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Abstract:

In the current study, the definition of mapping of fuzzy neutrosophic generalized semi-continuous
and fuzzy neutrosophic alpha has generalized mapping as continuous. The study confirmed some theorems
regarding such a concept. In the following, it has been found relationships among fuzzy neutrosophic alpha
generalized mapping as continuous, fuzzy neutrosophic mapping as continuous, fuzzy neutrosophic alpha
mapping as continuous, fuzzy neutrosophic generalized semi mapping as continuous, fuzzy neutrosophic pre
mapping as continuous and fuzzy neutrosophic y mapping as continuous.

Keywords: Fuzzy neutrosophic topological space, Fuzzy neutrosophic generalized semi closed set, Fuzzy
neutrosophic alpha generalized closed set, Fuzzy neutrosophic generalized semi mapping as continuous,
Fuzzy neutrosophic alpha generalized mapping as continuous.

Introduction:

Zadeh (1965) introduced fuzzy concept set
Chang ? later made use of this concept to present the
concept of fuzzy topological space in 1968.
Atanassov in 1986 ® developed the fuzzy concept
set into the concept of fuzzy intuitionistic set. At
this new study, the concept gives membership
degree and non-membership degree functions. In
1997 *, the intuitionistic fuzzy topological space
concept was presented via Cokor relying on the
concept of intuitionistic fuzzy set. In 2013 the
concept of fuzzy neutrosophic set was presented via
Arockiarani Sumathi and Martina Jency, this set
provides membership degree, non-membership
degree and indeterminacy degree. Additionally, the
fuzzy neutrosophic topological space has isen
defining via them in 2014 °. The concept of
intuitionistic fuzzy alpha generalized mapping as
continuous and intuitionistic ~ fuzzy alpha
generalized irresolute mapping has is studied in
2014via Sakthivel °.

At the current study, the concept of fuzzy
neutrosophic generalized semi closed set, fuzzy
neutrosophic alpha generalized closed set, fuzzy
neutrosophic  generalized semi- mapping as
continuous and fuzzy neutrosophic alpha
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generalized mapping as continuous has been
introduced.

Preliminaries:

Definition 1. : Suppose X is a non-empty constant
set. The fuzzy set as neutrosophic (Briefly, Sgy),
Bn is an object with form By = {< w, ppn (W), opn
(w), vpn (w) > w € X } while the functions pgy,
opn, Vpn - X = [0, 1] denoted membership function
degree (named pgy (w)), indeterminacy function
degree (named oy (w )) and non-membership
degree  (named wvgn (w)) respectively of every
element weX to the set By and 0 < ppy (w) +
opn(w) + vy (w) < 3, for every weX.

Remark 1. 7: SEn BN = {< w, UpN ((1)), OpN ((1)), VpN
(w) >: w € X } might be identwheny to an ordered
triple < w, ppn (w), opn (W), ven (w) > in [0, 1] on
X

Definition 2. ": Suppose X is a set of non-empty

and the Ssgy By and yy is in the form:

Prn = {< X, upx (), opn (), Vv (w) > weX } and,

W ={< wun (w),on (@), v (w) >1 weX} on X.

So that:

i Bn € yn, Whenf ppy (w) < un (W), opy (W) <
o (w) and vpy (w) > vyn (w) for all w € X.
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ii. BN = YN, whenf BN (SN and YN E BN-

ii. (B]'?)C ={< w, vpn(w), 1 — opn(w), ppy ) >1 WE
X}

iv. Bn U = {< o, Max(upny (), pyn (w)),
Max(opn (@), on (w)), Min(vpy (), vin (X))>:
weX}.

V. By 0oy = {< o, Min( g (@), i (@),
Min(opn (w), opn (), Max(ven (w), vin (w))>:
weEX}.

Vi. 0 =< ®,0,0,1>and 1IN =< w®, 1,1, 0>,

Definition 3. ’: Fuzzy neutrosophic topology
(Briefly, Tey) on a set of non-empty X is a family
7 of fuzzy neutrosophic subsets in X satisfying
axioms as follows:

i. OV, v e,
ii. Pn1 N Pz € T for every Buy, Pz €T .
iii.U Bni € T, V{ Bnic i € I} € V.

