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Abstract:

Strong and A-convergence for a two-step iteration process utilizing asymptotically nonexpansive and
total asymptotically nonexpansive noneslf mappings in the CAT(0) spaces have been studied. As well,
several strong convergence theorems under semi-compact and condition (M) have been proved. Our results
improve and extend numerous familiar results from the existing literature.
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Introduction:

A metric space G is a CAT(0) space, if it is
geodesically connected and if each geodesic triangle
in G is at least as thin as its comparison triangle in
the Euclidean plane. Some typical examples of
CAT(0) spaces are R-trees, Pre-Hilbert space and
Euchlidean buldings (1).

Fixed point theory in CAT(0) spaces was
foremost initialized through Kirk (1). He proved
that each nonexpansive (single valued) mapping
defined on a bounded closed convex subset of a
complete CAT(0) spaces permanently has fixed
point. Therefore, the fixed point theory for single
valued as well multivalued mappings in CAT(0)
spaces has intensively been evolved by numerous
authors. The convergence for nonexpansive
mappings in CAT(0) spaces was studied by
Dhompongsa-Panyanak (2). Thereafter, Khan and
Abbas (3) studied the strong and A-convergance in
CAT(0) space for an iteration process that is
indepent of the Ishikawa iteration process. As well,
several of these results obtained for two
nonexpansive mappins. It is important to remember
that fixed point theorems in CAT(0) space can be
stratified to graph theory, computer science and
biology (1).

Let (G, d) be a metric space and u, v € G with

d(u,v) = x. A geodesic path from utowv, this
means an isometry c: [0, x] - ¢([0,1]) @ G such as
c(0) =u andc(x) =v. The image of every

geodesic path between uand v is called geodesic
segment. Each point y in the segment is appeared by
wu @ (1 — w)v,where w € [0,1] thatis [u,v] =
{ou ® (1 — w)v: w € [0,1]}. The space (G,d) is
called a geodesic if each two points of G are jouned
through a geodesic segment, and G is uniquely
geodesic if there exists properly one geodesic
jouning u and v for every u,v € G. A subset H of
G is called convex if H has each geodesic segment
joining any two points in H(4-6).

A geodesic triangle A(uq,u,,u3) is a geodesic
metric space (G,d) that consists of three points
U, Uy, Uz in G (the vertices A) and a geodesic
segment between every pair of vertices (the edges
of A). A comparison triangle A(ug, 7z, uz) in
W2 for A(uy,uy,us3) is a triangle in 2-dimensional
Euclidean plane W? with u,u;,u3 € W? such as
d(uqy,up) = Uy — Ulyz,d(ug, us) =
[uy — Uzlyz, d(uz, us) = Uz — uzlyez,
|. |2 is the Eulidean norm on W?2 (7).
CAT(0): A geodesic space is called CAT(0) space
if whole geodesic triangles achieve the following
comparison axiom.

Let A be a geodesic triangle in G and A @ W2 be
a comparison triangle for A. Therefore, A is called to
achieve the CAT(0) inequality if Yu,veA &
Vi, 7 €A, du,v) < dy(1,v).

where
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If u,v,,v, are the points in CAT(0) and if v, =
%(v1 @ v,), therefore the CAT(0) inequality leads
to

1 1
d(u,vy)? < Ed(u, v)? + Ed(u, v,)?

1 2
_Zd(v1'v2)

Which is the (CN) inequality of Bruhat and Tits. In
verity, a geodesic space is a CAT(0) space if it
accomplishes (CN)(3).
Lemma (1)(8): Let (G,d) be a CAT(0) space.
Therefore,
d((1 - k)a @ kb,c)*
< (1 -k)d(a,c)*>+ kd(b,c)?
— k(1 —k)d(a, b)?

forall k € [0,1] and a,b,c € G.

