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Seagrass canopies are important components of the world’s coastal
environments providing critical ecological services. Nearshore hydrodynamics,
i.e., waves and currents, are essential in controlling the ecological processes
across coastal environments. Seagrass meadows can impose more complex
hydrodynamics processes by attenuating sea-swell waves and decreasing the
impact of nearshore mean water level rise due to wave setup and Infragravity (IG)
waves. Consequently, the seagrasses dissipate waves and reduce flows allowing
sediments to settle and accrete the shorelines. However, despite their significant
roles, knowledge of hydrodynamics in the Indonesian seagrass ecosystems is
relatively limited compared to other coastal ecosystems such as sandy beaches,
mangroves, and coral reefs. This review highlights the dynamics of waves and
currents, and their interaction with sediment transport and ecological processes,
including biogeochemical and dispersal processes on the seagrass ecosystem
contributing to the existing seagrass research in Indonesia. The associated
literature is collected from scientific databases such as Scopus and Google
Scholar that range between 1965 and 2021. The result showed that most of
the research on hydrodynamic in seagrass ecosystems was carried out in
temperate zones. Until recently, there have been limited publications
discussing the interaction between the Indonesian (tropical) seagrass
ecosystem and hydrodynamics parameters, even though the region has
abundant seagrass species. Moreover, Indonesia is strongly influenced by
various atmospheric-oceanic forcing, including the Asian monsoon affecting
the dynamic of the coastal area with seagrass ecosystems. At a canopy scale,
the correlation between the nearshore (tropical) hydrodynamics and ecological
processes in the system is yet to be explored. Considering the potential benefit of
seagrasses to coastal ecosystems, developing future research in hydrodynamics
across the ecosystem is critical to overcoming the knowledge gaps in Indonesia.
The knowledge gained could support the Indonesian seagrass ecosystem services
and their resilience to potential hazards and climate change.

OPEN ACCESS

EDITED BY

Alexandra V. Turchyn,
University of Cambridge, United Kingdom

REVIEWED BY

Thangaradjou T.,
Science and Engineering Research Board,
India
Amrit Kumar Mishra,
The University of Hong Kong, Hong Kong
SAR, China
Hacen Mohamed El-Hacen,
University of Groningen, Netherlands

*CORRESPONDENCE

Johan Risandi,
johan.risandi@brin.go.id

SPECIALTY SECTION

This article was submitted
to Biogeoscience,
a section of the journal
Frontiers in Earth Science

RECEIVED 02 September 2022
ACCEPTED 30 January 2023
PUBLISHED 09 February 2023

CITATION

Risandi J, Rifai H, Lukman KM, Sondak CFA,
Hernawan UE, Quevedo JMD, Hidayat R,
Ambo-Rappe R, Lanuru M, McKenzie L,
Kohsaka R and Nadaoka K (2023),
Hydrodynamics across seagrass meadows
and its impacts on Indonesian coastal
ecosystems: A review.
Front. Earth Sci. 11:1034827.
doi: 10.3389/feart.2023.1034827

COPYRIGHT

© 2023 Risandi, Rifai, Lukman, Sondak,
Hernawan, Quevedo, Hidayat, Ambo-
Rappe, Lanuru, McKenzie, Kohsaka and
Nadaoka. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Review
PUBLISHED 09 February 2023
DOI 10.3389/feart.2023.1034827

https://www.frontiersin.org/articles/10.3389/feart.2023.1034827/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1034827/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1034827/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1034827/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1034827&domain=pdf&date_stamp=2023-02-09
mailto:johan.risandi@brin.go.id
mailto:johan.risandi@brin.go.id
https://doi.org/10.3389/feart.2023.1034827
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1034827


KEYWORDS

seagrass, waves, currents, shoreline, ecology, nearshore, asian monsoon, Indonesia

1 Introduction

Seagrasses are marine flowering plants that form extensive
meadows in sheltered coastal areas with sufficient sunlight that
occupy 10% of nearshore regions globally (Duarte 1991a; Green
and Short 2003). The meadows, termed canopies (a term
describing very rough surfaces, see Dalrymple et al., (1984)), are
one of the most productive ecosystems on Earth (Thomson et al.,
2015), providing various ecosystem goods and benefits. For the
environment, seagrass ecosystems act as blue carbon storage (Ricart
et al., 2020), nutrient fixation (Presley and Caffrey 2021), as well as
offering shelters and food for invertebrates, fishes, and species of
conservation interest, such as dugongs and green sea turtles (Olson
et al., 2019). Moreover, for human wellbeing, seagrass ecosystems
significantly contribute to material and non-material benefits of the
community, including shoreline protection (Donatelli et al., 2019),
coastal fisheries (Unsworth and Cullen 2010) or recreation and
cultural activities (de la Torre-Castro and Rönnbäck 2004).

1.1 General hydrodynamics processes

Most seagrass species live in shallow nearshore areas with
sufficient sunlight for photosynthesis (Hayes et al., 2020; Short
et al., 2007). Although seagrass can be found in water deeper than
30 m (e.g., Duarte 1991b; Esteban et al., 2018; Zubak et al., 2020), these
are predominantly species ofHalophila where the shoot heights would
not be sufficient to modify the hydrodynamics mechanism within the
deeper regions. Therefore, it could be assumed that the ecosystem of
the deeper seagrass areas would be comparable to typical oceanic
environments. Similar to other coastal environments, the physical
mechanism underlying the generation of hydrodynamics, i.e., waves
and currents, forcing in seagrass environments is also significantly
influenced by atmospheric-oceanic interactions. Ocean waves are a
superposition of regular waves at wide bands of wave periods in the
order of milliseconds to more than 24 h. Offshore waves that
contribute most of the total wave energy have short periods
(5–12 s), termed as wind-sea waves, are generated by winds (Zhao
et al., 2016; Holthuijsen 2010; Young 1999). The sea-air interaction
also generates longer periods of surface modulations, including swell
waves with periods of 12–25 s, or Infragravity (IG) waves with periods
of 25 s to a couple of minutes (Cheriton et al., 2016). Meanwhile,
offshore currents are driven by complex forces; amongst them are tides
(e.g., Timko et al., 2013), winds (e.g., Bressan and Constantin 2019),
water density differences due to temperatures, and salinity variation
(e.g., Whitehead 2018). Moreover, the patterns of ocean currents are
also influenced by their geographical locations (Fu 2009) and regional
topography (Saenko and Merryfield 2005).

