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Abstract

Conventional breeding techniques have been integral to the development of many
agronomically important traits in numerous crops. The adoption of modern
biotechnology approaches further advanced and refined trait development and
introduction beyond the scope possible through conventional breeding. However, crop
yields continue to be challenged by abiotic and biotic factors that require the
development of traits that are more genetically complex than can be addressed through
conventional breeding or traditional genetic engineering. Therefore, more advanced trait
development approaches are required to maintain and improve yields and production
efficiency, especially as climate change accelerates the incidence of biotic and abiotic
challenges to food and fibre crops. Synthetic biology (SynBio) encompasses approaches
that design and construct new biological elements (e.g., enzymes, genetic circuits, cells)
or redesign existing biological systems to build new and improved functions. SynBio
‘upgrades’ the potential of genetic engineering, which involves the transfer of single
genes from one organism to another. This technology can enable the introduction of
multiple genes in a single transgenic event, either derived from a foreign organism or
synthetically generated. It can also enable the assembly of novel genomes from the
ground up from a set of standardised genetic parts, which can then be transferred into
the target cell or organism. New opportunities to advance breeding applications through
exploiting SynBio technology include the introduction of new genes of known function,
artificially creating genetic variation, topical applications of small RNAs as pesticides and
potentially speeding up the production of new cultivars with elite traits. This review will
draw upon case studies to demonstrate the potential application of SynBio to improve
crop productivity and resistance to various challenges. Here, we outline specific
solutions to challenges including fungal diseases, insect pests, heat and drought stress

and nutrient acquisition in a range of important crops using the SynBio toolkit.

KEYWORDS

abiotic stress, biotic stress, crops, photosynthesis, SynBio

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2022 The Authors. Journal of Sustainable Agriculture and Environment published by Global Initiative of Crop Microbiome and Sustainable Agriculture and John Wiley

& Sons Australia, Ltd.

J Sustain Agric Environ. 2022;1:89-107.

wileyonlinelibrary.com/journal/sae2 89



[JOURNA

Global Initiative of

SARGENT ET AL

OF SUSTAINABLE
LTURE AND ENVIRONMENT = Saihieinese

1 | INTRODUCTION
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Conventional breeding techniques have successfully introduced
several beneficial agronomic traits into agricultural crops such as
cotton (fibre quality attributes [Campbell et al., 2010; Clement et al.,
2015], crop maturity [Campbell et al., 2010; Chen & Du, 2006] and
disease resistance [Bell, 1994; Hillocks, 1998; Knight, 1946; Stiller &
Wilson, 2014]), wheat (dwarfing genes, increased water-use
efficiency [WUE], flowering time and preharvest sprouting; Christy
et al., 2018; Gifford et al., 1984; Sansaloni et al., 2020; Sheehan &
Bentley, 2021; Yang & Zhang, 2010) and canola (pod shattering,
herbicide resistance and pathogen resistance; Barbetti et al., 2012;
Gan et al., 2016; Kirkegaard et al., 2016). The adoption of modern
biotechnology approaches has enabled developments beyond the
capacity or efficiency of conventional breeding, such as insect and
herbicide resistance in broadacre crops (Dill, 2005; Downes et al.,
2017). However, crop yields continue to be challenged by abiotic
and biotic factors. In addition, while progress in traditional breeding
is yet to reach a ceiling in many crops, genetic diversity in cultivated
cotton (Igbal et al., 2001; Wendel et al., 1992), wheat (Sansaloni
et al., 2020) and canola (Rahman, 2013) germplasm is becoming
limited with new diversity often having to be sought in close
relatives. Therefore, more advanced crop cultivar development
approaches such as synthetic biology (SynBio) are required to
maintain and improve yields and production efficiency, especially as
climate change accelerates the incidence of biotic and abiotic

challenges to food and fibre crops.

2 | WHAT IS SYNBIO?

A consensus definition of SynBio was drafted by a group of European
experts more than a decade ago: ‘Synthetic biology is the engineering
of biology: the synthesis of complex, biologically based (or inspired)
systems, which display functions that do not exist in nature’ (Synthetic
Biology: Applying Engineering to Biology: Report of a NEST High
Level Expert Group; Vancompernolle & Ball, 2005). This engineering
perspective may be applied at all levels of biological organisation,
from the molecular level to entire organisms. SynBio enables the
rational and systematic design of biological systems (Serrano, 2007).
It encompasses approaches that design and construct new biological
elements (e.g., enzymes, genetic circuits, cells) or redesign existing
biological systems to build new and improved functions. These
approaches can occur in two subfields: (1) using existing biological
building blocks to create combinations not present in nature and
(2) create nonnatural building blocks to replicate natural functions or
develop novel functions. Through its evolution, SynBio has adopted
many of the commonly used engineering terms such as ‘switch’,
‘rewire’ and the ‘design, test, simulate, learn cycle’ (Figure 1;
Liu et al., 2015).

Defining what is classified as SynBio is heavily debated as many
tools and approaches can be considered synthetic. Furthermore, the

evolution of technology and terminology has seen different labels
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FIGURE 1 The design, test, simulate and learn cycle of
developing and introducing novel traits into food and fibre crops
through synthetic biology. Natural variation and mining big data sets
provide information to design new pathways for improved resilience
to abiotic and biotic stresses. These are then tested in high-
throughput plant, bacterial and yeast systems. For crops, the
intended outcome of the alterations can be modelled to determine
the impact on yield and resource-use efficiency. From this we learn
the best ways to alter crop productivity and begin to implement
incorporation of such traits or return to identify further variation to
include in SynBio design. Selected traits of value are then used for
germplasm development.

applied to similar scientific fields (i.e., biotechnology, genetic
engineering, SynBio). Traditional genetic engineering involves the
transfer or modification of single genes or components (Roell &
Zurbriggen, 2020; Serrano, 2007). In contrast, SynBio tools are
capable of developing complex multigenic traits through the
simultaneous introduction or manipulation of multiple genes (Roell
& Zurbriggen, 2020), derived from donor organism(s) or syntheti-
cally generated. Therefore, SynBio ‘upgrades’ the potential of
genetic engineering, enabling more rapid development of transgenic
material with more complex modifications, which is favourable for
the development of elite crop cultivars. For example, the initial
development of C,4 rice included the introduction of five genes from
the NADP-ME biochemical subtype (Ermakova et al., 2020b). This
transformation would have taken years through traditional genetic
engineering involving cycles of single gene introduction and
subsequent stacking events. SynBio techniques (e.g., Golden Gate
cloning) enabled this complex transformation to occur in 6 to
12 months (Ermakova et al., 2020a). SynBio can also enable the
assembly of novel genomes from a set of standardised genetic parts,
which can then be transferred into the target cell or organism
(Serrano, 2007). Gene editing is a promising SynBio technology that
allows an organism's genome to be modified without the introduc-
tion of foreign genetic material (Pixley et al., 2019). Topical
application of double-stranded RNA (dsRNA) to elicit gene silencing
through RNA interference (RNAI) is another tool within the
SynBio toolkit with great potential for agricultural application (e.g.,
as biopesticides). Topical RNA viral transfection can similarly be
applied to crops to transiently alter agronomic traits, such as

flowering time and stress responses, by transiently expressing or
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TABLE 1 SynBio tools with potentially valuable applications in agriculture

Technology Description References

CRISPR-Cas9 Targeted in vivo gene editing. An efficient tool for silencing, changing or enhancing Mao et al. (2013)
specific genes or integrating transgenes into a specific location in the genome.

