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Abstract: 
 In this paper, the deterministic and the stochastic models are proposed to study the interaction of the 

Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the 

basic reproduction number 𝑅0  determines the persistence or extinction of the COVID-19. If  𝑅0 < 1 , one 

infected cell will transmit the virus to less than one cell, as a result,  the person carrying the Coronavirus will 

get rid of the disease .If 𝑅0 > 1,  the infected cell  will be able to infect  all  cells that contain ACE receptors. 

The stochastic model proves that if 𝛼1 & 𝛼2  are sufficiently large then 𝛼1 & 𝛼2 maybe  give  us ultimate 

disease extinction although 𝑅0 > 1,  and this  facts also proved by computer simulation. 
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Introduction:   
Coronavirus (COVID-19) is deadly and 

infectious which attacks and weakens cells 

containing the angiotensin- converting enzyme 2 

(ACE-2) receptors, An example of these cells that 

the novel coronavirus disease attacks are the 

intestinal cells, myocardial cells, renal tubes, male 

reproductive cells, gallbladder, lungs, bronchi, and 

nasal mucosa. For this reason, the respiratory 

system is the first target organ, the heart scores 

second as an organ targeted by the Coronavirus. 

Until 13/2/2021 the total number of infected with 

COVID-19 around the world about (109156020) 

and almost (2406571) they have died since the first 

case by COVID-19 which appeared at the end of 

2019 in Wuhan, China1,2. Despite massive 

development in technology and medical equipment, 

Scientists still can't find a complete cure for the 

COVID-19 virus. To control the epidemic it is 

important to understand the dynamical behavior of 

COVID-19 and how its interaction with host cells 

in humans3−5. Mathematical models were 

developed to understand the dynamics of viral 

infections. The large amount of scientific research 

done on the model of  the interaction of 

Coronavirus with host cells in humans  has been 

largely restricted to ordinary differential equations 

(ODEs) 5−8.In our article will present  a stochastic 

differential equations model  for interaction 

(COVID-19) with host cells in humans. Several 

reasons motivated us to use stochastic differential 

equations models instead of deterministic equations. 

Real-life is random, not deterministic, especially 

when modeling the phenomenon of the spread of 

the Coronavirus for example internal COVID-19 

dynamics. This is because target cells that contain 

ACE-2 receptors that interacting with coronavirus 

particles In the same environmental conditions but 

give different outputs. This article presents the 

influence of introducing stochasticity on the 

deterministic mathematical model. The new method 

in mathematical modeling gave us  more accurate  

results than deterministic differential equations  

models, because   employment the stochastic 

differential equations model many times can build 

up a distribution of the predicted results, such as 

total numbers of infected cells with the coronavirus  

at time t, whereas the  deterministic differential 

equations  model  will introduce to us just one 

expected value9−12. The paper is organized as 

follows. Firstly present the deterministic model and 

Stochastic model for interaction coronavirus with 

cells that contain ACE-2 receptors. Secondly, 
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present the conditions required for persistence or 

extinction of COVID-19 and how the injured 

recovered with the virus. Then the main results 

present.  finally, the conclusions and references are 

listed. 

The Mathematical Model for Interaction 

(COVID-19) With Host Cells in Humans 

1.Deterministic Model 

Various mathematical models have been used to 

comprehend activity and movement coronavirus 

inside the human body. The simpler version 

includes three types: The dynamics of healthy target 

cells T(t), The  infected cells dynamics I(t), and  the 

dynamics of coronavirus  particles C(t). They can 

be described by using the following set of (ODEs).   
𝑑𝑇(𝑡)

𝑑𝑡
= G − 𝑛𝑇(𝑡) − 𝜎𝑇(𝑡)𝐶(𝑡),                     1 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜎𝑇(𝑡)𝐶(𝑡) − 𝑎𝐼(𝑡) ,                              2 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝑆aI(t) − βC(t) − σ𝑇(𝑡)𝐶(𝑡).             3 

If there is a vaccine that prevents the coronavirus 

particles from attaching to healthy host cells. In 

addition to a vaccine that prevents the compilation 

of the virus particles correctly and this leads to new 

COVID-19 that are weakly, and unable to 

reproduce, so the set of the deterministic model (1,2 

and 3) has the following form.                                                                                                                                        
𝑑𝑇(𝑡)

