. NA is a precursor to the co-enzymes nicotinamide
adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate. NAD+
and NADP+ are important co-enzymes involved in various electron transport measure-
ments [6,7]. Energy saves prompted by NA are utilized for tissue arrangement at various
formative stages [8,9]. This reality was affirmed by using NA and thiamine to lessen the
unsafe impacts of multiple pressures throughout the sprouting and starting advancement
phases of plants [10].

Abiotic stresses, such as high temperature, salt formulations [11,12], inorganic treat-
ments [13,14], toxicity [15], pollution stress [16], and drought conditions [17], greatly
interfere with the development of plants, and the quality and quantity of products [18,19].
Sufficient internal water is fundamental for ideal seedling germination, and subsequent
growth as water is the primary factor associated with germination [20]. Water pressure
affects plant development, diminishing dry matter aggregation, subsequently limiting the
pace of photosynthesis, and lessening the assimilation of fundamental supplements for
plants [21]. Using natural added substances can lessen the adverse consequences on plant
development by working on plants’ physical and compound properties [22].

Environmental changes and water shortages are global threats to agriculture. Water
scarcity is the main obstacle to obtaining viable agronomic crop production. To overcome
unfavorable agro-climatic conditions and sustainable agriculture, new agronomic practices
and economical and easy-to-operate farming methods are the need for modern agriculture.
Therefore, this study’s objective is to examine the barley’s response to water stress under
foliar and soil exogenous treatments of nicotinic acid. This project means to upgrade the
physiological and biochemical qualities of grain crops and work on the resistance of grain
crops under affliction conditions.

2. Materials and Methods
2.1. Experimental Site

The trial was conducted in the greenhouse of the Department of Agronomy, University
College of Agriculture, Islamia University Bahawalpur. Pots (25 × 15 cm) filled with
7.5 kg of sterilized soil were used. Ten healthy and vigorous barley seeds per pot were
selected randomly and sown in pots at 6 cm depth, keeping the same distance among seeds.
This experiment was carried out under control conditions (100% FC) and withholding
stress. A completely randomized factorial design (CRD) was used with six repetitions. Soil
analysis was performed following the standard methods for determining physicochemical
parameters. Soil physiochemical properties are shown in (Table 1).
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Table 1. Soil physiochemical properties before sowing of barley seeds.

Soil Properties Range

pH 7.54

Electrical conductivity (EC) 0.02

Organic matter % 0.61

EC (electrical conductivity, (dsm−1 at 250 ◦C) 3.18

Available phosphorus (ppm) 8.1

Available potassium (ppm) 136

Soil color Reddish brown

Texture of soil Sandy loam

2.2. Experimental Details

The germ-plasm of barley was collected from Regional Agricultural Research In-
stitute (RARI) Bahawalpur. Nicotinic acid (NA) was applied via foliar and soil appli-
cations under well-watered levels (FC 100%) and water deficit conditions. Treatment
levels are: T1: control, foliar application treatments (T2: NA@0.7368 gL−1, T3: NA@1.477
gL−1, T4: NA@2.219 gL−1), and soil application treatments (T5: NA@0.4924 gL−1, T2:
NA@0.9848 gL−1, T2: NA@1.4773 gL−1).

The barley plants were harvested for analysis after 106 days (almost 3.5 months). After
harvesting, three replicates per treatment were selected for further analysis.

2.3. Morphological Parameters and Root Plasticity

Plant roots were separated from shoots after thoroughly cleaning them with distilled
water. Roots and shoot lengths were measured using a scale, and their fresh and dry
weights were recorded to calculate the crop growth rate. For plant dry weight, specimens
are dried in an oven at 75 ◦C. Calculations were made based on the shoot and root dry.
Fresh roots were used to calculate root surface area (cm2), root volume (cm3), and root tips
using root scanners (Win RHIZO Pro, STD, 2017, Regent Instruments Inc., Quebec City,
QC, Canada). Root diameter (mm) was calculated with a microscope’s help by manually
removing soil particles from roots until all the roots were cleared from the soil particles.

2.4. Yield Parameters

Spike length (cm) was calculated with the help of measuring tape at the time of
fully matured barley plants. The number of spikelets per spike was counted by selecting
six spikes randomly from the top and bottom. The number of tillers per plant and the
number of grains per spike were calculated manually, and average data were used for the
description of the results.

