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Abstract:   
This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in 

two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the 

Crank-Nicolson finite difference equation is derived.  In addition, the consistency and stability of the Crank-

Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of 

the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The 

analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the 

solutions are stable with small space-steps and at any time levels.      
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Introduction:  
This work is concerned with the two-

dimensional vorticity-transport-equation (VTE), 

which is a nonlinear time-dependent partial 

differential equation:  

 
𝜕𝜔

𝜕𝑡
=

1

𝑅
(

𝜕2𝜔

𝜕𝑥2 +
𝜕2𝜔

𝜕𝑦2) − (
𝜕𝜓

𝜕𝑦
) (

𝜕𝜔

𝜕𝑥
) + (

𝜕𝜓

𝜕𝑥
) (

𝜕𝜔

𝜕𝑦
), (1)                                      

𝜔 = − (
𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2)  ,                                        (2) 

   for (𝑥, 𝑦) ∈ 𝐷, 𝑡 > 0, 

with the following initial and boundary conditions: 

  𝜔(𝑥, 𝑦, 0) = 𝜔0(𝑥, 𝑦),    𝜓(𝑥, 𝑦, 0) = 𝜓0(𝑥, 𝑦), (3) 
(𝑥, 𝑦) ∈ 𝐷, 𝑡 > 0 , 

         𝜔(𝑥, 𝑦, 𝑡) = 𝜓(𝑥, 𝑦, 𝑡) = 0,                          (4) 

(𝑥, 𝑦) ∈ 𝜕𝐷    , 𝑡 > 0  , 
where  𝜔 refers to the vorticity function, and 

𝜓 refers to the stream function, and  𝑅 > 0 is the 

Reynolds number; 𝐷 = {(𝑥, 𝑦):  𝑎 < 𝑥 < 𝑏;   𝑎 <
𝑦 < 𝑏}; and 𝜕𝐷 = {(𝑎, 𝑦), (𝑏, 𝑦), (𝑥, 𝑎), (𝑥, 𝑏)}; and  

 𝜔0, 𝜓0 are smooth nonnegative functions satisfying 

equation (2).  

Due to the various applications of time-dependent 

partial differential equations in various fields of 

science, since last century, many authors have been 

interested in studying the analytical and numerical 

solutions of such types of problems including linear 

equations, nonlinear equations, partial integro-

differential equations, and time-space fractional-

order partial differential equations, see for instance 
1-5

. In fluid dynamics, the numerical solutions of 

various Mathematical models, including problem 

(1)-(2), have been studied by some authors, see for 

instance 
6,7

.        

It is known that problem (1)-(2) is used to 

study the unsteady flow problem in two-

dimensional space. In other words, it can be used 

for solving the two-dimensional viscous 

incompressible flow. In addition, the two-

dimensional vorticity transport equation can be used 

in some applications, such as analysis of laminar to 

turbulent flow transition, studies on free and mixed 

convection and the modeling of turbulent flows. For 

more details about the importance, derivation and 

the applications of this problem, see 
8,9

.  

In fact, this problem cannot be solved 

analytically due to the nonlinear terms that appear 

in equation (1). So that since the last decades, 

problem (1)-(2), with different initial-boundary 

conditions, has been solved numerically by some 

authors using several methods, such as the Petrov-

Galerkin finite element method 
10

, finite difference 

schemes, see for instance 
11-16

, and the boundary-

domain integral method 
17

. Because of the poor 

stability properties of explicit finite difference 
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methods, the implicit methods are more 

recommended to compute the numerical solutions 

of initial-boundary value problems in two or more 

dimensions-space. The Crank-Nicolson method is 

one of the most recommended implicit methods for 

solving many types of second order linear problems 

with constant coefficients due to its high order of 

convergence and unconditional stability. However, 

it is not always guaranteed that Crank- Nicolson 

method is stable and applicable for other types of 

problems such as nonlinear problems, problems 

with variable coefficients and problems with 

nonlinear boundary conditions. In this work, the 

Crank-Nicolson finite difference scheme is used to 

solve problem (1)-(4). Moreover, it is shown that 

the proposed scheme is consistent and stable. 

         This paper is divided into seven sections. In 

the second section, the discrete formulas of 

equations (1) and (2), using Crank-Nicolson 

scheme, are derived. In the third section, the matrix 

forms of the Crank-Nicolson finite difference 

equations are presented. The consistency of the 

discrete difference equations is studied in the fourth 

section. In the fifth section, the stability condition 

for the matrices form is discussed. In the sixth 

section, the Crank-Nicolson discrete scheme is used 

to compute the numerical solutions of problem (1)-

(4) with a certain initial function and a fixed value 

to the Reynolds number. Moreover, the numerical 

simulations for the vorticity and stream functions 

are shown in two-dimensional spaces and at 

different time levels. Finally, some conclusions and 

future works are stated in the seventh section.        

