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Abstract  Monitoring the morphological traits of 
farmed fish is pivotal in understanding growth, esti-
mating yield, artificial breeding, and population-
based investigations. Currently, morphology meas-
urements mostly happen manually and sometimes 
in conjunction with individual fish imaging, which 
is a time-consuming and expensive procedure. In 
addition, extracting useful information such as fish 
yield and detecting small variations due to growth 
or deformities, require extra offline processing of the 
manually collected images and data. Deep learning 
(DL) and specifically convolutional neural networks 
(CNNs) have previously demonstrated great prom-
ise in estimating fish features such as weight and 
length from images. However, their use for extract-
ing fish morphological traits through detecting fish 
keypoints (landmarks) has not been fully explored. 
In this paper, we developed a novel DL architec-
ture that we call Mobile Fish Landmark Detection 
network (MFLD-net). We show that MFLD-net 
can achieve keypoint detection accuracies on par or 

even better than some of the state-of-the-art CNNs 
on a fish image dataset. MFLD-net uses convolution 
operations based on Vision Transformers (i.e. patch 
embeddings, multi-layer perceptrons). We show that 
MFLD-net can achieve competitive or better results in 
low data regimes while being lightweight and there-
fore suitable for embedded and mobile devices. We 
also provide quantitative and qualitative results that 
demonstrate its generalisation capabilities. These fea-
tures make MFLD-net suitable for future deployment 
in fish farms and fish harvesting plants.

Keywords  Fish morphology · Automated 
phenotyping · Computer vision · Convolutional 
neural networks image and video processing · 
Machine learning · Deep learning

Introduction

Morphology is an important metric in the production 
of farmed fish because it can be used to determine 
the weight and overall size of a fish. These variables 
are key to animal health and welfare and are used 
for phenotype analyses in advanced breeding pro-
grammes. In aquaculture, determining the morphol-
ogy is a frequent task crucial for selecting fish for 
culture as well as developing and testing novel fish 
strains. Furthermore, fish morphological traits are 
valuable resources for artificial breeding (Castrillo 
et al. 2021), functional gene mapping (Figueroa et al. 
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2018), and population-based investigations (Powers 
et  al. 2020). Morphology helps identify when fish 
are mature enough to produce eggs or sperm. When 
determining the growth and maturity of fish, a num-
ber of specific morphological traits may be evaluated 
including the distance from the tip of the mouth to the 
posterior midpoint of the caudal fin, or the depth of 
the body from the posterior base of the dorsal fin to 
anterior of the anal fin (Jerry and Cairns 1998). How-
ever, traditional manual fish morphology measure-
ment methods are inefficient and time-consuming. A 
typical fish measuring process includes measuring the 
fish’s weight using a digital scale, measuring its body 
lengths with a ruler and then recording these values. 
Not only is this process inefficient and labour-inten-
sive, but it is also prone to human error.

An automatic tool can help aquaculturists and ani-
mal health and welfare authorities to save time and 
reduce costs by quickly characterising fish morphol-
ogy and predicting their overall quality in a fast, accu-
rate, and cost-effective manner. Furthermore, the tool 
would improve the quality of information available 
to fish farmers and may unlock niche information, 
because the system can be used at scale. A promis-
ing technique to automate this measurement process 
is computer vision used along with machine learning 
to capture fish images and automatically extract fish 
morphology.

A few previous works (Sanchez-Torres et al. 2018; 
Mathiassen et al. 2011; Islamadina et al. 2018) have 
used computer vision and traditional image process-
ing techniques to segment (Sanchez-Torres et  al. 
2018; Islamadina et  al. 2018) or make a 3D model 
(Mathiassen et al. 2011) of the fish body to then use 
classical machine learning methods, e.g. regression 
(Sanchez-Torres et al. 2018; Mathiassen et al. 2011) 
for weight and/or length extraction. Although these 
studies have achieved significant results, they have 
involved a complex image processing and feature 
engineering process to suit their experimental con-
ditions. In contrast, more recent research has been 
motivated by the outstanding performance of deep 
learning (DL)-based convolutional neural networks 
(CNNs) in processing images, without the need for 
complex image processing and/or feature engineering 
steps (Konovalov et al. 2018, 2019; Fernandes et al. 
2020). In (Konovalov et al. 2018, 2019), the authors 
have used a CNNs to predict fish body weight by feed-
ing fish images to a segmentation CNNs to extract the 

fish body area. These studies have utilised both the 
entire fish body (i.e. fish outline) and excluded fins 
and tails for weight estimation through mass–area 
estimation models. In (Fernandes et  al. 2020), the 
authors have also explored the use of CNN for esti-
mating the weight and length of fish but they have 
utilised different CNN architectures. Specifically, the 
authors have implemented a SegNet-like CNN archi-
tecture with an image resolution of 512 × 512 to esti-
mate the correlation between body measurements and 
body weight, carcass weight, and carcass yield.

Additionally, researchers have used CNNs for pre-
dicting morphological characteristics such as overall 
length and body size by detecting keypoints on the 
fish body (Suo et al. 2020; Tseng et al. 2020), simi-
lar to the proposed method in this research. However, 
(Tseng et  al. 2020) have proposed a CNN classifier 
to detect only two keypoints, the fish head, and tail 
fork regions, to measure the fish body length. On 
the other hand, (Suo et al. 2020) have used two neu-
ral networks, i.e. a faster R-CNN (Ren et al. 2017) to 
first detect the fish in the image and then a Stacked 
Hourglass (Newell et al. 2016) to detect specific key-
points on the initially-detected fish, which makes the 
proposed method complex and expensive. In a more 
recent study, (Li et  al. 2022) proposed a CNN for 
marine animal segmentation with good results on a 
self-curated dataset. However, the 207.5 million train-
able parameters of their network make it unsuitable 
for usage in embedded systems or on mobile com-
puting devices for easy deployment in fish farms. 
To the best of our knowledge, previously published 
studies that use deep learning to predict fish’s mor-
phological traits are complex and large. This renders 
them unsuitable for use within embedded and mobile 
devices for commercial use at scale and for easy inte-
gration into fish farms. This is because these devices, 
which are usually designed for resource-constrained 
environments, have limited computational and power 
budgets making them incapable of running large net-
works such as the one proposed in (Li et  al. 2022). 
To address the lack of a lightweight but efficient fish 
morphological measurement tool, we develop a new 
deep learning (DL) model for fish body landmark 
detection using CNNs.