Golden Gate Simultaneous and directional in vitro assembly of multiple DNA fragments into a single  Engler et al. (2009)
construct. A valuable tool for stacking multiple genes for complex, multigene traits.

Crucial for modular cloning that can be used to exchange promoter and terminator
elements.

RNAI Targeted gene silencing by RNA-interference (RNAI). Useful for silencing undesirable Liu et al. (2020) and Niehl
genes (i.e., toxic compounds in edible tissues) or silencing critical processes in et al. (2018)
undesired organisms (i.e., infection mechanisms of fungal diseases).

Gene drives Promoting inheritance of deleterious alleles (i.e., lethal or sterile alleles in insect pests).  Bier (2022)

Gene synthesis

Regulated promoters

stress or phenological development.

Rapid assembly and cloning of identified genes into DNA constructs.

Regulated promoters can temporally control gene expression by activating or
deactivating downstream genes under specific conditions such as environmental

www.genscript.com as an example.

Khan et al. (2017) and Schreiber
and Tissier (2017)

Abbreviations: CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; RNAi, RNA interference; SynBio, synthetic biology.

silencing regulatory genes (Torti et al.,, 2021). There are many
SynBio tools and techniques suitable for application in agricultural
settings (Table 1) with the potential to develop novel agricultural
products and significantly improve agricultural management, pro-
ductivity and sustainability. In extension to this, new artificial
promoter development will make it possible to turn genes on and
off, depending on the presence of a chemical or biotic and abiotic
elicitor (Schreiber & Tissier, 2017).

SynBio offers a range of research applications that can be
classified as either ‘fundamental’ or ‘applied’. Significant advance-
ments in understanding fundamental biology have been and continue
to be achieved using SynBio. However, there are numerous possible
practical applications, from medicine to agriculture. Agricultural
industries continue to face severe challenges, particularly those
associated with climate change, while demand for agricultural
products continues to rise to support a growing population. This
challenge could be addressed using SynBio techniques that enable
even the most complex biological systems to be efficiently and

effectively redesigned.

3 | WHAT IS INSIDE THE SYNBIO
TOOLKIT?

3.1 | CRISPR-Cas9 (gene editing)

CRISPR-Cas9 is one of the fastest, easiest and cost-effective gene
editing tools (Hayes et al., 2018). It is favoured as an alternative to
classical plant breeding and transgenic methods for its simple
design and easy construction of DNA constructs (Belhaj et al.,
2015). This technique is the application of the Type Il CRISPR-Cas
system that is involved in the immune system/defence mechanism
in bacteria and archaea (Farzadfard et al., 2013; Jinek et al., 2012;
Qi et al., 2013). During the recognition (or adaptation) phase of

foreign nucleic acids (either from a virus or plasmid) in bacteria,
conserved Cas1 and 2 proteins stitch pieces of invading DNA into
the bacteria's CRISPR (Clustered Regularly Interspaced Short
Palindromic Repeats) region, which allows the bacteria to record
and recognise the infecting virus (Jinek et al., 2012). These regions
are transcribed into crRNA (CRISPR RNA), which are subsequently
processed and base pairing is required with transactivating crRNA
(tracrRNA), which bind to the Cas9 protein (Mir et al., 2018). The
Cas9 ribonucleoprotein then uses this crRNA-tracerRNA molecule
as a guide to recognise subsequent matching nucleic acids and
through its nuclease activity destroys the invading DNA (Mir et al.,
2018). Jinek et al. (2012) discovered that a synthetic guide RNA
(gRNA) composed of the crRNA and tracrRNA could identify
specific sequences of DNA and cut the DNA at that location.
Random repair of the cut can introduce deletions or small random
insertions or if a repair template is supplied can edit it to another
specific sequence (Jinek et al., 2012). The discovery and develop-
ment of this technology were recently awarded the Nobel Prize
(Ledford & Callaway, 2020). This process can be used to knock out
specific genes (e.g., disease-causing genes) or ‘fix’ genetic errors.
This technique can also be modified to promote gene transcription
by deactivating Cas9 so it cannot cut DNA and fusing Cas9 with
transcriptional activators (Konermann et al., 2015). Gene editing
through such technology is viewed favourably in part because
single-gene knockouts or single base-pair mutations may not
require regulation in a growing number of countries (e.g.,
Waltz, 2018). The Australian government declared in 2019 that
gene-editing techniques in plants and animals that do not
introduce new genetic material (i.e., incisions by CRISPR-Cas
systems allowed to be repaired naturally without a gRNA) will not
be regulated as genetically modified organisms (GMOs; Mallapaty,
2019). Editing techniques that do incorporate new genetic
material, such as the introduction of new amino acids or genes,

will require regulation by the relevant government authorities to
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allow the use of GMOs. In Australia, this is the Office of the Gene
Technology Regulator (https://www.ogtr.gov.au/).

3.2 | Golden Gate (gene assembly)

Golden Gate cloning is one example of the toolkit that enables the
modular assembly of multiple (upwards of 10) fragments of DNA into a
single vector backbone (a DNA molecule used as a vehicle to transfer
genetic material into a cell) in ‘single tube’ reactions without leaving
any ‘scars’ at the joins (Werner et al., 2012). The components
(promoters, coding sequences and terminators) are designed to contain
recognition sequences to allow precise assembly and unique
recognition sites at the ends of the assembled DNA fragments
facilitate its precise insertion into the destination vector (Engler et al.,
2009). The use of Type IIS (e.g., Bsal) restriction (cutting) enzymes are
crucial to this system because they cut outside their recognition
region, leaving specific overhangs for ligation (DNA joining) using T4
DNA ligase, and the removal of the recognition sequence after
digestion means that the DNA pieces cannot be digested again (Engler
et al., 2009). This ensures that only correctly assembled products
remain intact and fragments that are no longer required in the final
assembled product are removed (Engler et al., 2014). This is a desirable
approach for assembling large gene constructs and stacking multiple
genes for efficient multitrait transfer with appropriate regulatory
sequences. Common design principles enable gene parts to assemble in
a modular way to select appropriate regulatory control components for
gene expression and provide the ability to incorporate multigene
constructs that include whole metabolic pathways into plants.

3.3 | RNAI (gene silencing)

RNAI is a post-transcriptional gene silencing mechanism that is a
naturally occurring pathway found in eukaryotic organisms to protect
against viruses and/or pathogens producing aberrant RNA molecules
(Ashfaq et al., 2020). This process involves the recognition of the
aberrant RNA, which is converted into dsRNA (Waterhouse et al.,
2001). dsRNA is the elicitor of the RNAI response, which the DICER
enzyme cleaves into 21-nucleotide small interfering RNA (siRNA)
molecules (Hung & Slotkin, 2021). The siRNA molecules are then
bound to an argonaut protein and used as a guide strand to recognise
specific regions of messenger RNA (mRNA) for degradation (Fire,
1999) and in some cases the complex can directly inhibit translation
of specific genes, effectively silencing them. RNAi has been targeted
as a process to silence genes for various agricultural applications,
such as inducing sterility or mortality in insect pests when they eat
RNAi-producing plants, modifying seed oil composition, suppressing
toxin production in edible crop tissues and in suppressing fungal and
viral pathogens of plants (Chen et al., 2015; Jgrgensen et al., 2005;
Kola et al., 2015; Liu et al., 2017; Worrall et al., 2019; Zhang et al.,
2015) such as bacterial blight (Xanthomonas) infection in cotton
(Cox et al., 2017).