Let {u,} be a bounded sequence in a CAT(0)
space G. For u € G, setting

r(u,{u,}) = 7111_{210 sup d(u, uy).
The asymptotic radius r( {u,}) of {u,}is given
through
r({u,}) = inf{r(u, {u,}):u € G},

and the asymptotic center A({u,}) of {u,,} is
defined as

A({un}) = {u € G:r(w, {u,}) = r({un})}
It is familiar that in CAT(0) space, A({u,}) has
punctually one point.
Numerous iteration processes have been structured
and suggested in order to approximate fixed points.
The Picard iteration for a mapping T:E — E is
defined by
uy=u€EkE
Upp1 = T"Uy (1)
The modified Mann iteration is considered by Schu
(5), as below
uy =u€ekE
Upr = (1= 8 )uy + 6, T uy (2)
Where {§,,} € (0,1).
The modified Ishikawa iteration is studied by Tan
and Xu (5), as below

uy =u€ekE

Upr = (1 = 8p)un + 6, T"vy

Up = (1 - IBn)un + IBnTnun (3)
Where {6,}and {B,} € (0,1). The iteration

decreases to the modified Mann iteration when
Bn=0,vVn =1

Lately, the modified S-iteration in a Banach space is
introduced by Agarwal et al. (5), as below
uy=u€EkE

Uppr = (1= 60T " up + 8,y

vp = (1= Blun + BT up, Vn 21 4)
where {6,}and {B,} € (0,1). Notice that this
iteration is independent of Ishikawa and Mann
iterations.

Recently, Sahin and Basarir (5) modified the above
iteration in a CAT(0) space, as follows

uy =u€Ek
Unsr = (1= 6,)T"uy @ 6, T" vy
Up = (1= Bplun @ BuT Uy, YR 21 ©)

The following iteration has been studied by M. R.
Yadava (9) for common fixed points of two self
mappins S and T,

uy =u€Ek
Unt1 = OpUy + VuTu, + BrSvy,
Un = (1 - Vn)un + yuTuy, n€N (6)

Where {5,}, {yn} and {ﬁn} are real sequences in [0, 1]
with 8, +y, + B, = 1. This iteration as well
decreases to Mann iteration when T = [ or y,, = 0.

Inspired and motivated by the work of M. R.
Yadava (6), the iteration (6) for common fixed
points of two mapping  asymptotically
naonexpansive and total asymptotically
nonexpansive nonself mappings in a CAT(0) space
is modified, as follows.

Deem E to be a nonempty closed convex subset
of a complete CAT(0) space G, T:E — E to be an
asymptotically nonexpansive and S:E — E to be a
total asymptotically nonexpansive mappings.
Presume that {u,,} is a sequence produced by
uy=u€EkE
Un+1 = P(Spuy © VnT(PT)n_lun

D BnS(PS)" ')
v = P((1 = yp)ttn @ ¥uT(PT)* 1), n €N (7)
where {6,.}, {y,,} and {8, } are real sequences in [0, 1]
withé, +y, + B, =1 and Pis a nhonexpansive
retraction of G onto E.

In this paper, a new iteration for approximating
a common fixed point of asymptotically
nonexpansive and total asymptotically
nonexpensive nonself mappings is constructed.
Some strong convergence theorems and A-
convergence theorem under appropriate conditions
like semi-compact and condition (M) in CAT(0)
spaces are proved. As well, numerical example to
elucidate our work is provided.

Preliminaries

Let (G, d) be a metric space & E be a nonempty
subset of G. Deem T:E — E to be a mapping. A
point a € E is called a fixed point of T if Ta = a.
As well the set of common fixed points of T and S
denote by F which is
F={a€E:Ta=Sa=a}. Call that E is called
retract of G if there is a continuous mapping
P:G - E such as Pa=a,Va€E. A mapping
P:G - E is called a retraction if P2 =P. If P is a
retraction, then Pb = b, V b in the range of P.
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e A mapping T:E—-E is called
nonexpansive  (10) if d(Ta,Th) <
d(a,b),Va,b €E.

e A mapping T:E-E is called

asymptotically nonexpansive (11) if 3
a sequence {6,} ] [1,00) withe6, - 1
such as d(T™a,T™b) < 6,d(a, b),
vn = 1,Va,b €E.

