
Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

125

DOI: http://dx.doi.org/10.21123/bsj.2022.6930

Honeyword Generation Using a Proposed Discrete Salp Swarm Algorithm

Yasser A. Yasser 1* Ahmed T. Sadiq 1 Wasim AlHamdani 2

1Computer Science Department, University of Technology, Baghdad, Iraq.
2Information Technology Department, University of the Cumberland, KY, USA.
*Corresponding author: cs.19.28@grad.uotechnology.edu.iq

E-mail addresses: Ahmed.T.Sadiq@uotechnology.edu.iq , wasim.alhamdani@ucumberlands.edu

Received 14/1/2022, Revised 2/5/2022, Accepted 4/5/2022, Published Online First 22/9/2022

Published 1/4/2023

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:
Honeywords are fake passwords that serve as an accompaniment to the real password, which is

called a “sugarword.” The honeyword system is an effective password cracking detection system designed to

easily detect password cracking in order to improve the security of hashed passwords. For every user, the

password file of the honeyword system will have one real hashed password accompanied by numerous fake

hashed passwords. If an intruder steals the password file from the system and successfully cracks the

passwords while attempting to log in to users’ accounts, the honeyword system will detect this attempt

through the honeychecker. A honeychecker is an auxiliary server that distinguishes the real password from

the fake passwords and triggers an alarm if intruder signs in using a honeyword. Many honeyword

generation approaches have been proposed by previous research, all with limitations to their honeyword

generation processes, limited success in providing all required honeyword features, and susceptibility to

many honeyword issues. This work will present a novel honeyword generation method that uses a proposed

discrete salp swarm algorithm. The salp swarm algorithm (SSA) is a bio-inspired metaheuristic optimization

algorithm that imitates the swarming behavior of salps in their natural environment. SSA has been used to

solve a variety of optimization problems. The presented honeyword generation method will improve the

generation process, improve honeyword features, and overcome the issues of previous techniques. This study

will demonstrate numerous previous honeyword generating strategies, describe the proposed methodology,

examine the experimental results, and compare the new honeyword production method to those proposed in

previous research.

Keywords: Authentication, Honeyword, Password, Salp algorithm, Swarm algorithm.

Introduction:
Password-based authentication is the most

widely used authentication mechanism due to its

simplicity and memorability. However, this strategy

has been targeted by bad actors using a variety of

attack methods, including password cracking. 1,2.

Password cracking is a dangerous and typically

illegal method of recovering passwords from

computer information stored on or sent through a

device 3.

Honeywords provide a convenient method for

increasing the number of fake passwords associated

with each user’s account, thus improving the safety

of hashed passwords and making password cracking

less difficult to detect 4,5. An intruder who gains

access to a database of hashed passwords and flips

the hash will not be able to retrieve the original

password. Instead, a “quiet alarm” will be issued if

a honeyword is used during the login procedure 6.

Honeychecker is a secondary server that can

differentiate between the original password and

honeywords and is connected to the login server

over a secure connection.7,8.

A metaheuristic is a method or heuristic used

in computer science and mathematical optimization

to find, create, or choose a heuristic that may

provide the best available solution to a problem 9,10.

An optimization problem is a problem in

mathematics, computer science, or economics in

which the aim is to find the best solution from a set

of alternatives 11.

Swarm intelligence algorithms depend on the

relationships between live creatures; inspiration for

the algorithms is generally derived from nature,

particularly biological systems 12. Although there is

http://dx.doi.org/10.21123/bsj.2022.6930
mailto:cs.19.28@grad.uotechnology.edu.iq
mailto:Ahmed.T.Sadiq@uotechnology.edu.iq
mailto:wasim.alhamdani@ucumberlands.edu
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5085-7948
https://orcid.org/0000-0002-4217-1321
https://orcid.org/0000-0003-3249-6883

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

122

no centralized control structure prescribing how

individual agents should behave, local—and, to

some extent, random—interactions between such

agents lead to the creation of intelligent global

behavior 13.

The salp swarm algorithm (SSA) is a swarm

intelligence algorithm influenced by biology, and

functions as a metaheuristic optimization method

that mimics the natural swarming behavior of salps
14,15.

Many honeyword generation techniques have

been presented by previous research. However, all

previous proposals have included flaws in the

generation process, been unable to provide all the

necessary honeyword characteristics, and exhibited

many honeyword issues. The salp swarm algorithm

(SSA) proposed in this work is a bio-inspired

metaheuristic intelligence algorithm that functions

as a novel method for honeyword generation. The

proposed method presents a discrete salp swarm

algorithm to benefit from its ability to obtain

excellent solutions, successfully enhance random

solutions, converge toward the optimum solutions,

and balance exploration and exploitation. This

method will enhance the generation process,

provide all the required honeyword characteristics,

and overcome the shortcomings of earlier

approaches.

The many contributions presented by this

research include the following:

 The proposed system employs the salp swarm

algorithm to generate honeywords, which is a

unique strategy.

 The proposed generation strategy will improve

the honeyword creation process, support

honeyword features, and address the limitations of

previous techniques.

 The proposed generation algorithm’s password

alphabet token produced excellent results for

creating meaningful words from meaningful

words; however, the most promising aspect is the

proposed algorithm’s ability to identify

meaningful words from rubbish words.

 The approximation factor is suggested by the

proposed technique as an assessment criterion for

the produced honeyword (alphabet token).

 Using the proposed method, the sugarword cannot

be predicted even if the attacker knows one of the

sugarword tokens. Every token is redundant five

times in sweetwords. Thus, if one of the

sugarword tokens is known by the attacker, the

probability of obtaining the sugarword at random

is (1/5=20%).

The specific terms used throughout this paper in the

context of the honeyword system are defined as

follows 16:

 Sweetwords: These collect both the real password

(sugarword) and the fake passwords

(honeywords) (k).

 Honeywords: The fake passwords generated by

the honeyword system (k-1).

 Sugarword: The real password provided by the

user.

 Honeychecker: An auxiliary server that can

distinguish between the sugarword and the

honeywords. The honeychecker is linked to the

login server through a secure connection and is

responsible for triggering a silent alarm if a

honeyword is used during the login process to

declare that a breach may happen.

The remainder of this paper will examine previous

research in the field of honeyword generation,

provide a simple illustration of the honeyword

process, demonstrate the salp swarm algorithm,

explain the proposed system with the suggested

discrete SSA, present the experimental results,

compare the suggested method with previous

honeyword generation approaches, discuss the

implications of this research, and present the

research conclusion.

Literature Review:
Honeyword generating methods have been

the subject of extensive research in recent years,

with much convergent study in this field. The

following will examine a key selection of such

research.

 In 16 (2013), Juels and Rivest:

Many honeyword creation strategies are

suggested in this study, including changing a piece

of the password, using a dictionary, adding a tail

from the system, using honeywords given by the

system, using honeywords supplied by the user, and

hybrid approaches. These methods are grouped into

two categories based on whether or not they

influence the user interface (UI), with each category

containing several honeyword creation techniques.

