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Abstract: Offshore breakwaters can be effective in reducing the energy of incident waves through
dissipation, refraction or reflection. Breakwaters are increasingly constructed to stabilize eroded
muddy coasts, particularly in developing countries. Accumulation of fine-grained sediment and
wave attenuation are two attributes of a stable muddy coast. Effective interventions in stabilizing
eroded muddy coasts include two important elements: accumulation of fine-grained sediment and
wave reduction. The efficacy of offshore breakwaters in stabilizing eroded muddy coasts is, however,
not yet adequately understood. A crucial question needing attention is whether accumulation of
fine-grained sediment and wave attenuation should be used in evaluating the efficacy of these
offshore breakwaters in stabilizing eroded muddy coasts. To address this issue, a pile-rock offshore
breakwater in Huong Mai, Tieu Dua of Ca Mau, Vietnam was selected as an appropriate example in
this regard. Accumulation of fine-grained sediment and wave attenuation were tested as means to
investigate the efficacy of the Huong Mai structure in stabilizing the eroded muddy coast. The study
was undertaken using field-based measurements and semi-structured interviews in three stages
between October 2016 and December 2020. We found that this structure has had limited efficacy in
stabilizing the eroded muddy coast. The structure was effective in dissipating the energy of incident
waves, but we found no evidence of fine-grained sediment accumulation due to an inappropriate
structural design. There was also no monitoring system in place, leading to difficulties in evaluating
its efficacy in terms of wave attenuation and accumulation of fine-grained sediment. The gaps
between the shoreline and the structure have not been adequately explained, resulting in substantial
challenges in replicating the structure elsewhere. The Huong Mai structure should be strengthened
using supplementary measures and granulometric tests in order to improve the efficacy in stabilizing
eroded muddy coasts. The methods in this study provide new insights in this regard.

Keywords: fine-grained sediment; structural design; turbidity; transplantation; wave attenuation;
natural regeneration

1. Introduction

Offshore breakwaters aim to manage shoreline change or eliminate erosion by reduc-
ing the energy of incident waves through dissipation, refraction and/or reflection [1]. These
breakwaters are constructed parallel to the shore in more exposed settings or deeper water
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at a certain distance from the shoreline [1,2]. They include geo-tubes, tubular structures,
reef balls (concrete artificial reef modules), stable underwater mud berms [3], emergent and
low-crested structures and detached breakwaters [1]. To date, these offshore breakwaters
are frequently evaluated on the basis of economic viability or the physical impacts caused
by their construction. Evaluations may be undertaken using satellite image analysis in
combination with ground truthing [4,5], algorithmic modeling with a cost analysis [6] or
on cost analysis alone [7].

Offshore breakwaters have been recently constructed in combination with transplan-
tation of mangrove seedlings to control eroded muddy coasts, particularly in developing
countries such as Malaysia [8,9], Thailand [10] and Vietnam [11,12]. Theoretically, a muddy
coast is predominantly influenced by a stabilization process where fine-grained sediment
gradually accumulates through dissipation of the energy of incident waves, followed by
natural mangrove regeneration [13,14]. In practice, effective intervention to stabilize eroded
muddy coasts includes two important elements: accumulation of fine-grained sediment
and wave attenuation [15].

Therefore, whether fine-grained sediment accumulation and wave reduction are feasi-
ble criteria for evaluating the efficacy of offshore breakwaters in stabilizing eroded muddy
coasts remains a crucial question, especially in the context where offshore breakwaters are
prioritized for controlling erosion, as is the case in the Vietnamese Mekong Delta among
other regions.

