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Many membrane systems (e.g. P System), including cP systems (P Systems with compound 
terms), have been used to solve efficiently many NP-hard problems, often in linear time. 
However, these solutions have been independent of each other and have not utilised the 
theory of reductions. This work presents a sublinear solution to k-SAT and demonstrates 
that k-colouring can be reduced to k-SAT in constant time. This work demonstrates that 
traditional reductions are efficient in cP systems and that they can sometimes produce 
more efficient solutions than the previous problem-specific solutions.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The question of whether P equals NP is unquestionably the most important unsolved problem in computational com-
plexity theory. The problem has been studied extensively, with many practical problems found to be NP-complete. However, 
the currently best-known general solutions to NP-complete problems take prohibitively large amounts of time for large 
instances.

P systems are a parallel and distributed model of computing, first proposed by Gheorghe Paun in [16]. P systems are 
abstract models of membrane systems, with many variants being proposed such as: P systems with active membranes [17], 
spiking neural P systems [9], tissue P systems [12], and P systems with compound terms (cP systems) [14]. These systems 
have been found to have efficient solutions to hard problems. However, as far as we know, these efficient solutions are still 
in theory and have not yet been practically realised.

cP systems have been used to solve well-known NP-hard problems efficiently such as: the Hamiltonian path, travelling 
salesman [6], 3-colouring [5], and subset sum [10]. However, these solutions have been made specifically for each problem, 
without utilising the theory of reductions. In this work, we propose: to the best of our knowledge, (1) the most time 
(number of cP steps) efficient solution to k-SAT using P and cP systems, and (2) the most time-efficient solution to the 
3-colouring problem using a cP system reduction of it to our k-SAT solution.

✩ This article belongs to Section C: Theory of natural computing, Edited by Lila Kari.
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As discussed in [19], the Cook–Levin theorem states that there exists a polynomial-time reduction from every problem in 
NP to SAT. For many problems, the reduction used in the proof is not the most efficient. Utilising this work, we demonstrate 
how k-colouring can reduce to k-SAT in constant time using cP systems. This work should allow for more efficient solutions 
to already solved problems using reductions and hopefully inspire more work to focus on general issues rather than specific 
problem instances.

2. Background

In this section, we describe NP-completeness with emphasis on the Boolean satisfiability (SAT) problem. We discuss 
polynomial-time reductions and give a reduction from k-colouring to k-SAT. We finally introduce cP systems as a membrane 
computing model and give example rules.

2.1. NP-completeness

NP-complete languages have been studied for decades, and knowing whether the associated complexity class is within 
P is one of the most important questions in theoretical computer science. A decision problem is NP-complete if and only if 
it is NP-hard and it belongs to the class NP. NP-hardness means that we can reduce in polynomial-time any language in NP 
to it. Many of these problems have significant practical importance. There are hundreds, if not thousands, of problems that 
have been found to be NP-complete. Of course, NP-completeness deals with decision problems; however, all NP-complete 
languages being self-reducible means we do not need to study optimisation versions as much [1].

2.1.1. SAT
The Boolean satisfiability problem (SAT) is one of the most famous NP-complete problems and also the first problem 

shown to be NP-complete [4]: given a Boolean formula, does there exist a satisfying truth assignment? Typically the problem 
considers formulas in conjunctive normal form (CNF). A Boolean formula is in CNF if it is expressed as a conjunction (∧) 
of clauses. A clause is a disjunction (∨) of literals. A literal is a variable or its negation (here indicated by overbars). For 
example, the following Boolean formula is in CNF:

(x1 ∨ x2) ∧ (x̄1 ∨ x̄2)

The k-SAT problem is a restricted version of SAT, where each clause contains at most k literals. This restricted version is 
also NP-complete for any k ≥ 3.

2.1.2. Polynomial-time reductions
As defined in [18], given two languages A ⊆ �∗, B ⊆ �∗ , A is polynomial-time mapping reducible (also known as Karp 

reducible) to a language B (A ≤p B) if a polynomially computable function f : �∗ → �∗ exists where for every w:

w ∈ A ⇐⇒ f (w) ∈ B

The function f is called the polynomial-time reduction. The well-known proof by Cook [4] shows how all languages in 
NP have a polynomial-time reduction to SAT. In this section, we describe the reduction from 3-colouring to SAT [19].