 

The Discrete Problem  

   For convenient computations, let ℎ  refers to the 

space-step in 𝑥 and 𝑦 directions. In addition, let  𝑘 

refers to the time-step, such that:    

    𝑥0 = 𝑎, 𝑥𝑖 = 𝑥0 + 𝑖ℎ ,     𝑥𝑚 = 𝑏 ,   
   𝑦0 = 𝑎, 𝑦𝑖 = 𝑦0 + 𝑗ℎ ,    𝑦𝑚 = 𝑏 , 
 for   ℎ = (𝑏 − 𝑎)/𝑚  ;    𝑖, 𝑗 = 1,2,3, … 𝑚 − 1, 

 and  𝑡𝑛 = 𝑛𝑘  ,   for  𝑘 > 0   ;   𝑛 = 0,1,2 , ….      
Consider that 𝜔𝑖,𝑗

𝑛  and 𝜓𝑖,𝑗
𝑛  are the approximate 

values to 𝜔(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛) and 𝜓(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛), 

respectively.   

In addition, the discrete-space 𝐷𝑖,𝑗
𝑛 , is defined as 

follows: 

𝐷𝑖,𝑗
𝑛 = { (𝑥𝑖, 𝑦𝑗 , 𝑡𝑛);  𝑖, 𝑗 = 0,1,2 … 𝑚 ; 𝑛 ≥ 0 } 

Taking Taylor expansion to 𝜔(𝑥, 𝑦, (𝑛 + 1)𝑘) 

about 𝜔(𝑥, 𝑦, 𝑛𝑘),  it follows: 

𝜔(𝑥, 𝑦, (𝑛 + 1)𝑘)= 

(1 + 𝑘
𝜕

𝜕𝑡
+

𝑘2

2

𝜕2

𝜕𝑡2
+ ⋯ ) 𝜔(𝑥, 𝑦, 𝑛𝑘). 

This implies that                

 𝜔(𝑥, 𝑦, (𝑛 + 1)𝑘) = exp (𝑘
𝜕

𝜕𝑡
)𝜔(𝑥, 𝑦, 𝑛𝑘)           

(5) 

The last equation can be rewritten as follows: 

          exp (−
𝑘

2

𝜕

𝜕𝑡
) 𝜔(𝑥, 𝑦, (𝑛 + 1)𝑘)

= exp (
𝑘

2

𝜕

𝜕𝑡
) 𝜔(𝑥, 𝑦, 𝑛𝑘) 

By equation (1), the last equation becomes: 

exp (−
𝑘

2
[
1

𝑅
(

𝜕2

𝑥2
+

𝜕2

𝑦2) −
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥

+
𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
]) 𝜔(𝑥, 𝑦, (𝑛 + 1)𝑘) 

= exp (
𝑘

2
[
1

𝑅
(

𝜕2

𝑥2
+

𝜕2

𝑦2) −
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥

+
𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
]) 𝜔(𝑥, 𝑦, 𝑛𝑘) 

    Next, the partial derivatives 𝜔𝑥 , 𝜓𝑥  ,  𝜔𝑦 and 𝜓𝑦 

are approximated by the first-order central finite 

difference operators, 𝛿𝑥  , 𝛿𝑦,  and the partial 

derivatives, 𝜔𝑥𝑥 , 𝜔𝑦𝑦 are approximated by the 

second-order central finite difference operators, 

𝛿2
𝑥 , 𝛿2

𝑦,  respectively, and 𝜔, 𝜓,  are replaced by 

𝜔𝑖,𝑗
𝑛  , 𝜓𝑖,𝑗

𝑛 , respectively, then the above equation 

becomes:  

exp (−
𝑘

2
[
1

𝑅
(

𝛿2
𝑥

ℎ2
+

𝛿2
𝑦

ℎ2 ) − (
𝛿𝑦𝜓𝑖,𝑗

𝑛

2ℎ
) (

𝛿𝑥

2ℎ
)

+ (
𝛿𝑥𝜓𝑖,𝑗

𝑛

2ℎ
) (

𝛿𝑦

2ℎ
)]) 𝜔𝑖,𝑗

𝑛+1 

= exp (
𝑘

2
[
1

𝑅
(

𝛿2
𝑥

ℎ2
+

𝛿2
𝑦

ℎ2 ) − (
𝛿𝑦𝜓𝑖,𝑗

𝑛

2ℎ
) (

𝛿𝑥

2ℎ
)

+ (
𝛿𝑥𝜓𝑖,𝑗

𝑛

2ℎ
) (

𝛿𝑦

2ℎ
)]) 𝜔𝑖,𝑗

𝑛  

For simplicity, the last equation can be rewritten as 

follows: 

exp (−
𝑟

2𝑅
(𝛿2

𝑥 + 𝛿2
𝑦) +

𝑟

8
(𝛿𝑦𝜓𝑖,𝑗

𝑛 )(𝛿𝑥)

−
𝑟

8
(𝛿𝑥𝜓𝑖,𝑗

𝑛 )(𝛿𝑦)) 𝜔𝑖,𝑗
𝑛+1 

= exp (
𝑟

2𝑅
(𝛿2

𝑥 + 𝛿2
𝑦) −

𝑟

8
(𝛿𝑦𝜓𝑖,𝑗

𝑛 )(𝛿𝑥) +

𝑟

8
(𝛿𝑥𝜓𝑖,𝑗

𝑛 )(𝛿𝑦)) 𝜔𝑖,𝑗
𝑛   ,          

where  𝑟 = 𝑘/ℎ2 . 