The weight of 1000 grains (g) from the individual pots of each replication was mea-
sured by electric balance. To determine the biological yield per plant (kgha−1), plants were
selected randomly from each treatment and carefully picked and splashed with water to
eliminate soil particles, later sun-dried. The plants were weighed to record the biological
yield. For the calculation of grain yield (kgha−1), the one-meter square was selected, and
the number of heads was counted. This was repeated 5 times to get the average, and the
yield was measured using the following formula.

Yield in t/ha = (A × B × C)/10,000

The subsequent formula was used to analyze barley plants’ harvest index (%).

HI =
Grain Yield

Biological yield
× 100
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2.5. Physiological Parameters

Leaf area index (cm2) was measured on the plants’ fresh, fully developed leaves per
pot. The average leaf area of barley was measured by using an instrument planimeter. To
calculate the SPAD value of the leaves, the SPAD instrument was used (Minolta, Osaka,
Japan). Three leaves of fully developed pots were measured. For the determination of
water potential (-Mpa), three leaves were harvested from the top portion of barley plants.
The water potential was measured by a Scholander pressure chamber. Leaf samples were
taken from three treatment plants to determine relative water content (%). The digital
balance was used to take each plant sample’s fresh weight (FW) and was soaked in distilled
water in test tubes. The moisture level was removed with tissue paper for the turgid weight
(TW), and samples were placed in the oven at a temperature (65 ◦C) for 72 h to take the
dry weight (DW). The relative water content (RWC) was measured using the following
equation described by [23].

RWC (%) =
(FW − DW)

(TW − DW)
× 100

Whereas

DW = Dry weight, FW = Fresh weight, TW = Turgid weight

A spectrophotometer was used to evaluate the antioxidant enzyme’s activity (Hitachi-
2800). Barley leaves were homogenized in 50 mM phosphate buffer with pH of 7.0 and
1 mM dithiothreitol (DTT) to measure peroxidase (POD), superoxide dismutase (SOD),
and catalase (CAT), based on information provided [24,25]. A calculation was made to
determine the enzymatic activity by measuring the amount of hydrogen peroxide converted
to hydrogen and water molecules [25]. This enzyme was evaluated in a 3 mL solution
that included a 50 mM buffer solution with a 7.0 pH, 5.9 mM hydrogen peroxide extract,
and 0.1 mL enzyme. The consumption of hydrogen peroxide determined the CAT activity
by observing the reduction in the transmission density of light at 240 nm every 20 s.
The change in absorbance was measured as a single unit CAT activity. The oxidation
of hydrogen peroxide as an electron donor with guaiac was used to calculate POD. A
mixture was prepared for peroxidase analysis (POD) comprising a phosphate buffer 50
mM, 5.0 pH, guaiacol 20 mM, hydrogen peroxide 40 mM, and enzyme 0.1 mL. Production
of tetraguayacol at 470 nm caused an increase in light absorption via a solution, which was
investigated. The quantity of enzyme responsible for the 0.01 rise in optical density value
in 1 min was one unit. The enzyme’s activity was calculated at one unit per minute per
gram of fresh weight. SOD was measured by the following method [26]. For photochemical
examination of nitroblue tetrazolium (NBT), 0.2 g of the sample was standardized in
one percent polyvinylpyrrolidone (PVP) 50 mM, potassium phosphate buffer 7, pH 7.0,
centrifuge at 15,000 rpm at 40 ◦C for 30 min. Translucent supernatant 0.5 mL, methylene
tetra-acetic acid 2 mL, methionine 20 mM, NBT 0.12 mM, micromolar riboflavin 0.5 mL,
and PVP 0.5 mL were used to make the reaction mixture. Observations were conducted
calorimetrically against the blank at 560 nm optical density.

2.6. Statistical Analysis

Recorded observations on desired attributes from the current experimental trial and
means of recorded data from every pot in each repeat were statistically evaluated. A
two-way analysis of variance (ANOVA) technique was used for data analyses to under-
stand the impact of NA and water stress treatments. Significant differences between the
treatment means were compared using the least significant difference test (LSD) at 5%
probability levels among all treatments. All statistical analyses were performed using the
SPSS Statistical Package (SPSS 17.0, IBM, Chicago, IL, USA).
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3. Results
3.1. Plant Morphological Attributes
3.1.1. Plant Height (PH) and Root Length (RL)