The two categories are:

1. Legacy-UI

 (Chaffing-by-tail-tweaking; Chaffing-by-

tweaking-digits; Simple model; Modeling

syntax; “Tough nuts;” Hybrid generation

methods).

2. Modified-UI

 (Take-a-tail; Random pick).

 In 17 (2015), Ergular:

The “Storage-index” technique proposed in

this study presents an alternative method for

honeyword creation that picks honeywords based on

current user passwords in the system in order to

generate realistic honeywords. Honeywords are

used in the recommended strategy for detecting

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

125

password cracking. However, instead of producing

honeywords and preserving them in a password

database, this method mimics honeywords using

existing passwords.

 In 18 (2017), Chakraborty and Mondal:

This study proposes the Paired Distance

Protocol (PDP) as a new honeyword generation

mechanism with a new user interface. A user must

enter three pieces of information to log in: a

username, a password, and a password-tail. When

enrolling, the user selects a password-tail of t>1

from a selection of 1. alphabetic characters (a-z),

and 2. digits in addition to the username and

password (0 – 9).

 In 19 (2018), Akshima et al.:

This study offers the “evolving-password

model,” the “user-profile model,” and the “append-

secret model” as new honeyword generation

methodologies.

 Evolving-password model: To complete the

procedure, this model uses two different

calculation steps. First, tracking the number of

times that password patterns and tokens have been

used; second, creating honeywords and keeping

frequency tables from previous frequencies.

 User-profile model: In this model, honeywords

are created by combining various user profile data

and creating separate sets from given data that

comprise tokens of various sorts, such as

“alphabet-strings,” “digit-strings,” and “special-

character-strings.”

 Append-secret model: The system used in this

model asks for the user’s login, password, and an

optional item, such as e, to generate a random

string s that contains numbers, letters, and

symbols. After performing the function f (p | e | s),

the model returns r. H (password | r) will be

saved in the password file of the system.

 In 20 (2019), Akif et al.:

This study proposes a new honeyword

creation strategy that incorporates all four methods.

As a result, the system acquires four groups of

honeywords generated from the following sources:

1. Existing user information: Data is generated

using two-part personal questions. The first

portion will be about letters, and the second

will be about numbers. The answers to the first

and second parts will be combined to

generate honeywords.

2. A dictionary attack: Using the real password

with a change of up to three digits or characters

is the basic principle behind producing

acceptable honeywords after scanning via the

dictionary attack.

3. A generic password list: This honeyword group

is made up of honeywords chosen at random

from a database of the 500 worst passwords.

The worst passwords mean they are easier to

guess.

4. Shuffling the characters: Scrambled characters

or numerals from the ID user are combined;

that is, the honeyword is created by mixing

scrambled characters or digits from the ID

user.

Honeywords

The honeywords technique works by

generating honeywords (fake passwords), adding a

sugarword (true password), then hashing and

inserting them all as sweetwords into the username

and password database 21,22. If the intruder obtains

plain passwords from hashed passwords, the

intruder must then successfully guess the true

password from among the sweetwords; otherwise, a

silent alarm is triggered to the system administrator,

indicating that password cracking may be occurring
23,24. Administrator responses to this alarm are

defined by the organization’s policy and may

include suspending, blocking, or alerting the

compromised account.25.

For flatness, let x be the intruder’s assessed

probability of correctly anticipating the sugarword.

Because an intruder can estimate the sugarword

randomly with a 1/k likelihood of success, the

intruder has at least a (1-(1/k)) chance of selecting a

honeyword if the honeywords are as flat as possible
26,27.

When a user wants to log in to an account, the

login server checks the user’s input username and

password. If the password is incorrect, the system

asks the user to try again. If the password matches

one of the sweetwords, the system submits it to the

honeychecker for verification. An alert is triggered

if the password matches one of the honeywords. If it

matches the sugarword, then it allows the user to

log into the account28,29.

Salp Swarm Algorithm SSA
A salp is a type of marine creature that is

categorized as part of the Salpidae family. It has a

barrel shape with holes at the end—similar to a

jellyfish—that pumps water across their bodies,

allowing them to move and eat through inner

feeding filters 30. Many behaviors, such as

swarming, are shared by marine creatures.

Swarming behavior is one of the most intriguing

characteristics of salps. Salps frequently form a

swarm, known as a salp chain, in deep waters 31.

Although the exact rationale for this activity is

unknown, some researchers believe it is done to

improve locomotion and foraging. The salp chain

can be divided into various sub-chains, each of

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

125

which may take a different route to achieve the

same aim. Each sub-chain will have its own leader

and followers 32.

Thus, a salp swarm algorithm (SSA) is an

optimization metaheuristic swarm algorithm

inspired by this biological behavior. An SSA is

designed to imitate the swarming behavior of salps

in their natural environment 33. The SSA’s behavior

mimics the behavior of a natural salp chain seeking

optimal feeding sources. The chain salp in an SSA

is divided into two groups based on the locations of

the individuals (salps) in the chain: leaders and

followers. The leader salp is the first in a chain of

salps, while the remaining salps are termed

followers; the individual (leader) guides the

movements of the others (followers) 34,35.

Algorithm 1. shows the steps of SSA that

begin by generating the initial population of salps

considering the lower and upper bounds of the

positions of the leader and the source of food.

Calculate the fitness of salps, determining the best

salp as a leader and the rest as followers. Let the

best salp as a source of food. Eq. 1, is used to

calculate v1, which is a parameter that gradually

decreases across iterations to balance exploration

and exploitation. The leader position is updated by

Eq. 2, and the followers by Eq.3. Adjust the salps

that have been outside the search space according to

the lower and upper bounds. Repeat the algorithm

until the end condition is satisfied, then return the

bet salp as the solution 36–38.

Algorithm 1. The general steps of the Salp Swarm algorithm 36–38.

Equation 1 computes the v1 parameter, which

is responsible for the balance between exploration

and exploitation, where T is the maximum number

of iterations and t is the current iteration of 36–38.

𝑣1 = 2𝑒
−(

4𝑡

𝑇
)

2

 1

Equation 2 updates the position of the leader

(𝑥𝑗
1) according to 1. The position of the source of

food, 2. Lower and upper boundaries, 3. Three

parameters (v1 which is calculated by Eq. 1, and v2,

v3 that are randomly generated in the interval of

(0,1)) 36–38.

𝑥𝑗
1 = {

𝑆𝑗 + 𝑣1 ((𝑢𝑗 − 𝑙𝑗) 𝑣2 + 𝑙𝑗) 𝑣3 ≥ 0

𝑆𝑗 − 𝑣1 ((𝑢𝑗 − 𝑙𝑗) 𝑣2 + 𝑙𝑗) 𝑣3 ≥ 0
 2

Equation 3 updates the position of the

followers (𝑥𝑗
𝑖) depending on the position of the

previous salp, where i ≥ 2 36–38.