Taking the Taylor expansion for each side 

in the above equation, and truncating after second 

terms yield that:  

(1 −
𝑟

2𝑅
(𝛿2

𝑥 + 𝛿2
𝑦) +

𝑟

8
(𝛿𝑦𝜓𝑖,𝑗

𝑛 )(𝛿𝑥)

−
𝑟

8
(𝛿𝑥𝜓𝑖,𝑗

𝑛 )(𝛿𝑦)) 𝜔𝑖,𝑗
𝑛+1 = 
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(1 +
𝑟

2𝑅
(𝛿2

𝑥 + 𝛿2
𝑦) −

𝑟

8
(𝛿𝑦𝜓𝑖,𝑗

𝑛 )(𝛿𝑥) +

𝑟

8
(𝛿𝑥𝜓𝑖,𝑗

𝑛 )(𝛿𝑦)) 𝜔𝑖,𝑗
𝑛                              (6) 

𝑖, 𝑗 = 1,2,3, … . . 𝑚 − 1;     𝑛 = 0,1,2, …. 
Next, the spatial derivatives in equation (2) are 

approximated by the central finite difference 

operator of second order as follows:  

𝜔𝑖,𝑗
𝑛 = − (

𝛿2
𝑥𝜓𝑖,𝑗

𝑛

ℎ2 +
𝛿2

𝑦𝜓𝑖,𝑗
𝑛

ℎ2 )                  (7) 

For simplicity, equations (6) and (7) can be 

rewritten as follows: 

(1 +
2𝑟

𝑅
) 𝜔𝑖,𝑗

𝑛+1 −
𝑟

2𝑅
(𝜔𝑖+1,𝑗

𝑛+1 + 𝜔𝑖−1,𝑗
𝑛+1 + 𝜔𝑖,𝑗+1

𝑛+1

+ 𝜔𝑖,𝑗−1
𝑛+1 ) 

+
𝑟

8
(𝜓𝑖,𝑗+1

𝑛 − 𝜓𝑖,𝑗−1
𝑛 )(𝜔𝑖+1,𝑗

𝑛+1 − 𝜔𝑖−1,𝑗
𝑛+1 ) 

−
𝑟

8
(𝜓𝑖+1,𝑗

𝑛 − 𝜓𝑖−1,𝑗
𝑛 )(𝜔𝑖,𝑗+1

𝑛+1 − 𝜔𝑖,𝑗−1
𝑛+1 ) 

= (1 −
2𝑟

𝑅
) 𝜔𝑖,𝑗

𝑛 +
𝑟

2𝑅
(𝜔𝑖+1,𝑗

𝑛 + 𝜔𝑖−1,𝑗
𝑛 + 𝜔𝑖,𝑗+1

𝑛

+ 𝜔𝑖,𝑗−1
𝑛 ) 

−
𝑟

8
(𝜓𝑖,𝑗+1

𝑛 − 𝜓𝑖,𝑗−1
𝑛 )(𝜔𝑖+1,𝑗

𝑛 − 𝜔𝑖−1,𝑗
𝑛 ) 

+
𝑟

8
(𝜓𝑖+1,𝑗

𝑛 − 𝜓𝑖−1,𝑗
𝑛 )(𝜔𝑖,𝑗+1

𝑛 − 𝜔𝑖,𝑗−1
𝑛 ), 

and                         
 −ℎ2𝜔𝑖,𝑗

𝑛 = 𝜓𝑖+1,𝑗
𝑛 + 𝜓𝑖−1,𝑗

𝑛 + 𝜓𝑖,𝑗+1
𝑛 + 𝜓𝑖,𝑗−1

𝑛 −

4𝜓𝑖,𝑗
𝑛   ,                                    

 𝑖, 𝑗 = 1,2,3, … . . 𝑚 − 1;     𝑛 = 0,1,2, …. 
Finally, in the discrete space, 𝐷𝑖,𝑗

𝑛   , the initial-

boundary conditions (3) and (4) become:        

𝜔𝑖,𝑗
0 = 𝜔0(𝑥𝑖, 𝑦𝑖),    𝜓𝑖,𝑗

0 = 𝜓0(𝑥𝑖, 𝑦𝑖),  (8)                         

    𝑖, 𝑗 = 0,1,2, … … . 𝑚 

𝜔0,𝑗
𝑛 = 𝜔𝑚,𝑗

𝑛 = 𝜔𝑖,0
𝑛 = 𝜔𝑖,𝑚

𝑛 = 0 ,   (9)                            

