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A B S T R A C T   

In this work, we developed a framework for identifying frame-type structures regarding the measurement un-
certainty and the uncertainty involved in inherent and structural parameters. The identification process is 
illustrated and examined on a one-eight-scale four-story moment-resisting steel frame under seismic excitation 
using two well-known recursive schemes: the Extended Kalman filter (EKF) and Unscented Kalman Filter (UKF) 
methods. The nonlinear system equations were assessed by applying a first-order instantaneous linearization 
approach through the EKF method. In contrast, the UKF algorithm employs several sample points to estimate 
moments of random variables’ nonlinear transformations. A nonlinear transformation is applied to distribute 
sample points to derive the precise mean and covariance up to the second order of any nonlinearity. Accordingly, 
it is theoretically expected that the UKF algorithm is more capable of identifying the nonlinear systems and 
determining the unknown parameters than the EKF algorithm. The capability of the EKF and UKF algorithms was 
assessed by considering a 4-story moment-resisting steel frame with several inherent uncertainties, including the 
material behavior model, boundary conditions, and constraints. In addition to these uncertainties, the combi-
nation of acceleration and displacement responses of different structural levels is employed to evaluate the 
capability of the algorithms. The information entropy measure is used to investigate further the uncertainty of a 
group of established model parameters. As highlighted, a good agreement is observed between the results using 
the information entropy measure criterion and those using the UKF and EKF algorithms. The results illustrate 
that using the responses of fewer levels placed in the proper positions may lead to improved outcomes than those 
of more improperly positioned levels.   

1. Introduction 

Before building any structure, random technique models are typi-
cally used to represent all the potential uncertainties related to the 
system parameters [1]. During this phase, the safety of the structural 
systems is quantified through the concept of probability of failure or 
reliability index. After building structural systems and measuring their 
responses under various types of excitations, it is possible to evaluate 
their states, such as the damage extension and their remaining lifetime, 
through system identification methods. Thus, robust interpretation of 
measurement data increases the safety and reliability of the built 

environment. Over the last decades, structural system identification 
approaches using both ambient vibrations with low amplitude and 
forced vibrations with high amplitude have been extensively studied for 
health monitoring and damage detection [2–6]. Regardless of identi-
fying structural systems using measured input-output or output-only 
data, these approaches can be categorized into time-domain, fre-
quency-domain, time-frequency, modal, black-box, structural model 
updating techniques, and methods that circumvent nonlinearity utiliz-
ing linearization [7]. Structural model updating is a well-established 
method of significant concern to many researchers. According to this 
method, a finite element (FE) model is updated using iterative or 
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non-iterative procedures by adjusting various parameters to minimize 
the discrepancy between the response of the baseline structure and that 
of the FE model [8]. Developing structural models, especially those with 
high complexities, involves difficulties because of considering several 
modeling assumptions and uncertainties [9]. These challenges are due to 
structural geometric nonlinearity, element nonlinearity, material 
nonlinearity, and boundary conditions, which sometimes are addressed 
by reducing the model to the most significant parameters [10,11]. On 
the other hand, uncertainty assessment and reliability estimation are the 
essential features of structural model updating. These features play 
crucial functions in controlling the reliability of updated models. In this 
respect, an effective evaluation of complicated uncertainty components 
of structural systems is required for predicting their exact behavior 
under dynamic situations. However, there is a notable absence of 
investigation on uncertainties for dynamic systems under forced vibra-
tions [12]. 

Regardless of any source of uncertainty, FE model updating (FEMU) 
procedures have been studied in linear and nonlinear frameworks. As 
the name suggests, the structure has been assumed to behave linearly 
before and after damage states for linear categories. This method eval-
uates the identification of the structural characteristics by establishing 
the difference between the modal or extracted characteristics of the 
baseline and FE models. However, the linear FEMU method is ineffective 
for some reasons. For instance, it cannot identify minor structural 
damages, which have negligible effects on the overall characteristics of 
the structure. Also, it assumes a linearly elastic behavior for the structure 
in the range of infinitesimal deformations. Therefore, employing 
nonlinear FE model updating techniques has been considered an integral 
part of FE methods, attracting the attention of several researchers 
[13–15]. From another perspective, the structural system identification 
approaches can also be classified into offline (batch estimation) and 
online (or recursive) techniques [16]. The data size is constant for offline 
approaches as they rely on iterative methods. Both approaches take 
advantage of accessible data, except that online approaches use the data 
as it becomes available [17]. Concerning the recursive methods, several 
approaches have been recommended in favor of the nonlinear FEMU 
and evaluating the structural parameters. Some of these techniques are 
the Recursive autoregressive and moving average with exogenous input 
(ARMAX) [18], the recursive Least Square (RLS) [19,20], particle filter 
(PF) [21,22], Bayesian inference (BI) [23,24], and Kalman Filter (KF) 
[25,26]. Among these methods, the KF and its several versions have 
been effectively implemented for real-time linear model calibration. The 
KF method can estimate the system’s state by incorporating several 
factors, including the dynamic response equations of the system, noisy 
input data, and the noisy output response of the system. However, the KF 
technique has not been directly implemented for nonlinear systems with 
a nonlinear system state or nonlinear measurement equations [27–32]. 
Extended Kalman Filter (EKF) is another version of the KF offered in the 
literature to address nonlinear problems [33–37]. This method uses a 
first-order Taylor series approximation to linearize the nonlinear model 
near the best-estimated state. Afterward, the obtained post-estimate at 
every individual time step is used as the center point for the next step of 
the linearization by applying the KF prediction-correction technique to 
the linearized system. 

In the case of a nonlinear system with high degrees of nonlinearities, 
the linearization may cause several errors, thereby limiting the appli-
cation of this method for highly nonlinear systems. To address this 
drawback, Julier et al. proposed another version of KF methods, namely 
the Unscented Kalman Filter (UKF) [38,39]. In contrast to the EKF, 
which employs the first-order instantaneous linearization technique for 
assessing the nonlinear system equations, the UKF uses a deterministic 
sampling method with quite a few sample points for estimating the 
probability density through a Gaussian density function. The real value 
of mean and covariance up to the second-order of any nonlinearity have 
been obtained through a nonlinear transformation’s distribution of 
sample points. Consequently, as theoretically hypothesized, the UKF has 

better estimation than EKF regarding problems with higher-order non-
linearities. In this respect, several research studies have applied these 
methods for nonlinear state estimation and parameter identification of 
various systems [40]. To examine the capability of the EKF and UKF 
methods, Wu and Smyth [41] developed a comparative study of a single 
degree of freedom nonlinear system with a Bouc-Wen-Baber-Noori 
(BWBN) hysteretic [42,43] restoring force element, a two-degree of 
freedom linear structural system, and a two-degree of freedom nonlinear 
elastic system, under the Chi-Chi earthquake excitation. Lin and Zhang 
[44] examined the capability of the EKF method in assessing the pa-
rameters of a single-degree-of-freedom system with a BWBN hysteretic 
restoring force under a simulated ground motion excitation. In addition, 
Chatzi and Smyth compared the UKF and Particle Filter (PF) of a 
three-degree of freedom system with a BWBN hysteresis model [21]. 

Diaz et al. [45] proposed an approach based on the integration of 
UKF and Constitutive Relation Error Observer for structural health 
monitoring (SHM) of gradually degraded reinforced concrete (RC) 
structures tested on a shake table. Notably, most of the relevant research 
has focused on simple structures, including the one- or multi-degrees of 
freedom mass-spring-dashpot systems. Besides, the material constitutive 
models or force-deformation behavior models considered in these 
studies include linear elastic, nonlinear elastic, bilinear, and Bouc-Wen 
[46,47] restoring force models lacking adequate precision or details. 
Besides, the employed models have no physical significance for 
extracting the behavior of real complex structures. Recently, Astroza 
et al. [48] conducted a nonlinear FE simulation on a column of a con-
crete bridge and a 3-story SAC structure using the UKF method to assess 
the time-invariant parameters of the material model. 

Despite various applications of these algorithms in structural system 
identification, it suffers some shortcomings: Lack of implementation in 
calibrating real structures. This issue involves several complexities and 
uncertainties, such as complicated components, improper boundary 
conditions, and incompatible behavior of material models. Engineering 
models are known to be approximate exhibitions of actuality. When 
inexact models are engaged in the design, health monitoring, and 
damage detection, it is usually more reasonable when they are partially 
conservative rather than the contrary. The vast literature on this subject 
reveals no general technique for clustering if a model is conservative or 
not and how conservative it is. Hence, there is a considerable lack of 
study on uncertainties in system identification and damage detection of 
real-world systems [49–52]. 

The intrinsic uncertainties and modeling errors will induce errors 
between a system’s real response and desirable response, resulting in a 
response reliability problem. Liu et al. [53] presented an approach to 
investigate the effect of mixed uncertain parameters like randomness in 
the structural dynamic analysis model. Mi et al. [54] investigated the 
reliability analysis of complicated systems with typical damages and 
complex uncertainties. In another study, Xu et al. [55] studied the un-
certainty of the damaged elements of crucial infrastructure systems 
through numerical experiments on different models. Thapa and Mis-
soum [56] proposed a methodology for uncertainty quantification of 
composite wind turbine blades. To this end, they incorporated the di-
versity in material and geometric parameters and loading conditions 
under modal, failure, and buckling analyses. Hao et al. [57] established 
a framework to analyze uncertainty effects on the probability of failure 
of composite shell structures. Vishwanath and Banerjee [58] examined 
uncertainties from various sources, such as the corrosion action, mate-
rial parameters variety, and primary cracks on the concrete elements on 
gradual degradation and seismic susceptibility of reinforced concrete 
(RC) bridge piers. Zheng et al. [59] examined uncertainties in the un-
known model parameters of dynamic excitations arising from different 
sources on the precision of produced demand of tall buildings. Else-
where, Li et al. [60] presented a methodology that captures the influence 
of soil spatial variation and ground motion uncertainties at different 
supports on the seismic behavior of large-span cable-stayed bridges. 