2.1.3. Useful Boolean formulas
As discussed in [19], we can make some useful formulas in CNF, which simplify the reductions to SAT. at_most_one is a 

formula which defines the property that only one literal of the arguments is true:

at_most_one(l1, l2, . . . , ln) =
∧

1≤i< j≤n

(l̄i ∨ l̄ j)

Similarly we can define at_least_one meaning at least one variable is true:

at_least_one(l1, l2, . . . , ln) = (l1 ∨ l2 ∨ · · · ∨ ln)

Combining these, we can also define exactly_one where exactly one of the variables will be true:

exactly_one(l1, l2, . . . , ln) = at_most_one(l1, l2, . . . , ln) ∧ at_least_one(l1, l2, . . . , ln)

The formula given for at_most_one is not the most efficient and can be implemented in O (n) rather than the O (n2)

version we defined, as discussed in [19]. This more efficient implementation does, however, introduce n − 2 more variables. 
Throughout this paper, we shall assume this inefficient encoding.
2
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Table 1
BNF grammar for cP top-cells as presented in [8].

<top−c e l l > : : = < state > <term> . . .

< state > : : = <atom>
<term> : : = <atom> | <sub−c e l l >
<sub−c e l l > : : = <compound−term> . . .

<compound−term> : : = <functor > <args > . . .

<functor > : : = <atom>
<args > : : = ‘ ( ’ <term> . . . ‘ ) ’

Table 2
Restricted BNF grammar for cP rules, α being the application mode, α ∈ {1, +}.

<rule > : : = <lhs > →a <rhs > <promoters >
<lhs > : : = < state > <vterm> . . .

<rhs > : : = < state > <vterm> . . .

<promoters > : : = ( ‘ | ’ <vterm >) . . .

<vterm> : : = < variable > | <atom> | <compound−vterm>
<compound−vterm> : : = <functor > <vargs > . . .

<vargs > : : = ‘ ( ’ < vterm> . . . ‘ ) ’

2.1.4. k-colouring
As defined in [19], given an undirected graph G with vertices V and edges E , G is k-colourable if there exists a function:

f : V → {1,2, . . . ,k} such that for all {u, v} ∈ E, f (u) �= f (v).

Here we show the reduction from an instance of k-colouring to SAT given in [19]. The set of variables is denoted X , 
formula as F , and a set K as {1, 2, . . . , k}.

X = {xv,i : v ∈ V , i ∈ K }
F =

∧

v∈V

exactly_one(xv,i : i ∈ K ) ∧
∧

{u,v}∈E

∧

i∈K

at_most_one(xu,i, xv,i) (1)

Each vertex in the graph is represented in the formula by k variables, where each variable in the formula represents a 
vertex assigned to the colour i.

The first part of the formula (
∧

v∈V exactly_one(xv,i : i ∈ K )) represents the requirement that a vertex must take exactly 
one colour. This will create |V |(k

2

)+|V |k clauses, i.e. O (|V |k2).
The second part of the formula (

∧
{u,v}∈E

∧
i∈κ (x̄u,i ∨ x̄v,i)) ensures that each pair of vertices connected by an edge will 

have a different colour. This will create O (|E|k) clauses, with each clause containing two variables.

Theorem 1. The k-colourable clause set is linear in the input size.

Based on the previous analysis, we know that we create O (|V |k2) clauses for the first part of the formula. We also 
know that we create O (|E|k) clauses for the second part, each being two variable lengths. Therefore the entire formula is 
O (|V |k2 + |E|k) characters. Due to k being a fixed constant, we know the length will be O (|V | + |E|), which is linear in the 
input size.

2.2. cP systems

cP systems are a parallel and distributed model of computation, which utilises high-level rewriting rules to compute 
efficient solutions to problems. In this section, we shall briefly discuss the grammar and rule execution, with a focus on the 
types of rules used in this paper and not on the general framework of cP systems. We shall highlight how the rules work 
via examples and direct the reader to [14] for a more in-depth explanation on cP systems.

A cP system consists of a top-level cell (can be many, but we do not consider that in this paper) and subcells following 
the grammar presented in Table 1, where the notation ‘. . . ’ represents 0 or more repetitions of the previous symbol. The 
subcells do not contain rules and are practically just a data storage facility.
3
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The system evolves based on high-level rewriting rules obeying the grammar presented in Table 2. Before a rule can 
apply, it must match all conditions on the left-hand side and right-hand side promoters by way of multiset unification. 
vterm arguments require a complete match. There are two rule application modes: exactly once (→1), and maximally 
parallel (→+). Exactly once will apply a rule for one matching, whereas a maximally parallel rule will apply it as many 
times as possible, all in the same step.