1.1. Coastal Erosion Control in the Mekong Delta of Vietnam

By 2015, many coastal areas of the Mekong Delta of Vietnam had become severely
eroded [16,17] due to human activities and natural factors [16,18]. Since 2013, the Viet-
namese Government has aimed to promote sustainable use of the Mekong coast in the
context of increasing socioeconomic development, climate change and sea level rise. In
order to achieve this, various programs were established in order to protect the Vietnamese
and Mekong Delta coasts from the negative effects of climate change and sea level rise. The
programs include the Program on Strengthening and Upgrading of the Sea Dyke Systems from
Quang Ngai to Kien Giang provinces [19], the Strategy for Managing Integrated Coastal Zones
of Vietnam [20], and The Regulations on Managing Protected Forests [21]. A total of approxi-
mately USD 200 million was invested to improve the management of mangrove forests
and coastal protection in 2017 [22]. In many coastal provinces of the Vietnamese Mekong
Delta, existing sea dykes were upgraded and new sea dykes constructed in combination
with the transplantation of mangrove seedlings. However, the sea dykes did not function
as expected [23]. By 2017, a total of 268 km of the coast (approximately 45% of the entire
coast) had been eroded [22], with a maximum retreat rate of 45 m per year with 15,000 ha
of coastal mangrove forests lost) [22].

1.2. Ca Mau Case and Our Aims

Ca Mau, located in the Mekong Delta of Vietnam, contains approximately 105 km of
coastline. Half of the entire coastline of Ca Mau had become severely eroded with 8870 ha
of mangrove forests lost [24]. Mangrove belts in many areas were more or less 200 m in
width [24]. Ca Mau province had implemented the Vietnamese coastal protection programs.
Shoreline structures and offshore breakwaters were constructed along the Ca Mau coast as
measures for eliminating the erosion. By 2019, 28.5 km of these structures had been built
from a capital investment of approximately USD 5 million [24]. An offshore breakwater
constructed in Huong Mai in Tieu Dua (hereafter simply called HMS) was one of a few
structures which were still operational on the western side of Ca Mau province in 2019 [24].
Other structures were too small in scale or newly established to demonstrate their efficacy
towards protecting eroded coasts in Ca Mau. The HMS was a source of pride for the
Vietnamese Government and Ca Mau PPC because of its longevity. However, its efficacy
in stabilizing the muddy coast was not comprehensively evaluated, nor lessons learnt.
Regardless, the HMS structural design was then replicated with structural adjustments (i.e.,
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widening gaps and with or without transplantation of seedlings of mangrove species, or
adjusting positions of the structures) in other districts of Ca Mau province such as Khanh
Binh Tay and Tran Van Thoi [24].

In 2011, the Vietnamese Government, through the Ministry of Finance, entered into a
loan agreement with the German Government to implement a proposed project ‘Integrated
Coastal Protection and Mangrove Belt Rehabilitation Project mangrove belt rehabilitation
project in Ca Mau and Kien Giang Provinces’. This project, planned for implementation in
2022, primarily aims to construct coastal structures, both shoreline and offshore, to protect
the shoreline and mangrove forests [25]. The HMS design was used as a technical reference
in other areas in Ca Mau [26] and Kien Giang [27]. Other provinces of the Mekong Delta
then became interested in replicating the HMS design as an effective erosion control in
their regions. In 2019, Kien Giang replicated the HMS design in controlling erosion in
two districts of Kien Giang province (Vam Ray of Hon Dat district and Xeo Nhau of the
An Minh district). The Kien Giang replications were undertaken along with mangrove
transplantation.

In 2017, the offshore breakwaters in Khanh Binh Tay and Tran Van Thoi, Ca Mau
province were evaluated with respect to wave attenuation through the simulation of the
technical structural designs of Khanh Binh Tay and Tran Van Thoi in combination with
field-based measurements in Ca Mau [12]. However, the accumulation of fine-grained
sediment was not measured. By 2019, however, these newer structures were shown to be
inadequate for protecting shorelines under the influence of strong waves at high tides, and
sea dykes located landwards behind these breakwaters were severely damaged [28].

Consequently, we selected the HMS as a case study to investigate the above issues. In
this study, we aimed to investigate the mechanisms by which the HMS contributed toward
coastal stabilization. The investigation was undertaken using two elements: accumulation
of fine-grained sediment, and wave attenuation. We also aimed to identify successful
strategies and interventions so that the HMS can be effectively replicated both in the
Mekong Delta area and elsewhere in a wider region. In order to achieve this, satellite
images were analyzed in order to understand the extent of the stabilization process to
which the HMS contributed. Field visits were completed together with semi-structured
interviews and we referred to the literature to gain an insight into how the HMS contributed
to stabilization of the eroded muddy coast, and draw lessons in order to improve its efficacy
in the future.

