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Abstract:

High-intensity laser-produced plasma has been extensively investigated in many studies. In this
demonstration, a new spectral range was observed in the resulted spectra from the laser-plasma interaction,
which opens up new discussions for new light source generation. Moreover, the characterizations of plasma
have been improved through the interaction process of laser-plasma. Three types of laser were incorporated
in the measurements, continuous-wave CW He-Ne laser, CW diode green laser, pulse Nd: YAG laser. As the
plasma system, DC glow discharge plasma under the vacuum chamber was considered in this research. The
plasma spectral peaks were evaluated, where they refer to Nitrogen gas. The results indicated that the plasma
intensity increased from several thousands to several tens of thousands through the process of interaction of
the Nd: YAG laser with the plasma. This increase in the intensity of the plasma as laser intensity increased
occurs regardless of laser wavelength involved in the interaction or not. According to laser-plasma
interaction, the so-called full width at half maximum FWHM of the highest peak in the plasma spectrum was
broadened from 1.43 to 2.73. Considering the equation of plasma density computing, the plasma density was
increased from 1.07x 10" to 2.05x 10" cm™ with increasing FWHM. As a result of the interaction, the
electron temperature of plasma was increased from 0.176 to 0.782 eV. It was also noticed that the position of
the highest peak in the plasma spectrum depends on the interacted laser wavelength.

Keywords: CW laser, DC glow discharge plasma, High brightness light, Laser-Plasma interaction, Pulse
laser sources.

Introduction:

High-intensity laser-produced plasma has
been extensively investigated as a method for
artificial plasma generating (1- 3). The usage of
high-intensity laser-produced plasmas for particle
acceleration has grabbed attention in recent years
because they have been offering a compact and low
cost of relativistic electron Beams. However, such a
complex interaction between high-intensity short
pulses of laser and plasmas is still not well
understood, therefore the amount of investigation
remains to understand completely the electron
acceleration processes (4). In this paper, the basic
concepts on the interaction of laser light with the
plasma, and the enhancement of plasma
characterization are investigated. This study can
present an important attempt for the understanding

of the recently laser-plasma  experiments.
Additionally, the results presented here could find
applications in the fundamental theory of intense
light propagation through plasma. The interaction
between the laser radiation and free electrons of the
plasma was described by the Drude model by taking
into account the electron motion in the laser field as
a harmonic oscillator (5). Three types of motion
inside the disturbed plasma by laser could be
distinguished producing three types of population in
the plasma electron spectrum. One is the motion
inside the electrostatic oscillation body, the second
belongs to the electrons which are produced in the
wave-break, the third exchanges energy with
plasma oscillations (6). Recent investigation has
suggested that the plasma electrons could be
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accelerated directly by the laser fields, where the
energy transfers from the laser beam into the
generated plasma, and the acceleration speed
depends on laser intensities (7). The laser energy
can almost deposit in the plasma and fast electrons,
this energy transfers into wakefields and can be
moved to ions during the process of plasma
channeling (8). All these processes are typical
features of relativistic interactions. However, in
laser-plasma interactions, the electric field plays a
major role in defining the properties of the
generated plasma. When the laser electric field is
propagating into the plasma, part of it is reflecting,
and the other is absorbed depending on the
frequencies of both laser and plasma (8).

Laser electric field amplitude and its frequency are
given by (8):

— 9 I 1)2
By (V/em) = 2.75 % 10° (grpr=s) w1
w (S71) =2 =188 x 10" (25 2
L AL

Where I, is the laser energy flux, A, is the laser
wavelength and w;, is the laser frequency. The ratio

2nC . . . .
of S s corresponding to one laser oscillation.
L

By taking into account the associated magnetic
field, then the laser magnetic field amplitude is
given by (8):

B, (Gauss) = 2.9 x 10° (——L—)1I2 .3

1016 W|cm?2
Where the parameters were defined above and the
related frequency was given in Eq. 2.

At a limited incident angle of laser with
plasma and specific plasma density, the scattering
process could be occurred corresponding to Raman
scattering, which results in the wave vector non-

alignment between the main laser pulse and the
produced plasma wave (9,10).