𝑑𝑡
= G − 𝑛𝑇(𝑡) − (1 − 𝑣)𝜎𝑇(𝑡)𝐶(𝑡),           4 

𝑑𝐼(𝑡)

𝑑𝑡
= (1 − 𝑣)σ𝑇(𝑡)𝐶(𝑡) − aI(t) ,                     5 

𝑑𝐶(𝑡)

𝑑𝑡
= (1 − 𝛾)𝑆aI(t) − βC(t)

− (1 − 𝑣)σ𝑇(𝑡)𝐶(𝑡).                  6 

Before infection(𝐼 =  0, 𝐶 =  0), uninfected target 

cells(T) are at the equilibrium 𝑇0 = 𝐺
𝑛 ⁄ . 

To estimate the infection, let use the basic 

reproductive number denoted by (𝑅0 ) which is the 

total expected number of secondary infections 

produced by the infected cell. If 𝑅0 < 1   this means 

any infected cell will transmission of infection to 

less than one cell and this give as the virus is 

cleared out .otherwise if 𝑅0 > 1  so each infected 

cell produces on averages more than one new 

infected cells and in this case, the infection grows 

and the disease can invade the all cells, for  model 4 

– 6 the basic  reproduction number will be as 

follows: 

𝑅0 =
(1−𝑣)𝜎𝐺𝑆(1−𝛾)

(𝑛𝛽+𝜎𝐺(1−𝑣)
 . 

2. Stochastic model  

The clearance rate of COVID-19 particles may be 

affected via several important factors for example 

binding and entry into cells that contain receptors 

(ACE-2). since death rates from COVID-19 

particles and target cells depend on many complex 

natural and biological phenomena, This made 

scientists believe that there is randomness in this 

death rate. This gives us important  motivation  to 

believe  that's  we can  insertion the stochastic  in 

the deaths  rate of  infected  cells and COVID-19 

particles. So the new system 4- 6 in the stochastic 

model will be as follows13−16.                                                                              

𝑑𝑇(𝑡) = (G − 𝑛𝑇(𝑡) − (1 − 𝑣)𝜎𝑇(𝑡)𝐶(𝑡))𝑑𝑡

+ 𝛼1𝑇(𝑡)𝑑𝑊1(𝑡),                            7 

𝑑𝐼(𝑡) = ((1 − 𝑣)σ𝑇(𝑡)𝐶(𝑡) − aI(t))dt 

+    𝛼1𝐼(𝑡)𝑑𝑊1(𝑡),                       8 

𝑑𝐶(𝑡) = ((1 − 𝛾)𝑆𝑎𝐼(𝑡) − 𝛽𝐶(𝑡) − (1 −

𝑣)𝜎𝑇(𝑡)𝐶(𝑡))𝑑𝑡 + 𝛼2𝐶(𝑡)𝑑𝑊2(𝑡).                         9  

The parameters in the system 1 - 9 are expressed in 

Table 1. 

 

Table 1. The parameters in the system 1 – 9. 

𝑻(𝒕) Are  cells that contain receptors ACE-

2 or   target cells 

𝑰(𝒕) Represent cells containing 

coronavirus particles after infection 

𝑪(𝒕) Represent  COVID-19  particles 

(𝟏 − 𝒗) Represent probability of vaccinated 

cells that prevents interaction between 

coronavirus particles and target cells 

(𝟏 − 𝜸) Represent probability of vaccinated 

cells that prevents the compilation of 

 the virus particles correctly or 

protease inhibitor vaccine. 

𝑮 It represents the number of healthy 

cells that the body produces per unit 

of time 

𝒏 Represents the rate of death of 

uninfected cells per unit of time 

𝝈 It represents the transmission 

coefficient of the virus into the host 

cells 

𝐚 Represents the death rate of infected 

cells  

𝑺 Are the total number of coronavirus 

produced from infected cells in the 

absence of a vaccine 

𝜷 It represents the rate of removal of 

COVID-19 particles per unit of time 

𝜶𝟏𝐚𝐧𝐝𝜶𝟐 Are parameters used to model the 

stochastic  in the evolution,  
𝑾𝟏(𝒕) 𝐚𝐧𝐝 𝑾𝟐(𝒕) It represents independent standard 