   𝜓0,𝑗
𝑛 = 𝜓𝑚,𝑗

𝑛 = 𝜓𝑖,0
𝑛 = 𝜓𝑖,𝑚

𝑛 = 0,   (10)                             

  𝑖, 𝑗 = 1,2,3, … … . 𝑚 − 1 , 𝑛 > 0 

 

The Matrix Form 

  The difference equations (6) and (7) of Crank-

Nicolson method can be presented in matrix form as 

follows: 

(𝐼 −
𝑟

2𝑅
𝐶 +

𝑟

8
 𝑉2

𝑛𝐴 −
𝑟

8
 𝑉1

𝑛𝐵) 𝜔𝑛+1 = 

(𝐼 +
𝑟

2𝑅
𝐶 −

𝑟

8
 𝑉2

𝑛𝐴 +
𝑟

8
 𝑉1

𝑛𝐵) 𝜔𝑛,     (11) 

         −ℎ2𝜔𝑛 = 𝐶𝜓𝑛  ,       𝑛 = 0,1,2, ….     (12) 

            where   𝑉1
𝑛 = 𝐴𝜓𝑛 , 𝑉2

𝑛 = 𝐵𝜓𝑛,        (13)                                                                       

𝜔𝑛 = (𝜔1,1
𝑛 , 𝜔2,1

𝑛 , … , 𝜔𝑚−1,1
𝑛 ;  𝜔1,2

𝑛 , 

 𝜔2,2
𝑛 , … , 𝜔𝑚−1,2

𝑛 ; … . ; 𝜔1,𝑚−1
𝑛 , 𝜔2,𝑚−1

𝑛 , … , 𝜔𝑚−1,𝑚−1
𝑛 )

,   (14) 

𝜓𝑛 =

(
𝜓1,1

𝑛 , 𝜓2,1
𝑛 , … , 𝜓𝑚−1,1 

𝑛 ;  𝜓1,2
𝑛 , 𝑤2,2

𝑛 ,

… , 𝜓𝑚−1,2
𝑛 ; … . ; 𝜓1,𝑚−1

𝑛 , 𝜓2,𝑚−1
𝑛 , … , 𝜓𝑚−1,𝑚−1

𝑛 ),  

 (15)          

       𝑀1, 𝑀2, 𝐴 and 𝐵 take the following forms: 

𝐴 = [

      0         𝐼1             0   
−𝐼1         0    𝐼1       

 
        ⋱

 0                  − 𝐼1   0

]

(𝑚−1)2×(𝑚−1)2

 

𝐵 = [

𝐵1                      0 
  𝐵1      

 
     ⋱

 0                    𝐵1

]

(𝑚−1)2×(𝑚−1)2

, 

                                

𝐵1 = [

    0     1             0   
−1      0    1            

 
         ⋱

 0             − 1    0

]

(𝑚−1)×(𝑚−1)

 

𝐶 = [

      𝐶1         𝐼1             0   
𝐼1         𝐶1    𝐼1       

 
        ⋱

 0                     𝐼1   𝐶1

]

(𝑚−1)2×(𝑚−1)2

,   

                               

𝐶1 = [

 −4       1                0   
 1   − 4    1            

 
  ⋱

 0                 1   − 4

]

(𝑚−1)×(𝑚−1)

, 

and 𝐼, 𝐼1 are the identity matrices of order (𝑚 − 1)2,  

(𝑚 − 1) , respectively.  

Remark 1 At each advance time level (𝑛 +1), to 

find the numerical solution of problem (1)-(4) using 

Crank-Nicolson discrete scheme (6) and (7), the 

following procedure is applied:  

 Solve the linear system (12), to compute the 

vector  𝜓𝑛 . 

 By (13), find the vectors  𝑉1
𝑛 , 𝑉2

𝑛  .  
 Substitute  𝑉1

𝑛 , 𝑉2
𝑛 in (11) and solve the 

resulting linear system (11), to obtain the 

solution 𝜔𝑛+1 .  

 

Consistency of the Discrete Problem 

In this section, the local truncation errors 

(consistency errors) of the Crank-Nicolson discrete 

difference equations are estimated. In addition, the 

orders of accuracy are shown.  

Theorem 1 Let 𝑇𝑖,𝑗
𝑛  and �̂�𝑖,𝑗

𝑛  be the local-truncation-

errors, at a mesh point (𝑥𝑖 , 𝑦𝑗, 𝑡𝑛) , of the discrete 

equations (6) and (7), respectively. There are 

positive constants 𝐶1, 𝐶2, 𝐶3, such that:              

|𝑇𝑖,𝑗
𝑛 | ≤ 𝐶1𝑘2 + 𝐶2𝑘ℎ2      ,   | �̂�𝑖,𝑗

𝑛 | ≤ 𝐶3ℎ2. 

