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Xylem anatomical responses of
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influenced by the climate of
Daxing’an mountains in
Northeastern China
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Wood anatomy and plant hydraulics play a significant role in understanding

species-specific responses and their ability to manage rapid environmental

changes. This study used the dendro-anatomical approach to assess the

anatomical characteristics and their relation to local climate variability in the

boreal coniferous tree species Larix gmelinii (Dahurian larch) and Pinus sylvestris

var. mongolica (Scots pine) at an altitude range of 660 m to 842 m. We measured

the xylem anatomical traits (lumen area (LA), cell wall thickness (CWt), cell counts

per ring (CN), ring width (RW), and cell sizes in rings) of both species at four

different sites Mangui (MG), Wuerqihan (WEQH), Moredagha (MEDG) and Alihe

(ALH) and investigated their relationship with temperature and precipitation of

those sites along a latitude gradient. Results showed that all chronologies have

strong summer temperature correlations. LA extremes were mostly associated

with climatic variation than CWt and RWt. MEDG site species showed an inverse

correlation in different growing seasons. The correlation coefficient with

temperature indicated significant variations in the May-September months at

MG, WEQH, and ALH sites. These results suggest that climatic seasonality

changes in the selected sites positively affect hydraulic efficiency (increase in the

diameter of the earlywood cells) and the width of the latewood produced in P.

sylvestris. In contrast, L. gmelinii showed the opposite response to warm
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temperatures. It is concluded that xylem anatomical responses of L. gmelinii and P.

sylvestris showed varied responses to different climatic factors at different sites.

These differences between the two species responses to climate are due to the

change of site condition on a large spatial and temporal scale.
KEYWORDS

cell wall thickness, hydraulic properties, latitudinal gradient, ring width, tracheid size,
wood anatomical characteristics
1 Introduction

Environmental changes are likely to affect critical ecological

processes that affect key natural resources, especially in northern

ecosystems (Baltzer et al., 2014; Carrer et al., 2017). Daxing’anling

mountains of Inner Mongolia are major climate change hot spots that

belong to the sub-frigid zone with a pronounced cold temperate and

continental monsoon climate (Huang et al., 2020; Zheng et al., 2022).

Moroever, the Mongolian forests and grasslands of northern regions

have also been degraded by dry wind, desertification, soil salinization,

and erosion. Environmental changes drastically impact this fragile area

and its vicinity, especially in the context of global warming and seasonal

water deficit (Bao, 2015; Carvalho et al, 2022). Northeastern region’s

forests are affected by reduced rainfall, increased temperatures, and

frequent periods of extreme dryness; therefore, studies of forests in

northeast China are critical because of their sensitivity and vulnerability

to harsh conditions in the frozen ground in the context of regional and

global climate change (Zhang et al., 2018).

The key advantage of anatomical features’ are related to tree

physiology and their strong connection to hydraulic properties

(Souto-Herrera et al., 2018). Wood anatomy and plant hydraulics play

a significant role in understanding species-specific responses and the

ability to manage rapid environmental changes (Balzano et al., 2020). At

the start of the season, earlywood vessels are most efficient for water

transfer. At the same time, latewood primarily consists of much smaller

vessels developed under the more constrained water conditions of late

spring and summer (Aloni, 2015). In coniferous species, most wood

components are tracheid, providing both vascular and mechanical

support functions (Emanuele et al., 2014). Trees can adapt to changes

in external conditions with a high degree of plasticity and variability in

newly formed cells. As a result, these changes are recorded in the

anatomical characteristics of tree rings (Fonti et al., 2013).

Previous studies have shown that tree ring width depends on

changes in climatic conditions and the geographic location of the site

(Creasman, 2011). Trees are predicted to increase their elevations; as

the environment warms, some changes in treeline elevation have been

observed and attributed to global warming (Garcıá-Cervigón et al.,

2020). In conifers, seasonal environmental conditions hugely

determine the ring width and tracheid size; these anatomical

parameters affect the intra-annual dynamics of radial growth

(Rahman et al., 2016). Mature tracheid is formed at different time

intervals, which causes differences in cell size, cell wall thickness, and
02
cell number. Therefore, they are good indicators of intra-annual

growth rate and tree-ring structure changes (Fonti et al., 2013;

Benkova et al., 2015).