The effect of different doses of NA on PH and RL was found to be significant using
statistical analysis (p = 0.041 for PH and p = 0.034 for RL). The highest PH and RL were
recorded under treatment T4 (71.07 cm and 15.87 cm, respectively), while treatment T5
recorded the lowest values (57.97 cm and 13.01 cm, respectively) at 100% FC. Under water
deficit conditions, maximum values of PH and RL (43.73 cm and 10.43 cm, respectively)
were observed under T7, and minimum values (36.90 cm and 87.77 cm, respectively) were
observed under T1 (Figure 1). The interaction of NA and water stress treatments was found
to be non-significant for both plant height and root length (p > 0.05 for both) (Figure 1).
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Figure 1. Effect of exogenously applied nicotinic acid (NA) on barley plant height (cm), root length
(cm), root fresh weight (g), root dry weight (g), shoot fresh weight (g), and shoot dry weight (g) at
anthesis stage of plant under control and water deficit stress levels.

3.1.2. Root Fresh and Dry Biomass

Treatment T4 yielded the highest values of root fresh and dry weight (6.31 g and 2.41 g,
respectively), while treatment T5 yielded the lowest (5.49 g and 2.14 g, respectively) at
100 percent FC. Under water deficit conditions, the maximum values of root fresh and
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dry weight (4.66 g and 0.95 g, respectively) were observed in T7, and minimum values
(4.20 g and 0.84 g, respectively) were observed in T1. The interaction of NA and water
stress treatments was found to be non-significant for fresh root weight (p = 0.058), whereas
it was significant for root dry weight (p = 0.043) (Figure 1).

3.1.3. Shoot Fresh and Dry Biomass

Maximum values of shoot fresh and dry weight (66.67 g and 8.82 g, respectively) were
observed under T4 treatment, whereas minimum (54.07 g and 7.11 g, respectively) were
recorded in treatment under T5. Under water deficit conditions, maximum values (42.00 g
and 5.11 g, respectively) were observed under T7, and minimum values (34.87 g and 4.62,
respectively) were observed under T1. The interaction of NA and water stress treatments
was found to be non-significant for fresh shoot weight (p = 0.064), whereas, for root dry
weight, it was significant (p = 0.038) (Figure 1).

3.1.4. Spikes Count and Spike Length

Among all treatments, the maximum spikes per plant and spike length (22.40 cm and
13.90 cm, respectively) were observed in the T4 treatment, and a minimum (18.03 and
11.03 cm, respectively) was recorded in the T5 treatment. Under water deficit conditions,
maximum spikes per plant and spike length (13.50 and 8.10 cm, respectively) were observed
under T7 treatment, and minimum values (12.03 and 7.23 cm, respectively) were observed
under T1. The interaction between treatments was significant for both spikes count and
spike length (p = 0.024) (Figure 2).
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3.1.5. Number of Tillers and Grains Per Plant

The maximum average value of tillers and grains per plant (10.33 and 39.40, respec-
tively) was observed in the T4 treatment, whereas a minimum (8.03 and 28.10, respectively)
was recorded in treatment T4. Under water deficit conditions, maximum values of tillers
and grains per plant (6.07 and 20.50, respectively) were observed in the T7 treatment, and
minimum values (5.40 and 17.83) were observed in T1. The interaction between treatments
was significant for parameters (p = 0.046) (Figure 2).

3.2. Root Plasticity
3.2.1. Root Surface Area and Root Volume

The maximum value of root surface area (246.00 cm2) was observed under the T4
treatment, whereas the minimum (191.17 cm2) was recorded under the T5 treatment. Under
water deficit conditions, a maximum value (136.04 cm2) was observed in T7 (NA@1.4773
gL−1), and a minimum value (118.33 cm2) was observed in T1 (control). The interaction
between NA and water stress treatments was significant (p = 0.038) (Figure 3).
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Figure 3. Effect of exogenously applied nicotinic acid on barley root surface area (cm2), root volume
(cm3), root diameter (mm), and root tips at anthesis stage of plant under control and water deficit
stress levels.

The maximum value of root volume (19.57 cm3) was observed under the T4 treatment,
whereas the minimum (15.13 cm3) was recorded under T5. Under water deficit conditions,
a maximum value (10.50 cm3) was observed under T7, and a minimum value (9.19 cm3) was
observed in T1. The interaction between NA and water stress treatments was significant
(p = 0.029) (Figure 3).
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3.2.2. Root Diameter and Root Tips

The maximum values of root diameter and root tips (4.74 mm and 4577.1, respectively)
were observed under T4, whereas minimum (3.93 mm and 3610.7, respectively) were
recorded in T5. Under water deficit conditions, maximum values of root diameter and root
tips (3.98 mm and 2542.1) were observed in T7, and minimum values (2.85 mm and 2207.1)
were observed in T1. The interaction of NA and water stress treatments was significant for
root diameter (p = 0.019), whereas it was non-significant for root tips (p = 0.053) (Figure 3).

