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Protein interaction pathways and networks are critically-required for a vast range

of biological processes. Improved discovery of candidate druggable proteins within

specific cell, tissue and disease contexts will aid development of new treatments.

Predicting protein interaction networks from gene expression data can provide valuable

insights into normal and disease biology. For example, the resulting protein networks

can be used to identify potentially druggable targets and drug candidates for testing

in cell and animal disease models. The advent of whole-transcriptome expression

profiling techniques—that catalogue protein-coding genes expressed within cells and

tissues—has enabled development of individual algorithms for particular tasks. For

example,: (i) gene ontology algorithms that predict gene/protein subsets involved

in related cell processes; (ii) algorithms that predict intracellular protein interaction

pathways; and (iii) algorithms that correlate druggable protein targets with known

drugs and/or drug candidates. This review examines approaches, advantages and

disadvantages of existing gene expression, gene ontology, and protein network

prediction algorithms. Using this framework, we examine current efforts to combine these

algorithms into pipelines to enable identification of druggable targets, and associated

known drugs, using gene expression datasets. In doing so, new opportunities are

identified for development of powerful algorithm pipelines, suitable for wide use by non-

bioinformaticians, that can predict protein interaction networks, druggable proteins, and

related drugs from user gene expression datasets.

Keywords: gene expression analyses, bioinformatics, pipeline, gene ontology, protein interaction pathways, drug

targets, drugs

INTRODUCTION

One aim of transcriptomic analyses is to accurately predict candidate druggable targets for
subsequent—andmore laborious—testing of unapproved, approved or repurposed drug candidates
within cell and/or animal disease models (1). Accordingly, over the past two decades a range
of algorithms have been independently developed to classify and collate gene and proteins
from transcriptomic and proteomic data. As outlined below, significant progress has been
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made in creating and refining algorithms for analysis
of transcriptomic data—including microarray and RNA-
sequencing data. By understanding the approaches that underpin
these algorithms, as well as their individual advantages and
disadvantages, new opportunities are identified for development
of algorithm pipelines that make prediction of protein
networks, and associated druggable proteins/ drugs, more
widely accessible.

Broad algorithm categories include algorithms for:
gene/protein classification via gene ontology (GO) terms;
prediction of protein-protein interaction (PPI) networks; and
establishment of existing drug/drug target databases.

These tools are often designed to analyse gene or protein
lists obtained from high-resolution and/or high-throughput
transcriptomic or proteomic data. For example, GO tools
are routinely used to analyse transcriptomic data to infer
biological functions performed by a cell population. Similarly,
PPI tools aim to infer specific cellular functions through
prediction and visualisation of protein interaction networks.
GO, PPI, and other genomic association algorithms have also
been developed to identify druggable targets and associated
drugs that might be useful for altering the biology of a
cell population (as opposed to algorithms designed for drug
target prediction).

In a few instances, multiple algorithms have been organised
into an analysis pipeline to provide multiple, correlated
outputs from input a single input such as transcriptomics
data. Nevertheless, there remains significant scope to develop
simplified and broadly accessible algorithm pipelines to predict
protein networks, druggable targets, and drugs for subsequent
cell- and animal-based studies.

This review therefore begins by examining the key approaches
developed for pre-processing and analysis of gene expression
data—as relates to protein network and target identification.
This includes a review of gene enrichment analysis algorithms,
then GO, PPI, and drug/target algorithms. This creates a
conceptual framework for understanding current—and future
potential—algorithm pipelines for predicting protein networks
and druggable targets from gene expression data.

ALGORITHMS FOR GENE ENRICHMENT
ANALYSIS

Initial steps in analysing gene expression data routinely
involve identification of genes/proteins that share a
common property, such as being differentially expressed
(2). It is important to note that co-expression, and/or co-
differential expression, within transcriptomic datasets does
not necessarily imply the co-expressed genes are functionally
connected. Moreover, the presence of a gene transcript
does not always correlate with levels and/or activity of
the corresponding protein product (due to multiple layers
of post-transcriptional regulation) (3). Nonetheless, co-
expression and differential expression have for decades
provided useful conceptual paradigms for initial steps in gene
expression analyses.