Brownian motions  which model  the 

stochastic  

ACE-2 Angiotensin-converting enzyme 2 

 

Asymptotic behavior of the Stochastic model  
To comprehend the Stochastic model 

behavior for interaction coronavirus with host cells 

in humans, it must for us study and present the 

conditions required for the elimination of the 



Open Access     Baghdad Science Journal                                P-ISSN: 2078-8665 

Published Online First: March 2022                 2022, 19(5): 1140-1147                                          E-ISSN: 2411-7986 

 

1142 

coronavirus, and heal the infected in the virus. i.e. 

when limt→∞ I(t) = 0, limt→∞ C(t) = 0,  
Theorem 1. When these conditions are satisfied 

 (1)   2[(1 − 𝛾)𝑆𝑎 − 𝑎] − 𝛼1
2 < 0, 

 (2)   [((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛽]2 < (𝛼2
2 + 2𝛽)(𝛼1

2 −

2[(1 − 𝛾)𝑆𝑎 − 𝑎]). 
This give limt→∞ I(t) = 0,   &  limt→∞ C(t) = 0,  in 

another meaning I(t) and C(t) will goes to their 

fixed point  exponentially  with Probability 1. 

Proof . By using  the Eqs 8 ,9 consider 𝑑(𝐼(𝑡) +
𝐶(𝑡))  

  𝑑(𝐼(𝑡) + 𝐶(𝑡)) = (1 − 𝑣)𝜎𝑇(𝑡)𝐶(𝑡) − 𝑎𝐼(𝑡) +
(1 − 𝛾)𝑆𝑎𝐼(𝑡) − 𝛽𝐶(𝑡) − (1 − 𝑣)σ𝑇(𝑡)𝐶(𝑡))𝑑𝑡 −
𝛼1𝐼(𝑡)𝑑𝑊1(𝑡) − 𝛼2𝐶(𝑡)𝑑𝑊2(𝑡). 
Let 𝑟 = (𝐼(𝑡), 𝐶(𝑡)) and Ψ(𝑟) = log(𝐼(𝑡) +
𝐶(𝑡)) for 𝐼(𝑡), 𝐶(𝑡) ∈ (0, ∞).    
Via using Ito's formula will  find  

𝑑Ψ(𝑟(𝑡)) = (
(1 − 𝛾)𝑆𝑎𝐼(𝑡)

𝐼(𝑡) + 𝐶(𝑡)
 −

𝑎𝐼(𝑡)

𝐼(𝑡) + 𝐶(𝑡)

−
𝛽𝐶(𝑡)

𝐼(𝑡) + 𝐶(𝑡)
−

1

2

𝛼1
2𝐼2(𝑡)

(𝐼(𝑡) + 𝐶(𝑡))
2

−
1

2

𝛼2
2𝐶2(𝑡)

(𝐼(𝑡) + 𝐶(𝑡))
2) 𝑑𝑡

−
𝛼1𝐼(𝑡)

𝐼(𝑡) + 𝐶(𝑡)
𝑑𝑊1(𝑡)

−
𝛼2𝐶(𝑡)

𝐼(𝑡) + 𝐶(𝑡)
𝑑𝑊2(𝑡). 

After simplifying will  find 

𝑑Ψ(𝑟(𝑡)) =
1

2(𝐼(𝑡)+𝐶(𝑡))2 (2(𝐼(𝑡) + 𝐶(𝑡))  ((1 −

𝛾)𝑆𝑎𝐼(𝑡) − 𝑎𝐼(𝑡) − 𝛽𝐶(𝑡)) − 𝛼1
2𝐼2(𝑡) −

𝛼2
2𝐶2(𝑡))𝑑𝑡 −

𝛼1𝐼(𝑡)

𝐼(𝑡)+𝐶(𝑡)
𝑑𝑊1(𝑡) −

𝛼2𝐶(𝑡)

𝐼(𝑡)+𝐶(𝑡)
𝑑𝑊2(𝑡) .  

