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Abstract:

In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D)
Volterra type integral operator equation (N3D-VIOE) in R? is introduced. The modelling of the majorant
function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear
3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and
collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear
form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and
illustrative examples are provided to show the accuracy and efficiency of the model.

Keywords: Majorant function, Modified Newton method, Non-linear integral operator, Three-dimensional
Nonlinear Integral Operator, Three-dimensional Trapezoidal rule method.
Mathematical Subject Classification (2020): 45G15, 47H99.

Introduction:

Over the past years, integral operators have  properties to establish the approximate solution of
been increasingly utilized in various fields of  the 3D Fredholm-Volterra operators of the first and
sciences. This trend can be stated by the inference  second kind.
of science models that represent real phenomena *°. Numerous papers dealt with MF to reach
Diverse problems in biology and mechanics arise in the accurate approximate and numerical solution of
an integrated one and a multidimensional equation nonlinear problems. In 2?2 it was proposed that the
% These equations also appear in mass and heat ~ majorant modelling technique would be used to
transfer, fluid mechanics, molecular physics and in solve the system of 2 X2 Volterra integral
many other problems ¢, equation. Eshkuvatov etal. in * itemised MF to

There are few approaches to deal with the  solve one-dimensional nonlinear integral operator
3D integral equation of both kinds Fredholm and  of Volterra type. Hameed et.al. applied MF to solve
Volterra or mixed integral operators. Mirzaee et.al. the nonlinear system of a two dimensional Volterra
in ¥ used a method that is based on the 3D block integral operator in * and multidimensional
pulse function to establish an approximate solution nonlinear integral equations in *. While Ezquerro
for the 3D nonlinear mixed Fredholm-Volterra  and Hernandez-Veron in % applied the MF for
integral equations. In '8, Mirzaee and Hadadiyan concluding the approximate solution of some
applied the modified block pulse approximation to Hammerstein integral equations. The nonlinear
solve the 3D nonlinear mixed Fredholm-Volterra  singular integral equation in # has been solved via
integral equations of the second kind. While in *, MF. In %, Argyros and Hilout provided the
Mirzaee and Hadadiyan found the solution of the conditions of MF in a Banach space to study the

3D nonlinear mixed Fredholm-Volterra integral local convergence of MNM.
equations based on the 3D triangular functions. In this study, the N3D-VIOE of the second kind in
Maleknejad etal. in % used the Bernstein  R3 is considered as

polynomials of three variable with all their
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$16263

U(&.¢2.83)- | | [K(¢1.¢2.43.%Y,2)G(X, Y, 2,U(x, Y, 2))dxdydz = (1,45, 42),

a1 ap a3

where the variables

(¢1,$2.¢3) € laq, by [ [z, by |x [ag, ] The
unknown function U(¢1,£92.43)e @y,

f(¢1.62.43)eQ and
Q = C[al,bl]x[az,bz]x[a3,b3]- The kernel
K($1,2.¢3.%,Y.2)eQ xQ;  where  Q, =

C[Clydl]x[cz,dz]x[@,dg] and all ai,bi,ci,di,i = {1,2,3}
are real numbers. The nonlinear function
G(x,y,2U(x,y,2)) a defined continuous
function in its domain.

The outline of this paper is as follows: First, MNM
is used to linearise the N3D-VIOE. Next, TR is
utilized to detect the solution of L3D-VIOE. After
that, the convergence analysis including the
existence and uniqueness theorems of the
approximate solution and the theorem of MF are
proved. Then illustrative examples are provided to
confirm the efficiency and the accuracy the method
used. Finally, the main ideas of the approximate
method are concluded.

is

B'(Uo(¢1.$2.¢3)M

@)

Linearizing N3D-VIOE via MNM

Let us consider the operator equation of the form

pU(1.¢2.¢3))=0, @
to Eqg. (1) to get the form:

U 6,.83)) =00 600 &) - F(6062.85) -

1883

[ [ ¢oCoxy 2)B(x v, 2,U(x,y, 2))ixdydz.