Rules are applied in weak priority order, with rules considered in a ‘top down’ order. Once an applicable rule has been 
found, this commits the next state, with subsequent rules committing to different states disabled. Rules going to the same 
state as the applicable rule, which can also be applied, will be applied in the same step. By convention, we denote the ith 
state by si and follow this convention throughout the remainder of the text.

Numbers in the system are represented using unary. Whereby convention, we denote the unary symbol as 1 and 1x as 
x. As it is simple to transfer between the representations throughout this paper, we shall use the numbers rather than the 
low-level unary representation, including for 0 (λ). For example:

3 = 111
0 = λ

We give two examples to clarify how cP systems are defined and used.

Example 1. The problem of incrementing all numbers with functor n by 1 can be done in one step using the rule:

s1 n(X) →+ s2 n(1X) (1)

This rule runs in maximally parallel mode, meaning all of the instances of n would be incremented. Whereas if we used 
the rule:

s1 n(X) →1 s2 n(1X) (1)

Exactly one of the instances would be incremented. If there were multiple instances the system would non-
deterministically choose one of them.

Example 2. Given a system with numbers x and y, multiplication (z = xy) is achieved using the following rules:

s0 →+ s1 z(0) (1)
s1 y(0) →+ s2 (2)
s1 x(X) y(1Y ) z(Z) →+ s1 z(Z X) y(Y ) (3)

Rule 3 is a loop that will subtract one from y and add the value of x to z. Rule 3 will be the only rule able to be applied 
until y reaches zero. Once y is zero rule 2 will be applied. Because they have different states, rule 3 would not be applied 
in parallel (it would not be applied anyway as y(1Y ) cannot match y(0)).

3. Ruleset for k-SAT

Here we assume k-SAT to be a formula in CNF with variables x0, x1, . . . , xn−1 where each clause contains at most k
variables. To solve k-SAT in O (

√
n) time, we break it up into three steps: generating assignment templates, generating the 

assignments, and finally evaluating the entire formula. Fig. 1 shows a state diagram of the entire system broken down into 
three main parts.

3.1. Initial configuration

During the execution of the algorithm subcell m() is used to determine when loops have finished; initially set to m(1). 
Subcell j() is used to store the branch number of allocations of variables where the branch number is an index of the paths 
from the root to leaf starting at 0 for the left-most leaf (see Fig. 5b); initially we have j(0) j(1) j(2) j(3) because we 
assume that we have already allocated x0 and have the next level of branches ready to assign.(no matter what the value of 
n we assume that we have only allocated the first variable).

Another way of looking at branch numbers is a bijection between integers and allocations. Algorithms to go between 
these representations are given in the appendix.
4
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Fig. 1. State diagram broken up into the three parts of the algorithm. Here we have denoted the rules that change states by r(i).

Subcell a(i)(v)( j) states that variable xi has been assigned the value v , and branch number j. Subcells a initially have 
x0 assigned a(0)(0)(0) or a(0)(1)(1).

As described in [8], we can simplify the rules to evaluate a variable using lookup tables as seen in Table 7. The lookup 
table y has three parts: the assigned value of the variable; the ‘sign’ of the variable (whether negated or not) in a clause; 
and the value when you apply this sign to the value of the assigned variable.

The subcell k() contains the value k for k-SAT. The subcell ρ contains �√n� (ceiling rounded) where n is the number of 
variables. The formula that is being tested is encoded as subcells c(x(i)(s) . . . ) where i denotes which xi is being referred to 
and s whether it is negated (−) in the clause.

3.2. Allocating first 
√

n variables

First, we allocate the first 
√

n variables, which are then used as a lookup table. A sequential programming approach to 
creating these allocations can be seen in Fig. 2. The outer loop is used to reference the next variable being assigned and the 
first inner loop creates two new allocations from the previous ones. The second inner loop allocates the next variable for 
these newly created allocations a 0 if the branch is even, and a 1 if odd.