When rewrite the term 

(2(𝐼(𝑡) + 𝐶(𝑡))((1 − 𝛾)𝑆𝑎𝐼(𝑡) − 𝑎𝐼(𝑡) −

𝛽𝐶(𝑡)) − 𝛼1
2𝐼2(𝑡) − 𝛼2

2𝐶2(𝑡)), 

In the following method  

  

(𝐼(𝑡)    𝐶(𝑡) ) (
2((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛼1

2         ((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛽

((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛽                                  − 2𝛽 − 𝛼2
2

) (
𝐼(𝑡)
𝐶(𝑡)

) , 

So let us write  𝑑Ψ(𝑟(𝑡)     as follows   

𝑑Ψ(𝑟(𝑡)) =
1

2(𝐼(𝑡) + 𝐶(𝑡))2 {(𝐼(𝑡)    𝐶(𝑡) ) (
2((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛼1

2   ((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛽

((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛽                     − 2𝛽 − 𝛼2
2

) (
𝐼(𝑡)

𝐶(𝑡)
)} 𝑑𝑡 

 

−
𝛼1𝐼(𝑡)

𝐼(𝑡) + 𝐶(𝑡)
𝑑𝑊1(𝑡) −

𝛼2𝐶(𝑡)

𝐼(𝑡) + 𝐶(𝑡)
𝑑𝑊2(𝑡). 

let us consider the matrix  

 (
2((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛼1

2   ((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛽

((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛽                     − 2𝛽 − 𝛼2
2

). 

Because the above matrix is not positive – 

determinant  with main eigenvalue is negative 𝐺𝑚𝑎𝑥 

so:  

 

(𝐼(𝑡)    𝐶(𝑡) ) (
2((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛼1

2       ((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛽

((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛽                          − 2𝛽 − 𝛼2
2

) (
𝐼(𝑡)

𝐶(𝑡)
) 

 

 

≤ 𝐺𝑚𝑎𝑥(𝐼2(𝑡) + 𝐶2(𝑡))

= −|𝐺𝑚𝑎𝑥|(𝐼2(𝑡) + 𝐶2(𝑡))   . 
Therefore  

𝑑Ψ(𝑟(𝑡)) ≤ (−|𝐺𝑚𝑎𝑥|
1

2(𝐼(𝑡) + 𝐶(𝑡))2 (𝐼2(𝑡)

+ 𝐶2(𝑡))) 𝑑𝑡

−
𝛼1𝐼(𝑡)

𝐼(𝑡) + 𝐶(𝑡)
𝑑𝑊1(𝑡)

−
𝛼2𝐶(𝑡)

𝐼(𝑡) + 𝐶(𝑡)
𝑑𝑊2(𝑡)  .       10 

Since   
(𝐼2(𝑡)+𝐶2(𝑡))

2
≥ 𝐼(𝑡)𝐶(𝑡)  will write  

−(𝐼2(𝑡) + 𝐶2(𝑡)) ≤ −
(𝐼+𝐶)2

2
.  

When substituting this in inequality 10 will find 

𝑑𝛹(𝑟(𝑡)) ≤ −
1

4
|𝐺𝑚𝑎𝑥|𝑑𝑡 −

𝛼1𝐼(𝑡)

𝐼(𝑡) + 𝐶(𝑡)
𝑑𝑊1(𝑡)

−
𝛼2𝐶(𝑡)

𝐼(𝑡) + 𝐶(𝑡)
𝑑𝑊2(𝑡) ,         

  𝑑(log( 𝐼(𝑡) + 𝐶(𝑡)) ≤ −
1

4
 |𝐺𝑚𝑎𝑥|𝑑𝑡 −

𝛼1𝐼(𝑡)

𝐼(𝑡)+𝐶(𝑡)
𝑑𝑊1(𝑡) −

𝛼2𝐶(𝑡)

𝐼(𝑡)+𝐶(𝑡)
𝑑𝑊2(𝑡) , 

By  integrate the last  inequality and by use  the 

large number theorem17,will find  

lim sup
𝒕→∞

1

𝑡
|𝑊𝑖(𝑡)| = 0,    for 𝑖 = 1,2          
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Will  get  

lim sup
𝒕→∞

1

𝑡
log(𝐼(𝑡) + 𝐶(𝑡)) ≤ −

1

4
|𝐺𝑚𝑎𝑥| < 0 . 