According to the above literature review, it can be concluded that 
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accuracy is the priority among the essential characteristics of a system 
identification framework. The present study applies EKF and UKF al-
gorithms to experimentally examine the modeling error and un-
certainties of a 1:8-scale frame on an earthquake simulator facility at the 
University of New York at Buffalo (SUNY-NEES). The efficacy of various 
uncertainties on the capabilities of EKF and UKF was studied by incor-
porating BWBN [42,43] and Giuffre-Manegoto-pinto (G-M-P) models in 
all section fibers, followed by using the acceleration and displacement 
responses of all stories of the structure, and their combination, under 
seismic ground motions. 

As highlighted in the references [61,62], one of the uncertainties 
affecting the operation of damage detection of a structure is the quality 
and the quantity measures for selecting the collected data. These factors 
mainly rely on the location, type, and number of measuring sensors. The 
results show that some measured input data have a higher impact on the 
calibration of the structural responses, and the calibrated structural 
models contain fewer errors. Thus, following the structural system 
identification method to investigate which level of the structure and 
response type leads to better estimation and identification, the infor-
mation entropy measure (IEM) approach can be utilized. The optimal 
sensor location can be evaluated by the direct use of the minimized IEM 
approach in estimating the parameters of the model. Therefore, the in-
formation entropy criterion is implemented, the model is updated via 
finite element analysis, and various responses of different test frame 
levels are employed to identify the best location to position the sensors 
in the structure. Overall, comparing the results of the FE analyses and 
the random selection of sensor locations indicates a close match between 
them. A brief review of the application of the EKF and UKF methods and 
the IEM criterion is then discussed. Subsequently, the overall charac-
teristics of the steel structure are presented. Finally, the details of the 
modeling and different material behavior models are developed, the 
results are interpreted, and conclusions are drawn. 

2. Kalman filter 

The general discrete-time state-space expression for systems can be 
described according to the following equation: 

xk+1 = fk(xk, uk) + wk (1)  

yk+1 = gk+1(xk+1, uk+1) + vk+1 (2)  

where xk, uk, and yk account for the state vector, input vector, and 
measurement vector, respectively, at tk = kΔt. Here, Δt is the time in-
terval. Also, wk is the process noise due to the unmeasured random 
disturbances of the existing system and vk+1 is the measurement noise. 
The wk ∼ N(0,Qk) and vk ∼ N(0,Rk) are the independent Gaussian white 
noise with zero median and covariance matrices of Qk and Rk, respec-
tively. The fk and gk+1 functions are respectively employed to correlate 
the current state (xk) and the next state (xk+1), as well as the next state 
(xk+1) and the next measurement (yk+1). For linear systems, Eqs. (1) and 
(2) can be simplified as follows: 

xk+1 = Akxk + Bkuk + wk (3)  

yk+1 = Ck+1xk+1 + Dk+1uk+1 + vk+1 (4) 

In these equations, Ak, Bk, Ck+1, Dk+1 account for the state, input, 
output, and feed-through matrixes, respectively. 

In practice, it is not possible to evaluate the response of all degrees of 
freedom of a structure, specifically the rotational one, due to the 
complexity and high cost. Besides, the measured responses contain un-
certainties due to the measurement noises. Thus, to determine the sys-
tem matrices at every interval, using the system input measurement and 
responses of some structural degrees of freedom, even for linear systems, 
pose serious difficulties. The system state can be established using the 
Kalman filter (KF), as proposed by Kalman [63] in 1960. The KF 

algorithm is a forecasting and adjustment method to estimate the mean 
and the covariance of a linear system’s state vector by minimizing the 
estimated state’s variance. This KF algorithm predicts the following step 
values of a priori estimates of the state and the covariance of the esti-
mation error (x̂ −

k+1, P−
x,k+1). To improve the anticipated values of the 

system state and its covariance matrix, the variation between the esti-
mated and evaluated responses of the system (yk+1 − ŷ−

k+1) can be 
assessed by employing an a priori state estimate. Notably, this 
prediction-updating process has been repeated for the next step. The 
details of the KF algorithm are presented in Fig. 1. A more detailed 
discussion can be found in the work of Simon [36]. 

2.1. Extended Kalman filter (EKF) 

Eqs. (1) and (2) can be employed to discretely evaluate a nonlinear 
system’s governing equations. For nonlinear systems, the state of the 
system or the input or both at the subsequent step of the time is not 
directly involved in the system and measurement equations at the cur-
rent time step and next time step. The time-evolution of the probability 
distribution of nonlinear system states can be represented by many ap-
proaches. One of these methods is the conditioned Fokker-Planck dif-
ferential equation [64], for which finding an explicit solution is often 
challenging. Thus, the KF algorithm may not be employed for the 
prediction-correction of these systems. Several strategies have been 
proposed to employ the KF algorithm for these systems, including the 
extended Kalman filter (EKF) method. We can apply the first-order 
Taylor series expansion about the operative point to linearize a 
nonlinear state-space system around the latest estimated state. After-
ward, the KF prediction-updating method is employed to obtain the 
evaluation for predicting the subsequent time-step linearization of a 
linearized system. The Taylor series expansion of Eq. (1) around the x̂+

k 
operative point (a posteriori estimate) can be expressed as follows: 

xk+1 =

[

fk
(

x̂+

k , uk
)
+

∂fk(x, uk)

∂xT

⃒
⃒
⃒
⃒

x= x̂+k

(
xk − x̂+

k

)
+H.O.T

]

+ wk→xk+1

≅ Akxk + ũk + wk (5)  

where ũk = fk(x̂
+

k , uk) − Akx̂+

k and Ak =
∂fk
∂xT |x= x̂+

k
. 

The subsequent value of the state vector and the covariance of the 
system state can be determined using Eqs. (6) and (7): 

x̂ −

k = fk
(

x̂+

k+1, uk
)

(6)  

P−
x,k+1 = AkP+

x,kAT
k + Qk (7) 

To assess the subsequent evaluation of the system state vector and 
the covariance system state, the evaluation equation should be linearly 
dispersed around a priori state estimate point as follows: 

yk+1 =

[

gk+1
(

x̂ −

k+1, uk+1
)
+

∂gk+1(x, uk+1)

∂xT

⃒
⃒
⃒
⃒

x= x̂−k+1

(
xk+1 − x̂ −

k+1

)
+H.O.T

]

+ ηk+1→yk+1 ≅ Ck+1xk+1 + z̃k+1 + ηk+1

(8)  

where Ck+1 =
∂gk+1
∂xT |x= x̂−

k+1 
and ̃zk+1 = gk+1(x̂

−

k+1,uk+1) − Ck+1 x̂−

k+1. 
Therefore, the following results can be achieved: 

ŷ −

k+1 = gk+1
(

x̂ −

k+1, uk+1
)

(9)  

P−
xy,k+1 ≅ P−

x,k+1CT
k+1 (10)  

P−
y,k+1 ≅ Ck+1P−

x,k+1CT
k+1 + Rk+1 (11) 

The prediction-updating procedure of a nonlinear system can be 
derived using Eqs. (6), (7), and (9)-(11). In the above relations, the state 
equation around x̂+

k and the measurement equation around x̂−

k+1 were 
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linearized. This process can be explained as follows: In the state equa-
tion, since we are in the time update phase, the best answer is the a 
posteriori estimate from the previous step. To linearize the measurement 
equation, since we are in the measurement update phase and intend to 
update the measurement, the best estimate is the a priori state of the 
current step. 

As shown in Eq. (8), the EKF method demands calculating the 
structural FE response sensitivities for unknown parameters. Two well- 
known differentiation techniques, namely the finite difference method 
(FDM) [65] and the direct differentiation method (DDM) [66], are 
employed for computing these coefficients. In this study, FDM is used to 
calculate the sensitivity coefficients because it provides fewer conver-
gence issues in practical applications and lower computational costs. 

It should be emphasized that using first-order linearization results in 
some errors in system identification. Therefore, it may cause large errors 
around the wrong results for highly nonlinear systems. Several ap-
proaches have been suggested to consider the inaccuracies resulting 
from the elemental first-order approximation intrinsic to the EKF 
implementation. Among these methods, the iterative Kalman filter (IKF) 
[67,68] or second or higher filter orders [69–71] contain achievable and 
well-matched estimation error reduction in specific application areas. 
The unscented Kalman filter (UKF) has stemmed from the research work 
of Julier and Uhlman, who presented the idea of the unscented trans-
forms and developed it for the problem of recursive analysis and esti-
mation. The following summarizes the UKF. 

2.2. Unscented Kalman filter 

The UKF was established based on a less complicated concept to 
approximate a probability distribution than an arbitrary nonlinear 
transformation. Consequently, the probability density function (PDF) of 
the system state at tk, P(xk|y1:k), where y1:k = [yT

1 , yT
2 ,…, yT

k ]
T, can be 

estimated using a Gaussian distribution. Thus, the posterior PDF of the 
system state at the next step P(xk+1|y1:k), can be evaluated using a 
Gaussian vector with the following mean and covariance vectors: 

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
yk+1 − ŷk+1|k

)
(12)  

Pk+1|k+1 = Px,k+1|k − Kk+1Py,k+1|kKT
k+1 (13)  

where the x̂k+1|k+1 and Pk+1|k+1 denote estimates of the mean and 
covariance matrix of xk+1 given y1:k+1, and ŷk+1|k is the evaluation of the 
mean of yk+1 given y1:k, and the Kalman gain matrix (Kk+1) is defined as: 

Kk+1 = Pxy,k+1|k
(
Py,k+1|k

)− 1 (14) 

Solving a series of multiple integrals, rarely having closed-form so-
lutions, results in defining the covariance matrices Px,k+1|k, Py,k+1|k, and 
Pxy,k+1|k. Therefore, numerical integration should be used to solve these 
multiple integrals. In this case, the unscented transformation (UT) 
method [72] is considered. In this approach, a group of deterministically 
chosen collection points, called sigma points (SPs), is employed to 
illustrate a randomly distributed vector Z. Hence, the mean and 

Fig. 1. Schematic representation of discrete-time KF algorithm.  
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covariance matrices of the sample derived from the SPs accurately 
correspond to the real mean and covariance matrices of the vector Z, 
which is randomly distributed. The SPs propagated through the 
nonlinear function can be used to capture the exact mean and covariance 
matrix of a nonlinear function up to the second-order of its Taylor series 
expansion. 