𝑥𝑗
𝑖 =

𝑥𝑗
𝑖 + 𝑥𝑗

𝑖−1

2
 3

Proposed Discrete SSA

In this research, the SSA is an optimization

metaheuristic swarm algorithm chosen by the

proposed system to present a novel method for

honeyword generation. This choice was based on

the ability of the SSA to obtain excellent solutions,

successfully enhance the random solutions,

converge toward the optimum solutions, and

balance exploration and exploitation.

This research made many changes to the SSA

to suit our particular aim (honeyword generation).

The most substantial of these changes is the

transformation of the algorithm into one able to

handle discrete values (alphabet characters) instead

of continuous values (numbers). The changes made

to the SSA in order to convert it into the proposed

discrete salp swarm algorithm are:

1. The password’s tokens function as salps.

2. The alphabet token is considered the most

important token because it serves as the

main target for the intruder when

attempting to guess the password; these

tokens will be processed through the

Step 1: Set up the algorithm parameters (N (pop-size), S (source of food), u (upper-bound), l (lower-bound)).

Step 2: Generate N of salps randomly, considering u and l.

Step 3: Moving of salps towards S

a: Compute the fitness of salps, takes the best salp as a leader and the rest as followers.

b: S= Best salp

c: Compute v1 by Equation 1

d: For every salp of N

If the salp is a leader, update its position by Equation 2.

If the salp is a follower, update its position by Equation 3.

e: Adjust the salps according to u and l.

Step 4: Repeat Step 3 until the end condition is satisfied.

Step 6: Return S.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

121

mechanism of the SSA to solve the

problem. In contrast, the digits and special

characters will be processed through simple

random generators.

3. The root alphabet token of the real

password will function as the resource food

(best solution).

4. The generated alphabet tokens of

honeywords will function as salps that

move toward the root alphabet token to

obtain the best solution.

5. The proposed algorithm will pursue the

multi-swarm approach. Hence, it will have

several leaders, each of whom will be

followed by several followers; the leaders

are the best salps of the population.

6. The leaders will consist of the best 10% of

the population size. The remaining 90%

will be the followers, which are equally

distributed to the leaders. For instance, if

the population size is 100, then (leaders=10

and followers=90); if ten swarms are

formed, then each swarm will have one

leader and nine followers.

7. The suggested algorithm proposes four

special salp movements toward the source

of food: insert, delete, translocation, and

swap.

8. The leader will test the four proposed salp

movements, and the best move will be

committed to its followers.

9. The lower and upper boundaries of the SSA

will not be used, because the alphabet

tokens of the honeywords will be

committed by the alphabet (a to z).

10. Equation 1 of the SSA will not be used

because the parameters of v1, v2, and v3

will be replaced by a step size sz towards

the goal; the step size will be (0.3*alphabet

token size).

11. Equation 2 (leaders’ movements) will be

replaced by the proposed salp movements.

12. Equation 3 (followers’ movements) will be

replaced by the proposed salp movements,

e.g., the follower will be committed by the

movement of its leader.

13. The proposed algorithm, at the end of every

iteration, will replace the worst salps with

ones that are generated randomly.

The suggested honeyword approach was

implemented for the legacy-UI, which is more user-

friendly because it requires users to input only their

username and password. The password should

contain alphabet letters, digits, and special

characters for the system to consider. The suggested

method uses 25 sweetwords, which implies that if

k=25, the intruder has a (1/25=4%) chance of

successfully picking the sugarword and a (1-

4%=96%) chance of picking a honeyword.

According to the suggested approach, the

intruder will not be able to choose the sugarword

even if one of its tokens is known because each

token of the sweetwords has been repeated five

times. The attacker has a (1/5=20%) chance of

picking the sugarword in this situation.

The suggested SSA treats each of the

password tokens with different techniques

according to their type. Every token type has a

different generator (i.e., an alphabet, digits, or

special characters generator). For the alphabet

tokens, the suggested algorithm develops proposed

salp movements and proposed evaluation criteria.

Proposed Discrete SSA Token Generators

Three proposed token generators operate in

the suggested algorithm. The alphabet generator is

the most critical and complex, so it will use the SSA

technique for alphabet token generation. The digits

and special characters generators use a simplified

random generation technique. The following are the

proposed generators:

1. The proposed SSA alphabet token generator:

Because the intruder’s preferred method of

guessing the true password is the alphabet

token, it is the most essential portion of the

honeyword. This generator is the most

difficult to use since it relies on the SSA

technique to solve problems. For this

generator, the password tokens function as

salps. The alphabet token from the

sugarword is utilized as input for the

generators; this is the root from which the

honeyword alphabet tokens are generated.

The generator makes five copies of the

alphabet generator’s top four tokens, then

splits the 20 tokens into four groups

(columns). Each group includes five similar

tokens. The alphabet root should be

duplicated five times. As a result, there will

be 25 alphabet tokens in the proposed SSA.

2. The proposed SSA digit token generator:

The root of this generator is the sugarword’s

digit token, and it relies on random

generation. The generator creates four tokens

with the same length as the root. The

generator then makes five copies of each of

the four produced digit tokens, splitting the

20 tokens into four groups (rows) of five

tokens each. After adding five copies of the

digit root, the proposed SSA will have 25

total digits tokens.

3. The proposed SSA special character token

generator:

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

125

The root of this generator is the sugarword’s

digit token, and it relies on random

generation. The generator creates four tokens

with the same length as the root. The

generator then makes five copies of each of

the four produced digit tokens, splitting the

20 tokens into four groups (rows) of five

tokens each. After adding five copies of the

digit root, the proposed SSA will have 25

total special characters tokens.

Example 1: For the proposed discrete SSA using the

parameters listed in the parameters section, if the

sugarword is (5diamond^). The generated

sweetwords by the proposed SSA will be as

follows:

5diamon

d^

5sigmoi

d^

5diagona

l^

5diagona

l^

5diaphon

e^

9diamon

d’

9sigmoi

d’

9diagona

l’

9diagona

l’

9diaphon

e’

0diamon

d\

0sigmoi

d\

0diagona

l\

0diagona

l\

0diaphon

e\

3diamon

d*

3sigmoi

d*

3diagona

l*

3diagona

l*

3diaphon

e*

6diamon

d<

6sigmoi

d<

6diagona

l<

6diagona

l<

6diaphon

e<

Proposed Salp Movements

The suggested algorithm proposes movements

for the salp that are specific to the alphabet token.

The movement of the honeyword alphabet token

toward the sugarword alphabet token will mimic the

movement of a biological salp toward food. The

token movement will be applied as a change of the

characters in the alphabet tokens. The step size of

this movement will be represented by the change

amount in the characters of the alphabet token. The

proposed step size sz is (0.3*alphabet token size).

The four proposed movements are listed below.

1. Insert: Select a particular character’s

positions on the token at random, then

insert randomly-selected characters into the

selected positions.

2. Delete: Select and delete characters from the

token at random.

3. Translocation: Select a character’s

positions on the token at random, then

exchange them with one another.

4. Swap: Select a character’s positions on the

token at random, then change them out for

other randomly-selected characters.