CNNs have dominated the design of DL sys-
tems used for computer vision tasks for many years. 
However, architectures based on emerging trans-
former models, such as Vision Transformer (ViT) 
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(Dosovitskiy et  al. 2020), are shown to outperform 
standard convolutional networks in many of these 
tasks, especially when large training datasets are 
available. These recent advances motivated us to 
explore transformer-based architectures for develop-
ing lightweight but efficient Fish Landmark Detection 
networks for automatic fish morphometric analyses.

Vaswani et al. first (Vaswani et  al. 2017) sug-
gested transformers for machine translation, and they 
have subsequently become the standard solution for 
many Natural Language Processing (NLP) applica-
tions. Since then, there have been several attempts 
to incorporate convolutional network characteristics 
into transformers, making the Vision Transform-
ers (ViT). Recently, the use of patch embeddings 
for the first layer of the network has spawned a new 
paradigm of “isotropic” designs, i.e. those having 
identical sizes and shapes across the network. These 
models resemble repeating transformer’s encoder 
blocks, but instead of self-attention and multi-layer 
perceptrons (MLP) operations, alternative operations 
are used. For example, Bello et al. (Bello et al. 2019) 
introduced a two-dimensional relative self-attention 
mechanism replacing convolutions as a stand-alone 
computational primitive for image classification. 
ResMLP (Touvron et al. 2021) built upon multi-layer 
perceptrons for image classification by a simple resid-
ual network that alternates between a linear layer and 
a two-layer feed-forward network.

Because of its capacity to capture long-distance 
interactions, self-attention has been widely adopted 
as a computational module for modelling sequences 
(Bahdanau et  al. 2015). For example, Ramachan-
dran et al. (Ramachandran et  al. 2019) replaced all 
instances of spatial convolutions with a form of self-
attention applied to a CNN model to produce a fully 
self-attentional model that outperforms the baseline 
on ImageNet classification.

Inspired by the strong performance of Vision 
Transformers, we investigated utilising some of 
ViT’s architectures using convolution operations. 
Specifically, we studied the use of patch embed-
dings (Dosovitskiy et al. 2020), multi-layer percep-
trons (MLP-Mixer) (Tolstikhin et al. 2021), and iso-
metric architectures (Sandler et  al. 2019). In order 
to apply a transformer to greater image sizes, patch 
embeddings aggregate together small areas of the 
image into single input features. Then, MLP-Mixer 

works directly with the patches as input, separating 
the mixing of spatial and channel dimensions, while 
keeping the network’s size and resolution constant 
(i.e isometric). In this work, we utilise these tech-
niques to modify a standard CNN’s architecture to 
a simple model that is similar in spirit to the ViT 
using convolutions operations, but does not need 
a pre-trained model and can generalise well when 
trained on a small dataset.

Our proposed network, which we named MFLD-
net is implemented to estimate landmarks (key-
points) on the fish body to better understand and 
estimate its morphology. MFLD-net can assist ecol-
ogists and fisheries managers with the fast, efficient, 
accurate, and non-invasive prediction of the size 
and other morphological aspects of the fish. This 
provides them with the capacity to make informed 
management decisions. To evaluate our model, we 
use an image dataset of Barramundi (Lates calcari-
fer), also known as Asian seabass. We also compare 
our results to several baseline models to show the 
performance of MFLD-net.

In summary, the contributions of this work are as 
follows: 

(1)	 We propose a simple CNN network that estimates 
the position of known keypoints in a fixed-size 
fish image.

(2)	 Due to our architectural innovations, our pro-
posed model is fast and compact, while requiring 
small training data. These make our system suit-
able for deployment in aquaculture farms.

(3)	 We compare our results with several baselines, 
including U-net (Ronneberger et  al. 2015), 
ResNet-18 (He et  al. 2015), ShuffleNet-v2 
(Zhang et al. 2018), MobileNet-v2 (Sandler et al. 
2018), and SqueezeNet (Iandola et al. 2016).

(4)	 We provide an evaluation of our model on 60% of 
our fish image dataset to quantify its generalisa-
tion and robustness.

The rest of the paper is organised as follows. Sect. 2 
presents our method for training and evaluating 
our model. Our model’s framework is described 
in detail in Sect.  2-A. The experimental setup and 
results are presented in Sect. 3, while detailed dis-
cussions of our results are presented in Sect.  5. 
Finally, Sect. 6 concludes our paper.
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Materials and methods

We ran three main experiments to test and optimise 
our proposed model. First, we trained our network 
(MFLD-net) on only 40% of our dataset. Next, we 
tested its predictive performance on the dataset test 
subset described below. Finally, we compared our 
MFLD-net to five models from (Ronneberger et al. 
2015; He et  al. 2015; Zhang et  al. 2018; Sandler 
et  al. 2018; Iandola et  al. 2016). We assessed both 
the inference speed and prediction accuracy of each 
model as well as their training time and generalis-
ability. When comparing these models we incorpo-
rated the number of model parameters, the model 
size on the hard disk, and the model image through-
put per second. We applied the same configuration 
for each of the six investigated models in order to 
hold the training routine the same for all models. 

The models are also trained using the same data 
augmentations, without affecting their performance.

Figure 1 shows a high-level flow diagram that out-
lines the key steps involved in our proposed method. 
The flow diagram consists of eight main steps: data 
collection, annotation, data splitting, model devel-
opment, training, validation, testing, and evaluation. 
The flow diagram illustrates how we developed and 
tested our novel deep learning network for fish mor-
phometry using landmark detection. The following 
sections describe in detail the materials and methods 
used in this work.