Proof: Set      𝜔|𝑖,𝑗
𝑛 = 𝜔(𝑥𝑖 , 𝑦𝑗, 𝑡𝑛),  

                      𝜓|𝑖,𝑗
𝑛 = 𝜓(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛), 

By the Crank-Nicolson difference equation (6), it 

follows that  
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𝑇𝑖,𝑗
𝑛 = (

1 −
𝑟

2𝑅
(𝛿2

𝑥 + 𝛿2
𝑦)

+
𝑟

8
(𝛿𝑦𝜓|𝑖,𝑗

𝑛 )(𝛿𝑥) −
𝑟

8
(𝛿𝑥𝜓|𝑖,𝑗

𝑛 )(𝛿𝑦)
) 𝜔|𝑖,𝑗

𝑛+1

− (1 +
𝑟

2𝑅
(𝛿2

𝑥 + 𝛿2
𝑦) −

𝑟

8
(𝛿𝑦𝜓|𝑖,𝑗

𝑛 )(𝛿𝑥)

+
𝑟

8
(𝛿𝑥𝜓|𝑖,𝑗

𝑛 )(𝛿𝑦)) 𝜔|𝑖,𝑗
𝑛  

Since    𝜔|𝑖,𝑗
𝑛+1 = exp (𝑘

𝜕

𝜕𝑡
)𝜔|𝑖,𝑗

𝑛  

By truncating after the second term, it yields that  

𝜔|𝑖,𝑗
𝑛+1 = (1 + 𝑘

𝜕

𝜕𝑡
+ 𝑘2

𝜕2

𝜕𝑡2) 𝜔|𝑖,𝑗
𝑛  

Thus 

𝑇𝑖,𝑗
𝑛 = (𝜔|𝑖,𝑗

𝑛+1 − 𝜔|𝑖,𝑗
𝑛 ) + 

[
−𝑟

2𝑅
(𝛿2

𝑥𝜔|𝑖,𝑗
𝑛 + 𝛿2

𝑦𝜔|𝑖,𝑗
𝑛 ) +

𝑟

8
(𝛿𝑦𝜓|𝑖,𝑗

𝑛 )(𝛿𝑥𝜔|𝑖,𝑗
𝑛 )

−
𝑟

8
(𝛿𝑥𝜓|𝑖,𝑗

𝑛 )(𝛿𝑦𝜔|𝑖,𝑗
𝑛 )] [2 + 𝑘

𝜕

𝜕𝑡

+ 𝑘2
𝜕2

𝜕𝑡2
] 

Truncating the Taylor expansion in the above 

equation yields that   

𝑇𝑖,𝑗
𝑛 = 𝑘 (

𝜕𝜔

𝜕𝑡
|𝑖,𝑗
𝑛 +

𝑘

2

𝜕2𝜔

𝜕𝑡2
+ 𝑂(𝑘2)) 

+ [
−𝑘

2𝑅
[(

𝜕2𝜔

𝜕𝑥2
+

𝜕2𝜔

𝜕𝑦2 ) |𝑖,𝑗
𝑛 + 𝑂(ℎ2)]

+
𝑘

2
[
𝜕𝜓

𝜕𝑦
|𝑖,𝑗
𝑛 + 𝑂(ℎ2)] [

𝜕𝜔

𝜕𝑥
|𝑖,𝑗
𝑛

+ 𝑂(ℎ2)]

−
𝑘

2
[
𝜕𝜓

𝜕𝑥
|𝑖,𝑗
𝑛 + 𝑂(ℎ2)] [

𝜕𝜔

𝜕𝑦
|𝑖,𝑗
𝑛

+ 𝑂(ℎ2)]] [2 + 𝑘
𝜕

𝜕𝑡
+ 𝑘2

𝜕2

𝜕𝑡2
] 

By equation (1), it yields that  

[
𝜕𝜔

𝜕𝑡
−

1

𝑅
(

𝜕2𝜔

𝜕𝑥2
+

𝜕2𝜔

𝜕𝑦2 ) + (
𝜕𝜓

𝜕𝑦
) (

𝜕𝜔

𝜕𝑥
)

− (
𝜕𝜓

𝜕𝑥
) (

𝜕𝜔

𝜕𝑦
)] |𝑖,𝑗

𝑛 = 0 

Thus  

𝑇𝑖,𝑗
𝑛 = 𝑂(𝑘2) + 𝑂(𝑘ℎ2),         

or                𝑇𝑖,𝑗
𝑛 = 𝑂(𝑘2 + 𝑘ℎ2) 

By assuming that, in the domain 𝐷𝑖,𝑗
𝑛 , all partial 

derivatives of  𝜔, 𝜓  are bounded, there are positive 

constants 𝐶1 , 𝐶2 ∈ 𝑅  such that 

|𝑇𝑖,𝑗
𝑛 | ≤ 𝐶1𝑘2 + 𝐶2𝑘ℎ2 

For the difference equation (7), the local truncation 

error at the mesh point(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛), takes the form: 