Our cP system closely models that of the sequential algorithm presented in Fig. 2 with the ruleset presented in Table 3. 
Rules 1 and 6 form the outer loop, with rule 6 being the increment and rule 1 being the termination condition. Rule 2 
creates the copies and changes their branch numbers. Rules 3 and 4 add the next variable to the allocations. Rule 5 updates 
the branch numbers ready for the next iteration of the loop. The outer loop formed by rules 1 and 6 runs 

√
n times. The 

inner loop runs in parallel for all allocations at once. Rules 2-4 run in parallel, taking 1 step total for each loop. Rules 5 and 
6 also run in parallel making the total running time 2

√
n + 1 alternatively O (

√
n).

3.3. Allocating all other variables

To allocate the rest of the variables, we use the templates that were previously created for the first 
√

n variables. Using 
the templates, we loop 

√
n times, where on each loop we do a Cartesian product between the previously allocated variables 

and the template (the templates variables get incremented by 
√

n before each Cartesian product). Alternatively, this opera-
tion can be viewed as taking the allocation tree in Table 8, copying it and placing the tree at all of the leaves, as shown in 
Fig. 3.
5
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1 a ← {(0,0,0), (0,1,1)}
2 j ← {0,1,2,3}
3 for m ← 1 to

√
n do

4 p ← {}
5 for (i, v, j) in a do
6 p ← p ∪ (i, v, j ∗ 2) ∪ (i, v, j ∗ 2 + 1)

7 t ← {}
8 for z in j do
9 i f z%2 = 0

10 p ← p ∪ (m,0, z)
11 else
12 p ← p ∪ (m,1, z)
13 t ← t ∪ 2 ∗ z ∪ 2 ∗ z + 1
14 a ← p
15 j ← t

Fig. 2. Sequential algorithm for creating first
√

n allocations.

Table 3
cP rules to allocate first √n variables.

s1 m(I) →1 s3 m(I) (1)
| l(I)

s1 a(X)(Y )(Z) →+ s2 a(X)(Y )(Z Z) (2)
a(X)(Y )(Z Z1)

s1 j(Z Z) →+ s2 j(Z Z) a(Y )(0)(Z Z) (3)
| m(Y )

s1 j(Z Z1) →+ s2 j(Z Z1) a(Y )(1)(Z Z1) (4)
| m(Y )

s2 j(Z) →+ s1 j(Z Z) (5)
j(Z Z1)

s2 m(I) →1 s1 m(I1) (6)

Table 4
Sequential algorithm for creating the rest of the allocations.

1 a ← {(0,0,0), . . . }
2 b ← map a by (i, v, j) → (i + √

n, v, j)
3 p ← {}
4 for m ← √

n to n step
√

n do
5 d ← {}
6 for (i, v, j) in a do
7 for (y,q, x) in b do
8 i f i + m = y then
9 d ← d ∪ (i, v, ( j, x))

10 d ← d ∪ (y, v, ( j, x))
11 for z in p do
12 i f i + z = y then
13 d → d ∪ (i, v, ( j, x))
14 p ← p ∪ m
15 a ← d
16 b ← map b by (i, v, j) → (i + √

n, v, j)

A sequential version of this algorithm can be seen in Table 4. First, we make a copy of the template a with all variables 
incremented by 

√
n. Then we do an outer loop from 

√
n to n incrementing by 

√
n. Inside this loop, a Cartesian product is 

made looping over each allocation in b and in a. The branch number for the combined allocation is denoted recursively as 
α( j)(i), with j being the branch number from a, and i being the branch number from b. For example, for 9 variables, one 
of the branch numbers created is α(α(0)(1))(2).
6



Fig. 3. Diagrams representing the Cartesian product showing for α = 0 and n = 4.

The rules to allocate the remaining variables are in Table 5. The state diagram giving the state transitions of allocating 
the variables is shown in Fig. 1.

Rule 7 acts as allocating the original b value. Rules 8 and 11 form the outer loop presented in the sequential algorithm, 
with rule 8 the termination condition and rule 11 the increment. Rules 9 and 10 apply the Cartesian product. Rule 13 
increments b (the last line of the sequential algorithm), and rules 12 and 14 reassign a (line 15 of the sequential algorithm).

The rules 9-14 form a loop, which runs 
√

n times, with rules 9-11 running in parallel as well as rules 13 and 14. The 
loop takes 3

√
n steps and rules 7 and 8 each take one step, making the running time for the rules presented in Table 5

3
√

n + 2 steps.

3.4. Solving SAT

The rules discussed previously are just a way of allocating all of the variables. For each complete allocation, the formula 
is evaluated. Finally, it is checked if any satisfy the formula. A sequential algorithm describing the steps taken by our cP 
system can be found in Fig. 4. A state diagram of this final part of the algorithm is shown in Fig. 1.