3.4 | Gene drives (promoting inheritance
of deleterious alleles)

Gene drives increase the frequency of deleterious alleles by inserting
enzymes via CRISPR to destroy nondesired genes in chromosomes,
thus enabling the desired deleterious gene to be copied and inherited
(Bier, 2022). Some types of gene drives can be reversible and spatially
restricted (Pixley et al., 2019). This technology could be used to
target pests, weeds and diseases (i.e., introduce sterility in insect

pests or inhibit seed setting in weeds).

3.5 | Gene synthesis (increasing the speed
of cloning)

Gene synthesis has revolutionised the construction of plasmid DNA
used for biotechnology and SynBio (e.g., www.genscript.com).
Previous gene cloning relied on PCR amplification from various
sources that also included the incorporation of restriction sites for
cloning and this had to match that of available cloning vectors for
protein expression in Escherichia coli or other hosts and transforma-
tion of plants and algae. Gene synthesis used in combination with
Golden Gate cloning and other modular cloning processes has
increased the speed at which DNA constructs can be made,
drastically reducing the time required for even complex multigene
constructs. This has also resulted in the development of gene
foundaries that gather appropriate components and assemble them
into functioning systems (Chambers et al., 2016). Ultimately, gene
synthesis has enabled genes, identified from DNA and transcriptome
sequence data, to be cloned. Furthermore, codon modification of
sequences to ensure the efficiency of translation of foreign genes
between species (Gustafsson et al., 2004) is made easier even for

very large genes.

3.6 | Regulated and artificial promoters

Understanding how promoters switch on and off in response to
environmental cues is important for next-generation solutions. This
has important agricultural applications, enabling genes to be
activated or deactivated during specific environmental conditions
(low or high temperatures; Grover et al., 2013) or disease triggers
(Arnaiz et al., 2019). Examples may include water conservation
genes that can be activated during the detection of drought stress
or a thermotolerant isoform of ribulose-1, 5-bisphosphate carbox-
ylase/oxygenase (Rubisco) activase induced under heatwave condi-
tions (Sharwood, 2017). These are efficient strategies, particularly
for genes that may be energetically expensive, as it limits their
expression to periods when they are most critically required.
Artificial promoters, such as the transcription activator-like effec-
tors (TALEs) and the synthetic TALE-activated promoter (STAP) systems,
may amplify the expression of multiple genes from a single promoter
(Boch & Bonas, 2010; Boch et al, 2009; Brickner et al, 2015;

85UB017 SUOWIOD A1) 8|qe! dde aup Aq peuenob ae Sajpiie YO ‘8Sn JO ol 10} Aeiq18UIUO 48] 1M UO (SUORIPUOD-PUR-SLUBILI0O" A3 IM"ALeIq | Ul [UO//:SdnL) SUORIPUOD pue Swie | 8y} 89S *[£202/90/22] Uo Ariqiauliuo A8|im ‘ABupAs ueisem JO A1sieAlun AQ #T02T 29es/200T 0T/I0p/u0D" A8 M Ake.d 1 jpuluo//:SAny Wouy pepeojumod ‘g ‘220z XSe0./9.2



SARGENT ET AL

Schreiber & Tissier, 2016, 2017). TALEs are transcription factors that
manipulate the transcription of endogenous genes in plants (Schreiber &
Tissier, 2016). This system involves expressing the TALE gene activator
from the desired promoter, which, in turn, binds to the STAP promoter(s),
driving expression of the gene(s) of interest (Briickner et al, 2015).
Another example is the expression of dead Cas9 fused to a strong
transcriptional activator targeted to specific promoter regions of genes of
interest using specific gRNAs. This system has been shown to be a strong

activator of gene expression (Xu et al., 2019).

4 | PROMISING SYNBIO SOLUTIONS
TO KEY AGRONOMIC CHALLENGES

Conventional plant breeding approaches have been integral in
developing agronomically important traits in various crops, improving
crop production, productivity and resilience. For example, conven-
tional breeding approaches, including marker-assisted selection, have
improved broad disease resistance in rice (Luo et al., 2017; Suh et al.,
2013), potato (Haverkort et al., 2016; Zhu et al., 2012) and wheat
(Aktar-Uz-Zaman et al., 2017; Liu et al., 2000). Breeding and selection
of rice has resulted in the loss of seed dispersal, increased apical
dominance, decreased seed dormancy, compact panicles and larger
inflorescences and grains throughout its domestication (Doebley
et al., 2006; Ishii et al., 2013; Zhu et al., 2013). Breeding maize for leaf
architecture traits to enable higher planting densities, and repressed
ear prolificacy, inflorescence branching and tillering have improved
yields substantially (Duvick, 2005; Tian et al., 2011; Vollbrecht et al.,
2005; Wills et al., 2013). Conventional hybridisation and mutation
breeding have successfully introduced several beneficial agronomic
traits in cotton such as maturity and growth habits suited to a range
of season lengths and production regions (Kandhro et al., 2002;
Xanthopoulos & Kechagia, 2001), improved fibre quality (Muthusamy
& Jayabalan, 2011), photoinsensitivity (Raut et al., 1971), fungal
pathogen resistance (Ganesan & Jayabalan, 2006), herbicide toler-
ance (Rajasekaran et al., 1996) and heat tolerance (Rodriguez-Garay
& Barrow, 1988; Trolinder & Shang, 1991). In addition to
conventional breeding, the adoption of modern biotechnology
approaches has generated genetically engineered cotton cultivars
with additional traits such as insect and herbicide resistance (Perlak
et al., 2001). Despite these advancements over the years, crop yields
continue to be challenged by the occurrence of pests, weeds,
pathogens, nutrient acquisition and abiotic stresses; thus, introducing
novel properties and additional genetic diversity is required.
However, the ability to overcome these challenges through conven-
tional breeding is limited by the ability to exploit available genetic
diversity in crop germplasm collections (Dwivedi et al., 2007, 2017;
Sharwood et al., 2022, in press). Genetic and reproductive barriers
such as interspecific incompatibility (Bedinger et al., 2011; Kitashiba
& Nasrallah, 2014), genetic drag (i.e., introducing unfavourable traits
along with any new favourable traits; Langridge & Fleury, 2011;
Varshney et al., 2014) and the lack of an effective way to combine

multiple desired alleles for complex traits (Lyzenga et al., 2021)
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remain key limitations for crop breeding programmes to target
certain agronomic challenges. Overcoming these limitations for
effective and efficient novel trait development is possible using

SynBio tools.