�̂�𝑖,𝑗
𝑛 = 𝜔|𝑖,𝑗

𝑛 + (
𝛿2

𝑥𝜓|𝑖,𝑗
𝑛

ℎ2
+

𝛿2
𝑦𝜓|𝑖,𝑗

𝑛

ℎ2 ) 

Truncating the Taylor expansion in the above 

equation yields that   

�̂�𝑖,𝑗
𝑛 = 𝜔|𝑖,𝑗

𝑛 + (
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2 ) |𝑖,𝑗
𝑛 + 𝑂(ℎ2) 

By equation (2), it yields that 

𝜔|𝑖,𝑗
𝑛 + (

𝜕2𝜓

𝜕𝑥2 +
𝜕2𝜓

𝜕𝑦2) |𝑖,𝑗
𝑛 = 0 . 

So,  �̂�𝑖,𝑗
𝑛 = 𝑂(ℎ2),  this implies that there is 𝐶3 > 0 

such that 

| �̂�𝑖,𝑗
𝑛 | ≤ 𝐶3ℎ2 

Definition 1 
18

 A difference equation of a parabolic 

equation is called consistent, if the following 

condition is satisfied:  
𝐿𝑇𝐸

𝑘
   →  0,   as    ℎ, 𝑘 → 0 

Based on Definition 1 and Theorem 1, the following 

theorem can be proved. 

Theorem 2 The difference equation of Crank-

Nicolson scheme (6) and (7) is consistent.  

 

Stability of the Discrete Problem 

 In this section, the stability for the matrix 

form (11) and (12) are discussed.  

The matrix form Crank-Nicolson scheme (11) and 

(12) can be rewritten as follows: 

𝜔𝑛+1 = 𝐻𝑛 𝜔𝑛  , ∀ 𝑛 ,           (16) 

where   

 𝐻𝑛 = (𝐼 −
𝑟

2𝑅
𝐶 +

𝑟

8
 𝑉2

𝑛𝐴 −
𝑟

8
 𝑉1

𝑛𝐵)
−1

(𝐼 +
𝑟

2𝑅
𝐶 −

𝑟

8
 𝑉2

𝑛𝐴 +
𝑟

8
 𝑉1

𝑛𝐵) . 

Theorem 3 Based on a constant time-step, the 

necessary and sufficient condition for stability of 

the matrix form (16) of the Crank-Nicolson scheme 

is  

‖𝐻𝑛‖ ≤ 1  ,   for all 𝑛 .              (17) 

 where ‖𝐻𝑛‖2 = 𝑚𝑎𝑥𝑠|𝜆𝑠|,       (18) 

    𝜆𝑠(𝑠 = 1,2, … , (𝑚 − 1)2) are the eigenvalues of 

 𝐻𝑛 . 

Proof: This theorem can be proved easily following 

the same technique used in 
18

. 

 

Numerical Experiment  

The Crank-Nicolson difference equations 

(6) and (7) are used in this section to find the 

numerical solution of problem (1)-(4), with  𝑅 = 1,  

and the following initial function:  

𝜔0(𝑥, 𝑦) = (1 − 𝑥2)(1 − 𝑦2) ,        − 1 ≤ 𝑥 ≤ 1 ,
−1 ≤ 𝑦 ≤ 1    (19) 

Moreover, in order to study the numerical 

convergence, different space-steps (ℎ =
0.4,0.2, 0.1) and a small fixed time-step 𝑘 =
0.002  are considered in the computations.  

Based on the type of the initial function (19), the 

solution of problem (1)-(4) with (19) is symmetric 

and positive. Therefore, it is sufficient to find only 
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the first 𝑀 components of the numerical solution 

vectors, 𝜔𝑛, 𝜓𝑛 , at each time level. 

where      𝑀 = {

(𝑚−1)2

2
     𝑖𝑓    𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

(𝑚−1)2+1

2
     𝑖𝑓     𝑚 𝑖𝑠 𝑜𝑑𝑑  

} 

In addition, for each of  ℎ = 0.4, ℎ = 0.2, and at the 

time level 𝑛, the errors bounds will be computed 

that show, at some fixed meshes-points, the 

differences between the numerical 

solutions  (𝜔ℎ
𝑛, 𝜓ℎ

𝑛) and (𝜔ℎ/2
𝑛 , 𝜓ℎ/2

𝑛 ) with respect 

to ℎ and  ℎ/2, respectively, as follows: 

{
𝐸ℎ

𝑛(𝜔) =
∑ |𝜔ℎ

𝑛(𝑥,𝑦)−𝜔ℎ/2
𝑛 (𝑥,𝑦)  |(𝑥,𝑦)∈𝜋

𝑁=8

 𝐸ℎ
𝑛(𝜓) =

∑ |𝜓ℎ
𝑛(𝑥,𝑦)−𝜓ℎ/2

𝑛 (𝑥,𝑦)  |(𝑥,𝑦)∈𝜋

𝑁=8

}    (20) 

where  𝜋 = {(𝑥, 𝑦), 𝑠. 𝑡.  𝑥 = −1 + 𝑖ℎ ; 𝑦 = −1 +
𝑗ℎ ;  𝑖 = 1,2,3,4 ; 𝑗 = 1,2 ; ℎ = 0.4}. 