In our research, new light sources
generations based on the interaction of laser-plasma
was investigated, in addition to the plasma
characterization  enhancement.  Where  High
brightness light sources present as an attractive
source in many applications, for instance: power
stability repeatable light sources, sources for
measurements of the illumination in a lithography
system which are used in the fabrication of wafers,
a photoresist curing system, a microscopy system,
light source for spectroscopy applications. Owing to
the mentioned applications, such a light source
becomes important to generate high brightness light
sources and this is the aim of this work.

Materials and Method:

The schematic of the experimental setup is
shown in Fig. 1, which includes the plasma system,
laser light source, spectrometer, PC for spectra
recording, and data analysis. The DC plasma glow
discharge consists of high voltage power supply,
two electrodes separated about 4 to 5 mm inside the
vacuum chamber. The electrical potential needs to
be high enough (hundreds to thousands of Volts) to
breakdown the gas into a plasma, here 5 kV was
taken from the power supply. The plasma system
has a vacuum pump, an inlet valve system, and a
pressure sensor. The gap between the two
electrodes is filled with air, the electric field in the
gap has to be high enough to initiate an electrical
breakdown in the gap. The distance between the
two electrodes must be efficiently adjusted to
generate plasma emission.

Chamber
Spectrometer
rAnode ) PC analysis
S — Fiber optics
e biasmal "| N | &y
Laser Source \Cathode )

Figure 1. The Scheme of the Lab setup for the investigation of Laser-Plasma interaction.

In order to evaluate the results from the
interaction of plasma and laser, three laser light
sources were involved in this investigation. Two
lasers are operating with continuous-wave CW, 1

mW Helium-Neon laser A=650 nm, and Diode laser
A=530 nm with an output power of 2 mW. The third
one is Nd:YAG pulsed laser with A=1064 nm,
maximum pulse energy of 750 mJ, a repetition rate
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of 10 Hz, and a pulse width of 9 ns. A spectrometer
with ICCD rays from surwit (S3000-UV-NIR) was
adopted for spectra recording.

Results and Discussion:

In this paper, a novel measurement method
of laser-plasma interaction has been presented. All
measurements were performed at room temperature.
Figure 2 shows the plasma spectrum measured
using a spectrometer. The peaks that appeared in the

plasma spectrum were performed by comparing the
wavelengths recorded with the National Institute of
Standers and Technology NIST data, and they were
shown belong to nitrogen gas (has a high
concentration in the atmosphere). Besides, the
plasma spectrum shown in Fig. 2 has good
agreement with (11,12) from the peak positions and
spectral range of N..

‘ Plasma spectrum
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Figure 2. The plasma spectrum including Gaussian fitting of the highest peak.

Gaussian  fitting of the highest peak
appearing in the plasma spectrum (see Fig. 2) is
important for calculating the electron density N by
determining the full width at half the maximum
FWHM of this peak. Taking into account the peak-
related parameters, which can be determined from
the NIST data, both the electron density N, in the
unit of cm™ and electron temperature T, in eV unite,
can be calculated. The equation that governs N, (10,
13) is given in the formula as in:

Ne = (52) x 1016 4
Where A1 is the FWHM explained above. w is the
frequency at AA.

After plasma initiating and moving to the
stabilization regimes, the lasers were focused
separately and sequentially on the generated

plasma. The ideal waist diameter of a Laser
Gaussian beam was focused by an optical lens used
in this work. Then the spectra were recorded,
analyzed, and evaluated as a result of the interaction
of each laser with the plasma. After that, the plasma
electron density and electron temperature were
calculated.

Figure 3 shows the measured spectra from
the laser-plasma interaction. Where a shows the
measured spectrum from the interaction of plasma
and He-Ne laser, while b and c present the collected
spectra from the interaction of plasma with diode
green laser and Nd:YAG laser, respectively. The
labeled wavelength belongs to each peak has been
described in a, b, c, denote to N, by matching each
peak wavelength with the NIST spectra (14).
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Figure 3. The plasma- laser interaction spectra including Gaussian fitting of the highest peak., a) -He-
Ne laser-plasma, b) - diode green laser-plasma, ¢) Nd:YAG laser-plasma.
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Gaussian fitting was analyzed for the
highest peak appeared in the spectra to calculate
each of Ne. as clarified above. The broa

dening in the FWHM is according to the
collision of charged species. Where the local
electric field created by plasma causes spectral line
splitting. This phenomenon, known as the Stark
effect, is influencing these emission spectra causing
line broadening (13).