41 | Insect pests

New, robust solutions to control insect pests and their ability to
develop resistance is required to sustain and improve crop produc-
tion and reduce reliance on insecticides. SynBio technologies present
multiple solutions to combat insect pests. Notable success has been
achieved historically through the introduction of genes for toxin
production in targeted crop tissues. The introduction of the Cry
protein genes from Bacillus thuringiensis to develop Bt cotton and
corn is a prime example of the use of ‘traditional’ genetic engineering
techniques to achieve insect pest resistance (Carriere et al., 2010;
Cousins et al., 1991; Downes et al., 2016; Fitt & Wilson, 2005;
Shelton et al., 2002). These crystalline proteins (Schnepf et al., 1998)
provide effective and relatively specific resistance (Mendelsohn et al.,
2003) against Lepidoptera species such as cotton bollworm (Helicov-
erpa armigera), cereal stem borer (Busseola fusca) and fall armyworm
(Spodoptera frugiperda) (Tabashnik et al., 2013). The larvae of these
moth species typically feed on plant terminals, reproductive
structures and stems (Leigh et al., 1996), thereby potentially reducing
crop yield depending on the severity and timing of damage (Sadras,
1995). Following the introduction of Bt cotton (data from 1986 to
1995 compared to data from 1996 to 2015), insecticide usage has
decreased by 61%-81% and damage losses have reduced by
47%-63% in the USA (Williams, 2015). As a result of the adoption
of Bt cotton cultivars in Australia, total farm income gain has
increased by approximately AUD$180 per hectare and insecticide
application has reduced by around 97% since 1992 (Cotton Australia,
2021). Bt corn hybrids, widely grown in the United States, produce
more grain and above-ground biomass than conventional cultivars
(Dillehay et al., 2004; Graeber et al., 1999; Mungai et al., 2005;
Subedi & Ma, 2007) and are less susceptible to lodging (Lauer &
Wedberg, 1999); however, variation in the improvement does exist.
Yield advantages of Bt corn over conventional cultivars have been
reported in the Philippines as high as 41%, resulting in profitability
gains of 15%-86% (Yorobe & Quicoy, 2006).

Although H. armigera and other Lepidoptera continue to be
controlled in cotton by new Bt cultivars (Downes et al., 2016;
Tabashnik & Carriére, 2017), resistant individuals are emerging in
cotton and other Bt crops (Gould, 1998; Tabashnik, 1994; Tabashnik
& Carriéere, 2017). Some examples include the corn earworm
(Tabashnik & Carriere, 2017), pink bollworm to Bt cotton in western
India (Bagla, 2010), the cereal stem borer to Bt corn in South Africa
(Kruger et al., 2009) and the fall armyworm to Bt corn in Puerto Rico
(Matten et al., 2008). The current strategy to delay insect resistance
to Bt crops is using refuge crops without the Bt trait to promote
susceptible populations, but this approach has seen varied success
(Tabashnik et al., 2008). Additionally, the Cry proteins have a narrow
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host specificity and are not expressed in the phloem (Raps et al.,
2001); therefore, the commercialized Bt traits offer no protection
against ‘sucking pests’ that feed on the phloem such as mirids,
whitefly, mites, aphids and thrips. The cessation of insecticides
previously used to control Helicoverpa spp. has resulted in the
increased significance of these secondary insect pests (Wilson et al.,
2013, 2018). Further development of crop cultivars with more robust
control over a broader range of major insect pests is required. A new
genetically engineered trait has been developed by Bayer—ThryvOn
—after an extensive search for hemipteran active Bt's and directed
evolution to increase its toxicity to the lygus bug, providing increased
protection in cotton against mirids, lygus bugs and thrips (Ellsworth
et al, 2021). Incorporating native host plant genes for resistance
against additional sucking pests, such as two-spotted spider mite and
silverleaf whitefly, into Bt cotton cultivars is also underway and
would be highly valuable in conjunction with the ThryvOn trait as
thrips can be an early-season predator for mites (Wilson et al., 2018).
Silverleaf whitefly (Figure 2) would be a particularly valuable target
for both Bt and non-Bt crops due to its broad host range on different
crop species, ability to vector diseases and propensity to develop
resistance against insecticides (Da Silva Oliveira et al., 2021; Mayer
et al., 2002).

Technologies that enable more rapid development of novel
protection is required as crops become exposed to new insect pests.
In Australia, ‘new’ pests, such as the fall armyworm, are emerging
from other regions or through the expansion of crops into new
production areas, such as cotton in Northern Australia (Wilson et al.,
2018). This region is a vastly different breeding target environment
than in the more temperate Eastern Australia where cotton is
traditionally grown, with different pest species and diseases; there-
fore, new cultivars may need to be developed specifically for this
more tropical production region. The main pests in these Northern
areas include the pink bollworm and cluster caterpillar, which
contributed to the collapse of the cotton industry in the Ord River
during the 1970s (Yeates et al., 2014). The pink bollworm is not
effectively controlled by Bt cotton due to evolved resistance against
two of the three Bt genes present in our current cultivars (Mathew
et al., 2018). Therefore, the pink bollworm is a significant risk, and

thus a valuable target for developing new cotton germplasm.

FIGURE 2 Silverleaf whitefly on a cotton leaf (Photo:
Carlos Trapero).

SynBio offers several solutions to target numerous insect pests
that affect various Bt and non-Bt crops. Bt crops would be suitable
for pilot studies due to their pre-existing transformation platforms
and GMO status. SynBio approaches offer the unique ability to
rapidly introduce multiple genes simultaneously for more complex
protection against existing and new insect pests. This trait stacking
technology may also enable the development of more complex
protection to limit the development of resistance in pests such as
H. armigera. Stacking traits (e.g., through Golden Gate cloning and
gene editing to insert them in a single genomic location allowing
efficient expression of all the transgenes) is also likely to be the most
efficient way of developing new cultivars with resistance to multiple
insect pests that are not controlled by the current Bt traits, such as
whitefly and mites. This approach limits the number of transforma-
tions required to introduce multiple or multifaceted traits such as
resistances against a new suite of pests. Although this may be
possible through breeding (Miyazaki et al., 2013; Trapero et al.,
2016), it can take 20 years or more depending on the source of
resistance (unadapted, wild cottons or diploid relatives). Genetic drag
(i.e., of unfavourable genes flanking resistance genes) that can occur
with breeding from diverse material could be minimised by the more
targeted SynBio approaches. Therefore, progress could be more rapid
and efficient through SynBio trait-stacking approaches once the
resistance genes have been identified and their gene sequences

determined.

4.1.1 | Biopesticides to combat insect pests

RNAI technology offers several approaches to combat insect pests.
RNAI biopesticides are emerging as highly targeted sprays for the
control of specific insect pests (Fletcher et al., 2020). These highly
specific topical applications reduce the need for chemical pesticides
that may be damaging to the environment and nontarget organisms.
For example, Bioclays are foliar sprays that are developed by loading
dsRNA molecules into layered double hydroxide nanoparticles for
more stable delivery of the RNA compared to ‘naked RNA’
applications (Mitter et al., 2017; Worrall et al., 2019). However,
synthesis of enough dsRNA for large-scale applications requires
future development and needs to be affordable to be competitive
with existing synthetic chemical pesticides (Zotti et al., 2018). More
rapid and efficient synthesis procedures are required for topical RNAi
to be viable for agricultural applications.

Alternatively, insecticidal dsRNA molecules can be stably
expressed in GM plants along with the use of promoters for tissue-
specific expression in the tissues favoured by the pest. Consumption
of diet containing dsRNA and siRNAs targeted at whitefly genes such
as an actin ortholog, ADP/ATP translocase, a-tubulin, ribosomal
protein L9 and V-ATPase A subunit have resulted in significant
whitefly mortality (Upadhyay et al., 2011); thus, these dsRNAs might
conceivably also be expressed in the target plant. The expression
could be temporally controlled or spatially controlled within the plant.