Initial transcriptomic analysis steps—termed Gene
Enrichment Analysis—make use of algorithms that access
data from gene set libraries—in which individual genes are
correlated with specific functional identifiers such as GO terms
(4). Inputs required for Gene Enrichment Analysis include one
or more lists of interesting genes, together with the species type.
Outputs from Gene Enrichment Analysis include information
such as GO terms and associated gene groupings, as well as
related p-values derived by comparing the frequency of the GO
term genes in the input list with their frequency in the genome.

Different approaches can be used to perform Gene
Enrichment Analysis (Table 1), and these approaches can be
categorised into one or more of the following algorithm classes.

Gene Enrichment via Singular Enrichment
Analysis (SEA)
For SEA, users typically first define a subset of interesting genes;
this might include statistically-determining all the expressed
genes or a list of genes differentially expressed across two
treatment types. The SEA algorithm then analyses the user-
defined gene list by (i) determining the frequency of genes in
the list associated with a particular grouping (e.g., GO term),
and (ii) statistically comparing that frequency with the expected
frequency if the genes from that grouping were present by
chance. The resulting groups of “enriched” genes, and their
associated p-values, are then listed sequentially from smallest to
largest p-value.

If the genome of the species being studied is sufficiently
annotated, SEA algorithms can efficiently report gene groupings
associated with key biological functions from large input gene
lists. Widely-used SEA-based tools include GoStat (10), BinGO
(11), GOToolBox (12), GFINDer (13), DAVID (14) etc. While
these tools have proven useful, SEA algorithms have two inherent
limitations. Firstly, the biological relevance of the output is
dependent upon the quality of the user-defined input gene
list. Secondly, SEA algorithms do not capture hierarchical
relationship between the enriched GO terms identified through
the SEA analysis—this can lead to hundreds of GO terms being
reported for a single input gene list, which makes it difficult to
interpret the biological relevance of the output.

Gene Enrichment via Gene Set Enrichment
Analysis (GSEA)
As an alternative approach, GSEA algorithms do not require
users to first partition gene expression data into lists of
expressed/not-expressed or differentially-expressed genes (as
occurs with SEA approaches). Instead, GSEA algorithms use
the experimental data obtained for all genes. For example,
by comparing the expression signals for all assayed genes
on a microarray, GSEA algorithms can determine and then
use a single expression fold-change parameter for each gene.
This approach can avoid some issues or artefacts related
to selection or exclusion of input genes (15). However, for
more complex experimental data, the GSEA approach can be
disadvantageous. For example, genes that have higher expression
fold changes make larger contributions to the GSEA output,
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TABLE 1 | Comparison of gene enrichment analysis tools (white background) and PPI pathway tools (grey background).

Algorithm/input/output Approach Main advantages Limitations/biases/risks

SEA: GoStat, BinGO, GOToolBox,

GFINDERer, DAVID

Input: pre-selected gene list

Output: enriched GO terms in a

tabular form

Enrichment p-value calculated on

each term from pre-selected list of

interesting gene

Enriched terms listed in a tabular

format ordered by the enrichment

p-value

1. Can analyse any gene list

generated by high-throughput

genomic studies or bioinformatics

software packages

2. Simple strategy and output format

1. Relations among terms not always

captured as GO term hierarchy not

fully captured

2. Quality of pre-selected list of

interesting genes could impact the

enrichment analysis

GSEA: GSEA, g:Profiler, GOrilla,

ADGO

Input: list of expressed genes

Output: GO terms

Uses the entire gene list from a

microarray experiment without any

pre-selection

1. No need to pre-select interesting

genes

2. Experimental values integrated into

p-value calculation

1. Difficult to summarise many

biological aspects of a gene into a

meaningful value when the biological

study and genomic platform are

complex

MEA: ADGO, GeneCodis3, ProfCom,

Ontologizer, DAVID, GoToolBox

Input: expressed or

differently-expressed genes

Output: GO annotations

Inherits basic enrichment calculation

from SEA and incorporates extra

network discovery algorithms by

considering the term-to-term

relationships

1.Emphasis on network relationships

during analysis

1. Terms or genes without strong

inter-relationships could be left out

from the analysis

Algorithm/Input/Output Approach Main advantages Limitations/Biases/Risks

STRING [Szklarczyk et al. (5)]