To calculate the electron temperature T,
Boltzmann distribution can be wused as an
approximation to determine it (10, 13) as follows:

()= - Len(®)

Where | is the laser intensity, k T are Boltzmann
constant and the temperature. A g are the transition
probabilities and statistical weight of ground-state
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level (both are taken from NIST data). h is the
Planck's constant. N and E are the total number
density of emitting atoms and energy transitions
involved in the measurements in the unit of eV. The
plasma electron density N, can be calculated from
Eq. 4, while the electron temperature computes from

Eq. 5. Plotting In (hj—:lg) vs E for the known lines

appeared in the measured spectra (Boltzmann plot) ,
the resulted straight lines ( Fig. 4) would have a

slope of — k—lT . Therefore, the electron temperature

can be obtained without taking into consideration
the total number density of atoms N. Table 1 shows
the summary of the plasma characterizations of the
electron density N, and the electron temperature T,
according to the presented results in Figs. 3 and 4.
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Figure 4. Boltzmann plot for N, spectral lines a) only plasma emission, b) He-Ne laser-plasma, c) diode
green laser-plasma, d) Nd:YAG laser-plasma.
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Table 1. Electron density N. and electron
temperature T, of DC glow discharge plasma, in
addition to the enhancement obtained from the
interaction different laser wavelengths.

the presented data in Table 1 and Fig. 5 is obtained.
The small uncertainty shown in the electron
temperature belongs to the room temperature of
about ~ 0.03 eV. While the uncertainty of + 0.2 was
incorporated, which is according to the nitrogen ion

Variables FWHM Nx 10" (cm’ Te(eV : :
' i (cm™) (V) lines broadening (14).
Only plasma  1.43 1.07 1.76
He-Ne laser- 1.66 1.25 0.394
plasma
Diode green 151 1.13 0.512
laser-plasma
Nd:YAG 2.73 2.05 0.782
laser-plasma
=
2.4E18 0.9
2.2E18 A Variables !
Plot >e1s 4 1. only plasr_na - 0.8
tin 2. plasma with He-Ne laser [
g 1.8E18 4 3 plasma with green laser - 0-7
1.6E18 4 4. plasma with Nd:YAG laser L 06
o |
IE 1.4E18 - [ o5 %
) [T
o 1.2E18 3 i —
2 : . 0.4
1E18 3 L 0.3
] - 0.2
8E17 5 -
] - 0.1
1 : 3 4
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Figure 5. The increasing of the plasma electron density and the electron temperature according to the

interaction with laser beams.

Figure 5 shows the behavior of electron
density and electron temperature of plasma due to
the interaction with the laser beams. It is obvious in
this figure that the temperature of the plasma
electron rises with increasing the power of laser
beam independently from the wavelength of the
laser. While the density of electrons in the plasma
shows a slight decrease when interacting with the
green laser. Returning to Eq. 4, it can be found that
the electron density depends on the FWHM of the
highest peak in the plasma spectrum. The value of
FWHM is about 1.51 with the green laser in
between 1.66 and 2.73( Fig.3) with He-Ne laser,
Nd:YAG laser, respectively. This interpreter the
behavior of the density of plasma electrons shown
in Fig. 5.

It can be seen from the experimental data
presented above that the characteristics of the

spectral emission intensities of plasma are enhanced
through the interaction with laser leading to a
change into the peak position of plasma spectra.
When plasma emission interacts with the laser, the
electrons of plasma accelerate and gain energy from
the electric field of the laser (10), which is
promising high-intensity plasma production for
many applications e.g. plasma for material
processing surfaces.

Furthermore, laser-plasma interaction opens
an additional investigation of generating new light
sources for optical component testing, applications

requiring long lamp life e.g. spectroscopy
application, advanced imaging/illumination,
environmental analysis (15, 16). Plotting the

measured data of laser-plasma interaction in one
figure explain clearly the changing in the plasma
spectrum through these interactions.
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Figure 6. plasma-laser interaction spectra, measured at the same parameters seated from the
spectrometer.