e A mapping T:E—-G is called
asymptotically nonexpansive nonself (11) if
J a sequence {6,} @ [1,00) withe6, —> 1
such as d(T(PT)" a, T(PT)* 1b) <
6p,d(a,b),Yn > 1,Va,b € E,where P is a
nonexpansive retractiopn of G onto E.

e A mapping T:E — E is called uniformly L-
lipschitzain (12) if 3 a constant L > 0 such
asd(T"a, T"b) < Ld(a,b),Vn =1,

Va,b €E.

e A mapping T:E—-E is called total
asymptotically nonexpansive  (11) if
3 positive sequences {e,}, {g,} with
e, = 0,0, » 0and a strictly
nondecreasing continuous function
9:[0, ) - [0, o) with 9(0) = 0 such as
d(T"™a,T™b) < d(a,b) + e, 9d(a,b)
+0,, Vn = 1,Va,b € E.

e A mapping T:E—G is called total
asymptotically nonexpansive nonself (11) if
3 positive sequences {e, } , {0, } with
e, = 0,0, » 0and a strictly
nondecreasing continuous function
9:[0, ) - [0, o) with 9(0) = 0 such as
d(T(PT)" ta,T(P T)* 'b) < d(a,b) +
e, 9d(a,b) + 0,,Vn > 1,Va,b € E,
where P is a nonexpansive retraction of G
onto E.

e A mapping T:E — G is called uniformly L-
lipschitzain (11) if 3 a constant L > 0 such
as d(T(PT)* ta, T(PT)" 1b) <
Ld(a,b),Vvn >1,Va,b €E.

The notion of asymptotcally nonexpansive mapping
was foremost introduced by Gloebel and Kirk.
Therefore Alber et al. introduced the class of total
asymptotically nonexpensive, which generalizes
some classes of mappings that are spans of
asymptotically nonexpensive. Several authours have
been extensively studied these classes of mappings
(6).

Definition (2)(13): A sequence {u,}in a CAT(0)
space G is called A-convergence to u € G if u is the
unique asymptotic center of {v,} V subsequence
{v,} of {u,}. Here, note down A —Ilim,_,u, =
u and u is the A-limit of {u,}.

Note that given {u,} @ G, {u,} A — convergence to
u and v € G with v # u through the uniqueness of
the asymptotic center that gives

Tllggo supd(u,,u) < 711—{20 supd(uy,, v)
Therefore, each CAT(0) space achieves the Opial
property.
Lemma (3)(8): Let G be a CAT(0) space and
a € G. Presume {s,} is a sequence in [zc] for
several z,c € (0,1) and {a,},{b,}are sequences
in G such as lim,_4 sup d(a, h*) <
t, Tlll_r){)lo sup d(b,, h*) < tandlim,_. d((1 —

Sn) n @ spbp) =t
for several t > 0. Thus lim,_d(a,, b,) = 0.
Lemma (4)(6): Let {¢,}, {a,}and{A,} be the
sequences of positive numbers such as ¢, <
1+ ay)sp + 4, Vn > 1.
o |f V=1 @p <ooand Yp_q A, <,
therefore lim,,_,, ¢, EXIsts.
e If there is a subsequence {¢,;} @ {¢,,} such
as a,; = 0thus lim,,_ ¢, = 0.
Lemma (5)(14): Each bounded sequence in a
complete CAT(0) space G holds a A-convergence
subsequence.
Lemma (6)(15): If E is closed convex subset of a
complete CAT(0) space G and if {u,} is bounded
sequence in E, thus the asympitotic center of {u,,} is
inE.
Theorem (7)(11): Let E be a closed convex subset
of a complete CAT(0) space G. Let T be a mapping
accomplishing one of the following conditions:
e T:E-E is an asymptotically
nonexpansive mapping with a sequence
{6,100 [1,0) & 6, — 1.
e T:E-G is an asymptotically
nonexpansive nonself mapping.
e T:E-E is a total asymptotically
nonexpansive mapping.
Let {u,} be a bounded sequence in E such as
lim, . d(u,, Tu,) = 0and A — lim,_,, u,, = h*.
Thus, Th* = h*,h* € F.