2. Materials and Methods
2.1. Site Description

Ca Mau is located in the southernmost part of the Vietnamese Mekong Delta, bordered
by the East Sea in the East and the West Sea on the Thai Gulf (Figure 1).

Ca Mau, with a total shoreline of 254 km, contains 18,180 ha of mangrove forests and
intertidal mudflats [11]. Ca Mau has two relatively distinct monsoons. The southwest
monsoon operates from May to October, with wind speeds from 1.6 to 2.0 m/s (maximum
of 4.5 m/s). The northeast monsoon operates from November to April, with an average
wind speed of 1.4 to 3.0 m/s, with a maximum intensity from February to April.

Ca Mau is hydrologically influenced by the tidal regimes of the East Sea and West Sea,
and rainfall [11]. Tides of the East Sea are semi-diurnal with diurnal inequality while the
West Sea is characterized by diurnal tides with diurnal inequality. The tidal range of the
East Sea is approximately between +1.8 and +2.2 m while the West Sea has a maximum
tidal range of +1.0 m [11].

Huong Mai in Tieu Dua, located on the western side of Ca Mau (Figure 1), is influenced
by the tidal range of The Gulf of Thailand, with diurnal tides with diurnal inequality [11].
The maximum tidal range is approximately 1.0 m high [11]. The area was severely eroded
by 2010, with many Rhizophora trees uprooted [26].
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Figure 1. The location of the Mekong Delta of Vietnam (left) and Huong Mai, Tieu Dua (red dot) in
Ca Mau province, the Mekong Delta (right). The maps are derived from Google.

Construction of the HMS commenced in late 2010, and was completed in 2013. With
a total length of approximately 6318 m, it cost approximately USD 1400 per meter. The
HMS rises +1.5 m above the mud surface, and is composed of two lines of concrete piles
with 2.6 m spacing. Melaleuca poles were used as base support that prevents granite rock
from sinking in the mud. Granite rocks were used for filling the gaps between the concrete
piles [11]. The technical design and elements are provided in Figure 2.
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The HMS is in four sections, with three openings, created for local boating purposes.
Gaps between the structure and the shoreline vary from section to section. Of the four
sections, three (Sections A, B and C) incorporated landfill in order to elevate the soil surface,
where seedlings were transplanted. Six-month-old seedlings of Avicennia marina were
transplanted in straight lines at a density of 10,000 seedlings/ha in the gaps (Figures 3 and 4
and Table 1).
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Table 1. Locations, original status and interventions.

Section Location Status in 2013 Intervention

A
1,2,3 (maximum
width—approximately 320 m
from the current sea dyke)

• Entrance to channel
• Fragmented mangrove

patches
• Elevated soil surface/landfill

• Structure constructed with opening
• 6-month-old seedlings of Avicennia

marina transplanted in straight lines
(10,000 seedlings/ha)

B
4,5,6,7,8 (minimum
width—approximately 50 m
from the current sea dyke

• Entrance to channel
• Fragmented mangrove

patches
• Elevated soil surface/landfill

• Structure constructed with opening
• 6-month-old seedlings of Avicennia

marina transplanted in straight lines
(10,000 seedlings/ha)

C
9,10,11 (maximum
width—approximately 150 m
from the current sea dyke)

• Entrance to channel
• Fragmented mangrove

patches
• Elevated soil surface/landfill

• Structure constructed with opening
• 6-month-old seedlings of Avicennia

marina transplanted (in straight linea
10,000 seedlings/ha)

D
12,13,14 (maximum
width—approximately 270 m
from the current sea dyke)

• Fragmented mangrove
patches

• Deep liquid mud

• Structure constructed
• 6-month-old seedlings of Avicennia

marina transplanted in straight lines
(10,000 seedlings/ha)

A simulation had been undertaken in the site with respect to wave height, current
speed and velocity before the HMS was completed. Waves were predicted at a maximum
height of 0.25 m behind the HMS; current 0.18 m/s; and velocity 0.7 m/s [29]. However,
no ongoing monitoring system was put in place. Accumulations of fine-grained sediment
were measured twice: February 2014 and November 2020, the time when this study was
undertaken (Figure 3). Neither the survival of transplanted seedlings nor wave attenuation
resulting from the HMS were measured.