Temporal expression includes constitutive (continuous) or inducible
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(i.e., upon detection of herbivorous damage) expression. Inducible
expression of an insecticidal dsRNA to induce RNAI is possible by
introducing a promoter alongside the gene to activate it upon damage
by insect pests (Senthil-Kumar & Mysore, 2010). Spatial expression
includes ubiquitous (all tissues) or tissue-specific expression. Tissue-
specific expression may be particularly valuable for the control of
sucking pests that feed on sap. Expressing the most effective of the
insecticidal dsRNAs from the in vitro assays with a phloem-specific
promoter could enable specific expression in the phloem to affect
sucking insect pests such as whitefly (Upadhyay et al., 2011).
Phloem-specific promoters have been identified in plants, including
those used to protect against bacterial disease (Dutt et al., 2012) and
sucking insects (Javaid et al., 2016). Eakteiman et al. (2018) deployed
RNAI in Arabidopsis with a phloem-specific promoter to target a
glutathione S-transferase gene, BtGSTs5, in whitefly, but with
sublethal effects. Full efficacy of RNAIi applications will rely on
increasing the lethality of these molecules (Shelby et al., 2020), at
least to the equivalence of an insecticide if topical or plant expressed
dsRNAs are to outcompete chemical insecticides. Ultimately, further
fundamental research (e.g., to identify genes for specific and lethal
toxin production and promoters for transient or tissue-specific
expression) will be required to improve the impact of this approach.
The review by Shelby et al. (2020) summarises the strategies and
considerations for controlling whitefly and other insect pests
using RNA..

412 | Controlling insect populations using
gene drives

Gene drives (promotion of deleterious alleles) can enable effective
and self-sustaining control of insect pest populations by increasing
the frequency of deleterious alleles such as sterility or lethal alleles
(Bier, 2022). Gene drives could also be used to revert pesticide-
resistant insect populations back to susceptible (Esvelt et al., 2014).
However, gene drives in insects are less favourable as controlling the

FIGURE 3 Verticillium wilt symptoms
in cotton (a) whole plant (Photo: Duy Le)
and (b) leaf symptoms (Photo: Lucy Egan).

Sustainable Agriculturs

NAL OF SU NAB
CULTURE AND ENVIRONMENT

GRI

travel of the genetically modified insect population is almost
impossible, relative to the control that can be implemented for a
GMO plant (Reeves & Phillipson, 2017), so gene technology
regulators and governments are taking a cautious approach in
regulating gene drive research with applications in the control of
insects, particularly those that are vectors for human diseases (Bier,
2022). Targeting the sensory ability of insect pests is also an option,
although this study focus is not as common as developing traits and
topical applications. For example, the insect pest could be modified to
remove its ability to sense a target crop. Similarly, the chemical
profile of the target crop could be modified (or masked by a topical
application) or make it ‘invisible’ or ‘repulsive’ to the insect (Champer
et al., 2016). Given the complex challenge of controlling insect pests,
a multifaceted approach incorporating Integrated Pest Management
(IPM) strategies is required for optimal control, likely through
combining cultivar resistance with management practices and topical

applications of environmentally friendly biopesticides.

4.2 | Fungal diseases

Fusarium and Verticillium wilt are two of the most devastating
diseases in the global cotton industry (Li et al, 2017b) and many
other crops including potato (Davis et al., 1996; Johnson & Dung,
2010), peanut (Woodward et al., 2011), safflower (Rao et al., 2014;
Urie & Knowles, 1972), tomato (Song et al., 2004), olive (Mercado-
Blanco et al., 2003), banana (Ploetz, 2015) and chickpea (Jendoubi
et al.,, 2017). These soil-borne fungi can exist in many different forms
in the soil, crop debris, other crops and weeds, and the severity of
Verticillium wilt tends to worsen with cold, wet conditions (Figure 3;
Li et al., 2017b). These diseases can be managed to some degree
through integrated agronomic practices, while significant advances
towards disease-resistant cotton germplasm have also been achieved
through the Commonwealth Scientific and Industrial Research
Organisation's cotton breeding programme. Genes encoding anti-

fungal proteins and signalling pathways have been reported to
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improve cotton's resistance against fungal pathogens such as
Verticillium and Fusarium wilt (Emani et al, 2003; Gaspar et al.,
2014; Murray et al., 1999; Parkhi et al., 2010; Tian et al., 2010; Wang
et al.,, 2004). However, it does not appear that any of these studies
have resulted in the significant levels of resistance required to be
incorporated into cultivars as a GM trait. There is a great need for
resistance to these diseases in various crops, and current global
activity in this area is high.

Several challenges constrain the development of Verticillium-
and Fusarium-resistant crops. In cotton, cultivars that are more
resistant to one of the diseases tend to be susceptible to the other
(Li et al., 2017b). Additionally, one of the biggest challenges to the
cotton industry is the existence of two pathotypes of Verticillium
wilt, defoliating and nondefoliating (Li et al., 2017b), which can
co-occur (Le et al., 2020) and elicit different responses to different
cultivars. Breeding efforts thus far have been unable to develop dual
resistance to both pathotypes. There are no cost-effective fungi-
cides identified to date that effectively control Verticillium patho-
types, and host plant resistance in combination with management
practices is currently the most economical and environmentally
friendly approach to managing Verticillium wilt (Gore et al., 2017;
Li et al.,, 2017b).

Trait stacking through Golden Gate cloning could be beneficial
for the development of complex and effective resistance in a range of
susceptible crops, as well as developing cotton cultivars with dual
resistance to both pathotypes of Verticillium if separate resistance
genes can be identified. Dual resistance to both Verticillium and
Fusarium would also be highly valuable, albeit an ambitious task, but
worth long-term investment. Using RNAI technology and/or CRISPR-
Cas9 in combination with TALENS could also be an effective
approach to developing resistance, as these technologies have been
used to combat bacterial blight (Xanthomonas) infection in rice
(Li et al., 2020) and powdery mildew (Blumeria graminis f. sp. tritici) in
wheat (Wang et al., 2014). However, these approaches rely on the
identification of genes for resistance to introduce or genes to target
in the Verticillium genome to inhibit infection or survival. Although
numerous genes, quantitative trait loci (genomic regions) and proteins
have been identified as potential contributors to some level of
resistance to Verticillium in some tomato, potato and cotton cultivars
and species (Cheng et al., 2016; Dong et al., 2019; Duan et al., 2016;
Gayoso et al., 2010; Jun et al., 2015; Li et al., 2014, 2018; Liu et al.,
2012; Mo et al., 2015; Yang et al., 2015, 2018; Zhang et al., 2017),
the precise combination of genes and the location of their expression
for conferring optimal resistance remain elusive. Further research is
required to understand the pathogenicity of key crop diseases and
identify genes that may confer resistance. Additionally, the location
of their expression (i.e., in the root hairs or xylem) could be critical for
effective resistance. This localisation could be aided or fast-tracked
through using CRISPR-Cas9 to identify gene functions by targeted
knockouts of all the genes within a genetic interval conferring
resistance until the exact resistance gene is identified, while Golden
Gate cloning would enable gene combinations and expression

patterns to be tested.