Model architecture

We propose the Mobile Fish Landmark Detection 
network (MFLD-net), a novel end-to-end keypoint 
estimation model designed as a lightweight architec-
ture for mobile devices. We apply the architecture 

Fig. 1   A flow diagram that outlines the key steps involved in 
our proposed method. The flow diagram consists of eight main 
steps: Data collection: Collection of fish images using a high-
performance CMOS industrial camera. Annotation: Manual 
annotation of the images for 16 keypoints per fish. Data split-
ting: Random splitting of the annotated dataset into training 
and validation sets (70% and 30%, respectively) and a test set 
(60%). Model development: Development of the Mobile Fish 
Landmark Detection network (MFLD-net) using convolution 

operations based on Vision Transformers, including patch 
embeddings and multi-layer perceptrons. Training: Training of 
the MFLD-net on the training set. Validation: Validation of the 
MFLD-net on the validation set to ensure that it is not overfit-
ting to the training set. Testing: Testing of the MFLD-net on 
the test set and comparison of its performance to five other 
state-of-the-art baseline models. Evaluation: Evaluation of the 
MFLD-net’s performance, including detection accuracies and 
generalisation capabilities
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to address some of the main issues of current meth-
ods such as accuracy and efficiency on mobile and 
static keypoint estimation. The detailed architecture 
of MFLD-net is shown in Fig. 2. It builds upon con-
volutional neural networks (CNNs) (Sandler et  al. 
2019), Vision Transformer architecture (Dosovits-
kiy et  al. 2020), and multi-layer perceptrons (MLP-
Mixer) (Tolstikhin et al. 2021). Additionally, MFLD-
net adapts a hybrid method for processing confidence 
maps and coordinates that provides accurate detection 
for estimating keypoint locations.

To achieve higher robustness and efficiency, our 
architecture leverages the use of patch embedding 
(Dosovitskiy et  al. 2020), spatial/channel locations 
mixing (Tolstikhin et  al. 2021), as well as a combi-
nation of CNNs that have the same size and shape 
throughout the network, i.e. are isometric (Sandler 
et al. 2019).

Isometric rrchitecture

Our model architecture is based on isometric convolu-
tional networks (Sandler et al. 2019), which are made 
up of several similar blocks with the same resolution 
across the model. Architectures that are “Isometric” 
have the same size and shape throughout the network 

and maintain a fixed internal resolution throughout 
their entire depth (see Fig. 2).

Sandler et al. (Sandler et  al. 2019) have demon-
strated that the resolution of the input picture has 
only a minimal impact on the prediction quality of 
modern CNNs. Instead, the trade-off between accu-
racy and the number of multiply-adds required by the 
model is mostly determined by the internal resolution 
of intermediate tensors. Also, model accuracy can be 
improved further without the use of additional param-
eters given a fixed input resolution.

Therefore, our model has two main attributes: 
(1) No pooling layers while still maintaining a high 
receptive field. (2) Isometric networks have a high 
degree of accuracy while needing relatively little 
inference memory. These attributes make our model 
lightweight, hence suitable for edge processing on 
mobile and low-power devices, such as drones and 
robots, which are commonplace across various indus-
tries ranging from agriculture (Lammie et  al. 2019) 
to marine sciences (Jahanbakht et  al. 2022). This 
lightweight design does not, however, compromise 
accuracy due to its use of an isometric architecture. In 
an era of mobile processing (Jahanbakht et al. 2021), 
there is a significant need for lightweight, yet power-
ful, and effective keypoint estimation models.

Fig. 2   Proposed MFLD-net architecture, which is similar in spirit to the ViTs, but uses convolutions operations for keypoints esti-
mation
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Patch embedding

Inspired by the Vision Transformer architecture (Dos-
ovitskiy et  al. 2020), we experiment with applying 
patch embeddings directly to a standard CNN. To do 
so, we divide an image into patches and feed a CNN 
tensor layout patch embeddings to preserve locality. 
In an NLP application, image patches are processed 
similarly to tokens (words). Patch embeddings enable 
all downsampling to occur simultaneously, lower-
ing the internal resolution and therefore increas-
ing the effective receptive field size, making it sim-
pler to combine sparse spatial information. The key 
advantage of using CNN instead of transformer is the 
inductive bias of convolution (Li et  al. 2018; Cohen 
and Shashua 2017) such as translation equivariance 
and locality. Therefore, CNN is well-suited to vision 
tasks because it generalises well when trained on a 
small dataset. We implemented patch embeddings as 
convolution with 3 input channels, 256 output chan-
nels, kernel size of 4, and stride of 4, followed by 8 
ConvBlocks, as can be seen in Fig. 2.

ConvBlock

Our architecture is made of 8 ConvBlocks, each con-
sisting of depthwise convolution (i.e. mixing spatial 
information) as in multi-layer perceptrons (MLP-
Mixer) (Tolstikhin et  al. 2021), and spatial dropout 
(Lee and Lee 2020) for strongly correlated pixels, 
followed by pointwise convolution (i.e. “mixing” 
the per-location features). Each of the convolutions 
is followed by Gaussian error linear units (GELU) 

(Hendrycks and Gimpel 2016) activation and Batch-
Norm. We found that for the task of keypoint esti-
mation, architectures with a fewer number of layers 
result in better performance. We also added residual 
connections between Conv layers. We use a dropout 
with a rate of 0.2 to prevent overfitting. The structure 
of our ConvBlock can be seen in the bottom panel of 
Fig. 2.

Hybrid prediction and a multitask loss function

Fully convolutional networks (FCNs) 2 are good at 
transforming one image to produce another related 
image, or a set of images while preserving spatial 
information. Therefore, for our keypoint task, instead 
of using FCN to directly predict a numerical value of 
each keypoint coordinate as an output (i.e. regress-
ing images to coordinate values), we modified FCN 
to predict a stack of output heatmaps (i.e. confidence 
maps), one for each keypoint. The position of each 
keypoint is indicated by a single, two-dimensional, 
symmetric Gaussian in each heatmap in the output, 
and the scalar value of the peak reflects the predic-
tion’s confidence score.