2.2. Methods

The current data recorded in Ca Mau were not detailed enough to understand the
efficacy of the HMS in stabilizing the eroded muddy coast. However, additional ad
hoc monitoring and analysis were undertaken in three stages between October 2016 and
December 2020 in order to achieve the objectives of the study. The first stage occurred
between October 2016 and July 2017. This stage involved the collection of reports relevant to
the HMS and measurement of total suspended sediment (TSS) at the site. The measurement
was undertaken using four turbidity sensors (VisoTurb® 700 IQ and ViSolid® 700 IQ
sensors, WTW MIQ-Xylem Analytics-UK) in Section D. The sensors were placed in two
pairs on either side of the HMS with a 7.0 m spacing (Figure 3) over four hours. This stage
provided knowledge of the extent of turbidity and levels of Total Suspended Sediment
(TSS) to which the HMS contributed, and assisted in developing open-ended questions
which were subsequently used for semi-structured interviews with staff working for the
Ca Mau government agencies. Semi-structured questions focused on structural design,
implementation process and monitoring and evaluation.

The second stage, in August 2020, aimed to measure wave spectrum, wave height and
wave transmission coefficient (Kt) using the methods recommended by Tu et al [12]. The
measurement was undertaken over 2 days using sensors (Wave Gauge Blue, produced by
Ocean Sensor Systems Inc., USA), which were installed at Section D (80 m in front of the
structure and 120 m behind the structure). This stage provided knowledge of the wave
spectrum and wave attenuation provided by the HMS.

The wave transmission coefficient Kt =
Hm0,t
Hm0,i

where
Hm0.t is the height of transmitted waves.
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Hm0.i is the height of incident waves.
The last stage of this study involved field visits to the site which were organized

between June and December 2020. During the field trips, six boat visits were made to
the HMS site at high and low tides in order to conduct field-based observations. Three
semi-structured interviews were undertaken with four technical staff working for the Ca
Mau government agencies, Section of Irrigation and Drainage of Ca Mau province (two
staff), Sea Dyke and Sluice Gate Management Section (one), and the Forestry section of
the Department of Agriculture and Rural Development of Ca Mau province (one). Each
interview lasted one hour. Data in relation to mud accumulation inside the sections were
obtained during these interviews. The accumulation of fine-grained sediment was calcu-
lated by comparing the two measurements undertaken in February 2014 and November
2020, which was used as additional evidence of the stabilization process. Satellite images
of the site between 2013 and 2020 were retrieved and analyzed to gain an insight into the
extent of stabilization to which HMS had contributed instead. The year 2013 was selected
for analysis because HMS was completed in 2013. This stage produced a deep insight into
monitoring and evaluation, and a knowledge of how effectively the HMS worked towards
stabilizing the eroded Huong Mai coast.

The study primarily focused on measuring the sediment accumulation and wave
attenuation around the HMS, but without granulometric tests. Analysis of the efficacy of
the HMS therefore necessitated further granulometric information, particularly regarding
the conditions for mobilization of muddy sediments in the channel openings and the gaps.
This information is necessary in order to understand how grain size influences sediment
transport rates. Unfortunately, time constraints and a lack of analysis devices precluded
further study site visits and sediment sampling at the time of the study. Therefore, we
referred to the results of previous studies and analyzed relevant data in order to provide
a rough indication of how mud particles are mobilized and how tidal current velocities
influence the mobilization of the mud sediment in this case. Mobilization of the sediment
was modeled through the use of the following formula [30]:

u′′crit = 6
(

D50

δ

)− 1
3
√((

ρS
ρ
− 1
)

gD50

)
= 0.36 m/s (1)

where
D50 (mean sediment diameter) = 0.0000300 m (retrieved from the previous study result

in the Vietnamese Mekong Delta [31].
δ (boundary layer thickness) = δ =

√
ϑT
π = 0.0005941 m

ρs (specific gravity of sediment) = 2650 kg/m3

ρ (specific gravity of water) = 1000 kg/m3.
g (gravity acceleration) = 9.81 m/s2

1 
 

𝜗 (kinematic water (fresh water without suspended matter) viscosity, with assumption
of the temperature of 30 ◦C = 0.0000008 m2/s