3.3. Plant Leaf Dynamics
3.3.1. Leaf Area Index (LAI)

Overall, the maximum value of LAI (36.53 cm2) was observed in T4, whereas a
minimum (29.20 cm2) was recorded in treatment (NA@0.4924 gL−1) at 100% FC. Under
water deficit conditions, a maximum value (21.40 cm2) was observed in T7, and a minimum
value (18.67 cm2) was observed in T1. The interaction between NA and water stress
treatments was non-significant (p = 0.047) (Figure 4).
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content of leaves (%) and leaf water potential (MPa) at anthesis stage of plant under control and
water deficit stress levels.

3.3.2. Relative Water Content (RWC) and Leaf Water Potential

Among all treatments, the maximum values of RWC and leaf water potential (84.0%
and 39.73-MPa, respectively) were observed in T4 and minimum (71.0% and 31.00-MPa,
respectively) in treatment under T5 treatment. Under water deficit conditions, maximum
values of RWC and leaf water potential (50.07% and 22.90-MPa) were observed in T7, and
minimum values (45.07% and 19.00-MPa) were observed in T1. The interaction of NA and
water stress treatments was found to be non-significant for RWC and leaf water potential
(p > 0.05 for both) (Figure 4).
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3.4. Plant Enzymatic Responses

The maximum values of CAT, POD, and SOD (1.54 mmolg−1FW−1, 1.90 g−1FWmin−1,
52.60 µgFW−1, respectively) were observed in T4, whereas minimum values were recorded
in treatment T5 at 100% FC. Under water deficit conditions, maximum values of CAT, POD,
and SOD (1.78 mmolg−1FW−1, 1.40 FWmin−1, 33.20 µgFW−1, respectively) were observed
under the T7 treatment and minimum value (0.41 mmolg−1FW−1, 0.20 g−1FWmin−1,
28.80 µgFW−1, respectively) were observed in T1. The interaction of NA and water stress
treatments was significant (p < 0.05) for all the enzymes (Figure 5).
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3.5. Soil Plant Analysis Development (SPAD)

The Soil Plant Analysis Development (SPAD) is one of the most commonly used
diagnostic tools to measure crop nitrogen status. Statistical analysis for the SPAD data
value showed a significant effect of different doses of NA. The maximum SPAD value (54.13)
was observed in T4, whereas the minimum (45.70) was recorded in the T5 treatment. Under
water deficit conditions, a maximum value (32.17) was observed in T7 and a minimum
value (27.83) was observed in T1 (control). The interaction between NA and water stress
treatments was significant (p = 0.041) (Figure 6).
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3.6. Yield Parameters
3.6.1. 1000-Grain’s Weight (g)

Overall, a maximum value of 10,000-grain weight (58.20 g) was observed in the T4
treatment, whereas a minimum (45.70 g) was recorded in treatment T5, at 100% FC. Under
water deficit conditions, a maximum value (34.51 g) was observed in T7, and a minimum
value (30.71 g) was observed in T1. The interaction between NA and water stress treatments
was non-significant (p = 0.057) (Figure 7).
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3.6.2. Grain Yield

The maximum value of grain yield (15.10 kgha−1) was observed in T4, whereas the
minimum (12.00 kgha−1) was recorded in treatment T7 at 100 % FC. Under water deficit
conditions, a maximum value (8.9 kgha−1) was observed in T7, and a minimum value
(7.5 kgha−1) was observed in T1. The interaction between NA and water stress treatments
was significant (p = 0.046) (Figure 7).

3.6.3. Harvest Index

The maximum value of harvest index (57.70%) was observed in T4, whereas the mini-
mum (45.00%) was recorded in treatment T5 at 100 % FC. Under water deficit conditions, a
maximum value (32.30%) was observed in T7, and a minimum value (28.20%) was observed
in T1. The interaction between NA and water stress treatments was significant (p = 0.028)
(Figure 7).