Recently, based on the internal annual characteristics of the tree

rings, there has been a growing interest in deciphering the effect of the

climate on a whole xylogenetic process, e.g., the sequence of phases

that contribute to the environment, through photosynthetic and

cambial activities, leads to the creation of new wood tissues ( Rossi

et al., 2012; Cuny et al., 2014; 2015). Recent advances in wood

anatomy have significantly improved the accuracy and efficiency of

xylem structural measurements (Von Arx et al., 2016; Prendin et al.,

2017). However, the meristematic processes and mechanisms of radial

growth influenced by environmental changes are still poorly

understood (Körner, 2015). Tree-ring anatomy is a promising

method for uncovering the process of wood formation and

exploring the characteristics of cell anatomy. This study analyzed

the (1) xylem plasticity of two widespread evergreen tree species Larix

gmelinii (Dahurian larch) and Pinus sylvestris var. mongolica (Scots

pine), in the Daxing’anling mountains to climatic variability and (2)

determine the intra-annual variation of xylem responses to climatic

parameters. Xylem anatomical traits such as (lumen area (LA), cell

wall thickness (CWt), cell counts per ring (CN), ring width (RW), and

cell sizes in rings) were measured of both species at four different sites

Mangui (MG), Wuerqihan (WEQH), Moredagha (MEDG) and Alihe

(ALH) to investigate their relationship with temperature and

precipitation of those sites along a latitude gradient.
2 Materials and methods

2.1 Study area

The Daxing’an Mountains are located in northeast China,

extending about 1200 km from north to south. The average width

is around 200 km, and the elevation is about 573 m. Its geographical

range is between 49.12°N and 52.88°N (Figure 1). The climate of the

study area is semi-humid and continental monsoon (Tian et al.,

2017). This area has been covered with ice and snow for about half a

year. Mean annual temperatures range from -0.8°C to -5.5°C. Annual

precipitation varies between 437- 460 mm, with about 80% occurring

from June to September (Figure 2). The same study area was also used

for our published article (Yasmeen et al., 2019).
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The study area belongs to the southern margin of the boreal

forest. The primary forests are deciduous-coniferous forests having L.

gmelinii, P. sylvestris var. mongolica, and other common tree species,

including Quercus mongolica, Betula platyphylla, Calamagrostic

turczaninowii, Rosa davurica, Pinus pumila, Salix matsudan and

Populus davidiana (Gao et al., 2019). Climate data (monthly mean

temperature and total precipitation) data set was obtained from the

KNMI climate explorer (CRU grid TS 4.01) (http://climexp.knmi.nl).

Climatic data and other relevant information about sampling sites are

shown in (Table 1) (Yasmeen et al., 2019).
Frontiers in Plant Science 03
2.2 Plant material and sampling

This work was carried out in the central and northern parts of

Daxing’an Mountain. P. sylvestris and L. gmelinii species were taken as

study material. The targeted species were distributed from 660-842 m

above sea level. Two 20 × 20 m experimental plots were delineated at

each sampling site for both species. Height and diameter at breast

height (DBH) were taken for all the trees in each stand, and five

standard trees were selected for tree core sampling from each stand.

Tree cores were extracted at breast height (1.3 m) with a Pressler borer
FIGURE 1

Location map of the four sampling sites in northeast China.
B

C

D

A

FIGURE 2

Weather profile of four sampling sites (MG, WEQH, MEDG, ALH) located at the northern Daxing’anling mountains, China. The period of each station used
to calculate the monthly mean value was the same as in Table 1.
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close to the local latitudinal limit (i.e., between 660-843 m). From each

sampling site, 25 samples were taken (5 from each tree).
2.3 Anatomical analysis

A transmitted light microscope (Olympus-IX83, Olympus Co.,

Ltd., Beijing, China) was used for detailed anatomical studies. Xylem

cells were differentiated into different cell types by observing cell

division, cell differentiation, and programmed death of a cell.