Example 2: For the proposed discrete SSA that uses

step size =0.3*(alphabet token length) during the

salp movement (token generating), if the sugarword

alphabet token is (sun) then sz =0.3*(3) = 0.9, so 1

character will be changed. The generated tokens are

(stun, un, nus, son) in sequence.

Proposed Evaluation Criteria

The proposed evaluation process will involve

the generated alphabet tokens only and will be

evaluated based on the root alphabet token of the

sugarword. The suggested SSA includes proposed

evaluation criteria for the generated alphabet

tokens, which together form what is called the

approximation factor. The approximation factor is

determined as the sum of the four criterion values,

which fall within a range of (0,1). As noted in the

parameters section below, each criterion has a

distinct value. The four proposed distinct SSA

criteria are.

1. Character similarity: The degree of similarity

between the characters of the root token and

the characters of the generated token.

2. Length similarity: The comparability in

length between the characters in the root

token and the characters in the generated

token.

3. Part of Speech (PoS) similarity: In terms of

PoS, the root token and the generated token

are identical.

4. Meaningful word: The generated token is a

meaningful English word.

Example 3: For the proposed discrete SSA that uses

parameters listed in (parameters section), if the

sugarword alphabet token is (sun), the generated

honeyword tokens with their approximation factor

will be as follows (tun=0.933, suv=0.933, =0.933,

sum=0.933, son= 0.933).

The Proposed Discrete SSA Steps

The suggested system uses a proposed

discrete SSA to generate the honeywords as a token

generating process, in which the sugarword is

tokenized into three different tokens: alphabet,

digits, and special characters, and each is handled in

a different generator (alphabet, digits, and special

characters generator) before collecting the

honeywords with the sugarword to present the

sweetwords. The password tokens will be handled

like salps, but with numerous changes, as described

in the proposed discrete SSA section. As illustrated

in Algorithm 2, the suggested algorithm's general

steps consist of six primary parts. It's worth noting

that the production steps (2,3, and 4) run in parallel.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

125

Algorithm 2. The general steps of the proposed discrete salp swarm algorithm.

The Proposed Discrete SSA Pseudocode

Following up on Algorithm 2 of the proposed

discrete SSA and the description of its three token

generators, the proposed discrete SSA pseudocode

in Algorithm 3 is shown in this section.

Step one: Tokenization. The sugarword is parsed into three tokens according to its type: alphabet, numbers, and

special characters token. Each token type will be treated in a distinct way using a different generator. The

token will stay with no change if it appears in the username. It is just showing without changes in all the

sweetwords.

Step two: Alphabet generator. The alphabet tokens from step one will be sent to the generator sub-steps below by the

proposed SSA:

a: Set the parameters of the alphabet generator. Pop-size n (population of salp), max generation, source of

food s= alphabet token received from step1, number of salp movements sm, step size sz, evaluation

criteria ec, best salps size bs, number of leaders nl, and number of followers nf.

b: Generate the initial salps (alphabet tokens) population with n randomly.

c: Compute the fitness (approximation factor) of the salp population by considering evaluation criteria and

the source of food s.

d: Population classification. Dividing the population into multiple swarms, every swarm has a leader and

many followers. The leaders are the best salps of the population. The number of leaders nl will be

equal to (nl=0.1*n), and the number of followers nf (nf=0.9*n). The followers will be distributed

equally among the leaders.

e: For every salp (alphabet token) in the population:

1. Every leader in the population makes the sm movements with consideration to the sz, and adopts

the best move with consideration to the evaluation criteria.

2. Every follower in the population makes the move that is adopted by their leader by considering

the sz and the evaluation criteria. If the move is better than the current position then do it, else do

nothing.

f: Compute the fitness (approximation factor) of the new salp population while considering evaluation

criteria.

g: Replace the worst salps of the population with ones that are generated randomly.

h: Repeat sub-steps c to g until max generation.

i: Return the best salps with considering to bs, as the alphabet honeyword tokens.

Step three: Digits generator. Examine the digits token received from step one to determine if it's on the list of years

or the list of consecutive and frequented numbers. If the token appears in one of the lists, the system

chooses tokens from the matching list at random. If not, the digits token is given to the digit’s generator,

which goes through the following sub-steps:

a: Set the number of the generated digits tokens d.

b: Generate tokens considering d, by randomly choosing digits with the same length as the root token.

c: Return the d tokens as the digits of the honeyword tokens.

Step four: Special characters generator. Following the receipt of the special characters token from step one, the token

is given to the special characters generator, which has the sub-steps below:

a: Set the number of the generated special characters tokens c.

b: Generate tokens considering c, by randomly choosing special characters of the same length as the root

token.

c: Return the c tokens as the special characters honeyword tokens.

Step five: Collect honeywords. Gather the honeywords tokens from the previous three steps, each with five copies.

Step six: Return sweetwords. To present sweetwords, combine the sugarword tokens (each with five copies) with the

honeyword tokens from the previous step. The locations of sweetwrods are permuted at random. The total

result of sweetwords is 25.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

125

Algorithm 3. The pseudocode of the proposed discrete salp swarm algorithm.

Parameters

The proposed discrete SSA’s performance is

influenced by many of the parameters employed in

the suggested honeyword generation method. The

suggested algorithm was tested using a range of

parameter values before those that provided the best

performance for the suggested system were chosen.

The following are the proposed parameters, tested

using multiple values.

 Population size (population of salps) n: The

proposed SSA experimented with many

population sizes (20, 40, 60, 80), with the size

(80) being chosen as the generation size

because the number of individuals suited the

algorithm procedures.

Parameter

Pop-size n (population of salp), max generation mg, source of food s= alphabet root token, number of salp

movements sm, step size sz, evaluation criteria ec, best salps size bs, number of leaders nl, and number of

followers nf, number of the generated digits tokens d, number of digits that changed in the generated token dl,

number of the generated special characters tokens c, and number of special characters that changed in the

generated token cl.

Begin

Tokenization /* parse the sugarword to the alphabet, digits, and special characters token */

If the token is an alphabet

Generate the initial salps population with n randomly

Compute the fitness of the population by considering ec and s

for i=1 to mg

Let the best salps nl as leaders and the rest of the slaps nf as followers, distributed over all leaders equally

for j=1 to n

if the salp is a leader

 makes the sm movements with considering to the sz, and adopt the best move with considering

to ec and s

else makes the move that is adopted by its leader by considering the sz, ec, and s

if the move is worse than the previous position then cancel it

end if

end for

Compute the fitness of the new population by considering ec and s

Replace the worst salps of the population with ones that generate them randomly

end for

Return the best salps with consideration to bs, as the alphabet honeyword tokens

end if

If the token is digits

for i=1 to d

for j=1 to dl

Changes the digits of the token by other digits randomly

end for

end for

Return the d tokens as the digits honeyword tokens.

end if

If the token is special characters

for i=1 to c

for j=1 to cl

Changes the special characters of the token by other special characters randomly

end for

end for

Return the c tokens as the special characters honeyword tokens.

end if

Collect honeyword tokens with five copies

Return sweetwords by adding five copies of sugarword tokens to honeywords tokens then permutate and

hashed the sweetwords

End

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

125

 Max generation mg: Although several

iterations were employed (10, 20, 30, 40...,

100), no improvement in outcomes was

observed after 30 rounds. As a consequence,

the alphabet token was assigned the maximum

round’s number possible (30).