Input: list of genes or proteins

Output: protein interaction network

diagram and related text file

Collect, score, and integrate publicly

available sources of PPI information,

and to complement these with

computational network predictions

1. High coverage

2. Ease of use

3. Consistant scoring

4. Many organisms

5. Accessible via API

6. Modifiable values, e.g. confidence

interval

7. Data from Biocarta, BioCyc, GO,

KEGG, and Reactome

1. No information on drugs and

druggable targets

KEGG [Kanehisa et al. (6)]

Input: list of genes

Output: the KEGG network

interactions in a text format

Assigns functional meanings to genes

and genomes at molecular and higher

levels

1. Can upload input gene list 1. Input gene list must be annotated

by KEGG Orthology identifiers or K

numbers

BioCyc [Karp et al. (7)]

Input: database name e.g., homo

sapiens

Output: network diagrams e.g.,

genome overview

Web portal combining thousands of

genomes

1. Accessible via API

2. Sequenced genomes,

computationally inferred data, and

literature reports

3. Varied query, analysis and

visualisation tools

1. Unable to create a network

pathway by uploading a gene list

Reactome [Fabregat et al. (8)]

Input: species name

Output: overview of all Reactome

pathways

Tool for discovering functional

relationships in gene expression and

other data

1. Offer programmatic access to the

data

1. Cannot generate PPI networks

Pathway Commons [Rodchenkov

et al. (9)]

Input: interested gene

Output: signalling pathways

Integrated resource of public

biological pathways

1. Provides search tools

2. Download pathways

3. Software libraries for pathway

investigations

4. Web service for programmatic

queries

1.Unable to upload a list of

interested genes

2. Cannot generate PPI networks

but this does not always reflect biological realities (e.g., small
changes in transcription can have large effects on cell behaviour).
Additionally, complexities in expression for individual genes
can now be reliably assessed—such as differential promoter
and/or exon usage, or multiple small nuclear polymorphisms.
These complexities result in genes having multiple expression
profiles, genomic locations, p-values, etc. Summarising these
complexities into a single parameter value for a gene required by
GSEA algorithms can be problematic or not possible. Examples
commonly usedGSEA approaches include GSEA (15), g:Profiler’s
g:GOSt tool (16), GOrilla (17), ADGO (18) etc.

Gene Enrichment via Modular Enrichment
Analysis (MEA)
A third approach to gene enrichment involves MEA. These
algorithms build upon the SEA approach by adding the ability to
consider relationships between gene-associated terms such as GO
terms (or in some cases, pathway information, protein domains,
etc.). Examples include ADGO (18), GeneCodis3 (19), ProfCom
(20), Ontologizer (21), DAVID (14) and GoToolBox (12). While
the MEA approach can provide improved understanding of
expression changes for well-characterised genes, it can inherently
bias against genes that are more poorly characterised or that have
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fewer known relationships. Similar to SEA, the quality of the
pre-selected gene list impacts the results of MEA algorithms.

ALGORITHMS FOR CONSTRUCTION OF
PROTEIN INTERACTION PATHWAYS

While gene enrichment analyses provide useful initial steps for
identification of co-expressed genes -and associated grouping of
functionally-related genes (e.g., viaGO terms)—the outputs from
gene enrichment algorithms do not include detailed information
on protein interactions that might occur within the cell or
tissue from which the gene expression data was generated. As
a consequence, a range of algorithms have been developed to
predict PPI networks using lists of expressed, co-expressed, or
differentially-expressed genes. In predicting these PPI networks,
it is important to note that gene expression and protein activity
are not always correlated, and that protein interactions are
not limited to direct physical binding. For example, proteins
may also interact: indirectly, by sharing a substance in a
metabolic pathway; by regulating each other transcriptionally; or
by participating in larger multi-protein assemblies (5).