This gives us 

limt→∞ I(t) = 0,    and  limt→∞ C(t) = 0.   ∎ 
So  the conditions of Theorem1 will always be 

achieved  when 𝛼1
2  &  𝛼2

2 are sufficiently large, 

then  𝛼1
2  & 𝛼2

2  give us ultimate disease extinction 

although  𝑅0 > 1 . We now concentrate on T(t) ,and 

will prove that how T(t) is expansively stable in 

distribution about the expected value 𝐺 𝑛⁄ . To make 

this possible will present the stochastic process 𝜑(𝑡) 

which may be defined by its primary 

condition 𝜑(0) = 𝑇(0) and (SDE) 

 𝑑𝜑(𝑡) =  (𝐺 − 𝑛𝜑(𝑡))𝑑𝑡 − 𝛼1𝜑(𝑡)𝑑𝑊1(𝑡)     

  

We have to show that at the end as 𝑡  becomes large  

𝑇(𝑡) can be approached by  𝜑(𝑡) so lim𝑡→∞(𝜑(𝑡) −
𝑇(𝑡) = 0, 
To proof  this we'll present another function 𝑍𝜖(𝑡) 

which defined  by the condition 𝑍𝜖(𝑡) = 𝑇(0) and  

(SDE).  

𝑑𝑍𝜖(𝑡) =  (𝐺 − (𝑛 +  𝜖)𝑍𝜖(𝑡))𝑑𝑡

− 𝛼1𝑍𝜖(𝑡)𝑑𝑊1(𝑡).                      11 
Theorem.2. When these two conditions 

are  satisfied13. 

(1)      2[(1 − 𝛾)𝑆𝑎 − 𝑎] − 𝛼1
2 < 0,                (1)   2[(1 − 𝛾)𝑆𝑎 − 𝑎] − 𝛼1

2 < 0, 

 (2)    [((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛽]2 < (𝛼2
2 + 2𝛽)(𝛼1

2 −

2[(1 − 𝛾)𝑆𝑎 − 𝑎])   . 
This gives 

lim
𝑡→∞

(𝜑(𝑡) − 𝑇(𝑡)) = 0 .   
 

Main results: 
In this part of the article, we'll prove the analytical 

results obtained from theories (1 and 2)by  using 

computer simulations. Note that by the theoretically 

results I(t) &C(t)  are exponentially stable 

and lim
t→∞

I(t) = 0,    &  limt→∞ C(t) = 0,  

Theorem 1 are met, although R0 > 1. Also   can 

find the value of T(t) by  φ(t) where φ(t) is the 

average return process . Note the computer 

simulation program was written using Matlab by the 

Euler method and the outputs were verified through 

run them extensively and repeatedly.                                                                                            

 Example 1: If choose the values of the parameters 

as:                                                                                 

σ = 1 × 10−12day−1, G = 1010day−1, S =
1 per cell , v = 0.5, γ = 0.5, a = 0.6 day−1, n =
1day−1, and β = 1day−1. The initial values were  

T(0) = 1000000dm−1, I(0) =
1000000dm−1and C(0) = 1000000dm−1. if α1 =
α2 = 1  
To prove the conditions presented by Theorem 1 are 

satisfied let us take the first condition 

2[(1 − 0.5)(1)(0.6) − 0.6] − 1 = −1.6 < 0 , 
The second condition 

[((1 − 𝛾)𝑆𝑎 − 𝑎) − 𝛽]2

< (𝛼2
2 + 2𝛽)(𝛼1

2

− 2[(1 − 𝛾)𝑆𝑎 − 𝑎])  
Since 

 [((1 − γ)Sa − a) − β]2 = 1.69 &(α2
2 + 2β)(α1

2 −

2[(1 − γ)Sa − a]) = 4.8  

R0 =
(1−v)σGS(1−γ)

(nβ+σG(1−v)
=

0.5∗0.01∗0.5

(1∗1+0.01∗0.5)
=  

0.0025

1.005
=

0.0024876. 