4.3 | Photosynthetic carbon assimilation

Targeting improved photosynthesis is one of the next frontiers for
improving food and fibre crop productivity, resource-use efficiency
and abiotic stress tolerance (Ainsworth & Ort, 2010; Betti et al.,
2016; Furbank et al., 2020; Long et al., 2006; Posch et al., 2019;
Simkin et al., 2019; Sharwood, 2017). Photosynthetic pathways and
abiotic stress responses are highly complex and impact multiple
pathways (Figure 4). In some crop scenarios, the photosynthetic rate
is poorly linked to yield, but under increasing levels of CO,, the link is
stronger (Long et al., 2006). Therefore, traits that target improved
photosynthetic performance and resilience under abiotic stresses will
require targeted integration of multiple genes and possibly new
reaction pathways. Enhancing photosynthetic pathways would rely
on the SynBio toolkit that can efficiently transfer large gene
constructs with specified expression patterns. Examples include
enhancing photosynthetic enzymes (Sharwood, 2017; Sharwood
et al., 2022) improving WUE by introducing novel aquaporins and
modifying cellular anatomy to improve mesophyll conductance (the
diffusion of CO, into photosynthetic chloroplasts; Cousins et al.,
2020; Ermakova et al., 2021). Heat-shock proteins (Reddy et al,,
2016) and altering root traits (Hu & Xiong, 2014) are also targets for
improving crop heat and drought tolerance and WUE that should be
considered and could be particularly powerful when combined with

photosynthetic enhancements.

4.3.1 | Enhancing productivity and thermotolerance
through improving photosynthesis

Improving carbon assimilation and thermotolerance is likely to rely on
modifying several key photosynthetic enzymes (in bold below)
involved in the Calvin cycle (carbon fixation, reduction and regenera-
tion) and the electron transport chain (‘light photosynthesis’). Rubisco
catalyses carbon fixation (carboxylation) inside the chloroplast and is a
long-standing target of photosynthetic enhancement for yield gain
(Sharwood, 2017). Carboxylation by Rubisco is aided by its ‘helper
protein’ Rubisco activase, which prevents Rubisco from becoming
inactivated and is thermolabile under abiotic stress (Kumar et al.,
2009; Kurek et al., 2007; Sharwood, 2020). Carbon assimilation and
crop biomass and yield have been improved under heat stress by
introducing more thermostable Rubisco activase (Kumar et al., 2009;
Kurek et al., 2007; Scafaro et al.,, 2019) or a catalytically superior
Rubisco (Long & Ort, 2010; Zhu et al., 2010) or by modifying both
Rubisco and Rubisco activase (Qu et al., 2021). SBPase is involved in
the regeneration of RuBP during the Calvin cycle, the substrate for
carboxylation by Rubisco. Overexpression and manipulation of
SBPase can enhance photosynthesis under heat stress in transgenic
rice (Feng et al., 2007), prevent heat-induced yield reduction in
soybean (Kéhler et al., 2016) and improve vegetative biomass and
seed yield in Arabidopsis (Simkin et al., 2017). Overexpression or
the introduction of novel SBPases can also improve crop WUE

(Lopez-Calcagno et al., 2020). Cytochrome bgf is one of the four major
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FIGURE 4 Selected strategies for improving carbon assimilation. Engineering elements of the Calvin-Benson-Bassham (CBB) cycle and light
reaction systems are intended to improve the synthesis of carbohydrates that are required for plant growth, biomass production and yield.
Strategies include improving Rubisco catalysis either through altering catalytic properties through transplanting subunits (Sharwood, 2017) or
directed evolution (Zhou & Whitney, 2019) or co-engineering Rubisco into a carbon concentrating mechanism (Sharwood, 2017) and improving
Rubisco activase function, which modulates Rubisco activity and is thermolabile (Sharwood, 2017). Additional strategies involve elevating the
metabolic flux through the CBB cycle by overexpressing sedoheptulose 1, 7-bisphosphatase (Driever et al., 2017) and overexpressing light
reaction components such as cytochrome bgf (Ermakova et al., 2019). Other strategies include improving CO, diffusion through repurposing
CO, permeable aquaporins (Ermakova et al., 2021) and/or improving stomatal regulation (Lawson & Vialet-Chabrand, 2019), engineering a
photorespiratory bypass to remedy inefficiencies associated with Rubisco oxygenation (South et al., 2019) and transplanting CO, concentrating
mechanisms either in the form of a carboxysome (Long et al., 2018) or a pyrenoid (Atkinson et al., 2020). CCM, carbon-concentrating

mechanism.

light-harvesting protein complexes in the chloroplast membrane,
involved in electron transport reactions that provides energy for
carbon assimilation by the Calvin-Benson-Bassham cycle. Over-
expression of light-harvesting complexes such as b¢f offer opportuni-
ties to improve crop carbon acquisition (Ermakova et al., 2019; Yamori
et al,, 2016).

4.3.2 | Improving crop WUE and drought tolerance
Developing more productive, drought stress-resilient and water-use
efficient crops are required for productivity to continue in a warmer
and drier world. SynBio can facilitate the transfer of novel drought
tolerance and improved WUE traits that are not possible through
conventional breeding.

Modifying C3 crops like rice, wheat, canola and cotton to have a
more efficient photosynthetic metabolism is one such strategy that is
only possible through more advanced technologies offered by SynBio
(Depaoli et al., 2014). Crassulacean acid metabolism (CAM) and C4
photosynthesis are renowned for being more water-use efficient
than C5 photosynthesis (Borland et al., 2014; Depaoli et al., 2014,
Ermakova et al.,, 2020b). This is due to the presence of carbon-
concentrating mechanisms (CCMs) that reduce the need for as much
stomatal opening, thus transpiring less water while maintaining

carbon assimilation rates (Borland et al., 2014). Consequently, CAM
plants can use 20%-80% less water to produce the same amount of
biomass compared to C5 and C,4 plants (Antony & Borland, 2009; Von
Caemmerer et al., 2012). An added bonus of this mechanism is that
its expression can be induced. Facultative CAM species are capable
of expressing mRNA encoding for CAM enzymes in response to
abiotic stresses, ‘switching on’ this mechanism when it is most
needed (Winter & Holtum, 2014). This could be exploited to develop
cotton cultivars capable of switching to more water-use efficient
metabolisms when water is scarce. The potential productivity impact
of introducing water-conserving mechanisms needs to be carefully
considered. Water-preserving traits are likely to be most beneficial in
rainfed production systems, particularly if inducing a yield penalty is
to be avoided.

Aquaporins are proteins that facilitate the movement of water in
plants and/or other substrates like CO,, silicon, boron and ions
(Groszmann et al., 2017; Uehlein et al.,, 2003). Expression and
overexpression experiments revealed the influence of aquaporins on
photosynthesis, mesophyll conductance in C,4 plants (Ermakova et al.,
2021), stomatal conductance and root hydraulic conductivity, and
thus productivity and water use (Sade et al., 2009). Consequently,
aquaporins have emerged as another target for developing water-use
efficient and drought-resistant crops (Ermakova et al., 2021).
However, it is important to note that ectopic expression of
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At PIP1;2 and 1;4 did not result in tobacco plants with improved

mesophyll conductance (Clarke et al., 2022, in press).