The ruleset presented in Table 6 is the cP system equivalent of the algorithm presented in Fig. 4. Rules 15 and 16 are 
used to copy the formula for each of the different allocations. Rule 17 checks if any of the allocated variables makes the 
clause true if none exists, rule 18 sets the clause to false (they apply the or operation ∨). Rules 19 and 20 apply the and
operation (∧) between the clauses. Rules 21 and 22 determine if a satisfying truth assignment exists, outputting r(1) if one 
existed, and r(0) otherwise.

Rules 15 and 16 run once and are independent of each other (2 steps). The pairs of rules (17, 18) (19, 20), and (21, 22) 
each run once, with each pair taking 1 step (total is 3 steps). In summary, the running time of the ruleset presented in 
Table 6 is 5 steps.

Theorem 2. k-SAT is solvable in O (
√

n)

The rulesets presented in Tables 3, 5 and 6 solve k-SAT with the running times being 
√

n + 1, 3
√

n + 2 and 5 making the 
total time 4

√
n + 8, or O (

√
n).
M.J. Dinneen, A. Henderson and R. Nicolescu Theoretical Computer Science 958 (2023) 113848
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Table 5
Rules to create allocations.

s3 a(X)(Y )(Z) →+ s4 a(X)(Y )(Z) (7)
b(X Q )(Y )(Z)

| l(Q )

| n(X Q I)

s4 m(Q X) →1 s7 m(1) (8)
| n(Q )

s4 →+ s5 d(X)(Y )(α(Z)(W )) (9)
d(X P )(V )(α(Z)(W ))

| a(X)(Y )(Z)

| b(X P )(V )(W )

| m(P )

s4 →+ s5 d(X)(Y )(α(Z)(W )) (10)
| a(X)(Y )(Z)

| b(X P )(V )(W )

| p(P )

s4 m(I) →1 s5 p(I) m(I Q ) (11)
| l(Q )

s5 a(X) →+ s6 (12)

s6 b(X)(Y )(Z) →+ s4 b(X Q )(Y )(Z) (13)
| L(Q )

| n(X Q I)

s6 d(X) →+ s4 a(X) (14)

1 a ← {(0,0, (α(. . . )(0))), . . . }
2 c ← {((i, s), ( j, t), . . . ), . . . }
3 / / a set of k tuples with each k tuple item being a pair.
4 γ ← {}
5 for (i, v, j) in a do
6 γ ← γ ∪ j
7 κ ← {}
8 for d in c do
9 for j in γ do

10 κ ← κ ∪ (d, j)
11 t ← {}
12 for (d , j ) in κ do
13 p ← 0
14 for (i, s) in d do
15 for (x, v, y) in a do
16 i f x = i and j = y and y(v, s) = 1 then
17 p ← 1
18 t ← t ∪ (p, j)
19 κ ← t
20 f = {}
21 for y in γ do
22 v ← 1
23 for (p, j) in κ do
24 i f p = 0 and j = y then
25 v ← 0
26 f ← f ∪ v
27 r ← 0
28 for v in f do
29 i f v = 1 then
30 r ← 1

Fig. 4. Sequential algorithm for solving SAT given all the allocations. a and c are the allocations and clauses described earlier (allocated here for self 
containment).
8
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Table 6
Rules to solve using the allocations.

s7 a(0)(Y )(Z) →+ s8 a(0)(Y )(Z) γ (Z) (15)

s8 →+ s9 κ(X j(Y )) (16)
| c(X)

| γ (Y )

s9 κ(x(I)(S) j(Y )) →+ s10 κ(1)(Y ) (17)
| a(I)(V )(Y )

| y(V )(S)(1)

s9 κ( j(Y )) →+ s10 κ(0)(Y ) (18)

s10 κ(0)(Y ) γ (Y ) →+ s11 f (0)(Y ) (19)

s10 κ(1)(Y ) γ (Y ) →+ s11 f (1)(Y ) (20)

s11 f (1)( ) m(1) →+ s12 r(1) (21)

s11 f (0)( ) m(1) →+ s12 r(0) (22)

Table 7
Initial state of the subcells that do not change, 
for Formula (2).