4. Discussion and Conclusions

Usually, drought stress causes plant growth retardation, reducing plant growth and
yield [27,28]. In the current experiment, the barley’s root biomass, root and shoot length
were reduced significantly under water-stressed conditions. Severe drought stress applied
before the anthesis stage significantly affected barley growth as the water stress level in-
creased, root volume was reduced, causing variations in the root and shoot ratio. Barley
biomass accumulation was reduced by 57% under severe drought stress. The possible
reason is drought can cause nutrient deficiencies, even in fertilized soils, due to the reduced
mobility and absorbance of individual nutrients, leading to a retarded growth [21–23].
Moreover, unbalanced fertilizer use, and other unhealthy agronomic practices have se-
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riously led to the root cause of crop growth and yield decline [29]. Zhang et al. also
mentioned that drought significantly decreased the agronomic traits of wheat and rice with
biomass and yield showing the largest decreases. Drought decreased wheat biomass and
yield by 25.0% and 27.5%, respectively, and decreased rice biomass and yield by 25.2% and
25.4%, respectively. Moreover, wheat grown in pots showed greater decreases in agronomic
traits than those grown in the field [30].

The number of spikelets per spike is the most sensitive parameter in plants that
are affected by moisture stress during the reproductive stage. Water stress affects tiller
formation and reduces the possibility of tillers transforming into spikes, resulting in spike
abortion [31]. It might be due to moisture deficiency during the flowering and grain
development stages causing a significant loss leading to serious abscission of tillers and
photosynthetic absorption, consequently reducing yield [32]. Another important factor
regarding growth and yield is 1000-grain weight; in this study, 1000-grain weight was
substantially reduced when the plants were treated with water stress. The possible reason
is that the plant produces smaller seeds due to moisture stress during the seed filling
stage [32,33].

In this experiment, a water deficit stress negatively impacted relative water content.
Compared to the control condition, plants were affected by drought stress, thus causing
low water potential, SPAD value, and LAI. The results are similar to [34], who suggested
that plant leaves lose water potential due to water scarcity. Another study also reported
that under water deficit conditions, triticale genotypes had higher negative osmotic po-
tential [35]. Furthermore, the chlorophyll content in barley leaves was suppressed under
drought stress [33]. Barley grain yield under drought stress conditions was negatively
correlated with leaf water potential [33]. By adjusting osmotic potential, plants can main-
tain their turgor pressure and high water contents inside the cells under drought-stress
conditions [36]. It is reported that the decrease in LAI and photosynthetic activity due to
water deficit stress would decrease biological yield [22]. The decline in economic yield due
to water stress is the shortening of plant growth and grain filling time [37]. By decreasing
unnecessary transpiration, NA improves water use efficiency, resulting in greater economic
production. In our study, we found similar results that describe a decrease in economic
yield, total biomass, and harvest index in barley plants exposed to water stress [10,22].

The enzymatic antioxidant (CAT, SOD, and POD) and contents of carotenoids, α-
tocopherols, and ascorbic acid flavonoids, are non-enzymatic antioxidants involved in
the defense mechanism of plants. In plants, oxidative stress is often induced generally
due to the closing of stomata under water deficit conditions, indicating a reduction in
photosynthetic activity [38]. It causes damage to the proper working of plants by causing
oxidative damage to proteins, fats, nucleic acid, and enzymes [39]. Our study showed an
increase in CAT, SOD, and POD activity after the NA application in barley plants exposed to
water deficit stress. More or less similar results regarding physiological activities increment
due to inorganic treatment applications compared to water deficit stress were observed by
many researchers in different crops [39–41].

Drought has been one of the most important limiting factors for crop production, which
deleteriously affects food security worldwide. It will be compulsory to increase productivity
and economic yield under conditions constrained by water availability. However, before
this can occur, the extent of crop reduction and other agronomic traits that are affected by
changes in the climate must be understood. The application of NA helps to improve the
number of tillers per plant and the number of spikelets per spike, which play a key role in
the grain yield of wheat crops. When NA was applied at the rate of 2.2159 gL−1 as foliar
treatment and 1.47732 gL−1 as a soil application treatment under water deficient stress
levels, it increases plant height, leaf area, and the number of leaves, which plays a role in
stomata opening, which increases stomatal conductance, leaf water potential and relative
water content, and improves cell wall integration. NA improves enzymatic activities and
increases photosynthetic and transpiration rates, which help get the maximum yield of the
wheat crop. This study was performed as a pot experiment, therefore, NA applications in



Plants 2022, 11, 2443 13 of 14

field conditions need to be tested under diversified stress conditions on various crops in
Pakistan. The ultimate objective is to make this technique cost-effective and economically
practicable for farmers to achieve maximum output.
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