The convergence results

In this part, A-convergance and some strong
convergnce theorems by using iteration (7) for
asymptotically nonexpansive and total
asymptotically nonexpansive nonself mappings in
CAT(0) spaces are proved.
Theorem (8): Let E be a nonempty closed convex
subset of a complete CAT(0) space G. LetT:E - E
be a uniformly L-lipschitzain and asymptotically
nonexpansive and S:E — G be a uniformly L-
lipschitzain total asymptotically nonexpansive
nonself mappings with F(T,S) # @. Presume that{
u,} is defined by (7). If F:= F(T) n F(S) and the
following conditions are accomplished:
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) Xne1en <0 & Yplg 0y < 0.
ii) There is a constant B* > 0 such as 9(p) < B*p,
p=0.
Thus, the sequence {u,} is A-convergence to a
several points h* € F (F == F(T) N F(S)).
Proof: Step 1. Firstly, proving that
lim,,_,o d(u,, h*) for each h*F and lim,,_,o, d(u,, F)
exist.
Since h* € F, Ph* = h*. Now,
d(vp, h*) = d(P((l — Yn)Un
@y, T(PT)" ' uy,), Ph*)
< d((l - Vn)un EB VnT(PT)n_l unJPh*)
< (1 - Vn)d(uru h*)
+ ¥, d(T(PT)" 1 u,, h*)
=< (1 - Vn)d(unr h*) + Vnsnd(uw h*)
= (1= ¥n + ¥n6n)d(uy, h*)
Thus,
d(up41,h*) = d(P(Squpn @ v T(PT)" 'uy,
® BnS(PS)"'vy), Ph)
< d(Spun @ o T(PT)" uy,
® BnS(PS)" vy, h")
< 8,d(uy, h*) + ¥, d(T(PT)" u,, h*)
+ Bnd(S(PS)" vy, h*)
< 8pd(un, h*) + Yn6nd(uy, h)
+ Bpld (v, h*) + e, 9d (v, h*)
+ 0]
< 8pd(un, h*) + Yn6nd(uy, h)
+ .Bn(l + eTLB*)d(vTU h*) + Bnan
< 6pd(up, h*) + yp6,d(uy, h*)
+ ﬁn(l + enB*)(l ~—Vn
+ ¥n6n)d Uy, R*) + Broy
< [571 + Yn6n + .Bn(l + enB*)(l —Vn
+ ¥n6n)]d Uy, R*) + Broy
=< [571 t Ynbn + .Bn + .BnenB* - .Bnyn - .BnenB*Vn
+ .Bnynsn
+ BnenB*ynGn]d(un' h*) + Bno-n
=< [571 tvnt+ .Bn + .BnenB* - Bnyn - .BnenB*Vn
+ BTLYTLGTL
+ BnenB*ynsn]d(unr h*) + ﬁno-n
< [1 + (,BnenB* - .Bnyn - ,BnenB*Vn + .BnYnGn
+ BnenB*ynGn)]d(unr h*) + ﬁno-n
= (1 + pn)d(unv h*) + 9n
where Pn = BnenB" — Bn¥n — BnenB yn +
Bn¥n6n + BnenB yn6y, and 6, = B,0,.
Whereas Y p—; e, < o and Yp—; 0, < 00,
it follows up that Y7_;pp, <00 & Ypq 6, < .
Therefore through Lemma (4,
lim,,_,o d(u,, h*),V h* €
F and lim,,_,, d(u,, F) exist.
Step 2: Next, proving that
rlll_r)glo d(u,, Tu,) =0and rlll_r)rolo d(u,,Su,) =0.
In verity, it follows up from step (1) that for each
given h* € F, %md(u”' h*) exists. Presume that

limd(u,, h*) =r, r=0
n—oo

d(vy, h*) = d(P((l — Yn)Un
@ Y. T(PT)"  u,), Ph")
= (1 - Vn)d(un: h*)
+ ¥, d(T(PT)" Y u,, h*)
< (1 - Vn)d(un: h*) + ynsnd(un! h*)

®)