To provide information on potential PPI in a gene
enrichment output, a range of tools have been developed to
map interactions based on different levels of evidence—from
experimental data to text associations in published literature.
Examples of this evidence include experimental evidence (e.g.,
immunoprecipitation), genomic locations, and cooccurrence
reports. The PPI algorithms typically ascribe different levels of
confidence for each of these different evidence types to provide
ranked output for predicted PPIs. In some instances, prediction
of protein interaction networks can be progressed iteratively.
For example, by first predicting networks from an input gene
list, additional database searching can be performed to suggest
additional proteins (not in the original input gene list) for
incorporation into the predicted networks—if there is evidence
for indicating the new proteins may interact with members of the
first predicted network. Key PPI algorithms that have gained wide
recognition within the field are briefly reviewed below.

KEGG Pathways
The Kyoto Encyclopaedia of Genes and Genomes (KEGG),
is a widely used tool that integrates both manually curated
and computationally generated databases into a single resource.
KEGG provides information on genomes, PPI pathways, disease
molecular pathophysiology, and drugs with known mechanisms
of action. KEGG enables a gene list to be uploaded through an
application programming interface (API), however, this function
is somewhat limited as it requires the gene list to be annotated
with KEGG Orthology identifiers (6).

BioCyC
The BioCyc database contains genome and predicted metabolic
networks for >3,000 organisms. BioCyc enables programmable
online access to information including reactions, metabolic
pathways, and enzymes (22). BioCyC provides tools to query,
analyse, and visualise genome and metabolism data, but does not
generate PPI networks from a list of input genes (22).

Reactome
The Reactome pathway knowledgebase contains non-redundant
curated information from other pathway databases such as
CheEBI and UniProt (23). It supports API access to investigate
unexpected functional relationships in gene expression profiles,
however, similar to BioCyc it does not generate PPI networks.

Pathway Commons
Pathway Commons collates biological pathway information from
sources such as BioGRID, HumanCyc, Reactome, NCI/Nature
PID, etc. (24). To analyse pathway information, user datasets
can be programmatically queried via a web service, software
libraries and keyword searches. However, it cannot generate
protein interaction pathways or upload a list of input genes.

String
STRING is a pathway database that collects, scores, and integrates
public information relating to PPIs from various sources. The
basic interaction units in STRING are links between proteins
that are known to contribute to specific biologic processes—
also known as functional associations. STRING extracts curated
data from Biocarta, BioCyc, GO, KEGG, and Reactome (5).
STRING has information for >5,000 organisms and >24 million
proteins. It provides access through an API and can generate
PPI network diagrams that can be user-customised by changing
parameters such as the PPI confidence level. While gene lists
can be uploaded, there still remain computational challenges
including: (i) outputting PPI networks for each individual genes
within a gene list (rather than interactions between members of
an input gene list); (ii) comparing predicted PPI networks against
the set of expressed genes for a tissue; and (iii) iterating these
processes for all genes in an input gene list.

ALGORITHMS FOR DRUG/TARGET
DISCOVERY

A natural progression from having PPI networks predicted
from gene expression data is the development of algorithms
to correlate proteins in the networks with known small-
molecule modulators of protein activity. Toward this end,
improvements in genome sequencing have enabled development
of pharmacogenetic databases that associate clinical, disease
and other annotations (e.g., GO terms) with variations in
sequences for particular genes (25). These databases can
also link genes as drug targets with related drugs. Key
algorithms for mapping proteins to known drugs are briefly
reviewed below.

DrugBank
DrugBank is a highly cited database that combines drug, drug-
target, drug action and drug interaction information—but not
disease-related or prescribing details. The database is updated
daily and is accessible via an API, but does not allow users to
upload gene list of interest (26).
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TABLE 2 | Comparison of drug/target discovery tools.