Microcores were split into 4-5 cm long, according to the

longitudinal extent of cells. To prepare microcores, hand sliding

rotary microtome (KD-2258, Ningbo Hionotek Instrument Co.

Ltd., Ningbo, China) was used to obtain 10-20 µm thick sections. It

was crucial for cutting microsections to facilitate high-quality sections

for image analysis (Gärtner et al., 2015). Depending on the specific

aim, sections were cut transverse. Different cell dimensions of the

microsections were measured by taking photographs under the

microscope using free image analysis software. The following wood-

anatomical traits were measured in the transversal xylem sections;

mean lumen area (LA) and radial cell wall thickness (CWt). These

factors were chosen because of their higher year-to-year variability

than the tangential dimensions (Vysotskaya and Vaganov, 1989). The

time interval of sample collection was about two weeks.
2.4 Protocol for the preparation of
high-quality slides

For sample collection, we used a trephor with an opening of 2 mm

depending on the thickening of the bark of the tree. After removing

microcore sections from trees, samples were immediately preserved in an

Eppendorf tube filled with the preserving solution of formalin acetic acid-

ethanol (500mL) (Tardif and Conciatori, 2015; Von Arx et al., 2016). For

making clear and high-quality images of micro core slides, we dipped

micro cores in a series of ethanol solutions, anhydrous ethanol, and

dimethyl benzene for 4-days. For that purpose, the tissues were dipped in

30, 50, 70, and 85% ethanol solutions for 90-120 min, while 95% ethanol

solution was used for 60-90 min. Anhydrous ethanol solution was used

for 60-90 minutes. After that, the dimethylbenzene and ethanol were
Frontiers in Plant Science 04
used at a ratio of 1:1 for an hour. In the end, paraffin blocks were made

for cutting the micro-core sections. Softening solutions and stains were

also made for slide preparation. It was put into a softening solution

(glycerine:70% ethanol) to soften micro-core wood. For good-quality

image analysis of xylem cell structures, we selected the Leica®Disposable

Microtome Blades 819, and gelatin solution was used (gelatin, glycerol,

and water) to fix cores properly. We cut the transversal micro core slices

between 10-20 µm thick using Leica rotary microtome (KEDEE, Leica

Biosystem, Buffalo Grove, Illinois USA).
2.5 Paraffin embedding for tissues of micro
cores with safranin

Histological paraffin techniques were used for embedding, and the

samples were put in the melted condition of paraffin wax. Micro cores

were dipped in dimethyl benzene solution 0.88 g/mL for 12 min. A

series of solutions were used i.e., anhydrous ethanol: dimethyl

benzene (1:1), anhydrous ethanol, 95% ethanol, 85% ethanol, 75%

ethanol for 6 min, subsequently. Afterward, the tissues were dipped in

1% safranin solution for 4 h, followed by 60 s in water, and then used a

series of 30%, 50%, 70%, and 80% anhydrous ethanol solutions for 60

s. In the last two steps, anhydrous ethanol and benzene were used at

the ratio (of 1:1) for 60 s. After this, the tissues were kept on the slides,

and Canada balsam (CAS: 8007-47-4, Sigma-Aldrich, Darmstadt,

Germany) was used for preservation and covered with a coverslip

for image analysis. Images were captured by an Olympus DP-73

microscope (Olympus U-TV0.5XC-3) SN 4A01028 mounted on a

computer. Then measurements of high-quality images were taken by

IPWIN-32 (Image-Pro plus). Each micro core included several xylem

layers (4-5 in fast-growing and 37-45 in slow-growing seasons). The

average number of tree rings in all species was 11, so 2006-2016 was

selected for comparison purposes. Moreover, tree rings were visually

cross-dated along 5 lines in each annual ring. Anatomical parameters

included ring width (RW), early wood width (EW), latewood width

(LW), lumen area (LA), and cell wall thickness (CWt). Earlywood and

latewood were measured by taking an average of 5 lines of tracheid

diameter classified as earlywood and latewood. Intraspecific features

were measured by comparing trees of the same species at different

elevations and interspecific comparisons of different species at the
TABLE 1 Information of sampling sites at the Daxing’anling Mountains, northeast China.