1(3’2) 3Then the initial iteration of MNM of the form
ﬁ’(U (gligzags))(u ((17(274,3)_U0(é’1’§2'§3))
+AU,(¢1.¢2.6))=0,

(4)

is used to find the approximate solution, where
Uo(<1,£2,<3) is the initial condition (IC) and it
may be any continuous function. The Fréchet
derivative of U({;,£,43) can be found at

Uy (tq, ty, t3) as follows:

lim 2[8Uo(1, £20¢a)+ rU(C1, €2, 63))- AU 1, £20C3)))

r—of
. 1dpUg) ,, 1d?%g
= !.Lno— Toru +§du—2(U0+0rU)r2U2 0e(01) )
_ dpUo)
du
Utilizing Eq. (4) and Eq. (5) to get AU(¢,,6,.85)=U,(¢.8,.8)
ds Where_U ( ) . To solve
Jol (AU(1.62:¢8))=-plUo(¢1.¢2.¢3)) ol6162:5
Ug Eq. (6) for AU(¢7, <>, &3)the derivative is
(6) required to compute
d 1
9B lim 2[AU0(61, 2. €8+ 1U(¢1,¢2.3)) - AU, C2. 53]
dUly, r—-0
ru(¢1.¢2.¢3)
1
=lim | #°2%¢ G(x, y,z,Up(x y, 2)+rU(x, y,Z))} :
- K({1,82,63, X, Y, dxdyd
r—of é[lafz 6{[3 (éVl §2 4/3 X,y Z) —G(X, y,z,Uo(x, y.Z)) Xayadz
§162¢3
=U(¢1.¢2.¢3)- [ | TK(¢1.¢2.¢3.% v, 2)80 (% ¥, 2U 5 (%, v, 2))U (%, y, 2) dxdlydz,
a1 883
(M
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where Gy (x,y, 2, Uy(x, y,2)) is the partial derivative of G(x,y,z U(x,y,z)) for U(x,y, z). From Egs. (6)

= 1(61.62.83)+ | | [K(1,¢2.83% y,2)G(x, ¥, 2,Ug(x, Y, 2))dxdydz —U(¢1, 2. &3),

AU($1,62.¢3)— | | [Ko(¢1.42.¢3.%, Y, 2;Ug)AU(x, y, z)dxdydz = Fo(¢1,¢2.¢3),

and (7):
616243
AU(¢1, ¢, 83)- | | TK(CL 2. Ca% Y, 2)50 (%, v, 22U (%, v, 2)) AU (x, y, 2)dxdlydz
a ap ag
$162¢3
d; dy aj
(8)
or
616263
dq dp az
9)
where

Ko(¢1, 2, &3, % ¥, 2;Ug) = K(¢1, &2, <3, %, ¥, 2)G0 (%, v, 2U o (%, v, 2))

(10)
$1¢263

Fo(¢1.2.¢3)=1(1.¢2.83)+ | | [K(G1.¢2.¢3% ¥, 2)G(X, ¥, 2,Ug(x, v, 2))dxdydz Uy (¢1,£2.$3)

8 ap a3
(11)
Eq. (9) is a linear equation for AU ({3, <>, ¢3) and

by solving it to getUy (7, £, <3) as
U1(¢1,¢2,¢3)= AU(¢1,¢2,¢3) +Uo(¢1:¢2.¢3)

. A sequence of approximate solution
Un(<1,£2,¢3) (n=2,3,-+-) can be established by

continuing this process and can be evaluated from
the following equation

BU(81.8,.8))AU, (8,650 85)

+ﬂ(un—1(§1’§2’§3))= 0
(12)
Eq. (12) is equivalent to the equation

Ko(¢1,$00Ca X ¥ ZUy)

616283
AU, (¢1.65.65)— | | | AU, (x, y, z)dxdydz
peb=F (8.4 8)
(13)
where

AU, (£1,4,.45)=U,(£1.£2.5)