Even though the offshore hydrodynamics processes are relatively
similar across many environments, the characteristic of waves and
currents in coastal areas varies depending on the local environments.
Across nearshore regions, including seagrass ecosystems, wave energy
dissipation is mostly influenced by wave-seabed interaction. Waves
will break and dissipate their energy when the proportion between the
wave height and water depth reaches a critical limit (Watanabe et al.,
2020). While (short) wave energy is mainly dissipated due to breaking,

there is a portion of longer period waves (periods of 25–300 s, the IG
waves) that do not break and freely propagate onshore (Sheremet et al.,
2002). These typical waves may also be generated from a time-varying
breakpoint on relatively steep beach profiles (Battjes and Janssen 1978;
Symonds et al., 1982). Some research identifies the IG energy spectrum
to be dominant near the shoreline, especially during extreme wave
events (Péquignet et al., 2014; e.g.; Becker et al., 2016). The breaking
waves impose cross-shore and along-shore radiation stress gradients
that drive nearshore water mass movement in onshore directions
inducing currents and setup (Longuet-Higgins and Stewart 1964). The
wave-induced currents can be significant near the breaking points
(compared to the oceanic currents) and become the main driving
factor of coastal sediment transport. Alternatively, the residual wave
energy reaches the shorelines as bores and induces swash fluctuations
around the shorelines. Wave setup and swash excursion are the main
components of wave runup that significantly impact coastal
inundation and erosion above the shorelines (Suanez 2015;
Palmsten and Splinter 2016).

1.2 The interaction between seagrass canopy
and hydrodynamics

The existence of seagrass meadows within nearshore regions can
impose more complex hydrodynamics processes than bare sand
environments (Nepf 2012; Schaefer and Nepf 2020). Seagrasses
attenuate sea-swell waves providing a sheltered area across the
meadows (Oprandi et al., 2020). Seagrass meadows decrease the
impact of nearshore mean water level rise due to wave setup and
IG waves (van Rooijen et al., 2015; van Rooijen et al., 2016a), which
subsequently reduce the wave runup (John et al., 2016; Passarella et al.,
2020). Seagrasses obstruct flows (resulting fromwaves, tides, and other
forcings), allowing sediments to settle and accrete along shorelines
(Gacia et al., 1999; Bos et al., 2007). Hence, the ability of seagrasses to
reduce hydrodynamics pressure and stabilize sediments is an
important element for natural coastal protection against hazards
(aka a Nature-based Solution) (Paul 2018).

There are several intercorrelated parameters affecting the behavior
of hydrodynamics in seagrass environments. At a canopy scale, drag is
a fundamental parameter for wave-current attenuation across seagrass
meadows (Fonseca et al., 1982). On sandy (bare) beaches, the drag
substantially comes from the interaction between hydrodynamics and
the seafloor (e.g., Feddersen et al., 2003). On more complex beaches
like seagrass environments, seagrass meadows increase the roughness
of the bottom (e.g., Monismith et al., 2019). Consequently, the drag
exerted by the canopies imposes dissipation on wave-driven (orbital)
and current-driven (unidirectional) velocities (Koch and Gust 1999;
Luhar et al., 2013; van Rooijen et al., 2018).

The drag on the seagrass canopy is substantially influenced by the
geometric attributes of seagrass meadows (Nepf 2012). The height of a
canopy relative to water depth proportionally affects the amount of
dissipated wave energy (Chen et al., 2007) and flows (Lowe et al.,
2005). Fonseca and Cahalan (1992) evaluated four North American
seagrass species, i.e., Halodule wrightii, Syringodium filiforme,
Thalassia testudinum, and Zostera marina, using a wave flume test.
They found the substantial influence of the shoot/blade length on the
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wave reduction (−40%) when the ratio between the shoot length to the
water depth is equal. These findings were supported by similar flume
experiments on other seagrass species, e.g., Manca et al. (2012) on
Posidonia oceanica. Similar results were reported from a study in the
Indonesian coastal region where a low seagrass canopy could still
provide shelter for coastlines by reducing excessive wave energy
(Christianen et al., 2013). Assuming the canopy height is lower
than the total depth, the velocity within the canopy layer is
significantly reduced compared to above the canopy up to the
water surface. The velocity within the canopy is also lower than
that of within the water column of bare sand environments
(Finnigan 2000; Abdolahpour et al., 2017). Moreover, the canopy
also deflects a portion of the incoming flows upward, resulting in
higher flow velocity above the canopy (Morris et al., 2008). These
conditions result in vertical gradients of orbital and unidirectional
velocities across the water column of the seagrass canopy, as illustrated
in Figure 1. Some studies in temperate regions (e.g., Carr et al., 2012;
Hansen and Reidenbach 2013) associated the correlations between
seasonal wave heights and the variation of seagrass morphology. The
studies showed the length of seagrass shoots tends to be shorter in
winter when wave heights are higher. In contrast, the length of
seagrass shoots reaches a peak during summer when waves are
calm, and the length may reach two times longer than that in
winter. These behaviors were identified in the northern (e.g.,
Reidenbach and Thomas 2018) and southern hemispheres (e.g.,
Bulthuis and Woelkerling 1983). Abdelrhman (2007) indicated that
the longer length of seagrass shoots during summer is influenced by
the increased light intensity and temperature, inducing photosynthetic
productivity.

The length of seagrass meadows, i.e., the distance of the meadows
from the offshore edge to the shoreward edge, is beneficial to impose
waves and currents attenuations (Fonseca et al., 1983). The increase in

meadow length is generally proportional to waves and currents
attenuation, which is attributed to the increase of drag across the
canopy (Bradley and Houser 2009). The finding was confirmed by
Twomey et al. (2020) through a numerical analysis identifying the
impact of various meadow lengths on the reduction of wave height. In
a low wave energy condition (Hs < 1 m, T 6 s) with a shoot density of
1200/m2, canopy height of 0.5 m, and water depth of 2 m; A 100 m
canopy could attenuate 80% of wave energy. Meanwhile, a 200 m
canopy tested in the numerical model with similar wave and canopy
settings could attenuate almost 90% of wave energy. Other studies
showed that wave heights increase around the offshore edge of the
meadows before dissipation due to sudden changes in bottom
topography before being dissipated due to friction (Bradley and
Houser 2009; Stratigaki et al., 2011; Manca et al., 2012).
Interestingly, Villanueva et al. (2021) found that the magnitude of
wave attenuation due to the meadows would not increase after certain
lengths.

Laboratory (e.g., Manca et al., 2012; Koftis et al., 2013) and field
(e.g., Reidenbach and Thomas 2018; Donatelli et al., 2019)
experiments identified the importance of seagrass density per unit
area to wave-currents attenuation. A flume study by Weitzman et al.
(2015) identified the shoot density of seagrass canopies could be the
most important parameter in wave attenuation. A similar result was
reported from the Mediterranean Sea during high wave events
suggesting the bottom roughness induced by seagrass meadow
depends on the shoot density (Infantes et al., 2012). A higher
seagrass shoot density per unit area generally increases the drag to
impede the perpendicular (orbital and unidirectional) flows. On top of
dense canopies, the vertical velocity profile forms an inflection point
that induces Kelvin-Helmholtz flow instability and the generation of
turbulence (Ghisalberti and Nepf 2002). Twomey et al. (2020)
performed numerical analyses showing that an increase in seagrass

FIGURE 1
Schematics of time average vertical velocity profile within a bare sand environment (left) and a seagrass meadow (right). The sinusoidal waves on top of
the velocity profiles illustrate the significant wave height evolution where seagrasses induce dissipation.
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density per square meter (600–1800 shoots) was proportional to the
increase in wave attenuation (68%–84%). Meanwhile, the results of
field studies are more variable than the laboratories. A field experiment
in South Bay, Virginia Coasts Reserve (United States) exhibited −20%
of wave attenuation on −500 shoots/m2 across Zostera marina
dominated bay (Zhu et al., 2021). However, another field
experiment by Paul and Amos (2011) on Ryde Sand Beach (UK),
exhibited comparable wave reduction, i.e., −20%, was obtained at a
much higher density (−4000 shoots/m2) of Zostera noltii meadows.
Various hydrodynamic behavior among different seagrass species
suggested the influence of vegetation characteristics on shoots level
to the wave-current attenuation (Pinsky et al., 2013).