Moreover, our network not only predicts heatmaps 
but also predicts scalar values for coordinates of each 
keypoint. Therefore, during the training process, we 
have a multitask loss function, which consists of two 
losses, i.e. Jensen–Shannon divergence for heatmaps 
and Euclidean distance for coordinates (see Fig.  3). 
The first loss measures the distances between the 
predicted heatmaps and the ground truth heatmaps, 
while the second loss measures the distances between 

Fig. 3   A schematic dia-
gram of the multitask loss 
function used for training 
MFLD-net
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the predicted coordinates and the ground truth coordi-
nates. Then, we take the average of the two losses as 
the optimisation loss.

Datasets

We performed experiments using a dataset of Bar-
ramundi (Lates calcarifer), also known as Asian 
seabass. These fish were photographed in a labora-
tory setting. The dataset was collected in four data 
collection sessions using the same experimental data 
collection setup but under four different environmen-
tal, i.e. lighting, conditions. Figure 4 demonstrates a 
sample image from each of the four data collection 
trials. In total, 2500 images were collected, each of 
which was photographed on a conveyor belt with nor-
mal ambient lighting. The images were recorded from 
above using a high-performance CMOS industrial 
camera (see Fig.  4). All barramundi were provided 
by the aquaculture team from James Cook University, 
Townsville, Australia.

To demonstrate the robustness of our network, we 
trained and validated our network on only 40% of the 

dataset. This training subset was further split into 
randomly selected training and validation sets, with 
70% training examples and 30% validation examples. 
The other 60% of the collected dataset was used only 
for testing the model and comparing its performance 
to five other state-of-the-art baseline models (Ron-
neberger et al. 2015; He et al. 2015; Zhang et al. 2018; 
Sandler et al. 2018; Iandola et al. 2016). The images 
were manually annotated for 16 kepoints as shown in 
Fig.  5-middle. For each fish, ground truth keypoints 
have the form [(x1, y1), ..., (xk, yk)] , where (xi, yi) rep-
resents the ith keypoint location. Each ground truth 
object also has a scale s which we define as the square 
root of the object segment area. For each fish, our 
developed keypoint detector model outputs keypoint 
locations (see Fig.  5-right). Predicted keypoints for 
each fish have the same form as the ground truth, i.e. 
[x1, y1, ..., xk, yk].

We recognise that the imaging setup used in our 
study was in a laboratory setting and may not fully 
represent the conditions of a real-world fishery. Fac-
tors such as lighting, background, and fish movement 
may vary significantly between a laboratory setting 

Fig. 4   Sample images from 
the four data collection ses-
sions, which are all used in 
our experiments

Fig. 5   Point annotations in a sample fish image ( X ) (left). The points in the training ( Y ) are inflated and highlighted for visibility, 
but only the centre pixel and its class label are collected and used (middle). The predicted heatmap of the model (right)
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and a fishery. We chose to use a laboratory setting for 
our data collection to have a controlled and consistent 
environment, which reduces noise and variability in 
the images and improves the quality of the data for 
effective model development. This setup also facili-
tates the important annotation process, which requires 
manual labelling of 16 keypoints for each fish image 
to train the deep learning models.

We acknowledge that using a laboratory setting for 
our data collection has some limitations. One of the 
main challenges is transferring our model to a fishery 
setting, where the imaging conditions may vary sig-
nificantly from our laboratory setup. For example, a 
fishery setting may have different lighting conditions, 
backgrounds and environments, as well as differ-
ent fish species, sizes and shapes. These factors may 
affect the performance and accuracy of our model and 
the baseline models.

To address these issues and make our model as 
generalisable as possible, we used four different light-
ing conditions for our data collection, which simulate 
some of the variations that may occur in a fishery set-
ting. In addition, we collected data from various fish 
sizes and in different orientations to augment our data 
collection. Furthermore, all our data were collected 
using a high-performance CMOS industrial camera, 
which is a common choice for other monitoring activ-
ities at fisheries (Jiang et al. 2017).

Data augmentation

To improve the training of our network and examine 
its robustness to rotation, translation, scale, and noise, 
we apply spatial and pixel level augmentation to our 
training data for all models using Albumentations 
library (Buslaev et al. 2020). In particular, we apply 
the following image transformations: 

(1)	 Randomly flip an image horizontally with a prob-
ability of 0.5.

(2)	 Randomly flip an image vertically with a prob-
ability of 0.5.

(3)	 Randomly shift and scale an image with shift 
limit of 0.0625◦ , scale limit of 0.20◦ with a prob-
ability of 0.5.

(4)	 Randomly rotate an image with a rotation limit of 
20◦ with a probability of 0.5.

(5)	 Randomly blur an image with blur limit of 1 with 
a probability of 0.3.

(6)	 Randomly RGB-shift an image with R-shift limit 
of 25, G-shift limit of 25, B-shift limit of 25 with 
a probability of 0.3. These augmentations help to 
further ensure robustness to shifts in lighting.

We did not apply any of the image transformation 
operations to our validation or test sets.

Performance metrics

The following metrics were used to optimise and 
evaluate the model and to compare the quality of the 
predicted keypoint locations:

Euclidean distance measures the distance of the 
keypoints based on their coordinates (i.e the line seg-
ment between the two points), and does not depend 
on how the ground truth has been determined (Wang 
et al. 2005). The best value of 0 indicates that the pre-
dicted keypoint is exactly at the same coordinate of 
the ground truth keypoint.

We calculate the sum of the squared Euclidean dis-
tance of the difference between two feature vectors, 
i.e. the predicted feature vector and the ground truth 
feature vector. This represents the total difference 
between the two feature vectors. The Euclidean dis-
tance is

where g and p are two sets of points in Euclidean 
n-space for ground truth and prediction, respectively. 
v
g

i
, v

p

i
 are Euclidean vectors, starting from the origin 

of the space (initial point) for the ground truth and 
prediction, respectively. n is the number of keypoints.