Figure 6 shows the plasma spectrum in
addition to the laser-plasma interaction spectra. The
enhancement of plasma spectra by laser interaction
is clear, where there is an overall noticeable
increase in the plasma emission spectral range
especially in the range of 300 to 700 nm, an
additional small increase in the range of 700 to 800
nm was also observed. The photons of laser transfer
energy into the plasma electrons through the
interaction leading to rising the intensity of plasma
in (17, 18).

By subtracting the plasma spectrum from the
measured spectra resultant from the interaction of
plasma-lasers, new spectra from the peak positions
and intensity were obtained. The obtained spectra
were plotted as shown in Fig.7. By doing a
comparison between the plasma spectrum and
obtained spectra (Fig.7), the plasma spectrum shows
only one peak in the range of (200 to 450) nm,
while a significant multiple peaks are located in this
range appearing from the interaction of lasers-
plasma. The new wavelengths generation in the
mentioned range independently on the laser
wavelength is due to the nitrogen gas (14). In the
range of (450 to 800) nm, a few peaks are located in
the plasma spectrum. It was also observed that the
position of the highest peak in the presented spectra
moves backward to UV spectral range and the
positions depend on the wavelength of the involved
laser in the interaction.

Generating new spectral ranges from the
interaction of lasers-plasma is a promising new
generation of light sources for a wide area of
applications. Light sources such as xenon or

mercury arc lamps produce light that is widely used
in the range of UV-VIS measurements. These lamps
consist of an anode and cathode that is used to
excite xenon or mercury gas in the lamp tube. An
electrical discharge is generated between the anode
and the cathode to provide energy for the excited
gas to release light by ionizing gas while the light
source is operating. During this process, the anode
and the cathode become very hot according to the
electrical discharge that is connected to the ionized
gas located between the anode and the cathode. As a
result, the anode and / or cathode are burned and
may emit particles that could contaminate the light
source. In addition, these arc lights do not provide
enough brightness for some applications, especially
in the ultraviolet spectrum. Furthermore, the
position of the arc can be unstable in these lamps
(19, 20).

Based on our results, a new broadband light
source can be generated from the combination of
laser and plasma. When the plasma emission shouts
with a laser beam, new wavelengths can be
generated. It can also be concluded that the
properties of the obtained light depend on the
ionized gas and used laser. In addition, the
generated wavelengths depend on the kind of
ionization ability gas used in the measurements.
While the laser beam has power stability and the
plasma emission has high brightness, the generated
light can have both properties. Compared to the
well-known light sources and LEDs operated in
UV-VIS, these light sources present as an attractive
light source for many applications especially in
fluorescence spectroscopy (21, 22).
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Figure 7. shows the comparison between the spectrum of plasma and the resultant spectra from the interaction
of laser-plasma, a) He-Ne laser-plasma, b) diode green laser-plasma, c) only plasma spectrum, d) Nd:YAG laser-
plasma.

Conclusion:

Laser-plasma interaction shows efficient
enhancement of the plasma spectral range in the
measured data obtained in this investigation. New
wavelengths spectral range are observed from the
interaction of lasers-plasma. The resultant spectra
depend on the wavelength and intensity of the
involved lasers in these measurements. The
intensity of plasma spectral peaks is enhanced from

several thousand to several tens of thousands during
the laser-plasma interaction processes. Three types
of laser and DC glow discharge plasma under the
vacuum chamber are incorporated into the
measurements. The electron density is increased
from 1.07x 10" to 2.05x 10'® cm™ as the intensity
of laser increases. As a result of the interaction, the
electron temperature of the plasma is raised from
0.176 t0 0.782 eV.
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According to our results, a novel broadband
light source can be achieved. This can be offered
from the combination of laser light and plasma
emission. a light source that generates broadband,
high brightness light, intensity stability, long life,
low cost and make this source incredibly useful is
needed in many applications. For further
investigation, selecting other ionization able gases
and figuring out the output of the spectral ranges is
planned.
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