 

Results and Discussions: 

Numerical: 

The numerical results are presented in the 

next tables, where Matlab software is used in the 

computational processes. In Tables 1, 2 and 3, the 

numerical results are shown, for ℎ = 0.4,0.2, 0.1 , at 

the time-levels 100, 200 and 400, respectively. In 

Table 4, the formula (20) is used to compute the 

errors bounds of numerical solutions, for ℎ =
0.4,0.2, at time-levels: 𝑛 = 100, 200, 400. In table 

5, the numerical values of the norm ‖𝐻𝑛‖2 , defined 

in (18), are shown, for ℎ = 0.4,0.2,0.1, at time-

levels: 𝑛 = 100, 200 and 400.  

From Tables 1-3, it is observed that the 

numerical values for vorticity and stream are 

decreasing as time level increases. In addition, 

Table 4 shows that at a fixed time level, the 

corresponding error bounds decrease, as the space 

grids are refined. This indicates that the numerical 

solution is convergent. On the other hand, at any 

fixed space-step, the corresponding errors decrease 

as time increases. Moreover, Table 5 shows that the 

numerical results are stable (condition (17) is 

satisfied) with any space-step and time level. 

 

Table 1. Numerical solutions (𝝎, 𝝍),  𝒏 = 𝟏𝟎𝟎 (𝒕 = 𝟎. 𝟐) 

𝒉                 0.1                  0.2               0.4 

(𝒙, 𝒚)  𝝎  𝝍 𝝎  𝝍 𝝎  𝝍 

(-0.6,-0.6) 0.1364 0.0279 0.1373 0.0282 0.1413 0.0297 

(-0.2,-0.6) 0.2209 0.0451 0.2223 0.0457 0.2282 0.0480 

(0.2,-0.6) 0.2200 0.0451 0.2215 0.0456 0.2271 0.0479 

(0.6,-0.6) 0.1349 0.0278 0.1360 0.0282 0.1396 0.0296 

(-0.6,-0.2) 0.2191 0.0450 0.2204 0.0456 0.2262 0.0479 

(-0.2,-0.2) 0.3561 0.0729 0.3583 0.0739 0.3667 0.0775 

(0.2,-0.2) 0.3556 0.0729 0.3578 0.0738 0.3660 0.0775 

(0.6,-0.2) 0.2182 0.0450 0.2198 0.0456 0.2252 0.0478 

 

Table 2.  Numerical solutions (𝝎, 𝝍),  𝒏 = 𝟐𝟎𝟎 (𝒕 = 𝟎. 𝟒) 

           𝒉            0.1             0.2             0.4 

(𝒙, 𝒚) 𝝎  𝝍 𝝎  𝝍 𝝎  𝝍 

(-0.6,-0.6) 0.0505 0.0104 0.0512 0.0106 0.0538 0.0114 

(-0.2,-0.6) 0.0819 0.0168 0.0829 0.0171 0.0871 0.0184 

(0.2,-0.6) 0.0817 0.0168 0.0828 0.0171 0.0869 0.0184 

(0.6,-0.6) 0.0503 0.0103 0.0510 0.0105 0.0535 0.0113 

(-0.6,-0.2) 0.0816 0.0168 0.0826 0.0171 0.0867 0.0184 

(-0.2,-0.2) 0.1323 0.0271 0.1340 0.0276 0.1407 0.0297 

(0.2,-0.2) 0.1322 0.0271 0.1339 0.0276 0.1406 0.0297 

(0.6,-0.2) 0.0814 0.0167 0.0825 0.0171 0.0866 0.0184 

 

Table 3.  Numerical solutions (𝝎, 𝝍),  𝒏 = 𝟒𝟎𝟎 (𝒕 = 𝟎. 𝟖) 

𝒉               0.1              0.2                0.4 

(𝐱, 𝐲) 𝝎  𝝍 𝝎  𝝍 𝝎  𝝍 

(-0.6,-0.6) 0.0070 0.0014 0.0072 0.0015 0.0079 0.0017 

(-0.2,-0.6) 0.0114 0.0023 0.0117 0.0024 0.0128 0.0027 

(0.2,-0.6) 0.0114 0.0023 0.0117 0.0024 0.0128 0.0027 

(0.6,-0.6) 0.0070 0.0014 0.0072 0.0015 0.0079 0.0017 

(-0.6,-0.2) 0.0114 0.0023 0.0117 0.0024 0.0128 0.0027 

(-0.2,-0.2) 0.0184 0.0038 0.0189 0.0039 0.0208 0.0044 

(0.2,-0.2) 0.0184 0.0038 0.0189 0.0039 0.0208 0.0044 

(0.6,-0.2) 0.0114 0.0023 0.0116 0.0024 0.0128 0.0027 
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Table 4.  Errors bounds: 𝑬𝒉
𝒏(𝝍), 𝑬𝒉