Sites Elevation
(m)

Latitude
(°E)

Longitude
(°N)

MLa
(µm2)

MRW
(mm) MCN MAT

(°)
TAP
(mm)

Larix gmelinii

MG 699.9 52.88 121.95 33.8 ± 2.1 0.095 60.8 -3.8 443.9

WEQH 747.0 49.12 121.54 39.5 ± 4.4 0.115 62.2 -1.6 423.3

MEDG 842.7 51.16 120.55 42.2 ± 9.4 0.046 30.7 -1.6 362.9

ALH 660.0 50.13 123.20 35.2 ± 6.7 0.228 160.0 -0.6 524.6

Pinus sylvestris var.
mongolica

MG 699.9 52.88 121.95 39.5 ± 8.3 0.096 62.1 -3.8 443.9

WEQH 747.0 49.12 121.54 41.4 ± 3.5 0.458 85.0 -1.6 423.3

MEDG 842.7 51.16 120.55 44.1 ± 7.1 0.057 7.9 -2.5 362.9

ALH 660.0 50.13 123.20 48.0 ± 4.4 0.129 87.5 -0.6 524.6
f

MLa, mean lumen area, MRW, mean ring width, MCN, mean cell number, MAT, mean annual temperature of 2016, TAP, total annual precipitation of 2016.
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same or different elevations. Anatomical parameters were calculated

separately for earlywood and latewood e.g., lumen area of early wood

tracheid (la EW) and latewood tracheid (la LW).
2.6 Statistics and climate growth
relationship

A two-way analysis of variance (ANOVA) was performed to

determine the differences in xylem anatomical features among four

sites and species. Results showed significant differences, so Tukey’s

pairwise comparison was used by LSD to determine the significance.

The relationship between anatomical traits and tree rings was tested

by Pearson correlation by using Past software. climatic influence on

xylem anatomical features was measured using CRU TS 4.0 monthly

climate data of mean temperature and precipitation. The climate

growth associations with anatomical parameters were also quantified

by Pearson correlation.
3 Results

Significant statistical differences (P < 0.05) were observed when

La-EW and La-LW were analyzed among all the sites and species

treatments. Overall, for both species, the highest La-EW and La-LW

were observed at the ALH site, followed by the MG site. For CWt-EW,

the highest and lowest values were observed at the MG site for L.

gmelinii (1.81 ± 0.26 µm) and P. sylvestris (1.17 ± 0.31 µm),

respectively. No significant difference was observed for CWt-EW

values of P. sylvestris among WEQH, MEDG, and ALH sites. The

same pattern of CWt-EW was observed for CWt-LW; however,

significant differences were observed among sites for both species

(Table 2). Regarding RW-EW and RW-LW, for L. gmelinii, the

highest value was observed at the ALH site and the lowest at

MEDG. Whereas for P. sylvestris, the highest value was observed at

the WEQH and the lowest at MEDG (Table 2).

The correlation of xylem anatomical parameters with temperature

indicated significant variations (P < 0.05) for both species in May-
Frontiers in Plant Science 05
September at MG, WEQH, and ALH sites, except MEDG. The

correlation of MLa, RW, and CWt with mean temperature reached

a higher level at the MG site in P. sylvestris in June, August, and

September and MLa, CWt, and RWt showed a significant increase in

the current growing season. No significant growth was observed for L.

gmelinii at the MG site in June, August, and September; however, at

the WEQH and ALH sites, P. sylvestris showed a significant increase

in growth rate in these months. At MEDG site, both species showed

an inverse relationship with temperature in the growing season

(Figure 3). MLa and ring width showed a stronger response than

the number of tracheids and cell wall thickness. Cell anatomical traits

appeared in a stronger relationship with the temperature at WEQH

and ALH. Despite the typical response from May to September, L.

gmelinii was slightly more affected by temperature (Figure 3).