Un—1(§1'§2’§3), n=123,---
(14)
and

Fn—1(§1)§2,§3)= f(§1!§2’§3)+
§1§2§3K(§1’§2’§3X; y,z)
J]]ey.20,(xy.2)

alazaadxdydz -U n_1(§1’é/2’§3 )
(15)
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Solving Eq. (12) for AU,(¢7,¢>,<3) givesa
sequence of approximate squtionsUn(g“l, ¢, 4’3).
(n=23,--)

Discretizing the Approximate Solution

A grid of points can be introduced as follows:
:{(gli'§2j’§3k):§1i =aq +ih1;§21}
=a, + jh,; &y = a, +kh, ’

i=1---m,j=1---,m, k=1-
where hy = by~ 23y . hy _b2-a . hg b3 i
m my m3

and m;refers to the number of partitions in

[ai 5 ],i ={1,2,3}. Then, Eq. (13) becomes

e Koty Cax vz, )
I AU (x,y,z)dxdydz

e :Fn—l(é/li’§2j'é/3k)'

AU, (800G G )-

16
TR fo(r t)riple integral on the arbitrary region
[al,bl]x[az,bz]x[a3,b3] can be estimated from
TR for single integral as @ P19
(X, X, X ) dx,0x, X, =

-[Ijhhh 3 i > ((Xln'XZJ’X3k))

TN

(17)

=0 j=0 k=0
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The notation )’ " refers to the first and last terms moo= hyzhy = gi‘( 4 =12, -m, z,=12,---,4,,
are to be halved before summing. &y : ,

. . . Z; — — ] _ —
Now, introducing a sub-grids Q. , Qmj and Qp, Tm, = M2,y = ‘) i=12---m,, 2,=12,--,(,

N
&
|

=

[

=

N

w

=

[

=~

I
o
o5

=~

I

[y
N
N

w

I

=
N
~

w

of /j, £ and ( points at each subinterval[ay, &3] 7,
, [az,g’zjjand [ag,é’gk] which are included in (18)
[al’bl]’ [az,bz] and [a3,b3] that appear in Eq. By applying these points on Eq. (16),

(16), such that
AU $1 , Sy ' S3 _
n(fmli Tmy; Fmye

52 S ch D 23 1 2 z2
1=l 7,=1 23=1

52 53

|—12 ml,j =12, mz,k:1,2,---,m3

S1=12,--,01, Sy =12,---,09,53=12,---, (3

(19)
where

; j " K(Tsl_,rsz_,rse‘ i ,122_,1'23 )
hipjhey 2 2 X (

1=l 7,=1 73=1 |G| ;&

Eq. (19) is a linear algebraic system of U (£,,¢,.¢,)=AU,(¢,8,.E)+
(my xmy xmg)x (£1x 05 x3) unknowns and U (G0l hn=23 -
with non-singularities, it has a unique solution in

terms of AU ( M ,rzz_,rz3 j,n=2,3,---,
1

(22)

Convergence Analysis and MF

M2j " Mak Since the functions f (¢, ¢5,¢3),Ug(¢1,£2.43),
Zi =12 =123 nd - K(¢1,¢2:¢3.% 1,2), Gx,Y,2,U(x, ,2))
=120y, =12mp k=120, Gy (x, v, 2,U(x y,2)) and
then U ( T ,TéZ réf ) can be found as G{) (X, Y, Z,U(X, Y, z)) are continuous in their
! 2] 3k domain of definition, then they are bounded, see

U,(e2 22 o2 )= AU, (2 o2 o2 )+ (30, pp 33) such that

(e ) (21) max((¢1,¢2.¢3) =M,
Uiz, ’l' 1Ty

_ max(Uo(¢1,¢2,¢3))= My, .
The values of unknown functions Un(§1,§2,4’3)

can be evaluated via Newton forward interpolation ax(K(¢1,62,63,% ,2))= M.
formula, see %, then max(G(x, y,z,U(xy, Z))): Mg,

299



Open Access
Published Online First: January 2021

Baghdad Science Journal

P-1SSN: 2078-8665
E-ISSN: 2411-7986

max(G{; (x, ¥, 2,U(x, Y, 2))) = Mg,

max(G(j (x, y,z,U(x, y,2))) = Mgr.