Jensen–Shannon divergence is a distance meas-
ure between two distributions, such as the difference 
between the predicted and ground truth point distri-
butions (Nielsen 2020). It can therefore be used to 
quantify the accuracy of the predicted keypoints. The 
lower this value is, the better the model performs.

This distance is calculated based on the Kull-
back–Leibler divergence (KLD) (Contreras-Reyes 
and Arellano-Valle 2012), where the inputs for the 
summation are probability distribution pairs. The 
KLD for two probability distributions, P and Q and 
when there are n pairs of predicted p, and ground 
truth g, can be expressed as:

(1)d(g, p) =

√√√√
n∑

i=1

(v
g

i
− v

p

i
)2,
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to measure the difference between two probability 
distributions over the same variable x and indicate the 
dissimilarity between the distributions. The best value 
is 0. Utilising KLD, JSD can be expressed as follows:

where m is the pointwise mean of p and q.
This is a measure of the difference between two 

probability distributions P and Q. As can be seen 
from the formula, the best value of 0 indicates no 
difference between the distributions.

Object Keypoint Similarity (OKS) OKS keypoints 
estimation serves the same purpose as Intersection 
over Union (IoU) as in object detection. It is deter-
mined by dividing the distance between expected 
and ground truth points by the object’s scale (Lin 
et  al. 2014). This gives the similarity between the 
keypoints (or corners) of the two detected boxes. 
The result is between 0 and 1, where 0 means no 
similarity between the keypoints, while perfect 
predictions will have OKS=1. The equation is as 
follows:

where di is the Euclidean distance between the 
detected keypoint and the corresponding ground 
truth, vi is the visibility flag of the ground truth, s is 
the object scale, while kis represents a per-keypoint 
constant that controls falloff.

To compute OKS, we pass the di through an 
unnormalized Gaussian with standard deviation 
kis . For each keypoint, this yields a keypoint simi-
larity that ranges between 0 and 1. These similari-
ties are averaged over all labelled keypoints. Given 
the OKS, we can compute Average Precision (AP) 
and Average Recall (AR) just as the IoU allows us 
to compute these metrics for box/segment detection.

Both equations 1 and 3 have been used for model 
training and optimisation, and also used to compare 
different models’ performance as in Table 1. Equa-
tion 4 was used as a final evaluation metric for all 
the models used in this study.

(2)KLD(P||Q) =
n∑

i=1

pi(x)log

(
pi(x)

qi(x)

)
,

(3)JSDM(P||Q) =
√

KLD(p ∥ m) + KLD(q ∥ m)

2
,

(4)OKS =

∑
i exp

�
−d2

i
∕2s2k2

i

�
𝛿
�
vi > 0

�

∑
i 𝛿
�
vi > 0

� ,

Model training

We trained six different models on the training sub-
set. The models used for training are U-net (Ron-
neberger et  al. 2015), ResNet-18 (He et  al. 2015), 
ShuffleNet-v2 (Zhang et  al. 2018), MobileNet-
v2 (Sandler et  al. 2018), SqueezeNet, (Iandola 
et  al. 2016) and our proposed lightweight network 
MFLD-net. For each experiment, we set our model 
hyperparameters to the same configuration for all 
models. All the models were trained with 224 × 224 
resolution input and 56 × 56 heatmap resolution 
output except U-net (Ronneberger et al. 2015) with 
224 × 224 resolution for both input and output (see 
Fig. 6). Each model has two outputs (heatmap and 
coordinates), where two losses were applied as 
shown in Fig. 3.

We found that for this problem set, a learning 
rate of 1 × 10−3 works the best. It took around 50 
epochs for all models to train on this problem and 
the learning rate was decayed by � = 0.1 every 30 
epochs. Our networks were trained on a Linux host 
with a single NVidia GeForce RTX 2080 Ti GPU 
using Pytorch framework (Paszke et al. 2019). The 
batch size we used was 64. We used Adam optimiser 
(Kingma et al. 2014) with �1 = 0.9 , �2 = 0.999 , and 
� = 1.0 × 10−08 . We applied the same hyperparam-
eter configuration for all six models. The optimum 
model configuration will depend on the application, 
hence, these results are not intended to represent a 
complete search of model configurations.

Because we only used the training subset 
( n = 1000 images) for training and validation, dur-
ing optimization, we heavily augmented our train-
ing set, challenging the model to learn a much 
broader data distribution than that in the training 
set. We applied several image transformations for 
data augmentation as specified in Sect. 2.3.

We regarded the model to be converged when the 
validation loss stopped improving after 50 epochs. 
Only for the best performing version of the mod-
els, we calculated validation error as the Euclidean 
distance between predicted and ground truth pic-
ture coordinates and Jensen–Shannon divergences 
between heatmaps and centres of the target Gauss-
ians, which we assessed at the end of each epoch 
during optimization. Figure  7 shows the training 
and validation losses for our proposed network.
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Model evaluation

Deep learning (DL) models are typically evaluated 
for their predictive performance (i.e. ability to gener-
alise to new data), using a sub-sample of annotated 

data (test set) that is not used for training or valida-
tion. A test set is typically used to avoid overfitting 
the model hyperparameters to the validation set, 
which can result in biased performance measure-
ments. Therefore, we used only 40% of our dataset for 

Fig. 6   Sample output heatmap from each of the 6 networks used in this work

Fig. 7   The two different losses, i.e. coordinate (Eq. 1) and heatmap (Eq. 3) prediction losses are shown along with the total loss for 
both training and validation
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training and left the other 60% of its images for test-
ing the model’s predictive performance using metrics 
described in Sect. 2.4.

Precision and Recall Object Keypoint Similarity 
(OKS) (Lin et  al. 2014) was used as a performance 
metric (see Sect. 2.4 for more details). As explained, 
the following 6 metrics are usually used for character-
ising the performance of a keypoint detector model. 
We, therefore, used them.