The UT in this study is not the superior one implemented to solve 
various engineering problems. Different feasible UTs can be imple-
mented if computational savings is the first priority, e.g., Simplex UT 
[73], Spherical UT [39], and Scaled Spherical Simplex UT [74] with 
decreased sigma points. Certainly, the nature of the noise must be 
known in most of these transformations. The difficulty with the simplex 
versions is the ratio between the weighting factors of different SPs can 
yield numerical problems. This issue, along with the instabilities 
induced by the use of experimental data, causes convergence problems. 
Therefore, equal weighting coefficients SPs case is used in this study. 

2.3. Parameter estimation using EKF and UKF 

FEMU assumes that the structure’s model is discretized in the space 
state employing fiber-section force-based beam-column elements. Here, 
the nonlinearity can be considered member’s integration points (IP). 
The member section is discretized using fibers. Constant parameters can 
describe the nonlinear uniaxial material constitutive model assigned to 
fibers, specifying their force-deformation. 

Various accelerometers mounted on different points in a building 
structure record the structural responses and the input excitation during 
an earthquake. Moreover, several structural characteristics, including 
the sections, damping ratio, constraints, and constant parameters of 
behavioral models assigned to different fibers, can be specified to 
anticipate the structural response using the FE models. In this study, 
several complexities of the real structure have been disregarded, and 
constant parameters of material constitutive models assigned to 
different fibers and boundary constraints (the stiffness of beam-to- 
column connections and column-to-base) were considered in the 
modeling as the sources of uncertainties. Therefore, the main objective 
of this research is to determine the unknown parameters by minimizing 
the difference between the response of the real structure and that of the 
FE model. The following explains the methodology for estimating the 
mean and covariance of unknown parameters using measured data. 

The nonlinear structural responses using the constant parameters 
(vectors of θ) can be established as follows: 

yk+1 = gk+1(θ, uk+1) + vk+1 (15)  

where h(., .) is the nonlinear vector-valued function, which indirectly 
parameterizes the model. The unknown parameters vector of θ can be 
defined as a random vector the evolution of which is described by a 
Gaussian Markov process [75]. Consequently, the system state equation, 
demonstrating the governing equations of the changes of unknown pa-
rameters and the measurement equation based on system output, is 
expressed as follows: 

θk+1 = θk + γk (16)  

yk+1 = gk+1(θk+1, uk+1) + vk+1 (17)  

where γk is a zero-mean Gaussian white-noise process. Relying on this 
type of distribution for the discrepancy model can lead to approximate 
and biased identification outcomes [76]. Still, for numerical stability 
causes and employing EKF recursively, this assumption holds in this 
study. Intersently, Eqs. (16) and (17) are identical to (1) and (2), except 
that the process equation is expressed linearly, while the measurement 
equation can be considered a nonlinear equation. For this reason, solv-
ing the nonlinear equation and estimating its parameters can be 
considered a significant challenge when using the EKF and UKF 
methods. 

2.4. Parameter estimation framework 

In the event of seismic excitation, the governing equation of a 
nonlinear finite element model, which has been discretized at time- step 
k + 1, can be described as follows: 

M(θ)q̈k+1(θ) + C(θ)q̇k+1(θ) + rk+1(qk+1(θ), θ) = − MIüg,k+1 (18)  

where I and üg denote the influence vector and the input ground ac-
celeration, respectively. Also, q, q̇, and q̈ are the structural model dis-
placements, velocity, and acceleration, respectively. M and C are the 
mass and damping matrices. r(.,.) is the internal restoring force vector, 
which is directly dependent on unknown parameters and indirectly on 
unknown parameters through q(θ). The absolute acceleration of the 
structure can be obtained via the following relations: 

yk+1 = Ly

(

q̈k+1 + Iüg,k+1

)

+ vk+1 (19) 

Combining Eqs. (18) and (19) gives the absolute acceleration of the 
structure as: 

yk+1 = gk+1

(

θ,
[

üg,k+1

]

, q̇0, q0

)

+ vk+1 (20)  

where yk+1 accounts for the absolute acceleration value, [üg,k+1] =

[üg,1, üg,2,…, üg,k+1]
T is the input ground acceleration from time step 1 to 

time step k + 1, and q0 and q̇0 denote the initial displacement and ve-
locity of the structure, respectively, wherein the values can be equal to 
0 at the initial condition for the sake of simplicity. 

Considering the random distribution of θ characterized by a Gaussian 
Markov Process, the estimation of the unknown parameters can be 
expressed as: 

θk+1 = θk + γk (21)  

yk+1 = gk+1

(

θk+1,

[

üg,k+1

])

+ vk+1 (22)  

where γk ∼ N(0,Qk). 
The second-order statistics of the process noise γ are considered 

constant in each analysis, i.e., Qk = Q. The process noise covariance 
matrix is characterized as Qk = E(γγT). This matrix is designated diag-
onally, whose elements on the diagonal are the process noise variances 
related to the parameters to be evaluated. In this study, these variances 
are characterized as q2 × Diag([θ2

i ]), where q is the root mean square 
error (RMSE) of each component of the process noise. This parameter is 
taken as a percentage of the initial assessment of the related material 
parameter. Different values are considered for this parameter. 
Enhancing the process noise variance increases the estimation uncer-
tainty and the relevant significance assigned by the Kalman filter to the 
response measurements versus the latest prior estimation of the pa-
rameters. Briefly, the size of the process noise variance exploits the step 
size of the evolution of the parameter vector estimations [36]. 

According to the equations mentioned in the previous sections, the 
EKF and UKF methods can be employed recursively to estimate the 
unknown parameters. Fig. 2 and Fig. 3 demonstrate the process of these 
algorithms, respectively. 

3. The sensor placement methodology 

The precise prediction of a structural system behavior based on 
measured response is crucial because it can promote structural health 
monitoring and reliability analysis. Therefore, due to the limited num-
ber of measurements, and small size of samples from one side, and 
numerous uncertainty sources from another side, it is necessary to 
develop methodologies that show the best location and type of measured 
data. Among the many proposed techniques, information entropy (IE) 
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[77] and cross-entropy(CE) [78] can be mentioned as the two fast and 
simple methods to determine the best combination and location of re-
sponses for system identification. In this study, IE is used regarding its 
rather straightforward usage. 

Using the structural degrees of freedom (DOF) and the observed DOF 
with Nd and No, respectively, the acceleration response of a building 
structure at a kth time step, i.e., tk = kΔt, is obtained as follows: 

yk+1 = Ly[q̈(k, θ) + v(k, θ)] (23)  

where LyϵRNo×Nd accounts for the output matrix with only one non-zero 
element, which is equal to unity in each row. The observed DOFs and No 
can be expressed using a sensor configuration vector as follows: 

δ = LT
y Ûn (24)  

where ÛnϵRNo denotes a vector whose entire elements can be equal to 
unity. Also, for δϵRNd , in the case of observing the DOF i, the ith element 
can be equal to unity, and it is 0 in the rest of the cases. 

As stated previously, the optimal value of θ can be obtained by 
minimizing the real structural response regarding the anticipated one 
from the finite element model, as follows: 

G(θ) =
1

NtNo

∑Nt

k=1
‖ yk − Lyq̈k(θ) ‖

2 (25)  

where ‖ . ‖ denotes the square norm, and Nt is the number of estimated 

time steps. A PDF using probability models can be employed to evaluate 
the uncertainties associated with the parameter θ. To achieve the pos-
terior PDF of parameter θ, which is dependent on a specified configu-
ration of a sensor and a group of valued data, an asymptotic 
approximation can be used as follows [79]: 

P(θ|δ,D) = CG(θ)−
Nt No

2 π(θ) (26)  

where C denotes a normalized constant, D shows the measured data, and 
π(θ) indicates the prior distribution of the parameter θ. 

With reference to a non-informative prior distribution π(θ) and a 
wide range of noted data points, Nt, the posterior PDF particularly 
reaches its peak at D, where θ̂ is the optimal parameter θ. 

3.1. Information entropy 

The optimal value of θ̂ and the behavioral parameters of a structure 
with the highest likelihood following D are considered known. It is noted 
that for a specified configuration of sensors δ, the information entropy, 
which tacitly relies on the recorded data D, θ̂, and σ̂2

= G(θ̂,D), can be 
defined as [80]: 

H(θ̂, δ) = Eθ[ − lnP(θ|θ̂, δ)] (27)  

where Eθ is the mathematical expectation in terms of θ. Employing Eq. 
(26), the information entropy can be obtained by [77]: 

Fig. 2. Schematic illustration and flowchart of discrete-time EKF for parameter estimation under base excitation.  
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H(θ̂, δ) =
1
2
Nθ

[
ln(2π)+ 1+ lnσ̂2]

−
1
2

lndetQ(δ, θ̂) (28)  

where Nθ stands for the number of uncertain model parameters. The 
elements of the matrix Q(δ, θ̂) can be evaluated by [81]: 

Qij(δ, θ̂) ≈
∑Nt

k=1

[
∂q(k, θ)T

∂θi
LT

y Ly
∂q(k, θ)

∂θj

]

(29) 

For the sake of simplicity, the elements of matrix Q(δ, θ̂) can be given 
by: 

Qij(δ, θ̂) =
∑Nd

i=1
δiP(θ̂) (30)  

where the elements of the matrix P(θ̂) can be represented as: 
Consequently, determining the optimal placement of sensors can be 

considered to minimize the information entropy expressed based on Eq. 
(28). According to Eq. (28), detQ(δ, θ̂) should be maximized to minimize 
the H(θ̂, δ). Also, all possible modes of sensor placement should be 
considered to find the maximum value of the parameter detQ(δ, θ̂) with 
respect to a base mode. To obtain the optimum base mode configuration, 
it can be assumed that all sensors have been installed in all structural 

DOFs, and the structural responses can be employed for measuring the 
information entropy. Accordingly, considering the value of the infor-
mation entropy (H(θ̂,δ) = H0), the information entropy difference for a 
given configuration of sensors with respect to the base mode can be 
computed as: 

H − H0 = 0.5 × ln
|Q(δ0, θ̂)|
|Q(δ, θ̂)|

(32)  

where |.| denotes the determinant. It is presumed that s2 is the geometric 
value of the mean of the principal variances of the covariance matrix 
σ2

0Q(δ, θ̂)− 1 of the dispersion P(θ|θ̂, δ). To obtain the value of s2, the 
general spreading of the distribution P(θ|θ̂, δ) around the mean value of 
the model parameters of the structure can be used. The parameter- 
uncertainty ratio (PR) can be derived by assuming two different distri-
butions following the vector of sensor configuration [77]: 

S
S0

= exp
(

H − H0

Nθ

)

(33) 

Consequently, the ratio of arithmetical means of the standard de-
viations merely relies on the variations of information entropy and 
various parameters of the model. Hence, the ratio is alternatively 
employed for measuring the variations between the two cases in terms of 

Fig. 3. Schematic illustration of discrete-time UKF for parameter estimation under base excitation.  
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uncertainty. More particularly, increasing or decreasing the entropy 
relies on increasing or decreasing the parameter-uncertainty ratio. 
However, the PR can be equal to unity in the case of the two sensor 
configurations with identical information entropy. 