Growth trends were made by comparing MLa, CWt, and tree RW

trends of the last five decades. MLa showed a linear trend for both

species. However, it was statistically non-significant for P. sylvestris

(R2 = 0.12) (Figure 4). The CWt of P. sylvestris showed an increasing

trend across the years, whereas L. gmelinii showed a significant

decreasing trend in the early years with an upward trend in later

years (R2 = 0.02) (Figure 4). For ring width, P. sylvestris showed a

continuous negative growth trend, whereas for L. gmelinii no clear

pattern was observed, and it continued increasing and decreasing

throughout (R2 = 0.19) (Figure 4). Lumen growth of both species at

different sites across the years is also shown in (Figure 5).

Earlywood part of L. gmelinii showed a reduced lumen area with

the increasing air temperature. In contrast, a positive correlation was

found between earlywood and summer precipitation. Latewood

showed a similar but weaker relationship with winter temperature

for both species (Figure 6).

Significant differences were observed for mean, smallest and

largest cell sizes among all sites for both species. Mean cell size

growth for L. gmelinii represented more consistent growth (Figures

7A, D). However, in the smallest cell, there was quite the opposite

response. There were much higher values for the smallest cell in the

case of P. sylvestris (Figures 7B, E). In the case of L. gmelinii, larger

cells have a similar growth response with temperature and

precipitation at all four sites, while P. sylvestris had little growth of

larger cells (Figures 7C, F). It was examined that L. gmelinii showed
TABLE 2 Wood and tracheid properties of Larix gmelinii and Pinus Sylvestris L.

Species Sites La-EW
(µm2)

La-LW
(µm2)

CWt-EW
(µm)

CWt-LW
(µm)

RW-EW (10-
2 mm)

RW-LW (10-
2 mm)

Larix gmelinii

MG 211.7 ± 42.2 b 109.3 ± 30.5 b 1.82 ± 0.26 a 2.67 ± 0.39 a 1.36 ± 0.28 ab 0.56 ± 0.19 ab

WEQH 157.8 ± 13.0 d 72.6 ± 19.2 bc 1.78 ± 0.36 bc 2.41 ± 0.41 bc 1.52 ± 0.50 b 0.88 ± 0.34 b

MEDG 191.6 ± 30.1 c 62.6 ± 16.4 c 1.68 ± 0.38 c 2.47 ± 0.51 c 0.56 ± 0.20 ab 0.21 ± 0.14 bc

ALH 310.6 ± 28.9a 118.0 ± 17.7 a 1.81 ± 0.13 a 2.54 ± 0.24 b 2.61 ± 0.76 a 1.74 ± 0.43 a

Pinus sylvestris L. var.
mongolica

MG 229.9 ± 32.9 b 122.9 ± 16.7 a 1.17 ± 0.31 b 1.75 ± 0.32 bc 1.96 ± 0.63 b 0.59 ± 0.37 b

WEQH 140.1± 16.8 d 56.1 ± 16.5 b 1.38 ± 0.31a 1.97 ± 0.19 a 3.37 ± 0.35a 1.51 ± 0.24 a

MEDG 170.1 ± 17.4 c 56.8 ± 13.2 b 1.38 ± 0.31 a 1.84 ± 0.44 b 0.60 ± 0.18c 0.27 ± 0.25 ac

ALH 309.3± 24.4 a 124.6 ± 18.1 a 1.38 ± 0.31 a 1.68 ± 0.19 c 1.50± 0.27ab 0.60 ± 0.21 c
Values are means ± standard deviations. Different letters within columns indicate significance at p ≤ 0.05 according to Fisher’s least significant difference (LSD) test. La-EW, Lumen area of earlywood, La-LW,
Lumen area of latewood, CWt-EW, Cell wall thickness of earlywood, CWt-LW, Cell wall thickness of latewood, RW-EW, Ring width of earlywood, RW-LW, Ring width of latewood.
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FIGURE 4

Mean lumen size, cell wall thickness, and tree ring width chronologies of Pinus sylvestris (Scots pine) and Larix gmelinii (Dahurian Larch) between the
period 2000-2016.
B