T (wave period) = 4.35 s (retrieved from Figure 5) of the results.
An understanding of how wave action influences the mobilization of the sediment

was achieved through the use of the linear shallow water wave theory.

hmin =
gH2

4
(
u′′crit

)2 = 0.28 m (2)

where
H (wave height) = 0.12 m (retrieved from Figure 6 of the results)
g (gravity acceleration) = 9.81 m/s2

In addition, knowledge of settling velocity of mud sediment was achieved through
reference to online sources [32]. This knowledge aimed to demonstrate how volatile the
settling process was when the mud sediment was mobilized.
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3. Results

The study has provided results with respect to the sediment accumulation, wave
spectrum and transmission, the stabilization process against the shoreline change in Ca
Mau between 2013 and 2020, and natural regeneration of mangrove species. The following
section presents the results in detail.

3.1. Sediment Accumulation

The recording showed that there was a low level of sediment accumulation across the
sections (Figure 7).
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Figure 7. Accumulation of fine-grained sediment inside the sections between February 2014 and
November 2020.

The field-based measurements indicated that the sections experienced a high level of
TSS, possibly a few thousand mg/L on either side of the HMS in July 2017. This occurred
when the southwest monsoon dominated. However, the sections gained a lower level of
TSS than the foreshore of the HMS (Figure 8).
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3.2. Wave Spectrum and Transmission

The HMS was effective in dissipating the energy of incident waves, even at high tides.
The wave spectrum outside the HMS had a highly peaked wave power spectrum with
a high energy distribution of more than 0.03 Hz, while the spectrum inside the sections
became flattened due to the energy attenuation provided by the HMS (Figure 5).

The wave height outside the HMS ranged between 0.29 and 0.47m, and between 0.01
and 0.16 m inside the HMS (Figure 6).

The transmission coefficient Kt through the HMS ranged between 0.29 and 0.44 with
respect to the Rc/Hi value of more than 1.0 (Figure 9).
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Figure 9. Wave transmission coefficients through the HMS.

From the field visits, it was apparent that the HMS was higher than incident wave
crests, even at high tides, therefore preventing the waves from overtopping the structure.
The HMS is structurally strong, with the maximum width of 2.6 m effectively attenuating
the energy of incident waves, even at high tides. Fine-grained sediment accumulated in
the foreshore of the structure, while liquid mud was observed around the openings along
the HMS (Figure 10 and Table 2).
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Table 2. Record of the HMS status as at November 2020.

Section The Foreshore of the HMS Area Inside the Section

Fine-grained
mud

accumulated
Liquid mud

Fine-grained
mud

accumulated
Liquid mud

Survival of
transplanted

seedlings

Natural regeneration
of mangrove species

A Yes No No Yes 100% 10%

B Yes No No Yes 80% 10%

C Yes No No Yes 80% 10%

D Yes No No Yes 30% 0%

The sections were still in liquid mud condition, with limited regeneration of mangrove
trees in gaps among mother mangrove trees in Sections A, B and C and elevated soil
surfaces (Figure 11 and Table 2).

The analysis derived from available literature suggested that with hmin = 0.28 m, the
channel openings and the gaps were too shallow for the sediment to be stabilized under
the influence of wave-induced action. It could be inferred from Figure 6 that the settling
process was highly volatile when the mud was mobilized.