 Step size sz: The change in token during salp

movements was tested in many sizes, including

1 character, 2 characters, 0.25*(token length),

0.3*(token length), and 0.5*(token length); the

changing size (0.3*(token length)) was chosen

because it provides words close to the original.

 Evaluation criteria ec: For the evaluation

criteria (character similarity, length similarity,

PoS similarity, and meaningful word), multiple

value sets were selected for experimentation,

including (0.3, 0.2, 0.2, 0.3), (0.4, 0.1, 0.1,

0.4), (0.3, 0.2, 0.1, 0.4), (0.3, 0.1, 0.1, 0.5),

(0.2, 0.2, 0.1, 0.5), (0.2, 0.1, 0.2, 0.5), and (0.2,

0.2, 0.1, 0.5). Ultimately, the values (0.2, 0.1,

0.1, 0.6) were chosen, since they

produce meaningful words. Such meaningful

words work to confuse the intruder while the

intruder tries to guess the real password.

Many parameters are used in the suggested

honeyword generation approach that impacts the

performance of the proposed discrete SSA. The

parameters chosen to be used in the proposed

discrete SSA are listed in Table 1.

Table 1. The proposed discrete SSA parameters’ values.

No Parameter Value

1 Population size (population of salp) n 80

2 Max generation mg 30

3 Number of salp movement sm 4

3 Step size sz 0.3*(token length)

4 Best salps size (number of the generated alphabet tokens) bs 4

5 Number of leaders salps nl 0.1*(population size)

6 Number of followers salps nf 0.9*(population size)

7 Evaluation criteria ec

Character similarity

Length similarity

PoS (part of speech) similarity

Meaningful word

8 Number of the generated digits tokens d 4

9 Number of digits that changed in the generated token dl Token length

10 Number of the generated special characters tokens c 4

11 Number of special characters that changed in the generated token sl Token length

Experimental Results

The proposed SSA tested a range of password

tokens, including the alphabet token, the most

important token because the intruder's primary

objective is to guess the real password. The

experimental results are shown in Table 2 using the

parameters indicated in Table 1 in the parameters

section. The SSA strategy to solve the problem will

be used to generate the alphabet tokens. Eighty

tokens will be constructed, but only the best four

will be shown in Table 2. For the digits and special

characters tokens, simple random generators will be

utilized, with character changes occurring at

random with the same root token length. Four

tokens will be generated. Please see Example 1 for a

complete example.

0.2

0.1

0.1

0.6

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

152

Table 2. Experimental results of the proposed discrete SSA.
 Root Token Pop-size/ Max-gen. Honeyword Tokens/Approximation Factor

1 hello 80/30 jello/0.96 hollo/0.96 cello/0.96 helve/0.919

rollo/0.919 mellon/0.916 hill/0.9 help/0.9

held/0.9 dell/0.9 hemlock/0.885 tulle/0.88

hel/0.88 hells/0.86 heir/0.86

2 smokey 80/30 smiley/0.933 smote/0.916 smarmy/0.9 monkey/0.9

80/30 spoke/0.916 smote/0.916 turkey/0.9 spooky/0.9

80/30 smiley/0.933 smote/0.916 smoky/0.916 survey/0.9

3 batman 20/30 matman/0.966 pitman/0.933 layman/0.933 banzai/0.9

40/30 bagman/0.966 potman/0.933 pitman/0.933 gasman/0.933

60/30 barman/0.966 bagman/0.966 bitmap/0.933 banyan/0.933

80/30 bataan/0.966 barman/0.966 bagman/0.966 layman/0.933

4 teNNis 80/30 teNias/0.933 teNpin/0.9 terNion/0.871 tiNier /0.866

5 tiger 80/30 tiler/0.96 liger/0.96 taxer/0.919 taper/0.919

6 orange 80/30 grange/0.966 fringe/0.933 flange/0.933 cringe/0.933

7 computer 80/30 commuter/0.9

75

confuter/0.95 compete/0.937 accouter/ 0.9

8 purple 80/30 supple/0.933 rumple/0.933 puzzle/0.933 pursue/0.933

9 scooter 80/30 shooter/0.971 scepter/0.942 sootier/0.914 snifter/0.914

10 freedom 80/30 freesia/0.914 freed/0.914 freebee/0.914 firedog/0.914

11 ofsye 80/30 offset/0.883 okey/0.86 iffy/0.86 oxygen/0.85

12 pklser 80/30 polder/0.933 palmer/0.933 falser/0.933 pulse/0.916

13 nusi 80/30 monody/0.9 minder/0.9 manner/0.9 manda/0.85

14 9725 N/A 7845 0715 5814 8068

15 631 N/A 449 500 973 047

16 52 N/A 59 14 74 09

17 (%!- N/A [|~$ #@+{ $^’! }.:_

18 %.# N/A !$’ =&. ?(! &={

19 ~* N/A ^!](,. @\

Table 2 shows the proposed SSA-generated

tokens for different types of tokens to declare the

ability to handle every password token type. Token

1 (hello) shows that the proposed SSA can generate

many good tokens with an approximation factor

over the 0.6 value. Of those, 15 tokens exceeded the

0.6 value. Token 2 (smokey) shows that the

proposed SSA generates different tokens for every

attempt, even using the same tokens and Pop-size/

Max-gen. Token 3 (batman) shows generated

tokens in different Pop-size/Max-gen. There are

always good results, but it is best when Pop-size=80

and Max-gen=30. Token 4 (teNNis) shows the

ability of the proposed SSA to handle the capital

letters of the password. Tokens 5-10 show different

meaningful words as alphabet tokens. Tokens 11-13

show the generated tokens for meaningless words as

alphabet tokens. Tokens 14-16 show digits' tokens.

Tokens 17-18 show special characters' tokens.

Comparison:
This section of the paper will compare the

honeyword system proposed in this study to the

honeyword generation methods described in

previous literature. In terms of honeyword

generation, the suggested SSA honeyword

generation strategy outperforms previous techniques

by improving the generation process through its use

of problem-solving features (i.e., obtaining the best

solutions, efficiently improving random solutions,

converging toward the best solution, and balanced

exploration and exploitation).

The suggested SSA improves the most

significant honeyword features (flatness, DoS

Resistance, and storage), which previous

honeyword generation methods did not effectively

address. 1.) Flatness: The suggested SSA

unconditionally ensures perfect flatness, with the

intruder having a (1/25=4%) probability of

successfully picking the sugarword and a (1-4% =

96%) chance of selecting a honeyword. The

proposed SSA ensures that the intruder has a

(1/5=20%) chance of picking the sugarword even if

the intruder knows one of its tokens. 2.) DoS

Resistance: A DoS attack works by guessing and

inputting a honeyword to deny the system's

services. The suggested SSA generates honeywords

that are impossible for intruders to predict, while it

also saves usernames and sweetwords. 3.) Storage:

Some previous generation approaches store more

data and information that exceeds the honeyword

storing capacity, while the proposed system does

not.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

155

The following provides a specific comparison

between previous honeyword generation methods

and the suggested honeyword system, illustrating

the seven most critical issues encountered by

honeyword systems. Furthermore, a table will

encompass the generation methods and show which

method experiences the issue and which does not.