So by substitution the parameter values in Eq.8 

  dI(t) = ((1 − 𝑣)σT(t)C(t) − aI(t))dt +

α1I(t)dW1(t),     
and solve the resulting equation by apply Ito's 

formula14, which will find the stochastic solution 

as  I(t) = 106 e(−0.6)t and the deterministic solution 

I(t) = 106e(−0.1)t .So the infected cells I(t) go to 

zero exponentially in case  t → ∞, 
The computer simulation programs Fig. 1, by using 

MATLAB, support these results clearly

If the two conditions presented in  

 
(a)                                                                 (b) 

Figure 1. Computer simulation programs the infected cells goes  to zero exponentially in case 𝒕 → ∞ 

(a)Stochastic model  (b) Deterministic model when  𝑹𝟎 < 𝟏, 
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When taking the Eq.9 

dC(t) = ((1 − γ)SaI(t) − βC(t)

− (1 − v)σT(t)C(t))dt

+ α2C(t)dW2(t),    
Also by substituting the parameter values in Eq.9 

and solve the resulting equation by using Ito's 

formula, will find the stochastic solution of Eq.9 as: 

C(t) = 106   e−1.42t  and deterministc  

solution C(t) =
106 e−0.7t , so the virus particles  C(t) goes to zero  
exponentially in case t → ∞.   The computer 

simulation in Fig. 2, by using the Euler Maruyama 

method (EM), support these results clearly. 

 

 
 

           (a)                                                                              (b) 

Figure 2. Computer simulation programs the virus particles goes to zero exponentially in case  𝒕 → ∞ 

(a) Deterministic model when  𝑹𝟎 < 𝟏, (b) stochastic model 

 

when taking the Eq.7  

dT(t) = (G − nT(t) − (1 − 𝑣)σT(t)C(t))dt

+ α1T(t)dW1(t), 
So  by substitution,  the parameter values in Eq. 7 

and by  using  Ito's formula14 ,will find  the 

stochastic solution of Eq.7as follows,T(t) =

106e999998t and deterministic solution will be as ∶
   
T(t) = 106e999998.5t , So the healthy cells T(t) will 

not go to zero exponentially in case  t → ∞. This 

means the person with the virus has recovered. The 

simulation programs in Fig. 3, support these results. 

         
                                    (a)                                                                            (b)                

Figure 3. Computer simulation programs the healthy cells do not go to zero exponentially in case 

𝒕 → ∞(a) Deterministic model when  𝑹𝟎 < 𝟏 ,  (b) stochastic model. 

                                     

Example 2: To illustrate the environmental 

stochastic effects let us choose the parameters as: 
σ = 1 × 10−8day−1, G = 106day−1, S =
2 per cell , v = 0.4, γ = 0.3, a = 0.5day−1, n =
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0.1day−1, and β = 0.01day−1.The initial values 

were  

T(0) = 10000dm−1, I(0) =
10000dm−1and C(0) = 10000dm−1. if α1 =
1    &   α2 = 1.2  
To  prove the  conditions presented by Theorem 1 

are satisfied let us take the first condition  

2[(0.7)(2)(0.5) − 0.5] − 1 = −0.6 < 0 , 
The second condition  

[((1 − γ)Sa − a) − β]2

< (α2
2 + 2β)(α1

2

− 2[(1 − γ)Sa − a]) 

Since [((1 − γ)Sa − a) − β]2 = 0.0361 &(α2
2 +

2β)(α1
2 − 2[(1 − γ)Sa − a]) = 0.876  

 R0 =
0.6∗10−8∗106∗2∗0.7

0.1∗0.01+10−8∗106∗0.6
= 1.2 > 1, 

When taking the Eq.8 :   dI(t) = ((1 −

𝑣)σT(t)C(t) − aI(t))dt + α1I(t)dW1(t),         
So by substitution the parameter values in Eq.8 and 

by using Ito's formula14, will  find  the stochastic  

solution as : I(t) = 104e−0.4t  and the deterministic 

solution as I(t) =  104   e0.1t 

So the infected cells (I(t) ) go to zero exponentially 

in case t → ∞ in stochastic model but not 
 in deterministic model.The simulation programs 

in Fig. 4, by using MATLAB, support these results. 