Algorithm/Input/Output Approach Main advantages Limitations/biases/risks

PharmGKB [Barbarino et al. (25)]

Input: list of genes or proteins

Output: druggable genes

An organised knowledgebase

containing genetic, clinical, and

cellular phenotype knowledge

networks

1. Data curated from PubMed,

DrugBank, dbSNP

2. Accessible via API

1. Does not have the facility to input a

list of genes and generate pathways

DrugBank [Wishart et al. (26)]

Input: single drug target

Output: drug information

Bio-/chemo-informatics resource that

combines drug and drug target

information

1. Updated daily 1. Cannot input a gene list or

generate PPI networks

ChEMBL [Gaulton et al. (27)]

Input: single drug target

Output: drug information

An open large-scale bioactivity

database combining molecule, target,

and drug data

1. Provide web services for

programmatic access to limited to

specific queries

1. Does not provide integrated

PPI/drug/target outputs

TTD [Chen et al. (4)]

Input: list of genes

Output: related drug target and

disease information

Provides details on known

therapeutic nucleic acid and protein

targets, associated disease

conditions, pathway information, and

drug/ligand details

1. Can search via target name, drug

name, disease name and so on

2. Pathways use KEGG, MetaCyc,

Reactome, Wikipathways

1. Cannot create pathways via input

gene lists

DisGeNET [piñero et al. (33)]

Input: list of genes

Output: summary/evidence of

gene-disease associations

Comprehensive archive of genes and

variants associated to human

diseases. Collection of data on

genotype-phenotype relationships

from several of the most popular

resources in this area

1. Database can be searched by

target or drug/ligand names

2. Genes and variants associated to

human diseases

1. No PPI networks for input genes

before drug target determination

2. Only focuses on genes/variants

involved in human diseases

DGIdb [Cotto et al. (29)]

Input: list of genes or proteins

Output: associated drugs

A collection of drug–gene interactions

and gene druggability information

1. Combines drug–gene interactions

and possible druggable genes

2. Combines data from NCI,

PharmGKB, TTD, GO, DrugBank etc

3. Can upload gene list

1.Unable to generate the PPI network

2.Does not capture disease data

PHAROS [Nguyen et al. (31)]

Input: interested list of genes or

proteins

Output: gene ontology terms,

pathways, drugs, diseased grouped

by the input gene

Is a web interface which presents

data from the Target Central

Resource Database (TCRD) which

collates many heterogeneous

gene/protein datasets

1. Considers all human protein targets

2. Information on understudied

targets

3. Offer programmatic access to the

data

4. Consists of protein expression

data, disease and phenotype

associations, bioactivity data, drug

target interactions

5. Includes GO terms

1. Unable to upload gene lists

2. Data output is not grouped based

on GO terms (thus does not enable

rapid assessment of PPI networks

and associated drugs based on key

biological processes or molecular

functions performed by the cell

of interest) 3. Human-specific

GPSnet [Cheng et al. (32)]

Input: list of cancer genes

Output: drug target network

Network based, integrated algorithm

for cancer related diseases and

approved or investigational drugs

1. Drug-target networks

2. Uses GSEA algorithm in gene

enrichment

1. Focus only on cancer-

specific diseases

2. No free API access

Comparison of drug/target discovery tools (most developed pipelines shown in grey).

PharmGKB
The Pharmacogenomics Knowledgebase (PharmGKB) is a
widely used resource containing information curated from
other databases including PubMed, DrugBank and the human
small nucleotide polymorphism database, dbSNP. The main
advantages of PharmGKB are it collates drug targets, drugs,
and corresponding disease information in one platform, while
providing access via an API (25).

ChEMBL
ChEMBL is an open access online database that extracts data
from medicinal chemistry journals and integrates them with
information on approved drugs. ChEMBL also exchanges data
with other databases such as PubChem and the pharmacokinetics
database, BindingDB. The data can be accessed using web

services and in downloadable formats, although it does not
provide integrated PPI/drug/target outputs (27).

TTD
The Therapeutic Target Database (TTD) provides information
about drug targets, drugs, and related disease conditions.
It extracts data from pathway databases including KEGG,
MetaCyc, Reactome, and Wikipathways. TTD integrates
drug/target/disease outputs, however, users can not upload gene
lists or generate PPI networks. TTD also does not provide access
via an API (28).