Table representation cP representation
y

0 + 0 y(0)(+)(0)

1 + 1 y(1)(+)(1)

0 − 1 y(0)(−)(1)

1 − 0 y(1)(−)(0)

c

x0 x1 c(x(0)(+) x(1)(+))

x2 x̄3 c(x(2)(+) x(3)(−))

x̄2 x1 c(x(2)(−) x(1)(+))

k(2)

ρ(2)

Fig. 5. cP (a table) and binary tree representation of initial branch numbers.

3.5. High-level example of execution

Here we present an overview of the evaluation of our solution. We do not fully trace the solution but highlight the 
important steps. We consider the following formula (n = 4, k = 2, and ρ = √

n = 2):

(x0 ∨ x1) ∧ (x2 ∨ x̄3) ∧ (x̄2 ∨ x1). (2)

Table 7 contains the fixed subcells, and Fig. 5(a) the subcells that change during the evolution of the system.
The subcells in Fig. 5(a) will change to the subcells in Table 8 after the execution of rules 2-6. For example, rule 7 will 

create the b subcells displayed in Table 5. Where we note the only difference between the a and b is the first parameter 
with b subcells have 

√
n added. Rules 9 and 10 will create subcells d which as seen in Table 9 can be viewed as taking a 

Cartesian product of a and b. The d cells will become the a cells and loop until all allocations have been completed.
9
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Table 8
First step of the algorithm for solving Formula (2).

Table representation Graph representation

i xi j cP system representation
0 0 0 a(0)(0)(0)

1 0 0 a(1)(0)(0)

0 0 1 a(0)(0)(1)

1 1 1 a(1)(1)(1)

0 1 2 a(0)(1)(2)

1 0 2 a(1)(0)(2)

0 1 3 a(0)(1)(3)

1 1 3 a(1)(1)(3)

m(2)

j(0) j(1) j(2) j(3)

j(4) j(5) j(6) j(7)

Table 9
Creating the next √n variables for Formula (2).

a

i xi j cP representation
0 0 0 a(0)(0)(0)

1 0 0 a(1)(0)(0)

0 0 1 a(0)(0)(1)

1 1 1 a(1)(1)(1)

0 1 2 a(0)(1)(2)

1 0 2 a(1)(0)(2)

0 1 3 a(0)(1)(3)

1 1 3 a(1)(1)(3)

b

i xi j cP representation

2 0 0 b(2)(0)(0)

3 0 0 b(3)(0)(0)

2 0 1 b(2)(0)(1)

3 1 1 b(3)(1)(1)

2 1 2 b(2)(1)(2)

3 0 2 b(3)(0)(2)

2 1 3 b(2)(1)(3)

3 1 3 b(3)(1)(3)

d

i xi j cP representation

0 0 α(0)(0) d(0)(0)(α(0)(0))

1 0 α(0)(0) d(1)(0)(α(0)(0))

2 0 α(0)(0) d(2)(0)(α(0)(0))

3 0 α(0)(0) d(3)(0)(α(0)(0))

Table 10
Allocating variables for solving Formula (2)
where we only list α(0) and β(0) for brevity.

Table representation cP representation
i xi j

0 0 α(0)(0) a(0)(0)(α(0)(0))

1 0 α(0)(0) a(1)(0)(α(0)(0))

2 0 α(0)(0) a(2)(0)(α(0)(0))

3 0 α(0)(0) a(3)(0)(α(0)(0))

Table 11
The clauses for each allocation of Formula (2), where we only list 
α(0)(0) for brevity.

Table representation cP representation
x : i, s x : i, s j

0,+ 1,+ α(0) β(0) κ(x(0)(+) x(1)(+) j(α(0)(0)))

2,+ 3,− α(0) β(0) κ(x(0)(+) x(1)(−) j(α(0)(0)))

2,− 1,+ α(0) β(0) κ(x(0)(−) x(1)(+) j(α(0)(0)))

The allocation displayed in Table 10 rule 16 will create a clause for each of the allocations resulting in subcells denoted 
κ with a branch number as seen in Table 11. Once created, these clauses are evaluated using rules 17 and 18 as shown 
in Table 12. After the evaluation, the clauses with matching j are combined using an and operation ∧ (rules 22 and 23) 
as shown in Table 13. Finally, the system checks if there is any f subcell containing a 1; if there is, then there exists a 
satisfying truth assignment.
10
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Table 12
The clause with all variables assigned for 
Formula (2), where we only list α(0)(0) for 
brevity.