At a smaller scale, i.e., seagrass shoots, the mechanism of
seagrasses to modify the behavior of waves and currents depends
on their physical features forming the canopies. The drag reaches its
maximum when the shoots are in their natural upright postures.
However, as waves propagate nearshore, the flexible seagrass shoots
deform (bend) and move due to wave-orbital flow inducing drag and
in turn causing wave decay across the seagrass environment
(Abdolahpour et al., 2018). The effectiveness of shoot motion to
dissipate wave energy is primarily determined by the effective
shoot length parameter, in which shoot length is a combined leaf
length (including sheath) and vertical stem length (if present). This
parameter is governed by the physical characteristics of individual
shoots, i.e., width, length, thickness, and elastic modulus, representing
the stiffness of the shoot. The effective shoot length parameter is also
determined by the ratio between the shoot length and fluid particle
elliptical orbits due to wave actions (Lei and Nepf 2019). Meanwhile,
the parameters describing physical features are defined by the Cauchy
number, i.e., the ratio between the wave-induced drag and the
restoring force due to the shoot stiffness and the Buoyancy
parameter. Wider shoots are known to have a higher drag
imposing higher wave dissipation and impediment to flow
(Fonseca et al., 2007; Luhar and Nepf 2011; 2016; Luhar et al.,
2017; Twomey et al., 2020). Moreover, the drag is also correlated
with the flow regime, expressed in the vegetation Reynolds number
(Re), which is a function of the shoot width, water kinematic viscosity,
and the wave-induced characteristic velocity acting on the vegetation
(Bradley and Houser, 2009; Paul and Amos, 2011).

Seagrass shoots modify the flow structure across the
environments. Under the flow regimes, stiffer shoots generate less
turbulence than flexible shoots (Houseago et al., 2022). Meanwhile,
more flexible shoots may overbend and synchronously oscillate,
creating wavy motions termed “monami” (Ackerman and Okubo
1993; Ghisalberti and Nepf 2006). This phenomenon is one of the
essential characteristics of seagrass canopies since it may reduce
canopy drag by 40%. The monami occurs when the flows above
the meadow suppress the critical value increasing the frictional
resistance to particle movement. Accordingly, vortices are
generated through Kelvin-Helmholtz instability (Grizzle et al.,
1996; Bryan et al., 2007; Ghisalberti and Nepf 2009). The
characteristic of monami is influenced by the coherence between
the natural frequency of seagrass shoots and the flow motion
induced by mixing layer instability. Stiffer shoots indicate a higher
natural frequency (O’Connor and Revell 2019). Later, Taphorn et al.
(2021) identified the natural frequency of seagrass shoots is
determined by the shoot’s stiffness which is represented by the
modulus of elasticity and the moment of inertia parameters.
Moreover, the characteristic of monami is also considered to be

affected by the non-linear interactions between the two
phenomena. First is Kelvin-Helmnhotz turbulence, and second is
complicated 3D flows that loop and wrap around near the canopy
edge, termed as “hairpin vortex” (Tschisgale et al., 2021).

The dynamic of nearshore waves and currents across seagrass-
dominated environments is determined by the wide variability of
offshore forcings. While most literature discusses the dynamics of
seagrass meadows under short wave onset that become the largest
portion of the offshore wave spectrum, some research has also
identified the interaction between the meadows and the lower wave
frequencies. Manca et al. (2010), through a flume study, found the
presence of wind waves at lower frequencies (higher periods than 6.4 s
in the study) seemed to impose the extra bending of the top of the
canopy reducing wave attenuation. The result is expected since the
height of the canopy reduces to allow more waves to pass through.
Interestingly, A −13 months field observation in the UK by Paul and
Amos (2011) exhibited low-density seagrass canopy could effectively
dissipate low-frequency wind waves. At Infragravity bands with
periods of 25–600 s, a numerical study by Chen et al. (2022)
identified seagrass canopies could dissipate more than 50% of the
incident IG wave height. Accordingly, the significant reduction of IG
wave energy implies reduced wave runup (John et al., 2016) and
erosion at the lee side of the canopies (Chen et al., 2022).

1.3 The morphodynamics of seagrass-
associated beaches

At various temporal scales, the short time scales, i.e., hours to days,
the dynamic of beach morphology on seagrass-dominated
environments are influenced mainly by extreme wave events that
lead to excessive erosion and deposition. Sometimes, the impacts of
storms are devastating for seagrass ecosystems. Not only causing the
change of nearshore bottom profiles, but episodic wave events may
degrade seagrass meadows due to the grass uprooting (e.g., Gera et al.,
2014) and/or sediment burial (e.g., Cabaço et al., 2008). For example, a
severe storm hit the Ligurian coast of the Mediterranean Sea in
October 2018, resulting in the loss of around 50% coverage of the
P. oceanica dominated canopies. The eroded sediment mostly buried
the canopies, and the loss due to 1 day storm was estimated to be equal
to that of −160 years of anthropogenic influences (Oprandi et al.,
2020). Similar extreme events resulting in massive losses have been
documented in other areas across the globe, such as the United States
(e.g., Carlson et al., 2010) or Africa (e.g., Côté-Laurin et al., 2017).
Interestingly, while shorelines and seagrass meadows may suffer
significant physical damage after high wave events, which is a
consequence of the flexible shoot structures, many reports show
seagrass meadows could recover quickly. For example, a study after
Hurricane Katrina in 2005 reported the seagrass density and biomass
conditions had returned to their initial state within less than a year
(Anton et al., 2009). Similar conditions were also reported in China
(e.g., Yang and Huang 2011) and Central America (e.g., Michot et al.,
2002). Above all, even though the seagrass meadows could quickly
recover, the recovery phase of eroded shorelines on the lee side of the
meadows could be much slower. This indicates that seagrass meadows
could be less suitable for protecting shorelines in high-energy beach
systems.