C

D

E

F

G

A

H

FIGURE 3

Climate growth relationship between the chronologies of xylem anatomical traits and monthly mean temperature (Grid Cru TS.4 for the period 2006-
2016) from previous May – to current September. Horizontal dotted line shows most significant level (p ≤ 0.05). The rectangles indicate the period with
mostly strong correlations.
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more growth response to temperature and P. sylvestris had a much

higher response to precipitation. Images of microcores of the xylem

tree ring in L.gmelinii and P.sylvestrris from the four study sites are

shown in (Figure 8); differences in the images indicate the growth

differences in both species at different sites.
4 Discussion

Regarding microclimate, temperature and precipitation are the

two crucial ecological limiting factors that control the plant cell size

by influencing growth parameters. Different studies reported that

xylem growth and cambial activity highly respond to microclimatic

factors (Deslauriers et al., 2008; Gruber et al., 2009; Fakhrutdinova

et al., 2017). The Daxing’an mountains are one of the most apparent

regions in China with a warming climate, especially in winter (Gao
Frontiers in Plant Science 07
et al., 2019). Over the past few decades, increasing mean air

temperature during May and June improved growing conditions.

Even in the winter, the temperature is vital for the growth of trees in

the following year.

In this study, the xylem anatomical growth of L. gmelinii and P.

sylvestris presented different responses to microclimatic factors at

different sites. Overall, mean temperature and precipitation

significantly altered both species’ cell size dynamics. However, the

effect of temperature on xylem anatomical growth was more prominent

than precipitation. Zhang et al. (2018) have reported that variations in

L. gmelinii and P. sylvestris were determined by moisture (negative) and

temperature (positive) during the growing season. The temperature has

the most prominent effect on the growth of L. gmelinii favours the

results that the main limiting factor for the growth of L. gmelinii is the

summer temperature (Bai et al., 2016; Yasmeen et al., 2019). Bai et al.

(2016) also reported that summer temperatures significantly influence
B

C

D

E

F

G
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FIGURE 5

Mean standardized trachediogram of Pinus sylvestris (Scots pine) and Larix gmelinii (Dahurian Larch) during 2000-2016 except for WEQH (P. sylvestris)
and ALH (Larix gmelinii) which have 2012-2016 and 2006-2016 data, respectively.
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the survival and growth of conifers in northeastern China. In contrast,

decreased precipitation was more responsive regarding root biomass

and changing the soil microenvironment. Furthermore, the impact of

water availability on the growth of P. sylvestris was more significant

than that of L. gmelinii. Reich et al. (2018) showed that water deficiency
Frontiers in Plant Science 08
in the soil might reduce or even reverse the climate warming benefits on

net photosynthesis in cold environments, even with modest drought in

the growing season.

The tracheid growth of P. sylvestris in our study area was more

sensitive to precipitation. This effect was most significant at low-
B

C D

A

FIGURE 6

Relationship between mean lumen area and climatic variables (mean air temperature and total precipitation) during 2006-2012. April-June for
earlywood, and July-September of latewood of Pinus sylvestris (Scots pine) and Larix gmelinii (Dahurian Larch) along four sites (MG, WEQH, MEDG, ALH).
B
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FIGURE 7

Box plots of mean temperature and precipitation with mean size, smallest cell, and largest cell of Pinus sylvestris (Scots pine) and Larix gmelinii (Dahurian
Larch) species along four sites (MG, WEQH, MEDG, ALH).
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altitude sites. Eilmann et al. (2009) reported that more significant

changes in the tracheid dimension had been observed in P. sylvestris

due to increased drought severity in the Iberian Peninsula and some

other conifers of the Alps range. Our results indicated that variations

in wood density fractions are significant in determining xylem

anatomical features and could explain the correlation between

climate changes and tree growth (Carvalho et al., 2022). In this

study, the high correlation between the earlywood and precipitation

indicates a higher proportion of earlywood among the whole wood.

Moreover, it was found that tree at higher elevations has double tree

ring width than those found at lower elevations (Vaganov et al., 2006).

Tree ring width is a sensitive part of the tree, reacting to any variations

in growth conditions. Numerous anatomical studies have revealed

that ring width changes significantly depend on the geographical

region’s climate conditions (Fakhrutdinova et al., 2017).