In such case, the pair (X, V) is said to be fuzzy

neutrosophic space topological (Briefly, TSgy). The

elements of t" are fuzzy neutrosophic open set

(Briefly, OSgy). The complement of OSgy in the

TSen (X, V) is fuzzy neutrosophic closed set

(Briefly, CSgn).

Definition 4. ’: Suppose (X, T") is TSgy and Py = <

w, UpN ((A)), OpN ((1)), VpN ((A)) > s SEn in X. So that,

the fuzzy By neutrosophic closure (Briefly, Cley)

and fuzzy By neutrosophic interior (Briefly, Ingy)
are defining via:

CIFN (BN) =N {CN: Cyis CSen in X and BN C Cy },

Ingn (BN) =V {ON: Oy is OSgy in X and Oy S Bn }
Known that, ClFN (BN) be CSFN and INeN (BN) be
OSgy in X. Moreover.

i BN is CSFN in X, whenf CIFN (BN) = BN'

ii. BN is OSFN in X, whenf =¥ (BN) = BN.
Proposition 1. : Suppose (X, ) be TSgy and By,
vn are Ssgy in X. Then, those properties follow hold:
I Inen (Bn) € Brand By S Clen (Bn).

ii. BN c N = INeN (BN) C Ingy ('YN) and BN c YN

= Clen (Bn) € Clen (Yn).

iil. INgn (In,:N (ﬁN)) = INgn (ﬁN) and CIFN (CIFN (BN))

= Clen (Bn).

iv. Ingn (BN N ’YN) = INgn (BN) N Ingy (’YN) and CIFN

(Bn U yn) = Clen (Bn) U Clen (yn)-

V. Ingy (1Y) =18 and Clgy (1¥) = 1V,

Vi. Ingy (O¥) = 0N and Clgy (OV) = OV,

Definition 5. ®: The Sy Bn in TSen (X, V) is called:

i. Fuzzy neutrosophic closed regular set (Briefly,
RCSFN), when ﬁN = CIFN (In.:N (BN))

ii. Fuzzy neutrosophic pre closed set (Briefly,
PCSkn), when Cley (Inen (Br)) € Bn.

iii. Fuzzy neutrosophic semi open set (Briefly,
SOSFN), when ﬁN c CIFN (lntFN (BN)) .

iv. Fuzzy neutrosophic semi closed set (Briefly,
SCSFN), when Ingy (CI[:N (BN)) c BN'

v. Fuzzy neutrosophic a open set (Briefly, aOSgy),
when By S Iney (Clen (INen (Bn)))-

vi. Fuzzy neutrosophic a closed set (Briefly,
oCSen), when  Cley (Inen (Clen (Bn))) S B
Definition 6. °: Fuzzy neutrosophic sub set Py of
TSen (X, ) is named fuzzy neutrosophic
generalized closed set (Briefly, GCSgy), when Clgy
(Bn) € Uy wherever, By € Uy and Uy is OSgy in X.
And By be said as fuzzy neutrosophic generalized
open set (Briefly, GOSgy), when the complement

(Bn)© is GCSgy set in (X, T).

Definition 7. '°: Let By = {< &, upn(E), opn(E), vpn(E)

> EeY}is Sgy inY. So that, the Py inverses

image under f, (f Y(Bn)) is Sen in X defined:

f1BN) = {< o, T (upy) (@), T (o) (@), F ™ (vpn)()

>: w€ X} where,

f (upn) () = ppnf(w), F (apn) (@) = opnf(w) and £

1(VBN)(00) = vpnf(w).

Definition 8. 1~ *2: Suppose (X, tV®) and (Y, tV?%)

are TSspy. So that, a mapping f @ (X, TV®)—(Y,

%) is called :

i. Fuzzy neutrosophic continuous (Con. gy), such
that f (Bn) is CSen in (X, TV®) for every
CSenin (Y, V%),

ii. Fuzzy neutrosophic pre continuous (Pcon. gy),
such that f *(By) is PCSgy in (X, TV°) for
every CSgy in (Y, 7).

iii.Fuzzy neutrosophic a continuous (o con. gy),
such that f (By) is aCSgy in (X, T°) for every
CSenin (Y, 7).