On the other hand, at longer time scales, i.e., months to years, the
morphodynamics of seagrass-associated beaches are more related to
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the geographical locations inducing the fluctuations of seagrass
biomass as well as atmospheric and oceanic forcings. In temperate
regions, the winter could include a period where the coastlines are
highly dynamic. During this season, the biomass and density of
seagrass are low due to low temperatures and low light availability
reducing photosynthesis (Duarte 1989; Alcoverro et al., 2001). At the
same time (not limited to seagrass ecosystems), the winter waves,
currents, and mean water levels are significantly higher than the
summer’s (e.g., Risandi et al., 2020). Therefore, these conditions
increase the vulnerability of shorelines to erosion (Carr et al.,
2018). In contrast, seagrass density normally peaks in the summer,
considerably reducing unidirectional and orbital velocities. Moreover,
the atmospheric and oceanic forcings are relatively calmer, inducing
additional sediment suspension and shoreline deposition (Hansen and
Reidenbach 2013; Ganthy et al., 2015; Zhu et al., 2021; Contti Neto
et al., 2022). In tropical regions, although seagrass density and canopy
heights can similarly change (Erftemeijer and Herman 1994;
McKenzie 1994; McKenzie et al., 2016), studies on temporal
variations of seagrass-dominated beach morphology across tropical
regions are poorly documented. Nevertheless, some reviews
(Potouroglou et al., 2017; e.g.; James et al., 2019) exhibited a net
gain/equilibrium state of sedimentation on tropical beaches
(Christianen et al., 2013), indicating the contribution of seagrass to
beach protection.

1.4 Hydrodynamics impact on seagrass
ecological processes

Similar to other coastal environments, nearshore hydrodynamics
play a significant role in controlling biogeochemical processes within
seagrass ecosystems, yet the knowledge still needs further exploration.
For instance, an ecosystem with low waves and currents is associated
with the increase of organic carbon (Corg) stock within seagrass soil.
This is because of the reduced sediment erosion and seagrass detritus
washout within the ecosystem, resulting in seagrass soil enrichment
(Röhr et al., 2016; Novak et al., 2020; Mazarrasa et al., 2021).
Interestingly, high hydrodynamic exposure is also found to increase
the density of bottom sediment near the surface (at 0–25 cm depth),
increasing the accumulation of carbon and nitrogen in the sediment
(Dahl et al., 2020). Moreover, the dynamic of seagrass primary
productivity and nutrient concentration is also significantly affected
by the fluctuation of waves and currents. The hydrodynamics may
impose nutrient overload that is considered to negatively affect the
existence of seagrass meadows due to ammonium toxicity (Burkholder
et al., 2007; El-Hacen et al., 2019). In high wave energy environments,
waves can stir nearshore sediment, causing a decrease in water quality
that affects seagrass growth (Greve and Binzer 2004). A study in
Australian coastal lakes exhibited low seagrass biomass in an area
exposed to high wave energy, suggesting the impact of bottom
sediment resuspension on the reduced seagrass photosynthesis
efficiency (Ferguson et al., 2016). In contrast, Egea et al. (2018)
reported the increase of current velocity under low seawater
pH condition, referred to as ocean acidification, positively affect
the primary productivity of seagrass (Z. noltei).

Ocean currents and waves act as abiotic dispersal vectors that
interact with key traits of seagrass life-history stages, including pollens,
reproductive propagules, vegetative fragments, and clonal growth
(Orth et al., 2007; Pereda-Briones et al., 2018). In addition, the

dispersal of vegetation fragments, pollen, and seed is mainly
affected by tidal currents and wind-generated waves (Koch et al.,
2006; Lai et al., 2018). The dispersal mechanism of both tropical and
subtropical seagrass species is mostly by waterborne transport of viable
propagules (Berković et al., 2014). Propagule movements on the sea
surface and within the water column are influenced by currents
produced by tides, waves, wind, seas, and swells (Micheli et al.,
2010; McMahon et al., 2014). Moreover, seagrass propagules’
response to current and wave actions is strongly affected by the
buoyancy (floating) of their propagules. The response could be
positive, neutral, or negative (Kendrick, 2012). The floating fruits
of Enhalus and Thalassia could be dispersed by ocean currents to
distances over 350 km from the originating plant (van Dijk et al., 2009;
Kendrick, 2012). However, the drag forces from currents and waves
are also the major factors that cause the uprooting of seagrass
propagules, resulting in the failure of their recruitment and
establishment (Zenone et al., 2022).

1.5 Seagrass ecosystem in Indonesia

Indonesia is a global hotspot for seagrass ecosystems, with nearly
3,000 square kilometers of meadows have been mapped and possibly
as much as ten times that amount remaining undocumented (Esteban
et al., 2018; McKenzie et al., 2020). Of the 72 world’s seagrass species
(Short et al., 2011), 14 occur in Indonesia’s coastal waters, including,
Cymodocea rotundata, Cymodocea serrulata, Enhalus acoroides,
Halophila decipiens, Halophila major, Halophila minor, Halophila
ovalis, Halophila spinulosa, Halophila sulawesii, Halodule pinifolia,
Halodule uninervis, Syringodium isoetifolium, Thalassia hemprichii,
and Thalassodendron ciliatum (Kuo 2007; Kurniawan et al., 2020).

Based on seagrasses’ ability to resist environmental pressures and
their capacity to recover from physical degradation (Kilminster et al.,
2015), Indonesia’s seagrasses can be divided into three main species
groups (Figure 2). 1. Persistent species, e.g., Thalassia hemprichii,
Thalassodendron ciliatum, and Enhalus acoroides. These species are
characterized by taller shoots with large biomass and high durability to
environmental pressures, but they need a long period to recover. T.
hemprichii and E. acoroides can be found in shallow waters (<3 m
depth) near the shoreline, but T. ciliatum typically occurs in deeper
water (around 10 m depth); 2. Colonizing species, e.g., Halophila
ovalis, Halophila minor, Halophila spinulosa, Halophila decipiens,
Halophila sulawesii, and Halophila major. These species are
characterized by small morphology and shorter shoots, with a low
resistance to environmental pressures, but can recover from physical
degradation rapidly. All these colonizing species usually live in shallow
waters (<3 m depth) near the shoreline, but H. sulawesii can be found
in the deeper water of 25 m (Kuo 2007); and 3. Opportunistic species,
e.g., Cymodocea rotundata, Cymodocea serrulata, Halodule pinifolia,
Halodule uninervis and Syringodium isoetifolium, which are medium-
sized and possess transitory characteristics between persistent and
colonizing. These transitory species usually can be found in shallow
water near the beach (<3 m depth).

In terms of seagrass species distribution, a nationwide seagrass
monitoring program conducted between 2015 and 2017 at
366 locations across Indonesia coastal (from intertidal to subtidal
zones) found that persistent and large-size species, such as E. acoroides
and T. hemprichii are the most common species. Moreover, T.
hemprichii had the largest distribution as it was found at
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310 locations, followed by E. acoroides which occurred at 301 sites
(Sjafrie et al., 2018). This finding highlights the need for a proper
management strategy to sustain the life of these slow recover species.