In the case of implementation, due to the explicit comparability of 
the dispersion of the PDF of θ around its mean values using the 
parameter-uncertainty ratio, the variations of the uncertainty between 
cases can be expressed with respect to the PR rather than the entropy 
ratio. 

4. Test structure 

The 1:8 scale prototype structure used in this study is shown in Fig. 4. 
This structure is made of elastic elements linked with plastic hinge 
components. A mass simulator is connected to the test structure to 
implement the effects caused by seismic masses, gravity loads, and P −
Delta phenomenon. Furthermore, this study takes advantage of a bracing 
frame to constrain the out-of-plane motion of the experimental system. 
To adequately simulate the deterioration modes, the plastic hinge ele-
ments were constructed with detailed components from A992 steel with 
a yield stress of 50 ksi located at both ends of the members. As shown in 
Table 1, a sequence of excitations, including white noise, sine-sweep, 
pulse-type excitations, and earthquake records, are considered for the 
test frame [82]. 

The structure was damaged under 100% load of the Canoga Park 
(CP) record of the 1994 Northridge earthquake (see Fig. 5), presenting 
the design-level earthquake (DLE) [82]. The test frame behaved elasti-
cally under 20% and 40% of the mentioned earthquake, while inelastic 
damage is observed under the DLE earthquake (Fig. 6). Determining the 
damage level of the test frame under different base excitations qualita-
tively, in addition to monitoring the amount of peak story drift ratios, 
was accomplished by investigating the residual displacement of the 
frame. Notably, the response of 20% of the Canoga Park record, 
white-noise excitation, and impulsive excitation are employed in 
calculating the IEM. According to the test results, only the bottom part of 
the first story column behaves nonlinearly. The beams of the first two 
stories demonstrate the maximum amount of nonlinearity. Meanwhile, a 
slighter level of nonlinearity is observed in the beams of the upper 
stories (Fig. 6). The deformation of all potential nonlinear regions of the 
frame was estimated using more than 247 data channels in the test 
frame. A data acquisition system with a sampling rate of 128 Hz was 
implemented to record all responses of the test system. The nonlinear 
region’s time history response, including strain, deformation, and stress 
during different excitations, was recorded through strain gages and clip 
gages. Displacement transducers and accelerometers installed on the 
shake table, floors, and the mass simulator were operated to measure the 
displacement and acceleration responses in all directions. A compre-
hensive report of the test procedures is provided by Lignos et al. [82]. 

5. Uncertainty development and FE models 

The uncertainty of the FE model generates inaccurate estimations of 
the system response and its reliability. Therefore, it is significant to 
develop and evolve numerical models that consider the uncertain 
character of real structural systems. In this study, four models of the test 
frame with completely different aspects are evolved to consider the in-
fluence of various uncertainties. The FE modeling of the frame was 
performed using the OpenSees software [83]. The elements of the 
structure were modeled using the elements of the OpenSees, including 
the “linear elastic beam-column” and “nonlinear beam-column” with 
distributed plasticity. Hence, employing the distributed plasticity rather 
than the concentrated one can be considered among the uncertainties 
applied in the modeling. Using the distributed plasticity rather than the 
concentrated one leads to the material nonlinearity distribution along 

Fig. 4. Test structure, mass simulator, and bracing system on the SUNY-NEES 
shake table [82]. 

Table 1 
Base excitation sequences for the scaled test structure.  

Base 
excitation 
sequence 

Base excitation Scale Description Abbreviation 

1 Canoga Park 
earthquake 

20% – – 

2 Canoga Park 
earthquake 

40% Service level 
earthquake 

SLE 

3 Canoga Park 
earthquake 

100% Design level 
earthquake 

DLE 

4 Llolleo 
earthquake 

150% Maximum 
considerable 
earthquake 

MCE 

5 Canoga Park 
earthquake 

220% Collapse level 
earthquake 

CLE 

6 Canoga Park 
earthquake 

220% Final collapse level 
earthquake 

CLEF  

Fig. 5. Time history of the Canoga Park ground motion.  

Fig. 6. The severities and locations of nonlinearity of the test structure 
under DLE. 
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several sections of the elements, referred to as the integration points 
(IPs). The sections are additionally discretized into fibers [84]. The 
uniaxial force-displacement response is assigned to each fiber according 
to the selected material model. Fig. 7 shows the stages of the structural 
component divisions of FE models. In the first model, which is the 
beam-column model with the distributed plasticity considering the 
G-M-P and BWBN hysteretic models, it is presumed that the structure 
behaves elastically except for the columns of the first story and the 
beams of the first two stories. The second model is identical to the first 
model except for semi-rigid connections at the bottom of its first-story 
columns. In contrast, for the third model, semi-rigid connections can 
be assumed for total beam-column connections. 

Fig. 7(a) shows that the fourth model behaves as a shear frame with 
rigid beams. It is also assumed that the columns are merely allowed to 
rotate due to the slab diaphragm. Based on this Fig., 6 and 8 IPs of the 
Gauss-Lobatto quadrature for columns and beams, respectively, can be 
implemented for the numerical integration along the element length. 
Four fibers and one fiber have been used along the length and width of 
the web of the first story columns, respectively (Fig. 7b)). Six fibers and 
one fiber were assigned along the height and width of the webs of the 
beams of the first two stories, respectively. At the same time, one fiber is 
employed for the flange of columns and beams along their thickness. 

To consider the uncertainties related to the material behavior model, 
we used two models in the fiber sections of all models: BWBN and G-M- 
P. Notably, regarding their simplicity of implementation in the state- 
space models, these models have been used for structural system iden-
tification with recursive algorithms. Unlike the G-M-P model, the pa-
rameters of the empirical BWBN model contained no tangible 
signification. The parameters of the BWBN model are extracted by 
developing a case-by-case study. In addition to the dependency of the 
parameters of this model on each other, multiplying its parameters 
resulted in problems, and different combinations of these parameters 
resulted in nearly identical responses. Unlike the BWBN model, the G-M- 

P model was advantageously calibrated. A brief description of each 
material behavior model and the way to select their parameters are 
stated in the following sections. 

5.1. Hysteretic material model 

5.1.1. G-M-P 
The G-M-P material model is shown in Fig. 7(c). As can be seen, 

about 10 parameters were used to formulate this model. Among these 
parameters, E is the modulus of elasticity, Fy shows initial yield stress, 
and b is strain hardening ratio.To control the hysteretic behavior, 
Baushinger effects, and isotropic hardening, seven remaining empirical 
parameters were employed. 

5.1.2. Bouc-Wen-Baber-Noori 
In the BWBN material model shown in Fig. 7(d), stiffness and 

strength deterioration with no pinching were considered. In this model, 
the nonlinear restoring force of the system is given as: 

R(x, z) = αK0x + (1 − α)K0z (34)  

ż =
Aẋ − νβ|ẋ| |z|n− 1z − νγẋ|z|n

η (35)  

A = A0 − δAε (36)  

ν = 1 + δνε (37)  

η = 1 + δηε (38)  

ε =

∫t

0

żẋdt (39) 

Fig. 7. Hierarchical discretization orders of nonlinear structural FE models, (a) different modeling asumption, (b) fiber cross-section for distributed beam-column 
elements, (c) G-M-P material model constitutive law and related parameters, and (d) BWBN material model constitutive law and related parameters. 
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where K0 and z, respectively, stand for the initial tangent stiffness and 
the virtual nonlinear cyclic displacement of the structure; α, A, ν, β, γ, η, 
δA, δν, δη and A0 characterize the model; α is the post-yield stiffness 
ratio; ε is the hysteresis energy; A, β, and γ control the level of 

nonlinearity, where γ and β are identical values. In addition, n accounts 
for the sharpness of transition in the yield point, and η and ν control the 
deterioration of the model. 

Employing all parameters of both material behavior models 

Fig. 8. The statistical properties for various sensitivity indicators of G-M-P hysteretic behavior for models 1 and 2: (a) E, (b) Fy, (c) b, (d) R0, (e) CR1, (f) CR2, (g) Kθ, 
and (h) ξ. 
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increases the likelihood of an error during the identification process. To 
avoid this issue, the parameters affecting the structure’s response at the 
DLE should be selected, while other parameters with minor effects 
should be considered definite. Thus, the effective parameters may be 
determined using sensitivity analysis (SA) and appropriate index 
selection. 