Hence,
lim sup d(v,,h*) <r
n—oo

As well from d(T(PT)" ! u,,h*) < 6,d(u,, h*),
vn=1,2,..4gives

lim sup d(T(PT)* 1 u,,h*) <r

n—-oo
Now,
d(S(PS)" v, h*) < ((1 + ,B")d(v,, h*) + a,,)
Therefore,

lim sup d(S(PS)* v, h*) <r

n—-oo
Moreover,
r= 7lim d(ups, b))

= lim d(P(8,u, @ v,T(PT)" 1u,
n—-oo

® BnS(PS)*vy,), PhY)
< limy, 00 [6nd (U, B*) + ¥ d(T(PT)" 1u,, h*)
+ B,d(S(PS)" v, h*)

(6n + ¥)d(T(PT)" up, h*) +
Bnd(S(PS)" vy, h*)
= (1 - .Bn)d(T(PT)n_lunv h*)
+B,d(S(PS)" Mvy, h¥)
By Lemma (3), getting
lim d(T(PT)" u,, S(PS)™" 1v,) =0
Now,
d(un+1'h*) = d(P(gnun @ VnT(PT)n_lun
® BrS(PS)"vy,), Ph*)
=d(P(8,T(PT)" tu,
@ ¥ T(PT)" u,
D BrS(PS)"'vy,), PhY)
<d((1 - B)T(PT)" tu,
+ BnS(PS)" vy, h*)
< d(T(PT)" 1 u,, h*)
+ B d(T(PT)" 1u,, S(PS)* 1v,)
Which yields that
r < rlll_r)rgo inf d(T(PT)" * u,, h*)
That gives
rlll_rgo d(T(PT)" tu,, h*) =r
In turn,
d(T(PT)* Y u,, h*)
< d(T(PT)* tu,, S(PS)* 1v,)
+d(S(PS)" v, h*)
< d(T(PT)* 'u,,S(PS)* 1v,)
+(1 + e, B")d(v,, h*) + gy,
That implies
r < lim infd( vy, h")

n—oo

From (8) and (9), that deduces

©)
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lim d(v,,h*) =7
n—-oco
Again,
r = lim d(v,, h")
n—-oo
= lim d (P(1 — y)u, @ VnT(PT)n_l Up), h*)
n—-oo
Through Lemma (3), getting
lim d( T(PT)" * u,,u,) =0
n—oo
Notice that
lim,,_,0 d( vy, h*) = ¥, d(T(PT)" ! u,, h*)
Therefore,
lim d(v,,h*) =0
n—-oo
Now,
d(Ups1,up) = d(P((6run, @ VnT(PT)n_lun
@ BnS(PS) vy, up)
< d((8p +v)T(PT)" tu,
+ BnS(PS)" 1y, uy)
< (1 = Bp)d(T(PT)" tup, up)
+ Brd(S(PS)* v, uy)
This gives
rlLim d(Unp+1,Un) =0
Thus,
d(un+1, V) < d(unt1,up) + d(Vn, uy)
-»0asn —>o
Which gives
lim d(u,41,v,) =0

n—oo

Moreover, from
d(Uns1, S(PS)" )
< d(un+1'un) + d(un:T(PT)n_lun)
+d(T(PT)" Yu,, S(PS)" 1vy,)
That gives
im0 d(Upyq, S(PS)* 1v,) = 0.
d(uy, T(PT)" uy)
< d(u,, T(PT)" 1u,)
+d(T(PT)" tu,, S(PS)" 1v,)
+d(S(PS)* 1v,), T(PT)" 1u,)
Gives that
lim d(u,, T(PT)" u,) =0
And
d(up, Tup) < d(up, Unt1)
+dUnt1, T(PT) Upy1)
+d(T(PT)" up41, T(PT)™uy,)
+d(T(PT)"u,, Tu,)
By uniformly L-lipschitzain, getting
< (1 + L)d(up, unyr) + d(upyr, T(PT) " upyq)
+L d((PT)™up, uy,)
= (1 + L)d(up, Uns1) + d(Uny1, T(PT) " upyq)
+L d(PT(PT)" 1u,,u,)
< (1 + L)d(up, ung1) + d(unyy, T(PT) "ty 1)
+L d(T(PT)" 'u,,u,) =0 as n - o,
Therefore,
Tlll_r)rc}o d(u,, Tu,) =0 (10)

and d(u,, Suy) < d(u,, Tu,) + d(Tu,,uy,) +
d(uy, Su,), letting n — oo, that gives

d(u,, Su,) < d(u,, Su,)