Considering the importance of seagrass meadows to support
coastal ecosystems, understanding the dynamics of waves and
currents within the ecosystem is beneficial. To our knowledge, a
few of the existing scientific works reviewed and described the
hydrodynamics and related topics across seagrass environments.
For example, the theoretical explanation of wave-seagrass
interactions, the stages of conducting field wave observations on
seagrass ecosystems, and the numerical-physical modelings were
reviewed by Koch et al. (2006). An in-depth review of flow

behavior across seagrass meadows that is influenced by the variety
of canopy density inducing drag was described by Nepf (2012).
Moreover, a review on the role of the seagrass shoot flexibility and
density, as well as the heights of the seagrass meadows on sediment
transport affecting the shoreline changes, was presented by Ondiviela
et al. (2014). Despite the existing literature that mostly covers studies
on temperate seagrasses, more studies are still needed to provide an
improved understanding of the nearshore dynamics across tropical
seagrass ecosystems. Emphasis needs to be given to the Indonesian
archipelago, which is considered a region with abundant seagrass
resources and strongly influenced by the monsoon inducing the
seasonal atmospheric-oceanic variability.

FIGURE 2
Shoot height variability of different Indonesian seagrass species, grouped by dominant traits, i.e., colonizing (C), opportunistic (O), and persistent (P)
seagrasses, as per Kilminster et al. (2015). Shoot heights sourced from data portals, including http://www.wildsingapore.com and https://www.seagrasswatch.
org/indonesia/; and herbarium specimens, Seagrass-Watch Virtual Herbarium (SWVH) [not an official acronym], Cairns, Australia; Nationaal Herbarium
Nederland—Rijksherbarium, Leiden (L), Naturalis Biodiversity Center, Netherlands.
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Until now, the research in Indonesia has been dominated by
studying the biological and ecological aspects of seagrasses.
Meanwhile, appropriate investigations on the interaction between
Indonesian seagrass ecosystems and hydrodynamics have been
limited, even though most related research identified the
importance of these physical parameters to seagrasses. For
example, Ambo-Rappe (2022) indicated the successful seagrass
restoration using seeds in Spermonde Island, Indonesia, was
determined by the area’s exposure to wave actions. Other research
in northern Papua (Nugraha et al., 2021) and Talaud Islands (Kawaroe
et al., 2016) suggested the correlation between low coverage of seagrass
meadows in the study areas with high wave exposure. However, most
seagrass studies in Indonesia did not provide proper observations of
the hydrodynamics, causing the lack of evidence and scientific
explanations underlying the phenomena. This review highlights the
knowledge gaps in the dynamics of waves and currents to the
associated shoreline changes, biogeochemical, and propagules’
dispersal in the Indonesian seagrass ecosystem. By doing so, this
review would guide future strategies related to seagrass research that
benefit Indonesian coastal management.

2 Methodology

The review utilized two datasets. The primary data was retrieved
using a literature search in Scopus and Google Scholar databases,
covering the periods between 1965 and 2021. To identify the
associated scientific works discussing the hydrodynamics in
seagrass meadows in Indonesia, we used the following string of
command: [“seagrass” AND “Indonesia” AND “hydrodynamics”
AND “waves” AND “currents”]. An additional search was
conducted to gather peer-reviewed papers and grey literature
related to Indonesian seagrass ecological processes due to
hydrodynamics using the following list of keywords: “monsoon”,
“morphology”, “shoreline”, “coastal protection”, “ecology”,
“eutrophication”, “carbon”, “tropical”, “dispersal”, and “modeling.”

To exhibit the influence of the Asian monsoon on Indonesian
regional currents and waves, we analyzed the spatial hydrodynamic
data obtained from the secondary data source. The Indonesian ocean
surface currents dataset was retrieved from the daily average surface
currents of the Ocean Surface Current Analyses Real-time (OSCAR) of
The National Aeronautics and Space Administration (NASA), dated
December 2020 to November 2021. Meanwhile, the wave height data
was downloaded from the hourly ERA5, the fifth generation of
European Centre for Medium-Range Weather Forecasts (ECMWF)
atmospheric reanalysis data with a similar timeframe to that of the
ocean currents data. The currents (0.25° grid resolution) and waves
(0.5° grid resolution) data were averaged over the period representing
the Asian monsoonal cycles, i.e., December 2020 to February 2021 for
the winter monsoon and June to August 2021 for the summer
monsoon.

3 Results

Most studies on seagrass hydrodynamics were focused on
temperate seagrasses and a limited representation of tropical
species or species occurring within the Indonesian coastal
region. The literature search identified some publications related

to Indonesian seagrass and hydrodynamics, including waves and
currents. However, most of the publications only reported visual
conditions of the hydrodynamics without proper observations
(using wave gauges or current meters), models, or secondary
data analyses. Hence, we excluded those publications from this
review. Based on screening and eligibility checks, we found only five
relevant publications that were carried out in Indonesia with
appropriate quantitative explanations of the interaction between
hydrodynamics and the seagrass ecosystem. Among them, the
following: a wave observation in Derawan Island by Christianen
et al. (2013); a wave flume study on seagrass leaf-trapping capacity
by Gillis et al. (2014); the impact of Indonesian regional currents on
seagrass dispersal studied by Hernawan et al. (2017); A wave flume
observation to study the hydrodynamics of Indonesian seagrass
species conducted by Lanuru et al. (2018); and a hydrodynamic
numerical study on a seagrass dominated ecosystem in East
Kalimantan produced by Tarya et al. (2018). The limited
number of studies available in Indonesia indicates that there are
knowledge gaps on nearshore waves and currents within the
country’s seagrass environments and their implications for
Indonesian coastal dynamics. These knowledge gaps are
discussed and elaborated in the succeeding subsections.

3.1 The identification of Indonesian seagrass
physical characteristics

Information on seagrass in Indonesia is mainly related to the
ecological aspects of seagrass species. The additional aspects to be
investigated could include the physical characteristics of
Indonesian seagrass shoots to modify hydrodynamic regimes. To
our understanding, the knowledge of Indonesian seagrass
morphologies is still limited to the heights of seagrass shoots
(Section 1.5; Figure 2). Meanwhile, complete descriptions of the
shoot attributes, i.e., width, length, thickness, and elastic modulus,
determining the effectiveness of seagrasses to dissipate waves and
currents energy do not exist. Moreover, studying the characteristics
of various seagrass rhizoid systems in Indonesia would be
advantageous. The below substrate rooting system is essential to
keep the seagrass firmly on the sea floor. Deeply anchored rhizomes
and flexible shoots could endure more against extreme
hydrodynamics (Cruz-Palacios and van Tussenbroek 2005).
Additionally, information is still lacking on the physical
attributes of Indonesian (tropical) seagrasses that are likely to
differ from that of temperate seagrasses.