SA and uncertainty analysis, with the latter more focusing on un-
certainty quantification and uncertainty propagation, are usually per-
formed jointly in many practical cases. There are many techniques for 
performing SA. Many of these techniques are designed to handle one or 
more of the restrictions of any particular problem, e.g., [85–88]. In one 
of the most straightforward methods of SA, the desired sensitivity 
criteria are calculated using the outputs of the resulting model. Conse-
quently, a baseline model was selected, and the discrepancy between the 
responses of the simulated and baseline models can be used to specify 
the sensitivity of the model to varying its parameters. For this purpose, 
two general approaches were used: 1) the discrepancy between the re-
sidual displacement of several stories and 2) the variations of the ac-
celeration responses of several stories of the simulated and baseline 
models. These general approaches can be determined by implementing 
the following equations: 

eRes,i =

⃒
⃒ResSimulated

i − ResBaseline
i

⃒
⃒

|ResBaseline
i |

× 100 (40)  

eAcc,i =
‖ AccSimulated

i − AccBaseline
i ‖

‖ AccBaseline
i ‖

× 100 (41)  

where the superscripts Simulated and Baseline stand for the simulated 
and baseline model, respectively; Res and Acc denote the vectors of re-
sidual deformation and acceleration responses, respectively; and ‖ . ‖

shows for the Euclidean norm value. To define 12 different indexes 
under DLE, the preceding equations were used in the following order: 
Indexes 1–4 demonstrate the acceleration responses of the first to fourth 
stories. Besides, indexes 5–8 indicate the displacement responses of the 
first to fourth stories, and indexes 9–12 report the residual displacement 
of the first to fourth stories. The exact values of the parameters of two 
material hysteretic models for the baseline mode are summarized in 
Table 2. For each analysis, the gravity forces were assigned in a quasi- 
static manner, followed by using the base excitation dynamically. 

Newmark average acceleration method [89] was used to recursively 
incorporate the time-domain equation of motion using a frequency of 
128 Hz through the nonlinear time-history analysis. Meanwhile, the 
Newton-Raphson method [89] was employed to iteratively figure out 
the incremental dynamic equilibrium equation nonlinearly at every in-
dividual time step. Tangent stiffness-proportional damping [89] can be 
used to idealize the properties of the damping energy dissipation over 
and above the material hysteretic energy of the frame. To this end, we 
assume varied damping ratios for the first mode. The mean (μ) and 
standard deviation (σ) for various sensitivity indicators of different 
models are illustrated in Fig. 8, Fig. 9, Fig. 10, Fig. 11. These figures 
show the mean and change of time-domain error metrics. For the 
time-domain metrics, the horizontal lines in the plot depict the error 
range in the four stories, and the black, red, and blue dots denote the 
mean values. By examining these figures, the following conclusions can 

be made:  

• A good match existed between the acceleration and displacement 
criteria, suggesting that both criteria are suitable for determining the 
sensitive parameters.  

• For model-1, the parameters of the G-M-P material model (i.e., E, Fy,

b and CR1) affect the overall behavior of the frame. The most sig-
nificant effect pertains to the E parameter, followed by Fy and CR1 
parameters, and then the b parameters. A negligible impact of the 
unknown parameter R0 was noticed for the weak earthquake, which 
is comparable to that of the unknown parameter b. Several param-
eters were employed to assess the structural system concerning the 
BWBN behavioral model. The most significant effect relates to the 
parameter K0 and α, while the parameter n has the lowest effect.  

• The structure experiences a slight nonlinearity under the DLE, and 
the displacement criterion was considered merely for determining 
the dimensions of the structural elements of the moment-resisting 
frame structure and prevailed over the strength criteria. As a 
result, the parameters related to the stiffness of the structure (i.e., the 
E and K0) have the greatest impact compared to other parameters.  

• For model-2, similar to the parameter E, the effect of parameter Kθ 

for the G-M-P model, and the parameters K0 and α for the BWBN 
material model are considerably higher than other parameters. This 
result indicates that the greater the number of parameters pertaining 
to the structure’s stiffness, the lower the effect of parameters relating 
to the strength of the structure. This is the case for model-3, wherein 
the rigidity of the beam-column connections was considered an un-
known parameter. 

6. EKF and UKF frameworks results 

6.1. State estimation results under DLE 

Both EKF and UKF algorithms were performed using MATLAB soft-
ware [90] interfaced using the OpenSees platform. Therefore, it is 
possible to determine the responses of the finite element models and the 
response sensitivity. To conduct the analysis, the initial values and the 
initial covariance matrix, implying the uncertainties related to the initial 
assumptions, were assumed for the parameters of each behavior model. 
To examine several uncertainties related to the considered data feature, 
four modes of structural responses for nonlinear model calibration 
through the EKF and UKF were implemented: 1) the acceleration re-
sponses of all stories(Case_1), 2) the acceleration responses of all stories 
along with the displacement responses of the first and third floors 
(Case_2), 3) the acceleration responses of all stories along with the 
displacement responses of the second and fourth floors(Case_3), and 4) 
the acceleration and displacement responses of all stories(Case_4). The 
analysis was conducted using several factors, including the element se-
lection, the number of IPs along the length of the elements, the number 
of fibers, different types of methods for solving nonlinear equations, and 
the time-step of each time interval. These factors are identical to those of 
the sensitivity analysis section mentioned in the paper. Table 3 presents 
various scenarios for identifying the test frame. 

In this study, 100 analyses were conducted to estimate the parame-

Table 2 
The assigned values of parameters of two material hysteretic models for the baseline models.  

G-M-P material model 

Parameters E(MPa) Fy(MPa) b R0 CR1 CR2 Kθ = N∗ × 6EI/l ξ   
2e5 350 0.02 15 0.6 0.15 10 0.02   

BWBN material model 

Parameters α n δν δη δA γ Kθ = N∗ × 6EI/l ξ A0  

0.5 1.0 0.2 0.2 0.0 300 10 0.02 1.0 

*The N is considered as a variable. 
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ters of the behavior model. The analyses involve different initial values, 
the covariance of the estimation error, and the covariance matrix of 
process noise. Here, the lower the values of the elements of the covari-
ance of the estimation error matrix, the lower the rate of convergence 

and vice versa; however, selecting the elements of the covariance matrix 
with higher values reduces the stability of the framework [36]. The 

initial values of the unknown parameters (θ̂
+

0 = ri × θAssumed) and related 
estimated covariance matrix for both material behavior models are 

Fig. 9. The statistical properties for various sensitivity indicators of G-M-P hysteretic behavior for models 3 and 4: (a) E, (b) Fy, (c) b, (d) R0, (e) CR1, (f) CR2, (g) Kθ, 
and (h) ξ. 
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presented in Table 4 and Table 5. The use of ri indicates that for each 
unknown parameter, a coefficient of the value mentioned in the table is 
supposed. In this study, P+

θ,0 is represented as a diagonal matrix, sug-
gesting that initial estimates of the unknown parameters of the 

behavioral model are considered without relation. For instance, the di-
agonal elements of matrix P+

θ,0 for the model_4 and G-M-P material 

model are: (pEtrue)
2, (pFy,true)

2, (pbtrue)
2, (pCR1true)

2, and (pξtrue)
2. Here, p 

is the coefficient of variation of the initial parameter estimations. 

Fig. 10. The statistical properties for various sensitivity indicators of the BWBN hysteretic behavior for models 1 and 2: (a) α, (b) K0, (c) n, (d) δv, (e) δη, (f) γ, (g) A0, 
(h) δA, (i) Kθ, and (j) ξ. 
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The algorithm has gradually marched forward in time, the number of 
structural responses increased, the effect of considering different initial 
values of parameters, and their covariance coefficients decreased. There 
is no correlation between the assumed initial and obtained values of 

parameters of behavioral materials. 
The number of SPs in the UKF method is twice the number of system 

states, n (unknown parameters). Therefore, in each time step, we need to 
run the FE model of the test frame 2n times. In the EKF method, since 

Fig. 11. The statistical properties for various sensitivity indicators of the BWBN hysteretic behavior for models 3 and 4: (a) α, (b) K0, (c) n, (d) δv, (e) δη, (f) γ, (g) A0, 
(h) δA, (i) Kθ, and (j) ξ. 
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sensitivity must be calculated for each unknown parameter, the FE 
model must be run n times in each time step. Hence, the time required 
for UKF is approximately twice as long. 

Fig. 12 and Fig. 13 present the variations of parameters of the G-M-P 
and the BWBN material models, respectively, normalized to their mean 
values for different models of Case_1. Also, the statistical values ob-
tained for two material model parameters are shown in Table 6 and 
Table 7. 

Based on the information presented in Fig. 12 and Fig. 13, it can be 
concluded that selecting different initial values of parameters and the 
covariance matrix with high dispersion does not lead to disparate final 
values of some parameters, especially the Young Modulus, E, of the G-M- 
P behavior model, and the k0 and α of the BWBN behavioral model. 
These limited variations demonstrate the high accuracy of estimating 
the mentioned parameters. In other words, the values of these 

parameters relevant to the structure’s stiffness were determined at the 
beginning of the analysis. In this stage, accelerations with low ampli-
tudes apply to the structure, and the structure behaves elastically. 
Therefore, the linearization technique may not be used. Moreover, 
because of the correlation between the BWBN model’s variables and 
their dependency on the parameter ż, the process of recognizing these 
parameters at the beginning of the seismic excitation accompanies un-
expected difficulty. As a result, the Young Modulus derived from the G- 
M-P model was determined with more accuracy than the corresponding 
parameters of the BWBN model. In the third and fourth models, due to 
the modeling errors, some fluctuations were introduced for the BWBN 
model’s variables, suggesting the low accuracy of the EKF and UKF 
methods in predicting the structural responses. 

Fig. 14, 15, 16, Fig. 17. present the anticipated displacement re-
sponses of different stories, along with the responses of the experimen-
tally tested structure for model_1 considering the G-M-P and the BWBN 
material model and different modes of structural responses through the 
EKF and UKF. 

The accuracy of various models is quantified using several ap-
proaches, such as the differences between the tested structure and the 
calibrated one (during strong shaking), defined as follows: 

ei =
‖ rCalibrated

i − rTest
i ‖

‖ rTest
i ‖

(42)  

where rcalibrated and rTest are the calibrated and tested responses, respec-
tively. The error matrix of the displacement and acceleration responses 
of both behavior models through the EKF and UKF are demonstrated in 
Fig. 18 and Fig. 19. As can be seen, the markers of each figure represent 
the average error of every individual residual in the first to fourth 
stories. The anticipated responses are evaluated by implementing the 
average values of the structural responses of each behavioral model. 
Because the extremum points contain valuable information about the 
overall behavior of the test frame, in Fig. 20, the error value for the first 
five extremum points of the displacement response of the fourth story is 
shown for cases 1–4. 