Fuzzy Neutrosophic Generalized Semi Closed

Set and Fuzzy Neutrosophic Alpha Generalized

Closed Set.

In this section, the concept of fuzzy neutrosophic
generalized semi closed set and the fuzzy
neutrosophic alpha generalized closed set was
introduced and studied some of its properties.
Definition 9. :

i. Suppose (X, T") is TSey and By = <w, ppy (W),
opn (W), vpn (w) > is Sey in X. So that the fuzzy
neutrosophic semi closure of By (Briefly,
SClgy) and  fuzzy neutrosophic semi interior
of Bn (Briefly, SIngy) are defining via:

SCIFN (BN) = ﬂ{CN: Cyis SCSgy in X and BN c
Cv},
SIngny (Bn) = U{On: Oy is SOSgy in X and Oy S
Bn 3

ii. Suppose (X, V) is TSpyand By = <w, ppn (W),
OpN ((1)), VBN ((1)) > s Sen in X. So that the
fuzzy neutrosophic By alpha closure (Briefly,
aClgy) and fuzzy neutrosophic By alpha interior
(Briefly, alngy) are defining via:
oClgy (BN) = ﬂ{CN: Cy 18 aCSgy in X and ﬁN c
Cv}
olngy (BN) = U{ON: Oy is aOSgy in X and Oy S

Bn }-
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Know that oCley (BN) is CSen and alngy (BN) is

OSgy in X. Moreover.

a. BN 18 0CSen in X whenf oClry (BN) = BN'

b. BN 1S 0OSen in X whenf alngy (ﬁN) = BN'
Definition 10. : Fuzzy neutrosophic subset By of
TSen (X, V) is called:

i. Fuzzy neutrosophic vy closed set (Briefly,
'YCSFN); such that CI,:N(InFN (BN)) n |n|:N(CI|:N
(Bn))S B

ii. Fuzzy neutrosophic generalized semi closed set
(Briefly, GSCSgy ), when SCley (Bn) € Un such
that, BN c Uy and Un is OSky in X.

iii. Fuzzy neutrosophic alpha generalized closed set
(Briefly, aGCSgn), When oCley (Bn) € Uy such
that, BN € Uy and Uy is OSgy in X.

i. Suppose X= {c, d} defined Sgy By in X as
follows:

B <w, (020, 02qg), (0.50, 0.5g),
(0.6¢),0.6a) >. The family " = {O", 1", Bn} is
Ten. When take, Dpy= <w, (0.3(c), O.Z(d)), (0.5(0),
0-5(d)), (0.6(0), O.G(d)) >. So that, oy is aGCSgy
but not CSkn.

Take i. So that, @, is aGCSgy, but not RCSgy.
Also take (i). So that, oy is aGCSgy , but not
QCSFN.

Assume X= {c, d} defined by Sgy By in X as
following:

Bn < w, (O.Z(C), 0-3(d)); (0.5(0), 0.5(d)),
(0-4(c)10-5(d)) >. The famlly ™ = {ON, 1N, BN} is
Ten. When take, Dy =< w, (0.1(0), 0 (d)), (0.5(0),

Theorem 1. : For every Sspy, the statements as 0.5(), (0.5(), 0.6g) >. So that, @y is GSCSgy,
following are true in general: but not aGCSk.

i. Every CSgy is aGCSgy. Fuzzy Neutrosophic Generalized Semi Mapping

ii. Every RCSgy is aGCSky. as continuous and Fuzzy Neutrosophic Alpha

iii. Every aCSgy is aGCSgy. Generalized Mapping as continuous

iv. Every aGCSgy is GSCSgy. In the current section, the concept of fuzzy
Proof: neutrosophic  generalized semi  mapping as