Experiencing each described issue presents a

weakness in the system while avoiding each issue

presents a system strength. The suggested

honeyword system succeeded in overcoming the

seven issues common to previous honeyword

systems. The seven issues are as follows.

1. Conditionally flatness issue: The fulfillment of

some conditions to achieve perfect flatness is

considered a weakness, whereas unconditional

flatness means that no condition considered a

strength must be met. Most previous honeyword

generation systems only ensure perfect flatness

under specific conditions; in contrast, the

proposed honeyword system provides perfect

flatness unconditionally.

2. Weak DoS Resistance issue: When weak DoS

resistance is in place, an intruder can easily

guess the system’s honeywords. On the other

hand, good DoS resistance ensures that the

intruder will be unable to guess them. While

many previous honeyword generations’

approaches included weak DoS resistance, the

proposed honeyword system has strong DoS

resistance.

3. Storage overhead issue: More storage space has

often been required to effectively operate

previous honeyword generation systems, storage

that exceeds the honeywords storage. Unlike

many such previous systems, the proposed

honeyword system does not require additional

storage expenditures.

4. Correlation issue: The existence of a correlation

between username and password is problematic.

Such a correlation increases the possibility that

an intruder can distinguish the honeywords from

the true password. By maintaining the correlated

component within the honeywords, the proposed

honeyword system overcomes that issue.

5. Consecutive and frequented numbers issue:

Users tend to gravitate toward numerical patterns

that are easy to recall. As a result, many people

choose to utilize numbers in their passwords that

are consecutive or frequented, such as “123,”

“1234,” “111,” or “2222.” While convenient for

users, this tendency leaves the sugarword

vulnerable to the identification. To address this

issue, the proposed honeyword system suggests a

list with the most frequented and consecutive

numbers. If the sugarword includes numbers on

this list, the proposed algorithm will choose

numbers at random from the list for the

honeywords.

6. Special date issue: Many users like to include a

date in their passwords that is significant to

them, such as a birthday, anniversary, graduation

year, or any other date that may facilitate recall

but also exposes the sugarword to discovery.

Therefore, in the proposed honeyword system, a

list of the previous 50 years will be generated. If

a year number from the list is used in the

sugarword, the system will choose years

randomly from the list for the honeywords.

7. User's information, security issue: Many

previous honeyword generation methods have

relied on personal information questions, which

require the user to provide personal information

for the system to work. If the system is hacked,

personal information may be revealed and used

on another system, endangering the user. Thus,

using this strategy with its inherent security risks

is considered a weakness, whereas not using it is

a strength. As a result, the proposed honeyword

system does not ask the user to provide any

personal information; it just asks him to provide

a username and password.

In the most important honeyword system

issues, Table 3 compares the proposed SSA with

past honeyword generating systems.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

152

Table 3. A comparison in the most critical issues of honeyword systems.
No Methods Cond.

Flatness

issue

Weak

DoS

resist.

issue

Storage

overhead

issue

Correlation

issue

Cons.

And

frequent

numbers

issue

Special

Date

issue

User

Info.

security

issue

1 Proposed SSA No No No No No No No

2 16tweaking -tail-by-Chaffing Yes Yes No Yes Yes Yes No

3 Chaffing-by –tweaking-digits 16 Yes Yes No Yes Yes Yes No

4 Simple model 16 Yes No No Yes No No No

5 Modeling syntax 16 Yes No No Yes Yes Yes No

6 Chaffing with “tough nuts” 16 N/A No Yes No N/A N/A No

7 Take-a-tail 16 No No No No No No No

8 Random pick 16 Yes No No Yes No No No

9 16Hybrid generation methods Yes No No Yes Yes Yes No

10 17index -Storage Yes Yes Yes Yes No No No

11 18PDP Yes No Yes No Yes No No

12 19Evolving password model Yes No No Yes Yes Yes No

13 19profile model -User Yes Yes Yes Yes Yes No Yes

14 19secret model -Append Yes No No No Yes No No

15 20User information method Yes Yes Yes Yes Yes No Yes

16 20Dictionary attack method Yes Yes No Yes No No No

17 20Generic password list method Yes No No Yes No No No

18 20Shuffling characters method Yes Yes No Yes Yes Yes No

Discussion:
The experimental results revealed that the

proposed technique creates passwords using all of

its tokens (alphabet, digits, and special characters,

but most notably the alphabet token) that are

particularly tough due to their ability to mimic

meaningful sentences. The generation of alphabet

tokens produced effective results in terms of

generating meaningful words out of meaningful

words; more significantly, however, the system was

also able to generate meaningful words out of

meaningless words. The suggested SSA concludes

that the population size (pop-size) should be greater

than the maximum generation (max-gen) as a result

of the outcomes analysis; the proposed system thus

selects pop-size=80/max-gen=30 based on

experience. While pop-sizes of (20, 40, 60, 80) offer

good results, Pop-size=80 produces a superior

approximation factor according to the experimental

results. Based on these results, the honeywords

created include several beneficial qualities: each

password token type is generated independently,

even though the pop-size/max-gen is constant for

every generating operation; the generated tokens

differ from one process to another; the system can

conduct a variety of token order password patterns;

the process offers great protection against

intruder guessing, and the system can handle the

capital letters of alphabet tokens.

The comparisons described in the previous

section between the proposed SSA and earlier

generation strategies show that the

suggested method is superior in three major areas:

honeyword production, honeyword features, and

addressing the prominent issues of previous

methods, as shown in the testing results. The

system’s most important feature, flatness,

demonstrates a considerable improvement over

previous approaches—the proposed system exhibits

a superior flatness (1/25=4%). Furthermore, even if

an intruder knows one of the sugarword tokens, the

intruder still has only a (1/5=20%) chance of

selecting the sugarword.

Conclusion
Salp swarm algorithm (SSA) is an

optimization metaheuristic swarm bio-inspired

algorithm employed in this research to provide a

novel technique for the honeyword production

process. The proposed SSA has been subjected to

numerous changes in order to address the problem

space; as a result, the proposed SSA generates

honeywords as solutions. The proposed system

efficiently uses an intelligence algorithm (SSA) for

security purposes, specifically password cracking

detection (honeyword system). The proposed

system creates honeywords by utilizing SSA’s

solution generation properties (obtaining excellent

solutions, efficiently improving random solutions,

converging toward the optimal solution, and

balancing exploration and exploitation). The

proposed discrete SSA improves the generation

process, improves honeyword properties, and

overcomes the drawbacks of previous techniques.

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

155

The alphabet token is the sugarword’s most

important and difficult token. Therefore, the

proposed system creates the alphabet token in the

solution of the problem using the proposed SSA

approach. The digit and special characters tokens,

on the other hand, rely on a simpler random

generation process.