The MF in *! has been used, such that

W(t) = E(t—tg)” — A+ & Nt —to) +7,

(23)

where &>0and 7>0 are real numbers. The

following theorem states that the function in (23) is
an MF of the operator as in Eq. (2).
Theorem 1: Consider the operator f(U) =0 as in

Eq. (2) is well known in

Qp= p € Clay by Ma by <[ag bs] :”U _UOH < R}
and its second derivative is continuous in a closed
ball

Qop = {U € Clay oy [x[az b, J<[az.bs] :”U _UOH < r}

,whereT =ty +r <ty +R. Let Ty = [8'Uo )|,
and the following requirements are satisfied:

/i
1) foBWUg)| < ) and 2)

" 25
o)< g

, £ and 77 as in Eq.(23). Then the function ‘V'(t)

defined in Eq. (23) majorizes the operator A(U )
defined in Eq. (2).

Proof: *.

Now, the following theorem states the existence and
uniqueness of the approximate solution.

Theorem 2: The integral operator as in Eq. (1) has

),where U -Ug|<t—tg<r

a unique solution U~ (¢7,¢5,¢3) in the closed ball
Qop and the sequence approximation in Eq. (9)

converges to the solution U*(§1,§2,4’3) if the
following conditions are satisfied:
1) The resolvent kernel F(§1,§2,§3) of Eq.
(23) has been existed, where
T <My MG,e[M kMg (b -2y )by —a; bs—as)]

2) p"(U) is bounded

The convergence rate is given by the following
formula

‘U*—Un‘g( 2 )m(lj,mzl,z,...
1+cn) \&

24

I(Dro)of: It presented that Eq. (1) is formulated to be a
linear integral operator for AU((p,<p,<3)as in
Eg. (9), so it has a unique solution for the term
AU(¢1,£2,¢3) on condition that the kernel

Ko($1.£2.¢3. %y, zUg) is a

continuous

300

function, then the existence of the operator Ij is

achieved. The resolvent kernel of Eqg. (9) is
established to show that I}y is bounded. Now, let

the integral operator P
Clay by K[az b, K[ag.bs] = Clay by [y b, [ag.bs]

is illustrated as follows
loYe

P(AU(S:,¢4,.45)) Ia[a{K 41142,43,xy,zu)

*AU(x, y, z)dxdydz
(25)
where Kq(¢1,£2,¢3,%,Y,2;Ug) is defined as in

Eg. (10) . Relying on Eq.(25), Eq. (9) can be
rewritten in the form

AU(&1,¢2,43)-P(AU(¢1,£2.43)) = Fo(¢1.£2.¢3)

(26)
Eq. (26) has a unique solution AU (¢7,¢5,¢3)
that can be expressed in terms of Fo(£7,£%,¢73) as

U™ (¢1.$2,¢3)= Fol¢n. £2.¢3) + A(FRo(¢1,£2. &)

(27)
where the operator A is an integral operator which

can be written in terms of powers of the operator P
32, pp.378

A(Fo(é’l’é/z’é/s)): I +P(Fo(é/1v§21§3))+

PA(Fo(¢1 (o0 G )+ + PP (Ro(61 506 )+,
(28)
Such that the powers of P are also integrals

Operators.
¢263

P"(AU(¢1.62.60) = Ia{iK Crdanborrry. o)

* AU (x, y, z)dxdydz
,(m=12,--),
(29)
where  K{'(£7,¢5.¢3,%,Y,2;Ug)is the iterated
kernel. By substituting Eg. (28) and Eq. (29) into
Eq. (27), the solution of Eq. (26) has the form
AU™(¢165085) = Fol¢1 &30 6)+

€16263
1—‘0(4/1' 4/2’4/3’ X1 yl Z’U())Fo(x, y, Z)dXdde,

a a, ag
(30)
and the resolvent kernel in Eq. (30) has the form
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ro(§11427§3'xa y,Z;U0)= (31) )
» Converges uniformly for all 7 [al, bl]
ZO Ké7+1(§1!é/2!§31 XY, Z;UO)’ 4/2 S [az,bz] and é’3 S [a3,b3]. Since
—

K(£1 6260 % ¥, )G (%, ¥, 2.U, (%, ¥, 2))
< M M.