 

 
(a)                                                                                  (b)   

Figure 4. Computer simulation programs infected cells not go to zero exponentially in case 𝒕 → ∞ 

In (a) Deterministic model when  𝑹𝟎 > 𝟏, but tend to zero exponentially as 𝒕 → ∞ in(b) stochastic 

model 

When taking  the Eq.9 

dC(t) = ((1 − γ)SaI(t) − βC(t)

− (1 − 𝑣)σT(t)C(t))dt

+ 𝛼2C(t)dW2(t), 
Also  by substitution,  the parameter values in Eq.9 

and by using Ito's formula14, will find the 

stochastic  solution of  Eq.9   

Is C(t) =  104e−0.03006t  and deterministic solution 

equal to C(t) = 104e0.68994t, so the virus particles 

C(t) goes to zero exponentially in case t → ∞  

in stochastic model but not in deterministic model. 

The computer simulation programs Fig.5, support 

these results.   

 
(a)                                                                        (b) 

Figure 5. Computer simulation programs the virus particles do not go to zero exponentially in case  

𝒕 → ∞, In(a) Deterministic model when  𝑹𝟎  > 𝟏, but  the virus particles goes to zero exponentially in 

case 𝒕 → ∞ In(b) stochastic model. 
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when taking the Eq.7

dT(t) = (G − nT(t) − (1 − 𝑣)σT(t)C(t))dt +

α1T(t)dW1(t)  

So by substitution, the parameter values in Eq.7 and 

by using Ito's formula, will find the stochastic 

solution of Eq.7 as T(t) =  104e999999.3t, and the 

deterministic solution is T(t) =  104e999999.8t.     
 

 
(a)                                                                             (b) 

Figure 6. Computer simulation programs the uninfected cells does not go to zero exponentially as 

𝒕 → ∞ (a) Deterministic model when  𝑹𝟎 > 𝟏, (b) stochastic model. 

 

 

Conclusions: 
This paper introduced environmental 

stochasticity into the deterministic model also 

explored the properties of  COVID-19 and how the 

disease  spreads inside the human body,  through its 

interaction with cells that contain receptors for the 

ACE-2. As well in this paper, we construct the basic 

reproduction number R0  and conditions required 

for extinction or  persistence COVID-19. In general 

in the deterministic model if  R0 < 1, the disease 

will die out the injured person will be cured .If 

R0 > 1  the disease will persist. In stochastic model 

prove that anyone infected with the Coronavirus can 

recover if the stochastic variance α1
2  and α2

2   are 

big sufficient this gives us  limt→∞ I(t) =
0, limt→∞ C(t) = 0 and limt→∞ T(t) =
G

n
 although R0 > 1. 

The computer simulation Figures1,2,3,4,5 and 6, 

support these results. 
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( مع الخلايا المضيفة في البشر19-مقارنة بين النموذج الحتمي والتصادفي لتفاعل )كوفيد  

 
أحمد مرشد كريم

1
سعد ناجي العزاوي      

2
 

 
قسم الرياضيات، كلية العلوم، جامعة ديالى، ديالى، العراق 

1 

2
  قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق  

 

 الخلاصة :
( مع الخلايا المضيفة داخل جسم 19-في هذا البحث ،تم اقتراح النموذج الحتمي والعشوائي لدراسة تفاعل فيروس كورونا )كوفيد   

.اذا كان رقم الاستنساخ الأساسي أقل من 19-استمرار أو انقراض كوفيد  الأساسي الاستنساخ رقمالانسان  .في النموذج الحتمي تحدد قيمة 

واحد   فأن خلية واحدة مصابة ستصيب أقل من خلية واحدة ،وهذا يعني ان الشخص الذي يحمل فيروس كورونا قد تم شفاؤه. اذا كان رقم 

على مجموعة الخلايا المستهدفة .في النموذج التصادفي ، نثبت الاستنساخ الاساسي اكبر من واحد  ستكون الخلية المصابة قادرة على القضاء 

 أنه اذا كانت المعلمات التصادفية  كبيرة بدرجة كافية فأن هذه المعلمات التصادفية تعطينا  الانقراض النهائي للمرض على الرغم من رقم

 محاكاة الحاسوبية.                                                                  الاستنساخ الاساسي اكبر من واحد . وقد تم أثبات هذه الحقائق أيضا من خلال ال

 

النموذج التصادفي,  19-حركة كوفيد ,محاكاة الكمبيوتر ,رقم الاستنساخ الأساسي: الكلمات المفتاحية  

 
 