It is important to note that, if the initial

population is not well-diversified, a limitation might

be introduced into the suggested approach, resulting

in additional execution iterations.

Based on the information gathered from this

investigation into the employment of metaheuristic

algorithms, this work proposes honeyword-

producing strategies and aims to develop another

intelligence methodology that may provide perfect

solutions. Future researchers can apply the proposed

SSA to their own research to determine how the

proposed system can be utilized to solve multi-

objective optimization problems. Future research

into this area might also lead to the identification

and resolution of other issues commonly

confronting honeyword systems. Certain aspects of

the SSA could further be enhanced and hybridized

with another method.

Acknowledgment:
Appreciate the cooperation of University of

Technology, Baghdad, Iraq, and University of the

Cumberland, KY, USA.

Authors' Declaration:

- Conflicts of Interest: None.
- We hereby confirm that all the Algorithms and

Tables in the manuscript are ours. Besides, an

algorithm, which is not ours, has been permitted

re-publication.

- Ethical Clearance: The project was approved by

the local ethical committee at University of

Technology, Iraq, Baghdad.

Authors' contributions statement:
Y. A. Y. is contributed to the article by the

conception, design, analysis, interpretation, and

drafting of the MS manuscript. A. T. S.. shared in

the conception, analysis, interpretation, revision,

and proofreading. W. Al.. participated in the

conception, revision, and proofreading.

References:
1. Mohammed AA, Abdul-Hassan AK, Mahdi BS.

Authentication System Based on Hand Writing

Recognition. In: 2019 SCCS 2019 - 2019 2nd

Sci. Conf. Comput. Sci; 2019: 138-142.

doi:10.1109/SCCS.2019.8852594

2. Abdulameer SA, Kashmar AH, Shihab AI. A

cryptosystem for database security based on TSFS

algorithm. Baghdad Sci J. 2020; 17(2): 567-574.

doi:10.21123/bsj.2020.17.2.0567

3. Alaa Kadhim F, Mhaibes HI. A New Initial

Authentication Scheme for Kerberos 5 Based on

Biometric Data and Virtual Password. ICOASE 2018

- Int Conf Adv Sci Eng. Published online 2018: 280-

285. doi:10.1109/ICOASE.2018.8548852

4. Genç ZA, Kardaş S, Kiraz MS. Examination of a

New Defense Mechanism: Honeywords. In: Hancke

GP, Damiani E, eds. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics). 10741. Lecture Notes in Computer

Science. Springer International Publishing; 2018:

130-139. doi:10.1007/978-3-319-93524-9_8

5. Win T, Moe KSM. Protecting private data using

improved honey encryption and honeywords

generation algorithm. Adv Sci Technol Eng Syst.

2018; 3(5): 311-320. doi:10.25046/aj030537

6. Chakraborty N, Mondal S. Towards Improving

Storage Cost and Security Features of Honeyword

Based Approaches. Procedia Comput Sci. 2016;

93(September):799-807.

doi:10.1016/j.procs.2016.07.298

7. Palaniappan S, Parthipan V, Stewart kirubakaran S,

Johnson R. Secure User Authentication Using

Honeywords. In: Lecture Notes on Data Engineering

and Communications Technologies. 31. 2020: 896-

903. doi:10.1007/978-3-030-24643-3_105

8. Wang R, Chen H, Sun J. Phoney: Protecting

password hashes with threshold cryptology and

honeywords. Int J Embed Syst. 2016; 8(2-3): 146-

154. doi:10.1504/IJES.2016.076108

9. Homayouni SM, Fontes DBMM. Metaheuristic

Algorithms. In: Metaheuristics for Maritime

Operations. Volume 1. John Wiley & Sons, Inc.

2018; ch2: 21-38. doi:10.1002/9781119483151.ch2

10. Tezel BT, Mert A. A cooperative system for

metaheuristic algorithms. Expert Syst Appl. 2021;

165(May 2020): 113976.

doi:10.1016/j.eswa.2020.113976

11. Malik H, Iqbal A, Joshi P, Agrawal S, Farhad IB.

Metaheuristic and Evolutionary Computation:

Algorithms and Applications. Part of the Studies in

Computational Intelligence book series. Springer

Singapore. 916. 2021. doi:10.1007/978-981-15-7571-

6

12. Yasear SA, Ku-Mahamud KR. Taxonomy of memory

usage in swarm intelligence-based metaheuristics.

Baghdad Sci J. 2019; 16(2): 445-452.

doi:10.21123/bsj.2019.16.2(SI)0445

13. Faeq IF, Duaimi MG, Sadiq Al-Obaidi AT. An

efficient artificial fish swarm algorithm with harmony

search for scheduling in flexible job-shop problem. J

Theor Appl Inf Technol. 2018; 96(8): 2287-2297.

http://www.jatit.org/volumes/Vol96No8/18Vol96No8

.pdf

14. Castelli M, Manzoni L, Mariot L, Nobile MS,

Tangherloni A. Salp Swarm Optimization: A critical

review. Expert Syst Appl. 2021 (November): 116029.

doi:10.1016/j.eswa.2021.116029

15. Faris H, Mirjalili S, Aljarah I, Mafarja M, Heidari

https://www.springer.com/series/7092
https://www.springer.com/series/7092

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

155

AA. Salp swarm algorithm: Theory, literature review,

and application in extreme learning machines. Stud

Comput Intell. 2020; 811(January): 185-199.

doi:10.1007/978-3-030-12127-3_11

16. Juels A, Rivest RL. Honeywords: Making Password-

Cracking Detectable. In: Proceedings of the 2013

ACM SIGSAC Conference on Computer &

Communications Security - CCS ’13. ACM Press,

2013: 145-160. doi:10.1145/2508859.2516671

17. Erguler I. Achieving Flatness: Selecting the

Honeywords from Existing User Passwords. IEEE

Trans Dependable Secur Comput. 2015; 13(2): 284-

295. doi:10.1109/TDSC.2015.2406707

18. Chakraborty N, Mondal S. On designing a modified-

UI based honeyword generation approach for

overcoming the existing limitations. Comput Secur.

2017; 66: 155-168. doi:10.1016/j.cose.2017.01.011

19. Akshima A, Chang D, Goel A, Mishra S, Sanadhya

SK. Generation of Secure and Reliable Honeywords,

Preventing False Detection. IEEE Trans Dependable

Secur Comput. 2018; 5971(c): 1-13.

doi:10.1109/TDSC.2018.2824323

20. Akif OZ, Sabeeh AF, Rodgers GJ, Al-Raweshidy HS.

Achieving flatness: Honeywords generation method

for passwords based on user behaviours. Int J Adv

Comput Sci Appl. 2019; 10(3): 28-37.

doi:10.14569/IJACSA.2019.0100305

21. Lanjulkar Pritee, Ingle Rupali, Lonkar Arti IV.

Honeywords : A New Approach For Enhancing

Security. Int Res J Eng Technol. 2019; 06(03): 1360-

1363. https://www.irjet.net/archives/V6/i3/IRJET-

V6I3256.pdf

22. Veera Babu R, Praneerhasrurhi M. Security

Enhancement by Achieving Flatness in Selecting the

Honey words from Existing User Passwords. Int J

Eng Tech. 2018; 4(2): 743-746.

http://www.ijetjournal.org/Volume4/Issue2/IJET-

V4I2P115.pdf

23. Weiwei Jing, Jinku Cui YZ. A Honeyword

Generation Method Based on Special Character

Distance. Softw Eng Appl. 2019; 08(05): 207-214.

doi:10.12677/SEA.2019.85025

24. Ghare H. Securing System using Honeyword and

MAC Address. Int J Res Appl Sci Eng Technol.