4.3.3 | Photosynthetic enhancement will
rely on SynBio

If traits are not found in closely related species suitable for crop
breeding, the photosynthetic enhancement will need to rely on
SynBio approaches. Photosynthetic manipulation is complex, requir-
ing the introgression or modification of multiple genes to improve
flux through the Calvin cycle to enhance the production of
carbohydrates (Figure 4). Therefore, rapid and efficient insertion of
multiple transgenes into target crops will be paramount (Castilho,
2015; Simkin et al.,, 2019). SynBio has enabled multiple genetic
modifications to occur in a single event, thus enabling improvement
of photosynthetic efficiency to improve crop performance, heat and
drought resilience and WUE (Kromdijk & Long, 2016; Kubis &
Bar-Even, 2019; Ort et al., 2015; Shih et al.,, 2014; Simkin et al.,
2019). Multiple targets, such as Rubisco (either through creating new
versions through directed evolution [Zhou & Whitney, 2019] or
transplanting foreign large and small subunits [Whitney et al., 2011]),
Rubisco activase and possibly also their supporting chaperones
(Aigner et al., 2017), would be required to successfully enhance
photosynthesis and abiotic stress resilience. Additionally, tissue-
specific expression may also be required. This would be particularly
important for the installation of a C4 photosynthetic CCM. Stacking
genes through Golden Gate would provide an efficient approach to
this multigene modification (Depaoli et al., 2014; Maurino & Weber,
2013). An alternative or addition to gene stacking, gene editing
through CRISPR-Cas9 could be used to edit amino acids that confer a
catalytic switch, enhancing the photosynthetic activity of enzymes
such as Rubisco, which has the small subunit gene coded in the
nucleus (Sharwood, 2017; Whitney et al., 2011). This would further
include Rubisco activase and other photosynthetic proteins that are
transported into the chloroplast.

The SynBio toolkit also offers the unique ability of specific
regulated promoters to ‘switch on' abiotic stress genes that
improve CO, assimilation (i.e., increase Rubisco or Rubisco
activase activity) under high temperatures (Venter, 2007). For
example, identification of the promoter elements responsible for
the upregulation of different beta and alpha isoforms of Rubisco
activase in wheat (Degen et al., 2021) and Setaria viridis (Kim et al.,
2021) under heat stress could be used to drive the expression of
alternative thermotolerant Rubisco activase isoforms from orga-
nisms such as Agave tequilana and wild rice (Scafaro et al., 2016;
Shivhare & Mueller-Cajar, 2017). This would enable improved
carbon assimilation at higher temperatures and circumvent yield
penalties arising from heatwave conditions or periods of extended
heat (Scafaro et al., 2018). Regulated promoters may also be
extremely valuable for preventing yield penalties for conservative
mechanisms such as water-preserving mechanisms that may hinder

yield under prolonged expression. This approach would need to be

experimentally tested through trialling a prototype under abiotic

stress conditions in the field.

4.4 | Nutrient acquisition

Currently, productivity in western agriculture is sustained by a
massive use of fertilisers. The excessive use of fertilisers is
environmentally damaging and consumer interest in more sustainable
products is increasing. Additionally, this practice is unsustainable due
to expected future rising energy costs to produce fertilisers, the low
nitrogen-use efficiency of crops and finite availability of macronu-
trients such as phosphorus (Heuer et al., 2017; Perchlik & Tegeder,
2017; Rogers & Oldroyd, 2014). This challenge can be overcome by
improving crop nutrient-use efficiency, uptake or assimilation (Roell
& Zurbriggen, 2020). Due to the complexity of these traits and
systems, SynBio offers some of the most efficient and effective
solutions. Some of the most supported approaches include engineer-
ing both crops and their associated microbes to improve the fixation,
mobilisation and uptake of macronutrients such as nitrogen and
phosphorus (Roell & Zurbriggen, 2020). Symbiotic relationships have
evolved between some plant species—most notably, legumes—and
nitrogen-fixing bacteria. This interaction delivers around 120 kg/ha of
fixed nitrogen directly into the plant's roots (Salvagiotti et al., 2008).
Engineering maize to fix the equivalent of 50kg (N)/ha could
substantially improve crop yield (Rogers & Oldroyd, 2014), as
demonstrated through modelling (Folberth et al., 2013). In addition
to yield improvement, engineering crops to fix their own nitrogen
could improve crop nitrogen use efficiency and significantly reduce
fertiliser use. Alternatively to crop engineering, crop utilisation of
nitrogen and phosphorus could be significantly enhanced in several

ways by looking towards microbes.

441 | Introducing enzymes

Enzymes such as nitrogenases or phytases could be introduced into
crops to enable the fixation of essential nutrients. Nitrogenases are
enzymes that naturally occur in some bacteria and Archaea, enabling
them to fix nitrogen directly from the atmosphere. SynBio
approaches could enable these enzymes to be introduced directly
into plant cell organelles (Allen et al., 2020, 2017).

4.4.2 | Enhancing existing microbial activity

Introducing new microbes to agricultural soils (identified in nature or
engineered synthetic communities) has been raised as an opportunity
to improve nutrient assimilation in crops (Chen et al., 2021).
However, the difficulty in establishing a foreign microbe into a niche
that is likely already occupied by ‘local’ microbes adapted to local
conditions raises concerns around the feasibility of this approach.
Instead, approaches that manipulate microbes already present in the
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rhizosphere, endosphere or phyllosphere could be more feasible
approaches (Bloch et al., 2020). SynBio offers the opportunity to
enhance the nitrogen fixation of soil microbes to increase the access
of crops to plant-available nitrogen and improve their nutrient use
efficiency (Chen et al.,, 2021; Waltz, 2017). This could be achieved
through SynBio in two ways: (i) develop synthetic communities of
microbes with specified functions or engineer and reintroduce
existing microbes or (ii) engineer crops to release favourable root
exudates to manipulate or support microbial activity. The former
needs more development due to the issue of controlling the location
of genetically engineered material in microbial communities.
However, this approach could still be feasible; Bloch et al. (2020)
have used gene editing to improve nitrogen fixation by a naturally
occurring diazotroph bacterium associated with maize roots that can
be applied as a seed coating and reduce fertiliser applications and
increase yield. Alternatively, targeting the ability of plants to attract
beneficial microbes or manipulate microbial pathways and thus the
nitrogen cycle through the production of root exudates (Bardgett
et al., 2014; Coskun et al., 2017; Finzi et al., 2015) is potentially a
more effective agronomic application that is supplied directly to the
plant. This approach will rely on an improved understanding of
species-specific interactions between crops and available microbes,
and the composition of their root exudates (i.e., carbohydrates,
flavonoids and terpenoids identified through metabolomics or
transcriptomics) that are required to attract beneficial microbes or
stimulate biological nitrogen fixation and belowground nitrogen
transfer (Coskun et al., 2017). After this, the genes associated with
such exudate components will need to be identified (i.e., through
genomics, transcriptomics or CRISPR-Cas9 knockouts of potential
targets) to be upregulated or modified through SynBio (i.e., through
Golden Gate cloning or CRISPR-Cas9). Optimising root exudate
release to improve crop nitrogen use efficiency could also reduce
nitrogen loss via leaching, runoff and denitrification, thus mitigating

nitrogen pollution from crop production (Coskun et al., 2017).