continuous and fuzzy neutrosophic alpha generalized

i, Suppose Py = < w, g (@), o (), Vi () > be
CSen in the TSey (X, T™).
So that via definition 4. (i). Hence Clgy (Bn) = By
().
Now, suppose the Uy is OSgy such that, By S
Un. Since aCley (Bn) SClen (Bn) Via definition 4.
and definition 9. ii. So, (ICIFN (BN) c CIFN (BN) =
Bn € Un. Hence, By is aGCSey in (X, ).
: Suppose BN =< w, UpN ((1)), OpN ((‘))! VBN ((1)) >,
be RCSey in the TSey (X, T). So that,
Clen (INnen(Bn)) = Bn --- (1)
'(IT;IS implies, Clen (In,:N (BN)) = Clgn (BN)
2).
Suppose the Uy be OSgy such that, By S Uy.
From (1) and (2), Clen (Bn) = Bn.
That By is CSgy in X. So by (i), aCley (Bn) S
CI;:N (BN) = BN € Uy. Hence, BN is aGCSgn in
(X,tM.
. Suppose By = < @, ppx (@), op (), Vpx (@) > is
aCSen in the TSkn (X, ’CN).
So that, aClgy (Bn) = Bn. Now, assume the Uy is
OSky i.e., BN <€ Uyn. So, (XCIFN (BN) = BN c Un.
Hence, By is aGCSey in (X, T).
iv. Suppose By = < w, gy (), Opx (@), Vpx (@) >
be aGCSen in the TSen (X, ‘CN). So that, (ICIFN (BN)
c Uyn. Where, Uy is OSgy such that, By € Uy.
So, CIFN (lnFN (CIFN (BN))) c Un. That is Ingn (CI;:N
(Bn)) € Uyn. Therefore, SCley (Bn)SUn. Where,
Unis OSgy such that, By € Un. Hence, By is
GSCSey in (X, V).
Remark 2. : The foregoing theorem converse is not
true as illustrated in the following examples:
Example 1.:
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mapping as continuous has been introduced.

Definition 11. : Suppose (X, TV®) and (Y, V%) are

2 TSsgn. So, @ mapping

f:(X, TV®) > (Y, t7%) is called:

i. Fuzzy neutrosophic y continuous (y con. gy),

when f (By) is y CSen in (X, TV®) for each

CSenin (Y, TNY).

Fuzzy neutrosophic generalized semi continuous

(GScon. gy), When f X(By) is GSCSgy in (X, TV®)

for each CSgy in (Y, TV).

ili. Fuzzy neutrosophic o generalized continuous
(aGcon. gn), when 7 (By) is aGCSpy in (X, TV®)
for each CSgy in (Y, TV%).

Theorem 2.:

i. Every Con.gy is aGcon.gy.

ii. Every aCon.gy is aGCON.gy.

iii. Every aGcon.gy is GScon.gy.

Proof:

i. Suppose f : (X, T™VN® ) — (Y, T™%) is con.gx

mapping. Take By is CSgyin Y.

Therefore f is con.py mapping f'l(BN) is CSgy in

X (definition 8. i). Since every CSgy is aGCSgy

(Theorem 2. i). So, f *(Bn) is aGCSey in X.

Thus, f is aGcon.gy.
i. Suppose f : (X, TV® ) — (Y, T™%) is acon.gmy
mapping. Take By iS CSgy in Y. So that, via
hypothesis f *(Bn) is aCSen in X (definition 8.
iii). Since every aCSgy is aGCSgy (Theorem 2.
iii). So, f *(By) is aGCSgy in X. Hence, f is
oGcon.gy.

.Suppose f: (X, V) — (Y, V%) is aGcon.py

mapping. Take By is CSgy in Y. So that, via
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hypothesis f *(By) is aGCSgy in X (definition 10.
iii). Since every aGCSgy is GSCSgy (Theorem 2.
Iv). So, f (Bxn) is GSCSey in X. Hence, f is
GScon.gy.