Ko(¢1: 6o 830 %, ¥, 21U, ) (32)

Consider Mt =MgMgrand by mathematical
induction:

€162 ¢
‘K§(§1,§2,§3,x,y,z)( < | ] JIKo(¢1.¢2.¢3.% ¥, ;U )Ko(£1. 42,43, % ¥, ;U ) dxdydz,
ay a, ag
< M (by — &y )b, — ap (g — ag)
n :
3 616263 9
‘Ko(§1,§2,§3,x,y,z)( < [ j‘K0(§1,§2,§3,x,y,z;Uo)Ko(§1,§2,§3,x,y,z;U0)1dxdydz,
a; a, ag
< M3 (by —a1)*(bp —ap)* (b3 a3
. 2.! ’
€16263 . 1
‘K(’)J(ﬁ,(z,?&xayyz)( < |7 f‘Ko(§1,§21§31xay,Z;U0)K60 (41,52,§3,x,y,z;U0)1dxdydz,
a; a, ag
- M£ (b -2y )° oy —ap )" o3 —a3)P "
B (o -1} |
then
IToll = |A(Fo(¢1.¢2.63)) < Zo K162, 830 %, yliUo)(
i
< i M{”l(bl—al)p(bz—az)p(b3—a3)p’
p=0 P! (33)
My i M{’(bl—al)p(bz—az)/’(b3—a3)p’
p=0 Pl
— MTe[MKMG’(bl_al)(bz_az)(b3_a3)]_
That implied the series in Eq. (33) is uniformly Uo(é’l, 4’2,4“3) is a bilinear operator, that implies

convergent forl“o(g’l,g’z, {3, %Y, Z;Uo). Next, to ﬂ"(uo(é/l’ {2,43))(U (gl’ éVz’gs)):
verify that 4"(U) is bounded for all 425
U(¢7,<52,¢3) e Qg . Since the second derivative of mE

the integral operator (U (¢7,<>,¢3)) at

U(¢.6,.8)

Uo

and the norm has the estimation:

du?
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d 2,3 ¢16263 ,
—= = max|[ [ [[K(1.¢2,43% ¥,2)G"(x v, 2,Un_1(x ¥, 2))Jdxdydz|, a4
dU a]_ az 3.3 ( )
< MgMgr(by—ag fby —ap by —a3)
Thus, the second derivative is bounded therefore, Numerical Results and Discussions:
the solution U*(§1,§2,§3) of Eq. (3) is unique The goal of this section is to show the efficiency

32, pp. 532 ) . and ability of the method based on MNM and MF,
see ™", The drate Iofsfonvergence Is shown in the following example has been considered and
(Husam Hameed et al. ™). w MATLAB Rb 2013 has been used to get the results.
Example 1: Consider the following 3D-VIOE®,

¢162¢3

U(61,¢2.63)=6(¢1. ¢, &) 24 [ | | 26U (x y,z)dxdydz, (1,47, ¢3) € [0.2]x[04]x [0.1]
000

(35)

where G({1,{2,{3) = 4C0¢ X3 +ALEE 33 + 3135 + (L ¢ 45 +C1da3 and the exact

solution is 52 gl ) 43
U
U(C1.$2.83) =P ¢+ Eolh + 1ol 0(61,62:63) = 51 EREREY)

The numerical result for Eq. (35) withmy =10, The error results for thls example is explalned in

Table 1 along with the comparison of the error
m; =10, m3 =10, l3=5,01=5,3=5,  computed the present method, the 3D block-pulse
hj =0.1,{i=123}, and the initial guess (3DBP) function method % and the modified block-
pulse (MBP) functions method *°.