The semi-structured interviews with technical staff revealed that they were required
to follow the Vietnamese regulations on controlling eroded coasts (the 2009 Program on
Strengthening and Upgrading of the Sea Dyke Systems from Quang Ngai to Kien Giang
provinces). The regulations stipulate that in eroded areas, in addition to the construction
or upgrading of sea dykes as shoreline protection, intertidal mudflats, at least 500 m in
width, should be established in order to create a mangrove belt along the Mekong coast
and Ca Mau coast. However, the 500 m width was not possible in this area due to severe
erosion and no mangrove regrowth was evident. The HMS was constructed as far on the
seaward side as possible in order to create intertidal mudflats, as required by the 2009
Vietnamese regulations, which may explain the variation in distance between the HMS
and the sea dyke among different sections. When the HMS was completed, the sediment
accumulation and survival rates of transplanted seedlings were measured for reporting
purposes, with additional measures taken only on request. Thus, no ongoing monitoring
had been established.
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3.3. The Stabilization Process

The image analysis revealed that the sections experienced variable levels of stabiliza-
tion between 2013 and 2020. Of the four sections, Section A was entirely stabilized with the
largest coverage of mangrove species, with Section D the least stabilized and with lowest
mangrove coverage (Figure 12).
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4. Discussion

The study addressed the sediment accumulation, wave attenuation and stabilization
processes. These issues are discussed in detail in the following sections.

4.1. HMS and the Stabilization of the Eroded Muddy Coast

Eroded sites are not stabilized until fine-grained sediment accumulates and mangrove
species regenerate [33,34]. As of December 2020, the Huong Mai area had failed to reach
that threshold, with limited accumulation of sediment and natural mangrove regeneration
in the sections. The limited sediment accumulation was possibly due to the fact that the
HMS itself prevented the sediment from being transported into the sections, as shown in
Figures 7–9 and Table 2. The accumulated sediment along the sections may possibly be the
sediment trapped by the construction of the HMS. Liquid sediment was found in deeper
areas inside the sections which had not been reclaimed. The field-based observations
were supported by the field-based measurements and analysis results, as presented in
Section 3.2 and Figures 6–8 of this study.

By contrast, sediment gradually accumulated on the foreshore of the HMS as shown in
Table 2. The limited sediment accumulation and liquid sediment among the gaps and the
channel openings did not create favorable conditions for mangrove species to regenerate,
as shown in Figure 11 and Table 2. The amount of accumulation and natural regeneration
in the sections were somewhat low in comparison with those of the Vam Ray model [35],
which was also located on the western side of the Mekong Delta coast.

The HMS was effective in reducing up to around 70% of incident wave energy
(Figures 8 and 9). Thus, transplanted seedlings were well-protected in the sections, as
shown in Figures 10 and 11. In addition to the protection from the HMS, transplanted
seedlings’ survival was aided by the use of landfill to elevate soil, thus providing a more
favorable growing condition. This may explain why Sections A, B and C experienced
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higher survival rates than Section D, which still contained deep liquid mud, which is
unsuitable for either transplanted seedlings or natural mangrove regeneration. The high
survival rates of transplanted seedlings on the elevated soil surface strongly concur with
previous conclusions that topographical elements must be secured before restoration is
made [36–38]. In addition, the HMS was more effective in protecting transplanted seedlings
than offshore breakwaters implemented in Malaysia [8,9] and Thailand [10].

However, transplantation at high densities (10,000 seedlings/ha) is a matter of concern.
Previous studies show transplantation to be both costly and unnecessary, because mangrove
species will not naturally regenerate until intended restoration sites are stabilized [33,35].
In addition, transplantation using a single mangrove species is likely to result in ecological
and physical changes to muddy coasts [39,40]. Of further concern, single-aged mature
mangrove trees in high-density stands are highly likely to deteriorate without adequate
sediment and nutrient supplies [40]. So far, the transplanted seedlings have grown in the
absence of large amounts of accumulated fine-grained sediment, but these transplanted
seedlings must be closely monitored in the longer term.

In other words, the HMS has had only a limited effect on the stabilization of the
eroded muddy coast, given the capital investment involved. It took almost 10 years for the
Huong Mai coast to reach this level while the Vam Ray model, Kien Giang, also located on
the western side of the Mekong Delta of Vietnam, took only seven years to be completely
stabilized with a high level of soil compaction and robust regeneration of local mangrove
species [35].