DGIdb
The drug–gene interaction database (DGIdb) integrates drug–
gene interactions and potential druggable genes. It consolidates
data from other databases such as GO, DrugBank, PharmGKB,
the TTD and the National Cancer Institute (NCI). Users can

Frontiers in Medical Technology | www.frontiersin.org 5 March 2022 | Volume 4 | Article 693148

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Kankanige et al. Transcriptomics for Drug Discovery

upload gene lists to identify any associated drugs. However,
similar to DrugBank, it does not capture related disease data (29).

DisGeNET
The disease-gene network database, DisGeNet, contains
information on genes and their variants related only to human
diseases. DisGeNET extracts data from different scientific
literature and consolidates them using text mining tools. Data on
DisGeNet database can be downloaded in many file formats, and
accessed through an API (30).

PHAROS
PHAROS aims to provide insight on the druggable genome. It
contains information on all human protein targets (both well-
and poorly-characterised targets) including protein expression
data, GO terms, disease associations and drug target interactions.
While API access is possible, it is highly time-consuming as only
one gene can be submitted at a time (31).

GPSnet
The genome-wide positioning systems network (GPSnet) is
a recent algorithm focused on identifying cancers for which
approved or investigational drugs might be repurposed to
provide candidate new treatment options. GPSnet functions in
two steps: (i) it analyses sequencing information from 15 cancer
types (from ∼5,000 patients); and then (ii) implements a GSEA
algorithm and network proximity methods to identify candidate
drugs for the targets identified in the first step (32). While this
provides a powerful approach to identifying candidate new drug
treatments, the information is not accessible through an API and
the database currently focuses only on cancers.

ALGORITHM PIPELINES FOR PREDICTING
DRUGGABLE TARGETS/DRUGS FROM
EXPRESSION DATA

As outlined above, a large range of algorithms have been
developed for analysis of gene expression data. To date, only
a small number of algorithm pipelines have been developed to
progress from gene enrichment analysis, through GO analysis
and protein network prediction, to drug target identification
(Table 2). Of these pipelines, PHAROS, DGIdb and GPSnet are
the most well-developed. PHAROS can generate PPI networks,
identify drug targets and associated drugs when a list of
genes is provided. However, PHAROS is human-specific and
the API does not allow multiple genes as an input. Also,

the data output is not grouped by GO terms, which would
facilitate rapid assessment of PPI networks and associated
drugs based on key biological processes or molecular functions.
DGIdb integrates data from many other drug databases, and
an input gene list can be uploaded. However, it does not
capture disease information which is a significant disadvantage.
GPSnet, a more recently developed algorithm, can perform
GSEA and generate protein interaction networks. Unfortunately,
it currently focuses only on cancer specific diseases and
does not provide a free online too to access its data via
an API.

Given the capabilities and limitations with the above-
mentioned algorithms, there is a need and opportunity to develop
an algorithm pipeline that: (i) enables users to upload gene
expression data as an input (either expressed or differentially-
expressed gene lists); (ii) groups genes based on their GO
terms; (iii) creates additional outputs for each gene consisting
of visualised PPI networks that include identified druggable
targets and associated drugs; and (iv) has the potential to identify
new pathways, and thus druggable target discovery, through
modification of PPI network prediction parameters (for example,
by modifying related parameters used by STRINGdb).

CONCLUSION

As reviewed here, much progress has been made in developing a
wide variety of algorithms for gene expression analyses. However,
a gap in the field exists for algorithm pipelines that combine
all these important analysis tools into unified and simplified
packages suitable for broad use by non-bioinformaticians. These
algorithm pipelines should allow users to upload gene expression
datasets from human and non-human species. They should also
provide integrated outputs including GO terms, protein network
predictions, and drug target, drug and disease information.
Astute combination and modification of existing algorithms
could address this gap. Once realised, these new algorithm
pipelines could accelerate identification and prioritisation of drug
targets, and associated drugs—in order to minimise the time
and labour costs associated with testing unapproved, approved
or repurposed drug candidates in cell and animal models
of disease.
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