Knowing Indonesian seagrass morphology is essential to
further examine the interaction between vegetation and
hydrodynamics. However, performing full-scale seagrass
simulations in wave flumes would be very challenging in
Indonesia due to limited Indonesian wave flume/basin facilities.
Knowledge of the seagrass morphology would be useful for
mimicking the full-scale natural seagrass shoots into the down-
scale artificial ones. Accordingly, the similitude of the inertia, the
gravitation, and the viscosity forces, between the real and the model
could still be retained (Zeller et al., 2014). Likewise, the
characteristics of seagrasses are essential for predicting the wave
dissipation parameter in numerical models (van Rooijen et al.,
2016b; James et al., 2021; Yin et al., 2021). However, the literature
related to Indonesian seagrasses remains limited or non-existence.
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3.2 The interaction between (future)
atmospheric-oceanic forcing and seagrass
ecosystem across the Indonesian region

The Indonesian archipelago is situated on the equator with wide-
ranging ocean and climate variability. For example, tidal currents are
relatively strong due to the vicinity of narrow straits (Ray et al., 2005),
as indicated by the reddish color in Figure 3. Moreover, Indonesian
seas are characterized by regional oceanic forcings that are the parts of
global circulation, e.g., the Indonesian Through Flow (Gordon 2005).
Some features of the region with abundant seagrass meadows are
prone to extreme wave events. For example, in Manado, Northern
Sulawesi facing the Philippines, the area is frequently influenced by
typhoons inducing high waves. In the Southern part of Indonesia
facing the Indian Ocean, e.g., southern Java and Bali, the wave energy
is much higher (Figure 4). This is caused by the interactions among
atmospheric and oceanic forcing, such as the Asian monsoon, the
Indian Ocean Dipole Mode, and El Nino Southern Oscillation
(Rachmayani et al., 2018).

Among the atmospheric forcing, Indonesia is significantly
influenced by the periodic Asian monsoon winds with different
characteristics throughout the years that affect the variability of
hydrodynamics within the region. Between December to February,
the northwest (Asian winter) monsoonal wind blows from Eurasia

toward Australia, inducing eastward dominated currents (see
Figure 3A), with low salinity water passing through the Indonesian
seas. In contrast, the southeast (Asian summer) monsoonal wind
drives reversal currents (see Figure 3B) with more-saline water during
June-August (Gordon et al., 2003; Qian et al., 2010; Basit et al., 2021).
The wave characteristics in Indonesia are also affected by the
monsoonal cycles, in which the exceedance of high wave across the
region are associated with the peak of the summer and winter
monsoon. During the peak of the Asian winter monsoon, higher
waves mainly occur in the northern parts of Indonesia, i.e., the area
around the South China Sea and the Pacific Ocean, see Figure 4A.
Meanwhile, the peak of the Asian summer monsoon would impose
higher waves around the southern region, i.e., the Indian Ocean and its
adjacent regions like the Banda Sea and the Arafura Sea (Figure 4B).
This phenomenon was identified by Rachmayani et al. (2018),
Purwanto et al. (2021), and Kurniawan and Khotimah (2016).
Considering Indonesia is an archipelago, the influence of the Asian
monsoon on the seagrass hydrodynamics could be variable among the
islands/regions that need further study. For example, the correlation
between seasonal monsoonal waves and the morphology of local
seagrass remains unknown but could be essential information for
conservation purposes. A study in the North Indian Ocean suggested
the impact of weakening Indian monsoon on the reducing heat
transfer that accelerates the increase of mean sea level over decades

FIGURE 3
Average current speed and direction across the Indonesian region during (A) the winter and (B) the summer monsoons. The current vectors are on a
logarithmic scale. The dataset’s source is the OSCAR’s daily average surface currents fromDecember 2020 to November 2021. The Source of the aerial image
is Google Earth satellite imagery.
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within the region affecting coastal areas (Swapna et al., 2017).
However, to our knowledge, studies on the impact of variable
Asian monsoon to SLR affecting the Indonesian nearshores,
especially the seagrass ecosystem, are lacking despite the
importance to Indonesian coastal management.

In shallower regions, extreme wave events usually induce the
generation of IG waves (e.g., Anarde et al., 2020) and setup (e.g.,
Kim et al., 2010) that increase the mean water levels associated with
coastal flooding and erosion. While some publications reported the
dissipation of sea-swell waves in seagrass environments (see Section
2), the knowledge on the influence of seagrasses on IG waves is less
known. However, some research (e.g., van Rooijen et al., 2016a)
exhibited the reduction of IG wave energy over the meadows. In
Indonesia, the knowledge gaps are even wider despite the frequent
coastal flooding and the abundance of seagrass within the country.

Furthermore, the substantial impacts of climate change on coastal
areas have been identified and widely accepted (Toimil et al., 2020; e.g.;
Athanasiou et al., 2020; Bruun 1962). Not only increasing low-lying
coastal inundation and extreme atmospheric-oceanic forcing, but the
rise of mean sea level due to climate change also increases the
vulnerability of coastal regions to erosion as wave energy
dissipation further onshore. A recent Intergovernmental Panel on
Climate Change (IPCC) publication (2021) estimates Sea Level Rise
(SLR) around 10–25 cm and more frequent extreme waves by
2050 that would significantly modify the overall processes across

coastal regions, including seagrass environments. Under SLR, the
response of seagrasses is variable, i.e., they would adapt to new
conditions or migrate into suitable regions or survive on their
positions relative to the water level through sediment accretion,
and if the conditions become unsuitable, the vegetation would
decline (Short and Neckles 1999; Duarte 2002; Waycott et al.,
2007). A study by Saunders et al. (2013) predicted that 17% of
seagrass would decline under 1.1 m of SLR, which would further
affect the sedimentation rate across the ecosystem. In contrast, a model
by Dumbauld et al. (2022) predicted the increase of seagrass coverage
under 0.4–0.74 m of SLR due to the suitable environmental variables,
i.e., temperatures and CO2 enrichment.

Until now, little research has been conducted globally on the
correlation between SLR and seagrasses. In Indonesia, developing
knowledge on the impacts of SLR on seagrass meadows is critical
since the ecosystems are among the largest in the world, providing
beneficial ecosystem services to the wellbeing of the Indonesian
people. However, the threats to Indonesian seagrass ecosystems are
exacerbated by anthropogenic activities, causing a decline of 30%–40%
of the meadows coverage since the 60s (Alongi et al., 2016; Unsworth
et al., 2018). The rate of decline of the seagrass ecosystemwas estimated to
be around two-fold the global average (Duarte et al., 2013), which in the
future will worsen as a consequence of global climate change. Hence, the
need for long-term and detailed investigation on the impact of SLR
(mainly due to the Asian monsoon) and anthropogenic pressures on

FIGURE 4
Average wave heights across the Indonesian region during (A) the winter and (B) the summer monsoons. The source of the dataset is the hourly wave
heights of the ERA5 from December 2020 to November 2021. The Source of the aerial image is Google Earth satellite imagery.
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eutrophication within the Indonesian seagrass ecosystem is critical to
mitigating the ongoing seagrass degradation.