Table 1. Numerical result for Eq. (35) withm1 =10, m, =10, my =10, fl = 5,£2 =5, ZB =5,

hj =0.1, {i =123} and Uy(41,$2,43) = {14 Cz {3+ 51 {2 53 , the number of iterations

n=10.

Nods (4’1,4“2,43) (3DBP) function (MBP) function MNM

G2t method®® method*®

e U (61.5.85) 2U(61.¢5.85) U(61.85.85)
1 0.1658187 0.0844986 0.0039541
2 0.0455175 0.0230859 6.0181763e-04
3 0.0144045 0.0073650 9.2851833e-05
4 0.0001628 0.0028076 1.3965325e-05
5 0.0008036 0.0004120 4.8432711e-06
6 0.0008837 0.0004921 2.2118647e-06

Table 1 indicates that ten iterations (n=10) are = The exact solution for this integral operator is
reasonably sufficient for the approximate solutions U(§1’§2,§3)= $169¢

Un(¢1:¢2,¢3) to be closed o the exact solution Numerical results for Eq. (36) withmy =10,
U™ (¢1,£2,¢3) and to show that MNM is more  my, =10, my =10, (1 =5,(1 =5, (3=5

accurate than the two other methods, (3DBP) h =0.1, {i =12, 3} and initial guess
function method and (MBP) function method. \ ‘

. . . ~ 4 2
Example 2: Consider the following N3D-VIOE **, Uo(<1.¢2.83) = 3 and

U(£1. 850 8) =688 -
(516227(3 +££1.3U X, Y, 2 )dxdydz

(¢1.$2.¢3)ef01]x[01]x[01]  (36)

UO(§1,§2,4’3)= §1§2§3 are given in Table 2-3
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Table 2. Numerical result for Eq. (36) with m =10, m, =10, my =10, El = 5,(2 =5,

(o=5,h=01{i=123 and U.({,,¢ 4)_ﬁ§2§
3= i=0Lu=L2 01230 =27,

n SU(£1.¢2.43)

1 0.0215944320000
2 0.016030131430
3 0.002777682726
5 1.21026369 e-04
10 3.20188615 e-06
20 2.44142574 e-10

Table 3. Numerical result for Eq. (36) with m =10, m, =10, my =10, £1 =5, 62 =5,

(3=51 =014 =123 and U (5.$,¢0)=/¢1¢ 08

: €U(¢1.42.43)

1 0. 5281727300000
2 0.0287294638216
3 0.0138255823805
5 1.210263695 e-03
10 3.201886157 e-04
20 2.441425741 e-07
30 6.2694121930e-10

Table 2 shows that few iterations are
required for the  approximate  solutions

Un(£1,£2,¢3) to be very closed to the exact

solutionU " (£7,¢5,¢3), while Table 3 indicates

that when IC is chosen to be far from the exact
solution, more iterations are required to reach the
perfect approximate solution.

Notations used here are: mq,mo, and mg are the
number of the main partitions on [al,bl]:[O,l],
[ay,b,]=[0], and [ag,b3]=[01] respectively,
l1, flo, and (g are the subpartitions on
las. cuil=[0.¢u]. oz 2]=10.¢25],  and
[ag, &3 ]=[0,&a ] respectively, i=12,---,my,
j=12,---,my, k=12,---,mg, N is the number
of iterations and

&, i
Cgaek o Toanoa
Un(61:¢2,62)-U7(¢1.¢2.63)

Conclusion:
In this note, the 3D nonlinear integral
operator of Volterra type is solved using the

modelling of MF and MNM. The existence and
uniqueness theorem of the approximate solution is
proved depending on the general theorems of
MNM. Tables 1 and 2 show that the convergence of
the method is rapid and its approximation is
accurate. In general, it can be concluded that MNM
and MF modelling are a powerful tool for solving
many types nonlinear 3D integral operator
equations of Volterra.
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