Table representation cP representation
v j

0 α(0)(0) κ(0)(α(0)(0))

1 α(0)(0) κ(1)(α(0)(0))

1 α(0)(0) κ(1)(α(0)(0))

Table 13
The clause with all variables assigned for For-
mula (2), where we only list α(0)(0) for 
brevity.

Table representation cP representation
v j

0 α(0)(0) f (0)(α(0)(0))

4. cP reductions for k-colouring

To make reductions simpler we first demonstrate how to use cP rules to make the formulas at_most_one and at_least_one
following the encoding we used for our solution to k-SAT. Assuming we are given x(0), x(1), . . . , x(i) and a number i we 
make at_most_one using the rule:

s1 →+ s2 c(x(X)(−) x(XY 1)(−)) (1)
| x(X)

| x(XY 1)

at_least_one requires a loop in which we create the clause:

s1 i(0) →+ s2 (1)
s1 c(Y ) →+ s1 c(Y x(X)(+)) (2)

| x(X)

| i(X)

s1 i(X) →+ s2 i(1X) (3)

4.1. k-colouring

As discussed in Section 2, the k-colouring problem is given a graph G determine if we can assign one of the k colours to 
each vertex such that no neighbours have the same colour. We saw that this can be solved using the formula:

F =
∧

v∈V

exactly_one(xv,i : i ∈ K ) ∧
∧

{u,v}∈E

∧

i∈K

at_most_one(xu,i, xv,i) (3)

4.1.1. cP encoding
To encode the problem k-colouring we shall use the following:

• Vertex vi is encoded as v(i)
• Edge ei, j is encoded as e(i)( j)
• The number k is encoded as κ(k)

• The number n is encoded as η(n)

• √
n = x is encoded as ρ(x)
11
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To construct the group of new variables x(0), x(1), . . . , x(k(n − 1)) we use the following rules:

s1 →1 s2 | i(X) k(X) (1)

s1 j(X) i(Y ) →+ s1 j(N X) m(X) i(1Y ) | η(N) (2)

s2 v(I) →+ s3 v(I) x(I X) | m(X) (3)

The rules are a loop where a set of variables is created on the ith iteration, which encodes the vertices with the ith 
colour. To encode the ith vertex with the jth colour it is encoded as x(n( j + i)). The running time is k + 2 as it loops k
times on rule 2 and runs rules 1 and 3 once.

To ensure that the colours of vertices joined by an edge are not the same the following rules are used (creating a 
at_most_one):

s3 →+ s4 c(x(XY )(−) x(XY 1Z)s(−)) (4)
| e(X)(X1Z)

| m(Y )

The rule uses the m to denote the gap between the different colours (multiples of n) and constructs the clauses such 
that at most, one of the variables in an edge contain that colour. The running time is 1 step.

The rules to ensure that exactly one colour is chosen for each vertex can be broken into two steps. The first is that each 
vertex must take at most one of the colours, which is given by:

s3 →+ s4 c((XY )(−) x(XY 1Z)s(−)) (5)
| m(Y )

| m(1Y Z)

This rule is practically the same as that given for at most one edge being the same colour. In fact the two rules can work 
in parallel so this has running time 1 (rules 4 and 5 combined take 1 step). The second step is that at least one colour is 
taken by each vertex, which is given by:

s3 v(X) x(X) i(1Y ) →+ s4 c(x(X)s(+)) i(Y ) (6)

s4 i(0) →+ s5 (7)

s4 c(Y x(X)(+)) x(X Z) →+ s4 c(Y x(X)(+) x(X Z)(+)) (8)
| m(Z)

s4 i(1Y ) →+ s4 i(Y ) (9)

These rules work in a loop over the colours. Where at the ith iteration, the ith colour is added to the clause. The looping 
rules, 8 and 9 run k times (they run in parallel with each other) and rules 6 and 7 once. Hence, the time taken is k + 2.

Theorem 3. k-colouring ≤p k-SAT in constant time.

As demonstrated, our rules to change an instance of k-colouring to k-SAT took a time of 2k + 5. Due to k being a fixed 
constant and not part of the problem’s input.

Corollary 4. 3-colouring is solvable in O (
√

n) steps.

As 3-colouring is the instance of k-colouring for k = 3. We know the Karp reduction from 3-colouring takes 11 steps, 
and solving the instance of 3-SAT takes 4

√
n + 8 steps hence the total number of steps is O (

√
n).
12
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5. Conclusions

SAT is one of the most famous problems to be known to be NP-complete, with many studies using theoretical molecular 
computing devices to solve it [11]. As discussed in [13] many solutions to SAT have been found running in linear time using 
P systems.