3.3 Long-term investigations on the impact of
seagrass on Indonesian shoreline variability

Despite the abundance of seagrasses in tropical regions, including
Indonesia, long-term studies on the morphodynamic changes and the
governing processes within such locations are very limited compared
to temperate regions. The longest study recorded across the Indonesia
region was by Christianen et al. (2013) that investigated the behavior
of a seagrass-dominated beach in Derawan Island through a −3-month
measuring campaign (December 2011-February 2012). They found
that the seagrass canopy dissipated the offshore wave energy and
subsequently stabilized the nearshore sedimentation. However,
longer-term records (more than a year) on the interactions among
the hydrodynamics, beach response, and seagrass meadows variability
to comprehensively assess the dynamics of Indonesian (tropical)
seagrass ecosystems are greatly lacking or do not exist.

Until recently, seagrass restoration projects have been promoted
within the country due to the reported decline of Indonesia’s seagrass
conditions. However, until now, the impacts of replanting seagrass on
the behavior of hydrodynamics and the resulting shoreline changes in
tropical regions, mainly in Indonesia, are poorly documented. The
Spermonde restoration project in South Sulawesi, regarded as the
longest recorded period of the restoration project in Indonesia, did not
cover the hydrodynamic and nearshore morphology observations
(Ambo-Rappe 2022).

3.4 Ecological process across Indonesian
seagrass ecosystems

The monsoon variation plays an important role in influencing the
rainfall intensities across the Indonesian area and further affects many
ocean parameters. For instance, the variability of seawater salinity
(e.g., Chen et al., 2019), upwelling (e.g., Wirasatriya et al., 2021), and
downstream flooding (e.g., Narulita and Ningrum 2018) depend on
the monsoonal cycle, potentially affecting the sustainability of seagrass
ecosystems. A study on seagrass physical characteristics showed the
decrease of carbohydrates within seagrass shoots due to the increase of
seawater salinity affecting the elasticity of the shoots (Touchette 2007).
As a result, the ability of seagrasses to withstand hydrodynamics
pressures decreases (Houseago et al., 2022). In a tropical region like
Indonesia, high rainfall intensity potentially imposes coastal upwelling
to modify the local biogeochemistry regime of seagrass environments
(Hessing-Lewis et al., 2015). The rainfall intensity also induces
flooding that generates excessive sedimentation in coastal areas
(Saunders et al., 2017), potentially harming seagrasses. Yet, the
impacts of those atmospheric-oceanic interactions on seagrass
ecosystems in Indonesia are still less known.

The research on the impact of hydrodynamics on Corg stocks
within Indonesian seagrass meadows is limited. A study conducted in
Spermonde Archipelago, considered the first reported Corg

observation in the Indonesian region, indicated the influence of
waves and tides to spatially control the distribution and
accumulation of organic matter. Some areas exposed to wave
energy had a smaller fraction of seagrass detritus than the sheltered

ones (Rahayu, 2019). However, the study did not measure the
hydrodynamics parameters, and how it can influence the carbon
stocks. Considering the Indonesian region has a wide-ranging
ocean and climate variability with various seagrass species, more
studies are needed to accurately estimate the carbon capacity of the
seagrass ecosystems and their role in mitigating climate change.

The focus of the research could be expanded to improve the
understanding of the interactions among biological, chemical, and
physical (including hydrodynamics) affecting the production,
dispersion, trapping, and preservation of Corg (e.g., Kim et al.,
2022) within Indonesian coastal region. Carbon can be transported
elsewhere beyond ecosystems due to ocean currents and storms
(Krause-Jensen and Duarte 2016; Duarte and Krause-Jensen 2017).
Some evidence proved that C export from seagrass meadows could
travel far beyond hundreds to thousands of kilometers from initial
sources (Hyndes et al., 2014; Duarte and Krause-Jensen 2017). In
Indonesia, the Asian monsoonal cycle significantly influences the
regional Indonesian hydrodynamics, see Figures 3, 4 as well as
references like Najamuddin et al. (2021), which in turn would
affect the variability of Corg stocks within the archipelago.
Additionally, there were studies (e.g., Gordon and McClean 1999;
Zhao et al., 2017) that suggested Asian monsoon winds also affect the
fluctuation of ocean temperatures and salinity within the southeast
Asia region affecting the structures of thermohaline circulation.
Studies on this topic are necessary since the carbon may be
transported across the globe, passing through the tropical areas due
to the difference of salinity generating thermohaline (aka “conveyor
belt”) circulation (Kawada et al., 2006; Riebeek 2008). This is another
focus that should be addressed to enhance seagrass Corg sequestration
by modifying hydrodynamic parameters across seagrass-dominated
beaches (e.g., Serrano et al., 2020) to mitigate climate change in
Indonesia.

The increase in sea level and its impact on eutrophication need to
be considered for future studies of Indonesian seagrass. As for
eutrophication, water quality degradation is the main reason for
seagrass loss and the loss of resilience against nutrient pollution
(Thomsen et al., 2020). Both eutrophication and sea level rise are
relevant challenges in the context of Indonesian seagrass, mainly for
coastal developments. Understanding land-use change is imperative in
managing Indonesian coastal ecosystems with numerous
environmental impacts from land-use conversion (Lukman, 2021).
In seagrass ecosystems, anthropogenic activities such as coastal
urbanization, tourism, and aquaculture can also be linked with
eutrophication, which leads to seagrass degradation (e.g., Thomsen
et al., 2020), which a few those anthropogenic activities have been
occurring in Indonesia for decades.

At a regional level, the pattern of seagrass dispersal in Indonesia
was observed to be partly influenced by contemporary ocean currents.
Asymmetrical connectivity among seagrass populations follows a
pattern of westward and southward migration, with seagrass in
eastern Indonesia as the main source of migration. The flowing
pattern is congruent to major ocean currents across the Indonesian
region, e.g., Indonesian Throughflow and South Java Current
(Hernawan et al., 2017). However, this flowing pattern was based
only on one species, i.e., Thalassia hemprichii. Yet, there are 16 species
recorded in Indonesia’s waters (Fortes, 2018) that might exhibit
different dispersal patterns as these species have various traits of
their life history stages. For example, Thalassia hemprichii has fruits
and seeds that can float for a particular time, enabling long-distance
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dispersal. In contrast, the fruits and seeds of other species, like
Halophila ovalis do not float (Wu et al., 2016). Under similar
environmental conditions, the different dispersal strategies might
result in different patterns of seagrass movement. Hence, the
influence of various atmospheric-oceanic forcings, like the Asian
monsoon system, on the behavior of hydrodynamic regimes within
the Indonesian region needs to be considered to enhance the accuracy
of seagrass dispersal. Future research should investigate the interaction
between ocean hydrodynamics and various key traits of seagrass life-
history stages inducing the movement of seagrass and the
consequences to seagrass ecology.