2019; 7(5): 2685-2689.

doi:10.22214/ijraset.2019.5446

25. Thakur PV. Honeywords: The New Approach for

Password Security. Int J Res Appl Sci Eng Technol.

2019;7(4):2449-2450. doi:10.22214/ijraset.2019.4446

26. Shinde PD, Patil SH. Secured Password Using

Honeyword Encryption. IIoab J. 2018; 9(2): 78-82.

https://www.iioab.org/IIOABJ_9.2_78-82.pdf

27. Guo Y, Zhang Z, Guo Y. Superword: A honeyword

system for achieving higher security goals. Comput

Secur. 2021; 103: 101689.

doi:10.1016/j.cose.2019.101689

28. Bamane S. Achieving Flatness Using Honeywords

Generation Algorithm. Int J Res Appl Sci Eng

Technol. 2019; 7(5): 3491-3496.

doi:10.22214/ijraset.2019.5572

29. Kute S, Thite V, Chopade S. Achieving Security

using Honeyword. Int J Comput Appl. 2018; 180(49):

43-47. doi:10.5120/ijca2018917333.

30. Çelik E, Öztürk N, Arya Y. Advancement of the

search process of salp swarm algorithm for global

optimization problems. Expert Syst Appl. 2021;

182(March). doi:10.1016/j.eswa.2021.115292

31. Bairathi D, Gopalani D. An improved salp swarm

algorithm for complex multi-modal problems. Soft

Comput. 2021; 25(15): 10441-10465.

doi:10.1007/s00500-021-05757-7

32. Gupta S, Deep K, Heidari AA, Moayedi H, Chen H.

Harmonized Salp Chain-Built Optimization. 37.

Springer London; 2021. doi:10.1007/s00366-019-

00871-5

33. Balakrishnan K, Dhanalakshmi R, Khaire UM.

Improved salp swarm algorithm based on the levy

flight for feature selection. J Supercomput. 2021;

77(11): 12399-12419. doi:10.1007/s11227-021-

03773-w

34. Hegazy AE, Makhlouf MA, El-Tawel GS. Improved

salp swarm algorithm for feature selection. J King

Saud Univ - Comput Inf Sci. 2020; 32(3): 335-344.

doi:10.1016/j.jksuci.2018.06.003

35. Ouaar F, Boudjemaa R. Modified salp swarm

algorithm for global optimisation. Neural Comput

Appl. 2021 (July). doi:10.1007/s00521-020-05621-z

36. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S,

Faris H, Mirjalili SM. Salp Swarm Algorithm: A bio-

inspired optimizer for engineering design problems.

Adv Eng Softw. 2017; 114: 163-191.

doi:10.1016/j.advengsoft.2017.07.002

37. Abualigah L, Shehab M, Alshinwan M, Alabool H.

Salp swarm algorithm: a comprehensive survey.

Neural Comput Appl. 2020; 32(15): 11195-11215.

doi:10.1007/s00521-019-04629-4

38. Slowik A. Swarm Intelligence Algorithms. CRC

Press, 1st Ed. 2020. 362P.

doi:10.1201/9780429422614

Open Access Baghdad Science Journal P-ISSN: 2078-8665

Published Online First: September 2022 2023, 20(2): 125-131 E-ISSN: 2411-7986

151

 المتقطعةباستخدام خوارزمية سرب عنب البحر يةالعسل الكلمات توليد

 2وسيم الحمداني 5احمد طارق صادق 5ياسر علي ياسر

 .العراق بغداد، ،الجامعة التكنولوجية ،قسم علوم الحاسوب 1
 .ولايات المتحدة الامريكيةال ،كنتاكي ،كمبرلاند جامعة ،قسم تكنولوجيا المعلومات 2

 الخلاصة:

يعد نظام الحقيقية والتي تدعى كلمة السكر.(هي كلمات مرور مزيفة مرافقة لكلمة المرور Honeywordsإن كلمات العسل)

كلمات المرور مصمم لاكتشاف اختراق كلمة المرور بسهولة من أجل تحسين أمان كلمات اختراقمرور العسل نظامًا فعالاً لاكتشاف اتكلم

مصحوبة بالعديد شفرةدة حقيقية مملف كلمة المرور الخاص بنظام الكلمات العسلية كلمة مرور واحللكل مستخدم ، سيكون .شفرةالمرور الم

 محاولاكلمات المرور اختراقدخيل بسرقة ملف كلمات المرور من النظام ونجح في شخص إذا قام .المشفرة من كلمات المرور المزيفة

(مدقق Honeychecker) .مدقق العسلتسجيل الدخول إلى حسابات المستخدمين ، فسيكتشف نظام كلمات المرور هذه المحاولة من خلال

دخيل بتسجيل الدخول باستخدام شخص خادمًا إضافياً يميز كلمة المرور الحقيقية عن كلمات المرور المزيفة ويطلق إنذارًا إذا قام هو العسل

سل ، مع وجود قيود على عمليات إنشاء كلمات العةالسابق وثكلمات العسل خلال البح توليد طرقتم اقتراح العديد من كلمة مرور العسل.

سيقدم هذا العمل الخاصة بهم ، ونجاح محدود في توفير جميع ميزات كلمات العسل المطلوبة ، والتعرض للعديد من مشكلات كلمات العسل.

هي خوارزمية تحسين مستوحاة عنب البحرخوارزمية سرب عنب البحر المتقطعة. طريقة جديدة لتوليد كلمات العسل تستخدم خوارزمية سرب

لحل مجموعة متنوعة من مشاكل خوارزمية سرب عنب البحر تم استخدام في بيئتها الطبيعية. عنب البحر سربتحاكي سلوك من الأحياء

العسل والتغلب على اتوتحسين ميزات كلم توليد كلمات العسلعلى تحسين عملية قترحةالكلمات العسلية الم توليدالتحسين. ستعمل طريقة

ضح هذه الدراسة العديد من الاستراتيجيات السابقة لتوليد الكلمات العسلية، ووصف الطريقة المقترحة، وفحص ستو التقنيات السابقة. عيوب

 النتائج التجريبية، ومقارنة طريقة إنتاج كلمات العسل الجديدة بالطرق السابقة.

 خوارزمية السرب.كلمة المرور, كلمة العسل, خوارزمية عنب البحر, المصادقة,تاحية: فمالكلمات ال