This study observed a general reduction in the lumen area of cells

in north-south directions in both conifer species from early to mid-

summer. This is an adaptive strategy of trees to tolerate drought and

reduce the risk of cavitation in the xylem. Small lumen areas can also

result from the earlier onset of radial growth (Peltola et al., 2002;

Garcıá-Cervigón et al.,2020). Moreover, a high growth rate and rapid

cell division can also cause a narrow lumen area (Atwell et al., 2003).

Usually, climatic variations cause an increase in the tracheid lumen

area with a decrease in wood density at the end of the tree ring

(Balzano et al., 2020).

In this study, the larger proportion consists of earlywood rather than

latewood. The results of P. sylvestris growth in northern Finland revealed

that 75% of the entire ring width part is earlywood (Seo et al., 2012). Our

results are also in accordance with Park and Spiecker. (2005) and Olano

et al. (2012) who stated that latewood generally acts as a buffer zone

between tree rings in different years. It works like a “sponge” in which

nutrients and minerals dissolved in water are reserved. The tree used

these minerals in unfavorable weather conditions.

The time windows in which most variations best correlate with

precipitation are usually smaller than temperature. April-June and

July-September precipitation first increased and then decreased.
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Earlywood (average size of cell area or maximum length) showed

more significant variations than latewood, where the precipitation

was most significant. In the case of P. sylvestris, both temperature and

precipitation caused an increase in early wood growth; however, in

the case of latewood, there was a slight increase in temperature and a

decline in precipitation within the months of July-September (Schmitt

et al., 2004; Pritzkow et al., 2014). Considering the influence of the

previous climate on the current growing season local climate

conditions, temperature and precipitation showed the different

growth patterns of L. gmelinii and P. sylvestris with the change in

latitude (Yasmeen et al., 2019).

Our findings on climate parameters influence from previous July

to current September during the period 2000-2016 are also consistent

with the pines in Qinling Mountain (Liu et al., 2009), which showed a

negative correlation from January and February. Particularly, climate-

growth relationships performed separately on early and latewood.

Because they were formed at different times, performed different

functions, and helped to categorize the fundamental relationship of

xylem plastic response and their possible role. Since 1970-1990, both

L. gmelinii and P. sylvestris have decreased in growth, consistent with

previous studies. Since 1990, there has been a recovery in the tree

growth of P. sylvestris. However, the growth rate variation might

depend on the ground vegetation thickness, which adjusts heat

exchange between air and soil.
5 Conclusions

In this study, cell wall thickness and ring width showed a significantly

varied response from the previous winter to the current growing season

of two conifers species coexisting under boreal frost climate conditions.

The positive effect of precipitation in summer, along with increasing

latitude, is coordinated with the spatial distribution of precipitation.

Drought stress was a secondary tree growth-limiting factor. Wood

density parameters were strongly correlated with the temperature of

the current year. Furthermore, the lumen size of P. sylvestris revealed a
B C D E F G HA

FIGURE 8

Xylem anatomical cross sections of Pinus sylvestris (Scots pine) and Larix gmelinii (Dahurian Larch) from four study sites (MG, WEQH, MEDG, ALH), respectively.
Images shows the part of the whole tree of P. sylvestris (A–D) and L. gmelinii (E–H) at four sites in Daxing’an Mountains, respectively.
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strong precipitation signal in latewood in July-September, which has not

been so for observed in other species on that site. Xylem plasticity

responses are due to water availability or deficiency conditions, which

may be related to the accessibility (root system depth) of soil water

reserves for different species, such as L. gmelinii has a shallow root system

than P. sylvestris. Therefore, we need to explore further the plasticity of

xylem anatomical parameters on more climates and species to determine

the accurate range of xylem adjustment in changing environmental

conditions. Our findings emphasize that the xylem anatomical-climate

relationships of P. sylvestris and L. gmelinii shows a contrasting trend

across different sites and climatic parameters, whichmeans that these two

coniferous species may exhibit an entirely opposite dendroanatomical

response to climate change along the latitude gradient. There is one

shortcoming in our study. Usually two cores are taken from one sample

tree to avoid the sampling bias. However, in our study we only sampled

one core from some sites. The reason is, in some special cases, to deal

with topography, protect the integrity of the sample plots, to avoid tree

damage, and economic considerations, it is still possible to collect one

core per tree.
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