443 | Establishing rhizobium-legume-like
interactions

Inducing nodule formation and microbe recruitment in nonlegumi-
nous crops to mimic the rhizobium-legume symbiosis (Huisman &
Geurts, 2020; Rogers & Oldroyd, 2014) could be another opportunity
to enhance a crop's nutrient assimilation while improving soil fertility.
This would require the expression of particular root exudate
compounds such as flavonoids that induce the expression of
nodulation factors in local microbes that trigger root nodule
formation (Beatty & Good, 2011; Oldroyd et al., 2009). Despite the
immense interest and research in this field, developing nodulation in
nonleguminous crops is yet to be achieved. Hundreds of genes
involved in nodulation in legumes have been identified, but selecting
the combination required to induce nodulation in a nonnodulating
crop has proven challenging (Huisman & Geurts, 2020). CRISPR-Cas9
and RNAIi have been suggested as tools to help narrow this search

and identify genes that are required for nodulation, while Golden
Gate cloning technology is likely the most efficient approach to
transferring the large number of genes that are likely to be required
to successfully induce and support nodulation and nitrogen fixation
(Huisman & Geurts, 2020). Huisman and Geurts (2020) present a
comprehensive review outlining the limitations and requirements for

engineering nodulation in crops.

5 | BENEFITS, CONSIDERATIONS AND
LIMITATIONS OF SYNBIO IN AGRICULTURE

5.1 | Benefits

SynBio is viewed as a field of biology that could be the key to
achieving the ‘next Green Revolution’ that is required to sustainably
feed a growing global population in increasingly challenging circum-
stances. Traits that have reached their genetic potential through
conventional breeding would immensely benefit from SynBio
approaches by targeting traits from distantly related species, other
organisms or synthetically generated. SynBio can also generate
nonbreeding solutions, ranging from topical applications against pests
and diseases to generating sterile pests and weeds, and novel
properties such as enhanced oil profiles (Figure 5).

SynBio provides a range of tools to develop more complex traits
and properties in crops more rapidly than other approaches. A good
example of this is C4 rice, a project that seeks to improve
photosynthetic and nitrogen-use efficiency and WUE of rice. This
goal requires the conversion of its photosynthetic system from Cs to
C4, a complex strategy that involves complex anatomical and
biochemical changes that took millions of years to evolve naturally
(Ermakova et al., 2020b; Hibberd & Covshoff, 2010; Hibberd et al.,
2008; Langdale, 2011; Sedelnikova et al., 2018). Introducing up to
20 genes is required to ‘completely rewire’ rice metabolism and
anatomy (Ermakova et al., 2020b). The construction of such large and
complex multigene vectors has largely been enabled by falling gene
synthesis costs, synthetic promoter systems and the establishment of
complex DNA assembly techniques such as Golden Gate cloning
(Ermakova et al., 2020b; Rogers & Oldroyd, 2014). The growth and
development of SynBio in the last 5 years has enabled the C4 rice
project to adopt a more rapid cycle of design, test and prototype
coupled to the adoption of a rapid Agrobacterium-based rice
transformation system in a rice cultivar that is fast-flowering, day-
neutral, small and an established model for functional genomics
(Ermakova et al., 2020b; Li et al., 2017a).

Molecular switches (i.e., regulated promoters) are another tool
that can have agronomic applications. Molecular switches activate a
specific gene under specific conditions, thus activating a trait or
response only when needed. This is an efficient system that can
reduce resource waste (i.e., chemical defence production) when not
needed. This technology can develop ‘Smart Plants’ that can adjust to
the environment in new ways (Wright & Nemhauser, 2019). This
could be a valuable application in targeting abiotic stress resilience
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FIGURE 5 A schematic outlining a range of opportunities using synthetic biology to address key agricultural challenges. (Clockwise from top
left) Photosynthetic optimisation is possible through the use of Golden Gate cloning to stack traits for the enhancement (i.e., accelerated
catalytic rate) of critical photosynthetic proteins such as Rubisco (Engler et al., 2009; Sharwood, 2017). Key insect pests such as the silverleaf
whitefly could be specifically targeted by RNAI biopesticides using Bioclay technology (Worrall et al., 2019). Effective resistance against fungal
diseases such as Verticillium wilt could be achieved in a broad range of host crops using Golden Gate cloning to stack multiple traits for complex
resistance, even against dual pathotypes that affect cotton. Nutrient acquisition could be enhanced through multiple strategies, such as Golden
Gate cloning-introduced or CRISPR-Cas9-edited genes for the expression of novel root exudates to enhance soil microbe nutrient fixation

(Coskun et al., 2017). RNAi, RNA interference.

(Degen et al., 2020) through the development of crop cultivars that
‘activate’ resilience genes when abiotic stress conditions are first
detected.

5.2 | Considerations

Solutions need to be simple, accurate and affordable, addressing the
challenges faced by resource-poor farmers and underserved con-
sumers (Pixley et al., 2019). As agriculture becomes more globalised,
issues and solutions would benefit from extending beyond an
Australian context to be economically viable and impactful. Addition-
ally, equitable access to the benefits of resulting GM crops requires
affirmative policies, targeted investments and excellent science
(Pixley et al., 2019). Lack of success in some SynBio projects has
been due to focusing on humanitarian or environmental sustainability
goals that are difficult to monetise (Pixley et al., 2019). Financial
benefit to multiple aspects of the value chain needs to be carefully
considered to ensure SynBio projects are high value and impactful.

5.3 | Limitations

The biggest limitations constraining the progress of SynBio applica-
tion is the cost of deregulation (most SynBio applications are
considered genetic modification and subject to the same laws as
traditional genetic engineering products), a complex patent landscape
that needs to be navigated for any potential commercial applications,
and social licence. Social acceptance will be a significant challenge to
the successful adoption of SynBio and will be similar to that faced by
GMO crops over the last three decades. Additionally, successful
adoption, application and acceleration of SynBio will rely on
investment by various sectors, both public and private.

Another significant limitation that has slowed the progress of
applying SynBio is the requirement to identify the precise gene(s)
required for a targeted function. This is particularly challenging and
prolonged when addressing multigenic functions. The development
of transgenic plants depends on the optimisation of a suitable
transgene transfer and integration procedure. Currently, most key
food and fibre crops are predominantly transformed through
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Agrobacterium and particle bombardment-mediated gene transfer.
Regeneration of plants from transformed tissue of cotton, for
example, has seen limited success arising from problems such as
somaclonal variation from prolonged culture periods, high frequen-
cies of abnormal embryo development, low conversion rates of
somatic embryos into plantlets and high genotype dependency
(Mishra et al., 2003; Stelly et al., 1989; Sun et al., 2006). In addition,
only a small number of generally older cotton cultivars are amenable
to transformation with Agrobacterium, but genotype independent
protocols are starting to emerge (Chen et al., 2014). Such protocols
will allow the transformation of elite cultivars directly and allow new
SynBio-developed traits to be added without requiring extensive
further breeding.

Finally, any SynBio opportunity requires significant investment,
both in time and finances, to yield a technology, product or trait.
Many years, likely a decade or longer, of fundamental and proof-of-
concept research, is required before the years (likely decades)
required to develop a SynBio technology, product or trait. Therefore,
committing to a SynBio development opportunity would depend on a
partnership or co-investment to invest adequate time, expertise and

money into the project to be successful.

6 | CONCLUSIONS

The opportunities offered by SynBio to address various agronomic
challenges are ‘endless’. However, assessing these opportunities
with a realistic lens is critical. Despite the substantial efficiency and
effectiveness that can be achieved through SynBio techniques,
there are numerous challenges that continue to limit the successful
application of SynBio. Numerous risks, costs, regulations and public
perceptions can limit the uptake of any new technologies.
Additionally, developing SynBio technologies, products and traits
require substantial investment—decades of research and develop-
ment, and millions of dollars—to be successful. Ultimately, to be
feasible SynBio research ventures need to have a clear value
proposition, be highly impactful and have a high benefit to cost
ratio.
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