Remark 3. : The foregoing theorem converse is not

true as illustrated in the following example:
Example 2. :
i. Suppose X={c, d}, Y ={e, g}.
Defined, BNl = <Ww, (0.2(0), O.Z(d)), (0.5((;), 0-5(d))1
(0.6, 0.6(4) > and
Prno = <& (0.6¢), 0.6¢), (0.5¢) 0.5¢). (0.3¢),
0.2(y) >. So that, the family 7V = {OV, 1V, By}
and V¢ = {0, 1, By, } are Ten on X and Y
respectively.
Define a mapping f : (X, TV®) — (Y, %) via
f(c) =eand f(d) = g.
Assume that oy =<g, (0.3(e), 0.2(9)), (0.5(9),
0.5(9)), (0.6(9), 0.6(9)) >isCSgyin.
So that, f _l(CDN) =<w, (0.3((;), 0-2(d)), (0.5(0),
0-5(d)), (O.G(C), O.G(d)) > is aGCSgy in X. Hence, f
is aGcon.gy, but not con.gy.
ii. Suppose X={c,d},Y ={e, ¢g}.
Define, BNl = <w, (0.3((;), O.3(d)), (0.3(0), 0-4(d))1
(0.7(0), 0-7(d)) >,
Prne = <w, (0.8¢), 0.8¢), (0.7¢) 0.8¢), (0.3,
0-3(d)) > and
Prns = <§, (0.3, 0.3(), (0.7¢), 0.6¢), (0.6¢),
0.6¢) >. So that, the TV® = {0, 1, Bna, Bno}
and
Ve = {0, 1V, Bna} are Ten On X, Y respectively.
Define a mapping f: (X, TV ) — (Y, %) via
f(c)=eand f(d) = g.
Assume &y = <&, (0.6¢), 0.6(), (0.3¢), 0.4(),
(0.3(9), 0.3(g)) >iSCSgyiny.
So that, f _1((131\]) = <Ww, (0.6(0), 0.6(d)), (0.3(0),
0-4(d)), (O.B(C), 0-3(d)) > is aGCSgy in X. Hence, f
is aGcon.gy , but not acon.gy.
i. Suppose X={c, d}, Y ={e, g}.
Defining, fn; = <w, (0.2¢), 0.3), (0.5¢), 0.5¢),
(0.4(c), 0-5(d)) >and
Brz = <&, (0.5¢), 0.6(g)), (0.5¢), 0.5¢)), (0.1¢), 0(g)
>,
So that, the family 7V¢ = {0V, 1", Bn:} and TV%
= {0, 1, Bno} are Tey on X and Y respectively.
Define a mapping f : (X, V) — (Y, V%) via
f(c) =eand f(d) = g.
Assume @y = <§, (0.1e), 0 (), (0.5¢), 0.5),
(0.5¢), 0.6(g) > is CSgy in Y. So that, f *(dy) =
<w, (0.1(0), 0 (d)), (0-5(c), 0-5(d)), (O.5(C), O.G(d)) > s
GSCSgy in X. Hence, f is GScon.gy, but not
oGCon.gy.
Theorem 3. : A mapping f: X— Y is aGcon.gy if
and only if the inverse image of each OSgy IN Y is
oGOSgn in X.
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Proof: Suppose By is OSgy in Y. Such implicates
(Bn)°© is CSey in Y. Therefore, fis aGeon.gy. So that
f1(Bn)° is aGCSey in X. Therefore, f(By)° =

(F *(Bn))°. Hence, f ™(Bn) is aGOSgy in X.

Theorem 4. : Suppose f : (X, TVN® ) — (Y, V%) is
mapping and f "(Bn) is RCSgy in X for every CSgy
in Y. Then f is aGcon.gy mapping.

Proof: Suppose By is CSey in Y. So that f *(By) is
RCSgy in X. Since, Every RCSgy is aGCSgy
(Theorem 2. ii). So, f *(Bn) is aGCSgy in X. Hence,
f is aGcon.gy mapping.

Remark 4. :

i. The relationship between Pcon.gy and aGceon. gy is
independent.

ii. The relationship between y con.gy and aGceon. gy
is independent.

And this can be illustrated in the next example:
Example 3. :

i. 1- Suppose X={c, d}, Y ={e, g}.

Defining, Bn: = <w, (0.1(0), O.S(d)), (0.4(c), O.6(d)),
(0.5¢), 0.2()) >and

Prnz = <&, (0.8¢), 0.8(g), (0.6), 0.4(p), (0.1¢), 0.4(g)
>

So that, the family V¢ = {O", 1V, Bn:} and V¢ =
{0N, 1V, Bno} are Tey on X and Y, respectively.
Defining a mapping f : (X, V) — (Y, %) via
f(c)=eand f(d) = g.