•	 Average Precision (AP):

–	 AP    ( at OKS = .50 ∶ .05 ∶ .95 (primary met-
ric))

–	 AP.50 ( at OKS = .50 )
–	 AP.75 ( at OKS = .75 )

•	 Average Recall (AR):

–	 AR (at OKS = .50 ∶ .05 ∶ .95)
–	 AR.50 ( at OKS = .50)
–	 AR.75 ( at OKS = .75)

Results

To fully evaluate our model and compare it with 
other methods, we ran experiments to optimise our 
approach and compared it to the five aforementioned 
models in terms of image throughput (speed), accu-
racy, inference time, and generalisation ability. We 
benchmarked these models using the test subset (see 
Sect. 2.2 for details).

We applied the same training configuration for all 
of the six models, meaning that the models are all 
trained using the same dataset and data augmenta-
tions as explained in Sect. 2.5.

Performance comparison

Table 1 shows comparative results based on the num-
ber of parameters of a model, the model size on the 
hard disk, and the model throughput in image per sec-
ond. In addition, the coordinates loss (Eq. 1), heatmap 
loss (Eq. 3), and the average of both losses are shown. 
All the tests were conducted on a desktop computer 
with a single NVidia GeForce RTX 2080 Ti GPU.

Overall, the results summarised in Table  1 show 
that our network (MFLD-net) outperforms other 

networks, achieving the lowest number of parameters 
(47x fewer parameters than U-net (Ronneberger et al. 
2015)), the smallest size on the hard disk, and the 
second-highest throughput after SqueezeNet (Iandola 
et al. 2016). Also, our model has a lower average loss 
than U-net (Ronneberger et  al. 2015), ShuffleNet-v2 
(Zhang et al. 2018), and MobileNet-v2 (Sandler et al. 
2018). The small number of parameters as well as the 
very compact size of our model while having a high 
throughput makes it an appealing solution for many 
problems such as real-time mobile fish video process-
ing and portable autonomous systems (Saleh et  al. 
2022).

To examine the efficacy of our model generalisa-
tion, we compared its performance with randomly 
initialised weights, against the five benchmark mod-
els with randomly initialised weights to provide 
a direct comparison. We show in Table  2 that our 
MFLD-net model achieves good generalisation with 
few training examples and without the use of transfer 
learning when combined with strong data augmenta-
tion. Overall, the results summarised in Table 2 show 
that our network (MFLD-net) outperforms Shuf-
fleNet-v2 (Zhang et al. 2018), MobileNet-v2 (Sandler 
et  al. 2018), and SqueezeNet (Iandola et  al. 2016) 
achieving AP = 0.967 , while being competitive with 
U-Net and ResNet, despite having substantially fewer 
parameters. This shows the effectiveness and general-
isability of our MFLD-net model.

Qualitative results

To further confirm our model generalisation on the 
unseen images, we perform a qualitative experi-
ment on the test subset, with sample results shown 
in Fig. 8. This figure clearly shows that our network 
performs better than the previous methods. The other 
methods have the problem of misclassifying the pix-
els with a similar intensity of one colour as the other 
colour, whereas our method shows a strong ability 
to differentiate pixels with similar intensity. We can 
also clearly see that the proposed method can work on 
images with different lighting conditions (Fig. 9).

Fish morphometry

Morphometry is the study of the size and shape of 
organisms and their variation. Fish morphometry is 
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a useful tool for fishery science, as it can help iden-
tify different species, populations, stocks, and growth 
patterns of fish (Tripathy 2020). Fish morphometry 
can be performed using traditional methods, such as 
measuring various body parts with a ruler or a cal-
liper, or using advanced methods, such as image 
analysis, and deep learning. These methods provide 
an efficient approach to extract more information on 
the shape and variation of fish, automatically and 
cost-effectively.

Fish body measurement used in this study

In this study, we used four body measurements to 
describe the morphometry of fish: total length, stand-
ard length, body depth, and head length. These impor-
tant morphological measurements are widely used in 
monitoring fish, for example, its growth (Jerry et al. 
2022). The four measurements automated using our 
approach are depicted in 9 and are defined as follows:

Total length is the overall length of the fish, meas-
ured from the tip of the snout to the end of the tail fin. 
This measurement is important for determining the 
overall size of the fish, which is relevant for various 
ecological and management purposes, such as esti-
mating growth rates, biomass, and abundance.

Standard length is the length of the fish from the 
tip of the snout to the end of the vertebral column, 

excluding the caudal fin. This measurement is more 
appropriate for comparing the body proportions and 
shape of fish among different species or populations, 
as it removes the variation introduced by the size of 
the tail fin.

Body depth is the maximum vertical distance 
between the dorsal and ventral body surfaces, usually 
measured at the midpoint of the body length. This 
measurement reflects the thickness or robustness of 
the fish body, which can be related to its feeding hab-
its, swimming ability, and reproductive strategy.

Head length is the distance from the tip of the 
snout to the posterior margin of the operculum, which 
covers the gills. This measurement is relevant for 
assessing the size and shape of the head, which can 
provide information on the feeding behaviour, sen-
sory perception, and phylogenetic relationships of the 
fish.

Therefore, the combination of these four measure-
ments can provide a comprehensive description of the 
size, shape, and body structure of fish, which can be 
useful for various research and management applica-
tions. Figure 10 shows these measurements’ distribu-
tion pair plots based on the automatic measurements 
captured by MFLD-Net. These plots are essential to 
show the distribution and correlation of these meas-
urements, which can provide insights into the fish’s 
morphometry and body structure (Fig. 11).

We are presenting these plots to demonstrate 
the effectiveness of our approach in automatically 
extracting these important morphological measure-
ments from fish images. The automatic measure-
ments captured by MFLD-Net can provide accurate 
and consistent results, which can save time and effort 
compared to manual methods.

Quantitative comparison

In the quantitative comparison of fish morphometry, 
it is important to compare the accuracy and precision 

Fig. 8   Example keypoints 
estimation predicted by the 
proposed network and a 
state-of-the-art CNNs

Fig. 9   Fish body measurement used in this study
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of the DL measurements. Here, accuracy refers to 
how close the DL measurements are to their true 
manual measurements, while precision refers to the 
degree of consistency or reproducibility of results.