This means,
lim d(u,,Su,) =0 (11)
n—-oo
Step 3: Now, proving that
aA(un) = A([Zn]) F(T,S)

{zn} B {un}
And 2, (u,,) has punctually one point. Since
lim, e d(u,, Tu,) = 0& lim,_, d(u,, Su,) =
0 are proved.
Let ZA(un) = U{zn} {un}A([ZnD F(T, S), where
the union is taked over all subsequence {u,} over
{z,}. To belay that A-convergance of {z,} to a
common fixed point of T and S, first, elucidating
that 25 (u,) B F(T,S) & 25(u,,) is a singleton set.
To show that ¢2,(u,) @ F(T,S), presume that
z € 25(uy,). Therefore, there is a subsequence {z,}
of {u,}. Such that A([z,]) = {z}. Through Lemma
(5) & (6), V a subsequence {y, } of {z,,} such as
A—lim, ,, ¥, =yandy € E.
Since
limy e d(Yn, Tyy) = 0 and limy, o, d(Yn, Syn) =
0. It follows up from Theorem (7) that y € F. By
the  Opial property lim,_ o supd(y,y) <
lim,;,_,00 SUp d( ¥y, Ty) and lim,,_,o supd(yy,, y) <
lim,,_, SUp d( ¥y, Sy). Thus, Ty = yand Sy =y
i.ey € F. Now, claiming that z = y. If not, by step
(1), lim,_d(u,,y) exists and holding to the
uniquness of the asymptotic centers,
lim sup d(yn,y) < lim sup d(yy,,2)

< %1_r)r010 sup d(zy, z)

< lim,,_,o sup d(z,,y)
< lim sup d(u,,y)
n—oo

= lim sup d(y», y)
Which is a contradication. Thus, z = y. To confirm
that and 2,(u,) is a singleton, let {z,} be a
subsequence of {u,}.
By Lemma (5) & (6), there exists a subsequence
{yn}of {z,} suchas A —lim,,, y, =yandy € E.
Let A([z,]) = {z} and A([u,]) = {u}. Previously,
showing that z = y. Threrefore, it is sufficient to
show y =u, thus by step (1) lim,_ d(u,y)
converges. By uniqueness
lim sup d(y,, y) < lim sup d(yn,u)

< Tlll_r)rolo sup d(uy, u)

< lim,,_, o sup d(uy,, y)

= lim sup d(yn, y)
Whish is a contradication. Thus,
conclusion is belayed.
Lastly, proving {u,} A-convergence to a common
fixed point of S and T. Of step (1) d(u,,,h*),V h* €
F, and from step (2) lim,_ed(u, Tu,) =
0 & lim;_,e d( Uy, Suy,) = 0,2x(uy,) has

y=u the
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punctually one point. Hence,{u,} is A-convergence
to a common fixed point of F.

Theorem (9): Under the presumption of Theorem
(8). Therefore the sequence {u,,} is defined by :

Uy =ug€E
Ups1 = Oply @ ¥uT Uy @ BrS™ vy
Vp = (1 = 1)un @ vaT uy (12)
is A-convergence to a common fixed point of
SandT.
Proof: T and S are self-mappings from E to E, take
P = I ( the identity mapping on E).
Therefore, (TP)"~1 = T™. The consequence of this
Theorem is got of Theorem (8).
Theorem (10): Under the presumption of Theorem
(8). Presume that{ wu,} is defined by (7). If
lim,,_,o infd(u,, F) =
0 or lim,_ supd(u,, F) =0,
where d(u, F) = infyepd(u, h*), therefore the
sequence {u, } converges strongly to a point in F.
Proof: Through theorem (8),
d(Un+1,h") < (1 + pp)d(un, F) + 6y (13)
where h* € F. Since Y y-1pn < o0 and Y160, <
oo, through the presumption of Theorem (10).
Lemma (4) and lim,,_,, infd(u,, F) = 0 or
lim,,_,o sup d(u,, F) = 0, gives that
lim d(uy, F) =0
Next, { u,} is a cauchy sequence in E. In verity,
from (13)V h* €F, dupe, B <A+
p)d(uy,, h*)+6, vn=>1
SinceVu>0,14+u <e% gives that
d(upsr, ") < ePrr=t d(upyro1, h) + Opgrq
< ePntr-1gPn+r-2 d(un+r—2' h*) +
ePn+r-10
< ..