Suppose @y = <¢, (0.1e), 0.4(), (0.4e, 0.6¢),
(0.8(9), 0.8(9)) > s CSgyin'Y.

So, f _1(CDN) = <w, (0.1(0), O.4(d)), (0.4(0), O.G(d)),
(0.8@, 0.8(d)) > is PCSgy in X.

Hence, f is Pcon.gy, but not aGcon.gy.

2- Suppose X= {c, d}, Y ={e, g}. Define, Bn1 = <w,
(0.2(0), O.Z(d)), (0.3(0), 0.4(d)), (0.5(0), O.G(d)) >and

BNZ = <f, (0.4(6), 0.5(9)), (0.4(9), 0.3(9)), (0.3(9), O.Z(g))
>

So that, the family 7V¢ = {O", 1V, Bn:} and V¢ =
{0™, 1V, B2} are Tey on X and Y, respectively.
Defining a mapping f : (X, V) — (Y, TV%) via f(c)
=eand f(d) =g.
Assume &, = <¢, (0.3(9), 0.2(9)), (0.6(9), 0.7(9)),
(0.4, 0.5() > is CSgy in Y. So that, f (dy) = <w,
(O.B(C), O.Z(d)), (0.6(0), 0-7(d))| (0.4(0), 0-5(d)) > s
aGCSgy in X. Hence, f is aGcon.gy, but not
Pcon.gn.
ii. 1- Suppose X={c, d}, Y ={e, g}.
Defining, Bni = <w, (0.4(C), O.G(d)), (0.3(C), O.4(d)),
(0.2((;), O.Z(d)) > and
Brne = <€, (0.7¢) 0.2¢p), (0.7, 0.6), (0-3¢),
0.3¢g) >.
So that, the family 7V« = {O, 1V, By} and
™8 = {oN, 1V, Buo} are Tey on X and Y,
respectively.
Let defined a mapping f : (X, V¢ ) — (Y, %)
via f(c) =eand f(d) = g.
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Assume @y= <¢, (0.3¢), 0.3¢), (0.3¢), 0.4),
(0.7, 0.2()) > is CSey in Y. So, f H(dy) = <w,
(0.3@), 0.3(d)), (0.3(0), 0-4(d)), (0.7(0), O.Z(d)) > is Y
CSey in X. Hence, f is y con.py, but not
aGcon.gy.

2- Suppose X= {c, d}, Y ={e, g}. Defining, Bn; =
<w, (0.6((;), O.Z(d)), (O.Z(C), O.4(d)), (0.4(0),0.8((1)) >
and
Bnz = <§, (0.3, 0.2(), (0.8(), 0.6¢), (0.6¢),
0.7) >. So that, the family 7V = {OV, 1V, By}
and V% = {ON, 1V, By, } are Ty on X and Y,

respectively. Defining a mapping f : (X, TV®) —
(Y, tV%) via f(c) = e and, f(d) = g. Suppose By =
<f, (0.6(9), 0.7(9)), (0.2(9), 0.4(9)), (0.3(9),0.2(9)) > s
CSen in Y. So that, f (By) = <w, (0.6, 0.7(),
(0.2(0), 0-4(d))' (0.3(0), O.Z(d)) > 1S (IGCSFN in X.
Hence, f is aGcon.gy, but not y con.gy.
Remark 5. : Fig. 1 shows the relationships when
deferent fuzzy neutrosophic continuous in the fuzzy
neutrosophic topology spaces and in general the
converse is not true.

Con. gn o Con. N f-lg l!ﬂ! iS RCS. en_
o Geon. gy ) ~ GScon.

i1

Pcon. gn

Y CoON. FN

Figure 1. Relationship with a Gcon. gy.

Conclusion:

The aim of this research is to identify some
new generalized mapping of fuzzy neutrosophic as
continuous and tried to solve the trouble of
branching or splitting with definitions of the
generalized mapping of fuzzy neutrosophic and
showing that generalized semi-continuous and
fuzzy neutrosophic alpha generalized mapping as
continuous is independent according to the
examples and Figure 1. Founded some relationships
that connect it and the reverse is not true always.
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