To assess accuracy and precision, the follow-
ing metrics have been used in this study: the mean 
absolute difference (MAD), and the standard devia-
tion of the difference (SDD) between the manual 

and DL measurements. For both of these measures, 
a lower value indicates better performance.

MAD is the average absolute difference between 
two values (accuracy). It is calculated by taking the 
sum of the absolute differences between each value 
and dividing it by the number of values. The for-
mula for calculating MAD is:

Fig. 10   The distribution pair plots for the four body measurements (total length, standard length, body depth, and head length) used 
to describe the morphometry of fish
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where n is the total number of observations, xi and 
yi are the values of the i − th observation in two dif-
ferent samples (here manual and DL measurements), 
and the vertical bars indicate absolute value.

SDD is a statistical measure that describes the 
amount of variation or dispersion between two sets 
of data. Specifically, it measures how spread out the 
differences between the two sets of data are (i.e. pre-
cision). SDD is calculated by taking the square root 
of the variance of the differences using the following 
formula:

where x and y are the two sets of data, n is the number 
of observations in each set, and x̄ and ȳ are the means 
of the two sets.

Table 3 compares the performance of our MFLD-
net model to other models in measuring fish mor-
phometric traits such as total length, standard length, 

MAD =
1

n

n∑

i=1

||(xi − yi)
||

SDD =

�∑n

i=1
(xi − yi − x̄ + ȳ)2

n − 1

Fig. 11   Position of most of the landmark points used to 
describe shape variation in M. novemaculeata from seven geo-
graphically distinct rivers. See (Jerry and Cairns 1998) for an 
explanation of variables measured. Figure is from (Jerry and 
Cairns 1998)

Table 1   Performance comparison to other models

This loss corresponds to the coordinates loss (Eq. 1)
This loss corresponds to heatmap loss (Eq. 3)
This loss corresponds to the average of both losses (Eq. 1 and Eq. 3)

Network # Params (x106) Size (MB) Throughput 
(img/sec)

Coords1 Losses HeatMap2 Avg.3

U-net (Ronneberger et al. 2015) 31.04 124.3 201 0.024 0.355 0.190
ResNet-18 (He et al. 2015) 12.85 51.5 404 0.028 0.090 0.059
ShuffleNet-v2 (Zhang et al. 2018) 3.06 12.5 170 0.047 0.153 0.100
MobileNet-v2 (Sandler et al. 2018) 4.10 16.7 205 0.041 0.137 0.089
SqueezeNet (Iandola et al. 2016) 2.33 9.4 551 0.027 0.078 0.052
MFLD-net (ours) 0.65 2.7 480 0.039 0.120 0.080

Table 2   Performance 
comparison using the OKS 
metric on the test datasets

Network AP AP
.50

AP
.75 AR AR

.50
AR

.75

U-net (Ronneberger et al. 2015) 0.968 0.990 0.990 0.983 0.999 0.999
ResNet-18 (He et al. 2015) 0.970 0.990 0.990 0.985 0.999 0.999
ShuffleNet-v2 (Zhang et al. 2018) 0.949 0.990 0.990 0.968 0.999 0.999
MobileNet-v2 (Sandler et al. 2018) 0.952 0.990 0.989 0.967 0.999 0.996
SqueezeNet (Iandola et al. 2016) 0.964 0.990 0.990 0.975 0.999 0.999
MFLD-net (ours) 0.967 0.990 0.990 0.983 0.999 0.999
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body depth, and head length. MAD and SDD between 
manual and deep learning (DL) measurements are 
reported in mm for each model. The top two results 
are highlighted in red and blue, with red correspond-
ing to the best value and blue corresponding to the 
second best.

The MFLD-net model, proposed in this study, 
outperforms the others with MAD values of 9.25 
and 6.57 for total length and head length. It also per-
forms well for standard length and body depth with 
MAD values of 8.27 and 7.62, highlighted in blue. In 
addition, its SDD values are competitive with other 
models.

The U-net model shows the second-best per-
formance and the ResNet-18 model performs well 
for standard length and body depth with MAD val-
ues of 9.28 and 9.06 but performs poorly for head 
length. The ShuffleNet-v2 and MobileNet-v2 models 
have higher MAD and SDD values for all traits. The 
SqueezeNet model performs well for total length but 
has high MAD values for standard length and head 
length.

Discussion

Fish morphology determination is required for both 
selecting and evaluating novel fish strains for culti-
vation. The most widely used method to character-
ise fish is by observation of their overall appearance. 
An experienced observer can determine a fish’s size, 
weight, possibly sex, and even its condition. The tra-
ditional observation method to evaluate fish morphol-
ogy includes weighing fish, measuring lengths with a 

ruler or callipers and or some other aspect of the fish, 
and then recording these observations. This obser-
vation process is slow, labour-intensive, and highly 
prone to human error.

A possible solution could automate the fish obser-
vation process if an accurate mobile system is devel-
oped that can be deployed in the field and in fish 
farms. This fish morphometric tool could quickly 
measure various fish features and morphological 
traits from fish images captured online or offline 
using a camera. The tool also collects the morpholog-
ical data, and then uses it for analysis and producing a 
final report. Such a tool is very useful to aquaculture 
and fish farms and could provide a new way to select, 
evaluate, and analyse fish and other aquaculture ani-
mal products.

In this paper, we developed a novel deep learn-
ing algorithm for accurate fish morphometric meas-
urements from fish images. To efficiently measure 
various fish morphological traits, we developed a 
fish-specific landmark detection model that could 
accurately localise keypoints (landmarks) on the fish 
body (for example see Fig. 8). These landmarks can 
be then used to rapidly measure various fish traits 
including their weight, length, head shape, and body 
shape. In addition, the fish landmarks can be used to 
describe shape variation, deformation and differential 
development in various fish species (Jerry and Cairns 
1998; Jerry et al. 2022).