A previous solution to SAT using cP systems also was found running in linear time [15]. However, as far as we know, our 
solution is the first P system solution to run in sublinear time. We note that as discussed in [15], many of these solutions use 
a variable number of rules and alphabet symbols. Our solution uses a constant sized alphabet and ruleset. We do, however, 
note that our solution uses more rules than presented in [15].

As with SAT, the 3-colouring problem has been the subject of many studies using P system variants including: cP sys-
tems [5], tissue P systems [7,20], and kernel P systems [20]. However, as far as we know, no other solution using P systems 
runs in sublinear time.

We have presented an efficient solution to the k-SAT and k-colouring problems and, as far as we know, the most efficient 
P system solution. Our solution to 3-colouring demonstrates that at least some of the traditional polynomial reductions can 
be made in a constant number of steps using cP systems. We also note that the strategies used to generate our allocations 
can be utilised to extend our solution to k-SAT to solving QSAT (a PSPACE complete problem).

Future work includes model-checking these solutions. We note that although cP systems have been used for model 
checking in the past [10] they have had the issue of memory explosion. However, if we are just model-checking a reduction 
this should not occur and may enable much larger instances to be model checked. Another problem is how many other 
problems can be efficiently reduced. The overarching problem being can we find a significantly more efficient reduction 
using cP systems than the traditional Turing machine reduction.
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Appendix A. Distributed solution

Here we present an alternative ruleset to achieve the Cartesian product, cf. rules 9 and 10 from Table 5. This ruleset 
utilises synchronous communication between cells (see [14] for more details about multi cell communication). One of the 
key differences is that this ruleset always consumes something on the left-hand side. This seems to make single cell cP 
systems more difficult to design but also should remove the ability to produce unreasonable amounts of data in 1 step.

Our solution utilises 
√

n + 1 top-level cells with cell 0 being the main cell and all others using identical rulesets only 
communicating with cell 0 (cf. Fig. A.6).

Our alternative ruleset can be broken up into two parts. The first ruleset is identical for 
√

n cells with a processor id p(i)
where i ∈ {1, 2, . . .

√
n}. The rules:

s1 ?{X} →+ s2 X (1)
s2 a(X) →+ s3 a(X b(Y )) | p(Y ) (2)
s3 X p(Y ) →+ s1 !0{X} (3)

describe the system. With each cell getting sent, a group of allocations which it then sends back with after doing a Cartesian 
product with its processor id.

The main cell will simply send the allocations to all of the other cells using the following rules:

s4 a(X) →+ s5 !∀{ j(X)} (8.1)
s5 ?_{X} →+ s6 X (8.2)
13



M.J. Dinneen, A. Henderson and R. Nicolescu Theoretical Computer Science 958 (2023) 113848
Fig. A.6. Diagram showing the graph representation of the distributed system.

Once it has received the results from the other cells it then processes them using the adjusted rules:

s6 →+ s7 (9’)
a(x(i(I) Z) j(Y ) b(X)) d(x(i(I) Z) j(α(Y ) β(X)))

d(x(i(I P ) Q ) j(α(Y ) β(X)))

| b(x(i(I P ) Q ) j(X))

| m(P )

s6 →+ s7 (10’)
a(x(i(I) Z) j(Y ) b(X)) d(x(i(I) Z) j(α(Y ) β(X)))

| b(x(i(I P ) Q ) j(X))

| p(P )

We note that the states of the original ruleset will also need to be adjusted to incorporate the changes. However, this 
should be straightforward.

Appendix B. Bijection between integers and branch numbers

Given an allocation of variables {x0 = α0, x1 = α1, . . . , xn−1 = αn−1} we use the following code to get branch number j:

1 j = 0
2 for i ← 0 to n − 1 do
3 i f αi = 0 then
4 j ← j ∗ 2
5 else
6 j ← j ∗ 2 + 1

Given a branch number j we can retrieve an allocation a using the following code:

1 a ← {}
2 for i ← n − 1 ; to 0 do
3 i f j % 2 = 0 then
4 a ← a ∪ {xi ← 0}
5 j ← j/2
6 else
7 a ← a ∪ {xi ← 1}
8 j ← ( j − 1)/2
14
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