< eXER Ped (uy,, h*) +
(eXE ooy g1,
< eZn=1Pnd(u,, h*) +

(eXiipmy yrtr=1g,

n+r—2+9n+r—1

< Hd(u,,h*) + HY?:rto;
(14)
where

H = eZn=1Pn < o0, Since lim, e d(u,, F) =

0, presume a subsequence { u,, } of { u,,} and

a sequence {hn,}€F, dlupy, hnw) > 0asw —
o, Thus vV ¢ > 0, thereisw, > 0

d(nw i) < 5 and 2, 6 < (15)
forall w > w,.

For any r >1landVn =n,_, by (14) and (15),
getting

d(un+r' un) < d(un+rJ h;(lw) + d(un' h;;w)

< Hd(unwi h:lw) + HZJO.(;nWs 9] +
Hd(unwy h‘;le) + H Z;.;nw‘g 91
< 2H d(upy, hpw) + 2H Z;.;nwé‘ 9j
£ &
< 2H-—+4+2H.— =¢

4H 4H
This displays that { u,,} is a cauchy sequence in E.

Therefore, the completeness of G means that { u,}
have to be convergent. Presume that lim,,_, o u, =
k*. Since E is closed, therefore k* € E. Next, prove
that k* € F, since lim,_, d(u,, F) =0, so that
d(k*,F) = 0. The closedness of F gives that
k* € F.

Theorem (11): Under the presumption of Theorem
(8). Presume that {u,,} is defined by (7). If T and S
satisfy the following condition

(i)

lim,_ e d(u,, Tu,) = 0& lim,_, d(u, Su,) =
0.

(i) If the sequence { z,}inE satisfies
lim, e d(z,,Tz,) =0 & lim, 4 d(z,,52,) =0
, then
lim,,_,, infd(z,, F) =

0 or lim,_ supd(z,, F) = 0. Therefore, the
sequence {u,} converges strongly to a point of F.
Proof: Through Theorem (8),
lim,_ o d(uy,, Tu,) = 0& lim,_,, d(u,, Su,) =
0 and from the second condition (ii)
lim,_,, infd(z,, F) = 0 or

lim,;,_,o sup d(z,, F) = 0.Therefore, {u,} must
converge strongly to a point in F through Theorem
(10).

A mapping T:E — E is called semi-compact
(16) if for a sequence {u,}inE with
lim,,_, d(uy, Tu,) = 0, there is a subsequence
{unw}of {u,}suchasu,, - h* €E.

Theorem (12): Under the presumption of Theorem
(8). If either SorT is semi-compact, hence the
sequence {u,,} converges strongly to a point of F.
Proof: Presume that S is semi-compact. By
Theorem (8), getting lim,_, . d(u,, Su,) = 0.
Thus, 3 {u,,,} of {u,,} such as u,,, - h*.
Now, by Theorem (8) encloses that
lim;, 00 d(Upw, Sunyw) = 0 and thus d(h*,Sh*) =
0. In a similar way, proving that d(h*,Th*) = 0.
Hence, h* € F, by (*), gives that

d(un+11h*) < (1 + pn)d(un' F) + Hn
where Y01 pp < 0,371 0, < o, by Lemma (4)
lim,,_, o d(u,, h*) exists and u,, — h* € F gives
that
u, — h*. This proves that {u,,} converges strongly.