4 Discussion

Seagrasses in Indonesia are among the most diverse in the world,
with various benefits and goods for ecosystems and human well-being.
However, the condition and spatial extent of seagrass ecosystems in
the country are declining due to natural and anthropogenic stressors
(Unsworth et al., 2018). The current conditions have stimulated
conservation and restoration projects across the country with the
support of various stakeholders, including the Indonesian
government, non-government organizations, and the seagrass
scientific community (e.g., Ambo-Rappe 2022). Unfortunately,
seagrass research in Indonesia to support conservation and
restoration projects is dominated by biological and ecological
aspects. The interactions between hydrodynamics and seagrass
ecosystems are less investigated. Moreover, based on our document
search, there were no publications about Indonesian seagrass site
suitability evaluation that includes hydrodynamics assessment in
supporting the effectiveness of conservation and restoration
projects. This finding suggests the lack of community awareness of
the impacts of these parameters on the success rates of conservation
and restoration measures.

We identified several constraints that limit the knowledge of
seagrass hydrodynamics and related themes in Indonesia. The
biggest hindrance is that Indonesian communities have low
awareness of the important benefits of seagrass ecosystems (Rifai
et al., 2022a). There are even areas in the country where people are not
aware of seagrasses’ benefits or what they are (Nadiarti et al., 2012).
Consequently, this led to limited public support for conservation and
restoration projects of seagrasses in Indonesia. Another issue is the
limited budget allotted for seagrass research topics. In Indonesia,
seagrass studies are still considered non-profit projects with
relatively small budgets compared to those for-profit ones like oil
and gas or port development-related studies. The limited budget
hinders the progress of seagrass research in the country because
the equipment needed for investigating the hydrodynamic
parameters is costly. For instance, the price of wave gauges or
current meters is thousands of USD. Meanwhile, the rental price of
such devices in Indonesia is more than 100 USD per day. The stated
prices do not yet include the expenses for installation and surveillance
against vandalism, which cost more than a thousand USD per day.
Similarly, numerical and/or physical models are not cheap methods to
be carried out in Indonesia, where facilities are lacking or unequipped
to do so. Numerical models in complex beach profiles like seagrass
ecosystems are more challenging due to large bottom roughness than
sandy beaches (e.g., Ruiz-Montoya et al., 2015). More comprehensive
processes of hydrodynamic parameters, e.g., IG waves and runup,

could be included in the simulations using phase-resolving wave
models. This type of model offers greater detail of the physical
processes across the model domains that phase-averaged models
cannot solve (e.g., Passarella et al., 2020). Yet, applying phase-
resolving simulations requires significant computational resources
that imply an increase in the overall research budget (David et al.,
2022). Likewise, the application of physical models in wave flumes for
flexible vegetation like seagrass costs a bundle consisting of
operational and material expenditures (Mattis et al., 2019).

Other constraints included the lack of oceanographic equipment,
wave flume/basin facilities, and human resources to research seagrass
hydrodynamic-related topics in Indonesia. Besides the high price (to buy
or rent), the availability of oceanographic devices in Indonesia to measure
long-duration and accurate waves and/or currents behaviors is limited
relative to the vast Indonesian coastal region. Due to the presence of
seagrasses in nearshore zones that causes disturbance in the waves and
flows, more accurate devices should be used. Therefore, the use of current
meters with the ability to measure flows across whole water columns like
ADCP (Acoustic Doppler Current Profiler) is not recommended. Instead,
ADV (Acoustic Doppler Velocimeter), which produces higher resolution
at a specific point within water columns and, thus, could give more
accurate results, should be deployed (Horstman et al., 2011). Yet, based on
our experience, this device is scarce in Indonesia. Moreover, Indonesia’s
wave flume or basin facilities are limited in size and capacity to model
small and flexible structures like seagrasses. Hence, the lack of facilities for
physical models may cause issues related to the required similitudes, such
as geometric, kinematic, and dynamic, affecting the accuracy of the
models (e.g., Pranesh and Mani 1988; Zhang and Geng 2015). The
lack of awareness, budget, and proper devices contributed to the
limited number of local experts doing seagrass research. Consequently,
this resulted in a limited number of literature on the interaction between
seagrasses and hydrodynamics in Indonesia.

The most critical step to overcome these constraints is increasing
stakeholders’ awareness of the significance of seagrasses. Additionally,
there is a need to improve their knowledge of the interaction between
hydrodynamics and seagrass ecosystems. By doing so, it can
potentially encourage stakeholders to allocate more funds for
seagrass hydrodynamics research and its related topics. Another
pathway is to capacitate local scholars on the topic, including
developing low-budget alternatives to hydrodynamic investigation
and modeling and constructing low-cost parallel computers with
high-performance computation capabilities (e.g., Costa et al., 2009;
Jin et al., 2011). An example is the Arduino-based devices to record
wave information (Lyman et al., 2020; Perales and Herman 2020;
Eidam et al., 2022). Overall, if these constraints are addressed, they
could further improve predictions on nearshore hydrodynamics
impacts on seagrass ecosystems as well as progress on
implementation strategies for seagrass restoration projects and
natural protection in Indonesia.

5 Conclusion

Seagrasses are greatly beneficial to coastal ecosystems and play a
multi-functional role in supporting human wellbeing. Besides their
provisioning services, such as food and livelihood sources, seagrasses
can also dissipate wave energy and modify the mean flow field. Thus,
the conservation and protection of seagrass meadows is also a
potential Nature-based Solution to protect shorelines from
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excessive erosion in addition to addressing societal challenges (Rifai
et al., 2022b). Moreover, the hydrodynamics within seagrass meadows
play significant roles in controlling ecological processes as
documented in this review. Most of the existing publications
discussed seagrasses in temperate zones, while those from tropical
zones were limited. This gap is critical since the characteristics of
seagrass meadows and hydrodynamics could be different between
these zones such as those found in the Indonesian region.
Nevertheless, the methodologies developed in studying the
interaction between seagrasses and hydrodynamics of temperate
zones could be applicable in Indonesian areas. Overall, there is a
knowledge gap in assessing the interaction of Indonesian seagrasses’
physical characteristics with nearshore hydrodynamics. The
correlation between the seagrasses and the atmospheric-oceanic
forcing (particularly the Asian monsoon system) within the region
and the inducing impacts on the shoreline variability, biogeochemical,
and dispersal processes remain undocumented.

Indonesia, the largest archipelago in the world located in a
tropical region, has a variety of parameters (physical, biological,
chemical, and anthropogenic) that could potentially affect the
ecology of seagrasses that is different from temperate regions.
Hence, there is an opportunity for the region to be a site for
tropical seagrass investigations. Considering the potential
benefits of seagrasses and their widespread abundance in
Indonesia, understanding the interaction between seagrasses and
hydrodynamics within the region is critical to managing the
ecosystem better. Yet, many limitations (e.g., lack of knowledge
on seagrass importance) prevent this from occurring. Therefore,
relevant stakeholders in Indonesia need to strengthen their
collaborations to improve the overall understanding and
knowledge of seagrass ecosystems.
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