𝒏(𝝎)  

n h 𝑬𝒉
𝒏(𝝍) 𝑬𝒉

𝒏(𝝎) 

100 

 

0.4 0.0024 0.0059 

0.2 6.1250e-04 0.0015 

200 0.4 0.0014 0.0044 

0.2 3.3750e-04 0.0011 

400 0.4 3.2500e-04 0.0012 

0.2 1.0000e-04 3.1250e-04 

 

Table 5.  ‖𝑯𝒏‖𝟐 = 𝒎𝒂𝒙𝒔|𝝀𝒔|  
n h ‖𝑯𝒏‖𝟐 

  

100 

 

0.4 0.990436 

0.2 0.990190 

0.1 0.990128 

 

200 

0.4 0.990473 

0.2 0.990233 

0.1 0.990172 

 

400 

0.4 0.990492 

0.2 0.990255 

0.1 0.990195 

 

Numerical Simulations 

The discrete graphs of vorticity and stream 

functions (for ℎ = 0.1) at time levels 𝑛 = 0, 200 

and  400 are presented in Figures 1, 2 and 3, 

respectively. Clearly, by Figs. 1-3, it is observed 

that the discrete graphs for vorticity and stream are 

decreasing as time increases and that supports the 

numerical results.  

 
a.   Vorticity Graph 

 
b.  Stream  Graph 

Figure 1.  Numerical solutions at 𝒕 = 𝟎 

 
a.   Vorticity Graph 

 
b.  Stream  Graph 

Figure 2.  Numerical solutions at  𝒕 = 𝟎. 𝟒 

 
a.   Vorticity Graph 

 
b.  Stream  Graph 

Figure 3.  Numerical solutions at  𝒕 = 𝟎. 𝟖 
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Conclusions: 
This paper is concerned with the numerical 

solutions of the vorticity transport equation with 

homogenous Dirichlet boundary conditions using 

Crank-Nicolson finite difference scheme. From this 

work, the following conclusions are pointed out:  

1- Crank-Nicolson finite difference scheme is 

consistent. Moreover, the order of  the local 

truncation error has the form: 𝑂(𝑘2 + 𝑘ℎ2).   
2- At a fixed time level, the corresponding 

error bounds decrease, as the space grids 

are refined. This indicates that the 

numerical solution is convergent.  

3- At any fixed space-step, the corresponding 

errors decrease as time increases.  

4- Table 5 shows that the numerical results are 

stable with any space-step and time level. 

5- Tables (1- 3) and Figures (1- 3) show that 

the numerical values for vorticity and 

stream are decreasing as time level 

increases.  

For future work, the following directions may 

be considered: 

1. Other finite difference schemes can be 

proposed to find the numerical solution of 

problem (1)-(4), such as implicit Euler 

scheme.  

2. One could solve problem (1)-(4), with a 

certain initial function using different 

consistent finite difference schemes 

including the present one in order to make a 

numerical comparison between the results 

regarding stability and error bounds.   

3. With a very large Reynolds number, the 

nonlinear terms in equation (1) are 

dominated, so that may affect the stability 

properties of the proposed scheme. 

Therefore, in this case, other numerical 

methods should be adapted to solve the 

problem.   
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 نيكلسون-الحلول العددية لمعادلة نقل الحركة الدورانية ثنائية الأبعاد باستخدام طريقة كرانك

 
عبد الكاظم رشيد  معن

1
سعاد ناجي كاظم                              

2 

 
1

 ، الجامعة المستنصرية، بغداد ، العراقرياضيات، كلية التربية الاساسيةقسم ال 
2

 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق 

 

 :الخلاصة
. ( ثنائية الابعاد مع شروط  ديرشلت الحدودية المتجانسة VTEالدوارنية ) يهتم هذا البحث بالحلول العددية لمعادلة نقل الحركة

لهذه المسألة. بالإضافة إلى ذلك، نناقش اتساق واستقرار الطريقة. علاوة  Crank-Nicolson)، نشتق معادلة الفروقات المنتهية )وبالتحديد

ولتصور الرسوم البيانية المتقطعة لكلا من دوال الحركة  (Crank-Nicolson)على ذلك، يتم التطرق الى تجربة عددية لدراسة تقارب طريقة 

مساحة الدورانية والتدفق. تظهر النتيجة النظرية أن الطريقة المقترحة متسقة، في حين أن النتائج العددية تظهر أن الحلول مستقرة عند خطوات 

 صغيرة وفي أي مستويات زمنية.

 

 دالة الحركة الدوانية.، عدد رينولد، دالة التدفق، خطأ القطع هية،الفروقات المنت الكلمات المفتاحية:

https://www.sciencedirect.com/science/article/pii/0045782583900154#!