Notice: The following condition is recalled:

A mapping T:E — E,where E is a subset of a
normed linear space G, is named to accomplish
condition (N) (5) if there is a nondecreasing
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function &:[0,00) > [0, ) with £(0) = Table 1. Numerical results for 40 steps
0&&(P) >0, n u; = 0.76,k u; = 0.88,k u; =09,k
P € (0,c0) suchas 2 0 42&59 0 ;80675 o=72063
d(a,F(T)) = inf{lla — h*|| ,h* € F(T) # @}. 4 0.2039 0.3353 0.4608
Yet, modify that definition to two mappings : 5 0135 0.2431 0.3686
) _ : 6  0.0848 0.1763 0.2949
Two map_pmgs T:E - E, \-/Vhere E i1sa Subset Of a 7 0.0547 0.1278 0.2359
normed linear space G, is named to accomplish 8 0.0353 0.0927 0.1887
condition (M) (5) if v a nondecreasing function 9 0.0228 0.0672 0.1510
hastlla— Sall + Llla — Tall = 11 0.0095 0.0353 0.0966
v b € (0,) suchas 4 2 = 12 0.0061 0.0256 0.0773
§(d(a,F(T)) foralla € E,where d(a,F) = 13 0.0039 0.0186 0.0618
inf{|la — h*||,h* € F =@} and [, are two ig 8-88?2 8-8332 8-8;'82
positive real nl_meers such as I; + I, = 1. Note, the 16 0.0011 0.0071 0.0317
condition (M) is weaker than the compactness of the 17 0.0007 0.0051 0.0253
domain E. As well Condition (M) decrease to 18  0.0004 0.0037 0.0203
condition (N) when § =1 2 oo 00020 0013
Theorem (13): Under the presumption of Theorem 21 0.0001 0.0014 0.0104
(8). If Sand T satisfy condition (M), hence the 22 0:0001 0:0010 0:0083
sequence {u, } converges strongly to a point of F. 23 0.0000 0.0007 0.0066
Proof:  Through Theorem (8), obtaining 24 0.0000 0.0005 0.0053
lim d(uy, Tiy) = 25 0.0000 0.0004 0.0043
n->c0 AL e - B 26 0.0000 0.0003 0.0034
0 and limy,e d(Up, Sup) = 0. 27 0.0000 0.0002 0.0027
From condition (M), 28  0.0000 0.0001 0.0022
lim &(d(w,,F)) <1, lim d(u,, Su 29  0.0000 0.0001 0.0017
n—)oof( (1)) <hy oo (i, Sttn) 30 0.0000 0.0001 0.0014
+1, Tlllrgj d(u,, Tu,) =0 31 0.0000 0.0001 0.0011
- ” 32 0.0000 0.0000 0.0009
l.e lll’l’ln_,oo f(d (un, F)) = 0. Therefore 33 0.0000 0.0000 0.0007
lim d (u,,F) =0 34 0.0000 0.0000 0.0006
ot e, 20O 35  0.0000 0.0000 0.0005
The illation just now follows up of Theorem (10). 36 00000 0.0000 0.0004
37 0.0000 0.0000 0.0003
Numerical example 38 0.0000 0.0000 0.0002
Our results through the following example is ig 3-8888 3-8888 8-888§
elucidated (Table 1) : : :
Example (14): Deem G = R with its usual metric,
soG is as well complete CAT(0) space. Let 08 , , , : : : :
E =[0,1], which is a closed bounded convex oo e |

subset of G. Define two mappings T,S:E — —O u(1)=00k=09
EbyT(u)=kuandS(u)=ﬁ,0<k<1. SoT
is asymptotically nonexpansive mapping with
{6, =2},vneN and S is a total asymptotically
nonexpansive nonself mapping with e, = % &

0, = % , ¥ n > 1. Obviously, F(T) = {0} = F(5)
of the mappings TandS. Put 6, =02y, =
05&B, =030, +yn+Bn=1). By using

Matlab,the iteration which is defined by (1) for SoteSeec.

initial points u; =076 and k = 0.59,u, = 20 25 30 35 40
0.88and k = 0.75,u; = 09and k = ) Q) _ _

0.9 is calculated. Lastly, the convergence Figure 1. Convergence behaviors for different
demeanors of the iteration (7) is appeared in Fig. 1. initial points for 40 steps.

The consequence is that u,, converges to zero. , .
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