We build our landmark detection model upon the 
most widely used deep learning variant, i.e. CNN. A 
number of factors can significantly influence CNNs 
performance. These factors include the size of the 
network (including the number of layers, number of 

Table 3   Performance comparison of various DL models in measuring four important fish morphological traits

The mean absolute difference (MAD), and the standard deviation of the difference (SDD) between the manual and DL measurements 
in (mm) are shown. The best two results are shown in bold and italics, with bold corresponding to the best value and italics corre-
sponding to the second best

Network Total length Standard length Body depth Head length

MAD SDD MAD SDD MAD SDD MAD SDD

U-net (Ronneberger et al. 2015) 10.57 10.67 08.00 08.64 06.23 06.04 06.58 06.77
ResNet-18 (He et al. 2015) 10.07 10.64 09.28 09.82 09.06 09.31 12.96 12.03
ShuffleNet-v2 (Zhang et al. 2018) 14.11 14.95 12.31 12.05 11.90 11.21 15.48 15.70
MobileNet-v2 (Sandler et al. 2018) 15.45 15.04 14.33 14.78 16.73 16.87 11.80 12.89
SqueezeNet (Iandola et al. 2016) 10.07 10.04 09.28 09.64 09.06 09.20 12.96 11.38
MFLD-net (ours) 09.25 07.60 08.27 09.74 07.62 07.34 06.57 06.57
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kernels, and their width), the number of input fea-
tures, and the size of the training set. In addition, 
the use of the convolution layers affects the size and 
complexity of the network but can help to decrease 
the error rate and improve prediction accuracy. How-
ever, there is no clear mechanism to arrive at the opti-
mal convolutional architecture for a specific task. The 
architecture selection involves choosing important 
hyperparameters such as the network structures and 
the training time.

Through experimentation and using our experience 
in developing deep learning algorithms, we designed 
a lightweight CNN with a short training time and high 
generalisability to make it suitable for fast deploy-
ment and real-time mobile applications in fish farms. 
Our experiments showed that MFLD-net best perfor-
mances can be achieved by (i) increasing the size of 
the kernel to 9, (ii) including more input dimensions 
by patch embeddings, and (iii) reducing the number 
of convolution layers to 8. The reduction in the num-
ber of convolution layers resulted in a model with 
fewer parameters that achieved better generalisation 
capabilities compared to the state-of-the-art models.

To train and evaluate our model performance, 
we collected a dataset containing 2500 harvested or 
sedated fish images. These images were manually 
annotated for important landmarks on the fish body. 
We used a combination of data augmentation tech-
niques to improve the network’s performance in a 
low data regime. In our experiments, the input images 
were scaled to a size of 224 × 224 , and the output 
was the position of each fish landmark. These land-
marks (keypoints) were indicated by a single, two-
dimensional, symmetric Gaussian heatmap, where a 
scalar peak value reflects the prediction’s confidence 
score. The quantitative and qualitative experimental 
results showed that our proposed model while being 
significantly lighter, can outperform some and be 
competitive with other state-of-the-art models. We 
also showed that our model has a high generalisation 
capability and does not need transfer learning even 
when using a small training dataset.

To deploy our model to real-world fisheries set-
ting, one approach is to perform site-specific model 
tuning using our baseline MFLD-Net. This means 
that, before deployment to a new setting, we collect 
some new data and retrain our model to adjust it to 
the new environment as well as task conditions. This 
adjustment is much faster and more efficient than 

developing a new model for the new setting. The 
newly added data can diversify the model’s generali-
sation capabilities and gradually improve its perfor-
mance in a wider set of environments. To perform this 
adjustment quicker, one approach is to use self-super-
vised learning techniques to shorten the time required 
for a large amount of data labelling, and to add more 
data from other sources to improve our model.

The main limitation of our study is that all the 
samples for training and testing are taken from a 
similar source, even though, they were slightly dif-
ferent, due to being collected in different conditions 
and by different operators. Another limitation is the 
use of a single fish species in our dataset. Since there 
are a variety of different species and sizes of fish in 
the aquaculture industry, there is a need to test the 
model for more than one species. However, our aim 
in this study was to build a proof of concept, which 
can be extended in future works to other species. Our 
presented results indicate that our developed MFLD-
net model trained using images from a single species 
could be generalised to detect fish of different species 
and in different environments. This could be the sub-
ject of future research.

Furthermore, we should emphasise that our model 
is not designed to classify fish species, but rather to 
detect landmarks on fish bodies that can be used for 
morphometric analysis. However, it is possible to 
extend our model to handle different fish species by 
using techniques such as multitask learning or domain 
adaptation. For example, multitask learning could be 
used to train our model to simultaneously detect land-
marks and classify fish species, while domain adap-
tation techniques could be used to adapt our model 
to new fish species with minimal additional training 
data. These are potential avenues for future research 
and development of our model.

In addition, in future work, the model can be 
trained with images of other objects, or images cap-
tured from different fish species. It is worth noting 
that, collecting new fish images and annotating them 
is a time-consuming and expensive exercise. This was 
the case, even in our data collection trials, where fish 
images were collected when the fish passed on a con-
veyor belt and under a camera capturing videos.

In addition, developing new low-cost, low-power, 
and high-speed mobile devices has been an evolving 
research area in many applications such as agriculture 
(Lammie et al. 2019), and marine science (Jahanbakht 
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et al. 2021, 2022). These devices need a lightweight 
and fast network, such as the proposed model in this 
work. Therefore, an interesting future research project 
is to develop a low-cost mobile device to perform fish 
morphology estimation using the proposed network.

Conclusion

In conclusion, our research demonstrated the poten-
tial of using a vision transformer-inspired CNN for 
fish landmark detection and morphology measure-
ment. Our proposed model outperforms existing deep 
learning models in terms of accuracy and speed while 
using fewer parameters, making it suitable for deploy-
ment on mobile and resource-constrained devices. 
This advancement brings us closer to practical appli-
cations in the rapidly growing aquaculture and fish-
eries industries. Future research will focus on testing 
the model on a wider range of aquaculture animals 
and exploring other CNN architectures for fish land-
mark detection.
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