Examining Fig. 18, 19, Fig. 20. reveals that: 

• For all models, i.e., model_1 to model_4, and for both recursive al-
gorithms, the G-M-P behavior model contains fewer errors than the 
BWBN material behavior model owing to the relevancy of the BWBN 
parameters to each other. This result indicates the importance of 

Table 3 
Recursive algorithms, modeling assumptions, material model behavior, and type 
of data features in system identification.  

Identification 
algorithm 

Structural 
FE model 
type (Fig. 7) 

Hysteretic 
material 
model ( 
Fig. 7) 

Data feature 
characteristics 

No. of 
analysis 

EKF(Fig. 2) Model 1 G-M-P Cases_1–4 
Case_1: acceleration 
responses of 1st to 
4th stories 
Case_2: acceleration 
responses of 1st to 
4th and 
displacement 
responses of 1st and 
3rd stories 
Case_3: acceleration 
responses of 1st to 
4th and 
displacement 
responses of 2nd 
and 4th stories 
Case_4: acceleration 
and displacement 
responses of 1st to 
4th stories 

100 
BWBN 100 

Model 2 G-M-P 100 
BWBN 100 

Model 3 G-M-P 100 
BWBN 100 

Model 4 G-M-P 100 
BWBN 100 

UKF(Fig. 3) Model 1 G-M-P 100 
BWBN 100 

Model 2 G-M-P 100 
BWBN 100 

Model 3 G-M-P 100 
BWBN 100 

Model 4 G-M-P 100 
BWBN 100  

Table 4 
The initial estimation variation of the mean vector and covariance matrix of G-M-P behavioral model parameters.     

E(MPa) Fy(MPa) b R0 CR1 CR2 Kθ = N∗ × 6EI/l ξ  

Assumed**  2e5 360 0.03 15 0.6 0.15 10 0.02 
Beam Mean = ri × θAssumed ri 0.75–1.15 0.85–1.15 0.5–1.5 – 0.8–1.5 – 0.75–1.5 0.5–2.0 

Covariance(pi) pi 0.2–0.4 0.2–0.4 0.2–0.4 – 0.2–0.4 – 0.2–0.4 0.2–0.4 
Column Mean = ri × θAssumed ri 0.8–1.15 0.75–1.15 0.5–1.5 – 0.75–1.5 – 0.75–1.5 0.5–2.0 

Covariance(pi) pi 0.25–0.4 0.2–0.4 0.25–0.4 – 0.25–0.4 – 0.25–0.4 0.25–0.4 

*The N is considered as a variable. 
** Assumed vector is considered as baseline. 

Table 5 
The initial estimation variation of mean vector and covariance matrix of BWBN behavioral model parameters.     

α K0 n δv δη γ A0 δA Kθ = N∗ × 6EI/l ξ. 

Assumed**  0.6 2.5e5 1.0 0.2 0.2 300 1.0 0.2 10 0.02 
Beam Mean = ri × θAssumed ri 0.5–2.5 0.75–1.25 0.5–2.0 0.6–2.5 0.6–2.5 0.3–1.5 0.7–1.2 0.6–2.5 0.7–1.5 0.5–2.5 

Covariance(pi) pi 0.15–0.5 0.25–0.5 0.10–0.5 0.25–0.5 0.25–0.5 0.15–0.5 0.3–0.5 0.25–0.5 0.2–0.5 0.2–0.5 
Column Mean = ri × θAssumed ri 0.5–2.0 0.8–1.2 0.6–2.5 0.6–2.5 0.6–2.5 0.3–1.5 0.7–1.2 0.6–2.5 0.75–1.5 0.75–2.5 

Covariance(pi) pi 0.25–0.5 0.25–0.5 0.2–0.5 0.25–0.5 0.25–0.5 0.15–0.5 0.3–0.5 0.25–0.5 0.25–0.5 0.25–0.5 

*The N is considered as a variable. 
** Assumed vector is considered as baseline. 
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selecting appropriate material behavior during calibration. Despite 
using various initial values of material behavior parameters and their 
covariance and different combinations of structural responses, 
employing inappropriate material behavior parameters leads to 

structural responses with various errors. Although the measured 
noises result in several errors during the calibration of models, its 
effect is insignificant compared to the modeling errors. 

Fig. 12. Parameters variation for G-M-P behavioral model for EKF and UKF algorithms.  
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• The errors of Model_1 and Model_2 are less than those of Model_3 and 
Model_4 for all cases. Also, the acceleration responses and the com-
bination of the acceleration and displacement responses of all stories 
are employed for the EKF and UKF algorithms. This point highlights 
the effect of modeling assumptions on the accuracy of the calibrated 

models. Moreover, as expected, provided that the modeling as-
sumptions, including the boundary conditions and constraints, are 
incorrectly established, the structural model may not be authenti-
cally calibrated when using all structural responses. 

Fig. 13. Parameters variation for the BWBN behavioral model for EKF and UKF algorithms.  
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• Generally speaking, the value of the errors of the displacement re-
sponses of all stories is lower than that of the acceleration responses.  

• Combining the displacement and acceleration responses of all stories 
improves the filters’ efficiency in the structural identification 
methods. The explanation is that considering the combination of the 
responses decreases the effects of measured noises on the calibration 
process, which is verified by the results of the work by Chatzi and 
Smyth [21]. In this respect, conformity is more likely to occur when 
comparing the calculated responses of Case_2 using the displacement 
responses of the first and third stories to that of Case_3. The results 
suggest that the accuracy of the filters in identifying the structural 
response depends on the type and the location of the recorded 
responses.  

• Comparing Case_4 with Case_3 indicates that no considerable 
improvement in the structural responses is achieved due to the 
modeling errors. Besides, adding the displacement responses of 
different stories may not affect the efficiency of the algorithms.  

• Considering the results of previous sections, it is concluded that using 
the EKF and UKF algorithms for both hysteretic models results in 
achieving various time-invariant parameters, and slight variations 
can be found between the results of the EKF and UKF. In this respect, 
UKF can be considered a superior procedure for identifying nonlinear 
systems. On the other hand, regarding modeling errors, the UKF and 
EKF can be comparable in terms of accuracy and filtering quality. It is 
noteworthy that finding different parameters of the G-M-P material 
model (e.g., Fy and b) and especially the parameters related to the 

transitions from the elastic to plastic phase (CR1) depends on not 
only the sufficient nonlinearity of the response but also the number 
and extension of the hysteretic cycles that the structure undergoes.  

• Therefore, since the structure has not experienced sufficient 
nonlinearity, the accuracy of evaluating these parameters is drasti-
cally low. Thus, taking advantage of the capability of the UKF al-
gorithm may not be practical. 

Fig. 21 compares the hysteretic response of the structure (i.e., the 
base shear versus the roof displacement and the anticipated responses of 
Case_4) for both material behavior models using the EKF and UKF 
methods. Comparing Fig. 14, 15, 16, Fig. 17. with Fig. 21 highlights that 
the structural responses in the overall scale (e.g., the hysteretic re-
sponses) are less accurate than the displacement and acceleration re-
sponses. This difference is due to several simplifications, such as 
considering the concentrated mass for the FE model rather than the 
distributed one, discretizing the structures, and incorporating several 
numerical methods in solving problems. 

To further study the results, Fig. 22 shows the time histories of 
posterior estimates of different parameters of G-M-P material models for 
Cases 1 and 4. As can be seen, the estimation of the Young Modulus 
parameter, E, is initiated from the beginning of the analysis, in which the 
base excitation is applied. Meanwhile, if the displacement responses are 
affected by these parameters, including the Fy and b, their prediction 
may be initiated. 

Besides, for Case_1, the EKF algorithm has not succeeded in 

Table 6 
The statistical values obtained for the G-M-P behavioral model parameters.  

Model_1   

Ec(MPa) Eb Fyc(MPa) Fyb bc bb CR1c CR1b ξ  
EKF Min 1.85E+05 1.76E+05 295.9 277.0 0.008 0.009 0.30 0.26 0.013  

Max 2.20E+05 2.18E+05 425.9 427.0 0.055 0.054 0.93 1.20 0.026  
Mean 2.03E+05 1.98E+05 362.4 350.1 0.031 0.032 0.62 0.72 0.0196  
STD 5.81E+03 6.38E+03 21.21 25.75 0.008 0.007 0.10 0.18 0.002  

UKF Min 1.82E+05 1.70E+05 280.6 287.4 0.016 0.001 0.19 0.22 0.013  
Max 2.19E+05 2.25E+05 423.0 423.7 0.044 0.058 0.86 1.03 0.027  
Mean 2.01E+05 1.98E+05 351.5 354.5 0.030 0.029 0.52 0.63 0.0202  
STD 5.12E+03 8.44E+03 19.56 20.67 0.005 0.008 0.15 0.17 0.002   

Model_2   

Ec(MPa) Eb Fyc(MPa) Fyb bc bb CR1c CR1b Kθc ξ 
EKF Min 1.77E+05 1.73E+05 252.5 284.8 0.010 0.004 0.22 0.23 8.40 0.013 

Max 2.24E+05 2.22E+05 494.8 428.6 0.049 0.055 0.99 1.05 11.58 0.026 
Mean 2.00E+05 1.98E+05 372.2 353.8 0.029 0.030 0.60 0.64 9.96 0.0194 
STD 7.02E+03 6.16E+03 31.6 22.1 0.006 0.007 0.18 0.20 0.53 0.002 

UKF Min 1.76E+05 1.75E+05 301.9 302.8 0.002 0.002 0.17 0.19 7.85 0.013 
Max 2.18E+05 2.25E+05 438.7 429.0 0.054 0.055 0.80 0.87 12.88 0.026 
Mean 1.97E+05 2.01E+05 372.7 366.9 0.027 0.028 0.48 0.54 10.32 0.0225 
STD 6.17E+03 6.93E+03 19.6 20.2 0.008 0.009 0.13 0.16 0.72 0.002  