4.2. HMS and Communicating the Results of HMS

Monitoring and evaluation are crucial in drawing lessons from a project and making
further recommendations, particularly in development projects [41]. Poor information
sharing and inadequate reporting are very likely to result in failure when attempting
to replicate successful models elsewhere [35]. It is common for government agencies,
when reviewing restoration projects, to focus on delivery rather than outcomes [42]. This
is highly likely to be the case with the HMS. The longevity of the HMS appears to be
the only “evidence” of its efficacy in stabilizing the eroded muddy coast. As no ongoing
monitoring system has been established, it is difficult to know survival rates of transplanted
seedlings, or the accumulation of fine-grained sediment. Likewise, the gaps were not
adequately explained, which makes effective replication of this design elsewhere in the
region problematic. Inappropriate replication has occurred in Khanh Binh Tay and Tran
Van Thoi [24].

A remaining issue involves the compaction of liquid mud in the remaining gap of
Section D and the deep areas surrounding the channel openings of the HMS. Avicennia
species as pioneers assist in trapping and compacting sediment within muddy environ-
ments [35,43]. However, the transplantation of this species in the sections did not resolve
this issue because the current topographical conditions were unsuitable for the growth of
this species or other species (see Figures 11D and 12). Therefore, further measures will need
to be taken. One measure involves the complete elevation of the gaps to provide suitable
mangrove substrates [36–38]. A second measure involves the construction of supplemen-
tary structures inside the gaps to compartmentalize the gaps. The compartmentalization
would provide additional wave dissipation, thus further aid siltation. Supplementary
structures could include melaleuca fences of the Vam Ray model [34,35]. A further measure
involves a redesign of the HMS, with the aim of accumulating additional sediment trans-
ported onshore by incident waves, particularly at high tides that would help to build up
these areas. This measure would use the sediment accumulated in front of the HMS. The
crest of the HMS could be lowered, the width narrowed, and gaps adequately explained,
or more opening areas created to connect the sedimentation process between the sections
and the sea. The lowering would allow waves to overtop the structure, thus allowing
fine-grained sediment to accumulate within the restoration sections. The narrowing should
be ideally undertaken by reducing gaps between the two rows of concrete piles and using
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less granite rock. The increase in porosity would allow sediment to be transported through
the HMS. The construction of additional structures and the redesign of existing structures,
while incurring additional costs, are likely to be more cost-effective than the elevation of
all the gaps behind the HMS.

With respect to the liquid mud in areas around the openings, granulometric infor-
mation and knowledge of seabed configuration must be obtained in order to thoroughly
understand how muddy sediments are mobilized and how tidal current velocities affect
the muddy sedimentation in the openings. This knowledge would help better locate the
structures and adjust structural designs. Ideally, these latter measures would not be im-
plemented until biological and hydraulic parameters were fully analyzed. The choice of
appropriate measures, however, entirely depends on the local political will. In addition, if
transplantation is decided upon, multiple mangrove species should be selected in order
to avoid the possible consequence of transplantation of a single species, as previously
outlined [35].

5. Conclusions and Recommendations

Fine-grained sediment accumulation in combination with wave attenuation are ef-
fective indicators for understanding the efficacy of the HMS in stabilizing the Huong Mai
eroded muddy coast. The HMS has been of limited efficacy in stabilizing the eroded muddy
coast in Huong Mai, Tieu Dua, Ca Mau. While it effectively dissipates incident wave en-
ergy, sediment has not accumulated rearward to the degree expected due to inappropriate
structural design. The lack of ongoing monitoring system makes a thorough evaluation
of its efficacy difficult, while inadequate explanation of the structural design makes its
replications in other locations problematic.

Granulometric tests should be undertaken before similar structures are designed in
order to gain a thorough knowledge of seabed configuration and possibility of mobilization
of mud sediment. This knowledge would substantially assist in explaining positions of the
structures and improving the efficacy in stabilizing eroded muddy coasts. A monitoring
program should be established in order to assess the impacts of these structures on muddy
coast stabilization and to draw lessons in order to more effectively protect these types of
coastlines in the future.
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