Model_3   

Ec(MPa) Fyc(MPa) bc CR1c Kθb1 Kθb2 Kθb3 Kθb4 ξ  
EKF Min 1.78E+05 298.0 0.001 0.22 8.61 7.53 7.70 7.00 0.015  

Max 2.19E+05 424.1 0.064 0.86 11.60 12.47 11.97 13.26 0.027  
Mean 1.99E+05 360.8 0.032 0.54 10.12 9.98 9.84 10.11 0.0210  
STD 6.61E+03 20.1 0.010 0.15 0.51 0.82 0.69 1.00 0.002  

UKF Min 1.75E+05 296.8 0.001 0.19 7.80 8.15 8.13 7.60 0.017  
Max 2.18E+05 435.7 0.056 0.87 12.82 11.76 11.73 12.04 0.024  
Mean 1.97E+05 367.4 0.030 0.53 10.31 9.97 9.94 9.87 0.0205  
STD 6.35E+03 19.0 0.008 0.15 0.75 0.50 0.57 0.70 0.001   

Model_4   

Ec(MPa) Fyc(MPa) bc CR1c ξ      
EKF Min 1.75E+05 307.5 0.002 0.16 0.017      

Max 2.26E+05 407.7 0.067 0.75 0.024      
Mean 2.01E+05 356.3 0.036 0.46 0.0205      
STD 7.79E+03 15.4 0.012 0.12 0.001      

UKF Min 1.76E+05 270.3 0.019 0.20 0.016      
Max 2.21E+05 443.3 0.041 0.93 0.024      
Mean 1.98E+05 358.1 0.030 0.56 0.0199      
STD 7.09E+03 25.0 0.003 0.19 0.001       
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Table 7 
The statistical values obtained for the BWBN behavioral model parameters.  

Model_1   

K0c K0b αc αb nc nb δηc δηb γc γb A0c A0b δAc δAb ξ  
EKF Min 2.31E+05 2.29E+05 0.46 0.46 0.87 0.85 0.14 0.12 170.5 128.2 0.45 0.41 0.14 0.15 0.014  

Max 2.73E+05 2.71E+05 0.72 0.74 1.12 1.20 0.26 0.26 441.8 462.4 1.64 1.60 0.26 0.24 0.027  
Mean 2.53E+05 2.50E+05 0.59 0.60 0.99 1.03 0.20 0.19 306.7 293.3 1.07 1.00 0.20 0.19 0.0206  
STD 6.42E+03 6.67E+03 0.044 0.045 0.044 0.046 0.020 0.020 47.2 50.1 0.191 0.166 0.019 0.015 0.002  

UKF Min 2.26E+05 2.30E+05 0.46 0.47 0.87 0.87 0.13 0.13 126.5 101.6 0.47 0.48 0.14 0.12 0.014  
Max 2.73E+05 2.72E+05 0.75 0.75 1.15 1.13 0.26 0.27 496.0 452.9 1.58 1.60 0.27 0.27 0.027  
Mean 2.50E+05 2.51E+05 0.60 0.61 1.01 1.00 0.20 0.20 313.3 275.0 1.02 1.02 0.21 0.19 0.0206  
STD 6.83E+03 6.67E+03 0.044 0.044 0.046 0.045 0.020 0.021 49.6 50.1 0.173 0.192 0.020 0.024 0.002   

Model_2   

K0c K0b αc αb nc nb δηc δηb γc γb A0c A0b δAc δAb Kθc ξ 
EKF Min 2.27E+05 2.28E+05 0.41 0.47 0.59 0.77 0.12 0.08 134.4 121.8 0.32 0.08 0.12 0.14 8.68 0.013 

Max 2.74E+05 2.72E+05 0.81 0.75 1.40 1.28 0.28 0.33 520.6 429.1 1.63 1.85 0.30 0.27 11.19 0.027 
Mean 2.51E+05 2.50E+05 0.61 0.61 1.00 1.02 0.20 0.21 329.8 272.5 0.98 0.96 0.21 0.20 9.96 0.020 
STD 8.02E+03 7.41E+03 0.054 0.042 0.124 0.076 0.026 0.039 62.0 61.2 0.212 0.245 0.026 0.018 0.421 0.002 

UKF Min 2.25E+05 2.24E+05 0.47 0.44 0.70 0.82 0.09 0.09 66.6 203.4 0.15 0.30 0.13 0.14 7.84 0.012 
Max 2.67E+05 2.71E+05 0.73 0.77 1.37 1.16 0.32 0.32 382.8 408.9 1.76 1.73 0.26 0.26 12.03 0.027 
Mean 2.46E+05 2.48E+05 0.60 0.60 1.05 0.99 0.20 0.20 225.1 305.9 0.95 1.00 0.20 0.20 9.92 0.0194 
STD 5.64E+03 7.57E+03 0.040 0.051 0.109 0.049 0.039 0.033 66.0 29.7 0.235 0.228 0.020 0.020 0.689 0.002  

Model_3   

K0c αc nc δηc γc A0c δAc Kθb1 Kθb2 Kθb3 Kθb4 ξ     
EKF Min 2.30E+05 0.44 0.63 0.12 97.6 0.34 0.10 8.24 7.62 7.68 6.59 0.013     

Max 2.79E+05 0.77 1.39 0.30 469.5 1.80 0.29 11.52 12.31 12.01 14.08 0.028     
Mean 2.55E+05 0.60 1.03 0.21 284.8 1.066 0.193 9.90 10.05 9.83 10.27 0.0204     
STD 7.86E+03 0.052 0.116 0.026 56.9 0.243 0.029 0.54 0.82 0.69 0.97 0.003     

UKF Min 2.33E+05 0.45 0.61 0.07 70.0 0.35 0.08 7.61 8.62 8.52 7.58 0.013     
Max 2.67E+05 0.75 1.28 0.35 385.3 1.78 0.29 12.25 11.38 12.03 12.53 0.028     
Mean 2.50E+05 0.60 0.95 0.21 228.3 1.076 0.183 10.00 10.00 10.21 10.02 0.0206     
STD 5.64E+03 0.044 0.109 0.040 65.7 0.200 0.03 0.75 0.50 0.57 0.71 0.002      

Model_4   

K0c αc nc δηc γc A0c δAc ξ         
EKF Min 2.21E+05 0.09 0.53 0.07 110.5 0.31 0.06 0.014         

Max 2.74E+05 1.20 1.38 0.31 495.0 1.94 0.35 0.027         
Mean 2.47E+05 0.65 0.96 0.19 302.8 1.15 0.20 0.0206         
STD 8.88E+03 0.155 0.115 0.036 60.4 0.250 0.041 0.002         

UKF Min 2.32E+05 0.47 0.60 0.07 25.3 0.22 0.03 0.012         
Max 2.66E+05 0.71 1.34 0.31 438.5 1.73 0.36 0.030         
Mean 2.49E+05 0.59 0.97 0.19 228.7 0.99 0.19 0.0211         
STD 5.26E+03 0.039 0.11 0.039 88.6 0.233 0.053 0.003          
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estimating the value of the strain hardening parameter, even though the 
UKF algorithm shows sensitivity to this parameter. One the other hand, 
increasing the number of inputs in Case_4, both algorithms become 
sensitive to all parameters. 

6.2. State estimation results under CLE and CLEF 

Since the EKF method relies on linearization to propagate the mean 
and covariance of the estimation error, even though it is one of the most 
widely used state estimation methods, it may not perform well in dealing 
with systems with severe nonlinearity. In fact, the main concern with 

Fig. 14. Comparison of the FE predicted displacement response and the test frame inferred for two Cases(Case_1 and Case_2) for G-M-P material model.  
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nonlinear systems is the transformation of the PDF through the 
nonlinear system. The EKF method assumes that a linearized adaptation 
of means and covariances is approximately equal to the true nonlinear 
transformation. 

The results of the last section showed that under the DLE, this 
approximation could lead to relatively accurate results. Therefore, in 

this section, for higher-intensity earthquakes (CLE and CLEF) where the 
structure undergoes more severe nonlinearity, the estimation ability of 
this type is compared with that of the UKF method, which takes into 
account higher-order approximations. For CLE and CLEF earthquakes, 
both EKF and UKF algorithms were repeated 100 times for the first and 
second models with the G-M-P material model with different initial 

Fig. 15. Comparison of the FE predicted displacement response and the test frame inferred for two Cases(Case_3 and Case_4) for G-M-P material model.  
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conditions and various state estimation covariance assumptions. The 
errors of displacement and acceleration responses of different levels of 
the structure for both ground motion levels are shown in Fig. 23 and 
Fig. 24, respectively. 

Examining Fig. 23 and Fig. 24 indicates that:  

• No numerical convergence problems appear during the incremental 
integration of the nonlinear equations in these two algorithms, 
despite the significant nonlinearity of the test structure.  

• As expected, with the increase in the earthquake’s intensity, the 
expected growth in the input energy to the structure increases; 
meanwhile, with the further development and intensification of the 

Fig. 16. Comparison of the FE predicted displacement response and the test frame inferred for two Cases (Caee_1 and Case_2) for the BWBN behavioral model.  
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nonlinearity in the structure, the estimation error of the algorithms 
increases. Although some of this error is due to the cumulative errors 
of lower-level earthquakes, a large part is also related to linearization 
and the use of sigma points in EKF and UKF algorithms, respectively. 
The error for the EKF algorithm will increase much higher than the 
UKF. 

• Like the results obtained in the earlier section, fusing the accelera-
tion and displacement responses of all levels of the structure has 
caused the lowest estimation error for both algorithms. 

Fig. 17. Comparison of the FE predicted displacement response and the test frame inferred for two Cases (Caee_3 and Case_4) for the BWBN behavioral model.  
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6.3. Information entropy results 

To investigate the effects of the second and fourth story responses on 
improving the calibration and decreasing the errors, the information 
entropy measure (s /s0) can be employed according to Eq. (33). In this 
section, the value of the Young Modulus of different sub-structures is 
considered an unknown parameter in the system identification process. 
As highlighted previously, the value of the Young Modulus can consid-
erably affect the structural responses compared to other parameters. 

Therefore, in this case, two uncertain parameters are considered. Also, 
measuring the rotational responses of different degrees of freedom of the 
structure seems almost impossible. However, even if possible, it ac-
companies difficulty and high costs. Hence, the translational responses 
of four structural levels under the ambient (white noise), impulsive, and 
low amplitude vibrations were accumulated and used in the system 
identification process. 

The main reason for employing different excitations is to investigate 
the effects of different structural inputs on the location of sensors. As 

Fig. 18. The error metrics of the structural responses with G-M-P hysteretic model through the EKF and UKF algorithms.  
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stated previously, three different types of excitations were considered, 
including white noise excitation, excitations below 20% of the earth-
quake record applied to the structure through the shaking table, and 
excitations due to the impact loading. It is of note that the impact loads 
have the potential to excite all modes of vibrations of a structure and 
capture the effects of higher modes. Consequently, despite the low 

number of structural floors, this type of vibration can determine the 
sensor’s appropriate location due to considering the effects of higher 
modes. 

Regarding the low impact of the participation of higher modes on the 
structural responses and the high noise-to-signal ratio of these modes, 
their effects may not be sharp. Therefore, the impact of these modes was 

Fig. 19. The error metrics of the structural responses with BWBN hysteretic model through the EKF and UKF algorithms.  
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investigated through impact excitation in the following. Different 
possible cases can be considered to determine the best location for the 
placement of sensors, e.g., the placement of sensors on an individual 
level, two, three, and four different levels of the structure. In fact, for the 
mentioned cases, 4, 6, 4, and 1 possible locations of sensors and 15 
possible locations on the structure can be considered for different exci-
tations, respectively. The value of the IEM ratio (s /s0) for different 
excitation cases are summarized in Table 8. 

Comparing the results in Table 8 leads to the following conclusions:  

• High dispersion of the values of the IEM ratio, along with their mean 
and standard deviations, can be noticed for every excitation applied 
to the structure. This observation highlights the importance of 
considering the location of the sensors for model updating and 
identification of structures with a low number of stories and limited 
DOFs.  

• According to Table 8, differences can be noticed in the results under 
different input excitations, suggesting the significance of the type of 
excitation applied to the structure and its characteristics, including 
the frequency range, amplitude, and time duration for the structural 
system identification. 

• The lower the value of the IEM ratio (s /s0), the lower the un-
certainties associated with the identification process and the optimal 
placement of sensors. Hence, using the impact loading excitations 
results in lower uncertainties. Moreover, employing sensors on an 
individual level, two or three different levels of the structure results 
in a noticeable reduction of the IEM ratio for this excitation type.  

• In the case of using only an individual sensor on each level of the 
structure, the dispersion of the IEM ratio is relatively high. According 
to Table 8, the IEM ratio of the fourth story has the lowest amount for 
different loading cases. Moreover, the second story is the next in 
terms of the value of this ratio. However, the IEM ratio shows that the 
third and first floors are the worst locations for sensing under-shock 
loading vibrations. White noise and 20% of earthquake excitations 
for the first and third stories contain nearly identical responses.  

• Analyzing the results of two sensors reveals that using the responses 
of the second and fourth floors improves the responses and reduces 
the uncertainties compared to the responses of other levels. In this 
regard, the sensors located on the second and fourth floors by 
themselves result in an enhanced response compared to other floors, 
and simultaneous use of the responses of the second and fourth floors 
causes a low level of uncertainty. Nevertheless, concurrently 
applying sensors with acceptable responses does not necessarily 
yield satisfactory results. This simple negation works well for the first 
and third floors.  

• Comparing the results of cases 9 and 11 of Table 8 (sensors located on 
the second and fourth floors and those located on the first to third 
floors, respectively) indicates that the structural identification with 
fewer sensors located at the appropriate places results in a more 
accurate identification compared to more number of sensors located 
at the improper locations. The importance of this issue can be 
considered in identifying the structures with high DOFs, wherein a 
limited response of DOFs is allowed. 

Overall, it is concluded that the best locations for the placement of 
sensors can be considered as a function of the number of sensors located 
on the structure, the structural parameterization scheme, and the input 
excitations. Moreover, using more sensors in improper locations does 
not enhance the responses. 

To investigate this issue further, Fig. 25 represents the two-sided 
spectral density for different stories in the 1 to 10 Hz frequency range. 
The mode shapes and frequency of the two first vibration modes are 
shown in Fig. 26. As can be seen, the responses reach their highest 
amount at the frequency of 2.2 Hz, where good agreement is observed 
between the fundamental mode of the structure both in the experiments 
and numerical models. For measured responses of the second and fourth 
floors, sharp peaks can be observed. In contrast, for the first and third 
floors, the peak points are not as good as the sharp peaks of the second 
and fourth floors. Moreover, the first and second modes can be identified 
well, while it is not practical in the case of the third and higher modes. 
Consequently, it can be concluded that identifying the first two modes of 

Fig. 20. The error metrics of first five extremum points of the displacement response of the fourth story, (a) G-M-P material model, and (b) BWBN material model.  

M. Ebrahimi et al.                                                                                                                                                                                                                              



Reliability Engineering and System Safety 239 (2023) 109531

27

the structure using the responses of the second and fourth floors, rather 
than those of the first and third floors, improves the findings. Examining 
Fig. 25 and the results of the entropy-based sensor placement (Table 8) 
indicates that for the structural system identification, using the confu-
sion of the responses of the second and fourth floors improves the results 
through the recursive algorithms of UKF and EKF. 

7. Conclusions and limitations 

This study aimed to identify a 1/8-scale 4-story moment-resisting 
steel frame under a shaking table test using the recursive, EKF, and 
UKF algorithms. The test frame was subjected to different excitations, 
including progressive seismic base excitations, ambient, and impulse 
excitations. Since the evolution of the FE structural model is a crucial 
stage in the system identification study, to identify the frame, several 
uncertainties (i.e., different models of material behavior such as the G- 
M-P and the BWBN) and several constraints were considered. Besides, 
the structural responses of different floors were combined for this 

purpose. 
Based on the findings obtained from the identification technique for 

the structure under the design level earthquake, despite using a linear-
ization technique based on the EKF algorithm, acceptable responses 
were obtained through this algorithm compared to the advanced UKF 
algorithm. Due to the correlation of the BWBN material model param-
eters with each other, employing this model results in high errors 
compared to the G-M-P material model, even for different initial values 
of the unknown parameters and covariance matrices of errors. This 
finding certifies that structural identification of incompatible models 
using online algorithms may encounter unexpected difficulties. 

Moreover, employing the combination of some selected floors’ ac-
celeration and displacement responses in the structure identification 
process improves the calibration process, suggesting that an enhanced 
calibration process has been obtained using the responses concerning 
the proper placements of sensors. 

To further investigate the optimum placement of sensors, the crite-
rion of the IEM is employed under three different excitations. As 

Fig. 21. Comparison between the base shear versus the roof displacement, and the anticipated responses of Case_4 for both behavioral material models using the EKF 
and UKF methods: (a) Model_1, (b) Model_2, (c) Model_3, and (d) Model_4. 
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demonstrated, employing the low-amplitude seismic excitations and 
impulse excitations results in an identical response, except for the effect 
of higher modes. This issue has been considered for models under im-
pulse excitations, despite the high noise ratio to signal in their responses. 

The results suggest that applying the information entropy results in 
greater dispersion when using the responses of an individual story or 
several stories, indicating the importance of using the responses of 
proper stories in the calibration process. In addition, it proves that using 

Fig. 22. Time histories of a posteriori of G-M-P material model parameters for EKF and UKF algorithms: (a) for Case_1, and (b) Case_4.  

Fig. 23. The error metrics of the structural responses of the G-M-P behavioral model through the EKF and UKF algorithms under CLE.  
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fewer sensors positioned optimally leads to improved results compared 
to using more sensors in improper places. Furthermore, the results agree 
well with identifying the structure using the two aforementioned 
recursive algorithms. 

However, EKF and UKF techniques often present the disadvantage of 
demanding high simulation times to update the procedure, especially 
when dealing with complicated structures. As mentioned before, the 
primary idea of the EKF algorithm is linearizing the nonlinear function 
locally by calculating response sensitivities, which need the execution of 
the FE model for each unknown parameter at each time step. Similarly, 
the UKF algorithm must run the FE model once for each sigma point at 

each time step. Another expected drawback of conventional KF-based 
approaches is that the recursive process may become numerically un-
stable, especially when the amount of system noise and measurement 
noise is high. Besides, various uncertainties and modeling errors – e.g., 
the nonstructural components (infill walls) and systems (architectural 
layouts) – have not been studied in numerical modeling. Hence, devel-
oping new KF-based filters with the minimum number of SPs without 
nonsingular estimation is necessary for saving time. 
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Table 8 

Information entropy measure 
( S

S0

)

of different cases of excitation and for 

different stories responses.  

No. Stories Ex._case1(White 
noise) 

Ex._case2 
(Impulsive) 

Ex._case3(Base 
excitation) 

1 1 11.4 10.7 11.2 
2 2 7.4 6.75 6.9 
3 3 7.15 7.45 7.05 
4 4 5.2 4.5 4.9 
5 1,2 6.1 5.45 5.25 
6 1,3 6.2 5.13 5.9 
7 1,4 3.9 3.9 3.75 
8 2,3 4.11 4.25 4.42 
9 2,4 2.05 1.85 1.9 
10 3,4 2.36 1.87 1.95 
11 1,2,3 2.25 2.35 2.42 
12 1,2,4 1.9 1.4 1.45 
13 1,3,4 2.1 1.52 1.7 
14 2,3,4 1.35 1.15 1.22 
15 1,2,3,4 1 1 1 
Mean 4.30 3.95 4.07 
STD 2.92 2.80 2.87  
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