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Abstract:

For the connected graph G with vertex set V(G) and edge set E(G), the local resolving neighborhood
R;{u, v} of two adjacent vertices u,v is defined by R;{u,v}={x € V(G):d(x,u) # d(x,v)}. A local
resolving function f; of G is a real valued function f;: V(G) — [0,1] such that f;(R;{u,v}) = 1 for every
two adjacent vertices u, v € V(G). The fractional local metric dimension of graph G denoted dimy,(G), is
defined by dimg,(G) = min{|f|: f; is a local resolving function of G}. One of the operation in graph is
the comb product graphs. The comb product graphs of G and H is denoted by G = H. The purpose of this
research is to determine the fractional local metric dimension of G = H, for graph G is a connected graph
and graph H is a complete graph (K,,). The result of G = K, is dimg (G = K;,) = [V (G)|. dimg; (Ky—1).
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Introduction:

The first authers to discuss the
minimum resolving set and the metric dimension
problems is (1, 2). They assumed that the graph
used is a connected graph, simple graph and a finite
graph. In (3), graph G is defined as a finite and non-
empty set of V(G) whose elements are called
vertices and sets E(G) (maybe empty) whose
elements are called edges which are non-ordered
pairs of two different elements of V' (G).

Let u and v be two vertices in G, d;(u, v)
is the distance between two vertices u to v of G,
defines as the shortest path between u to v. For an
ordered subset W = {wy,w,,...,w;} € V(G) and
v € V(G), the representation of v with respect to W
is an ordered k-tuple
r(v|w) =
(d(wv,wy), d(w,wy), ..., d(v,wy,)), where d(v,w)
is the distance between two vertices v to w. The
set W is called a resolving set for G if each vertex in
G has a different representation of W. A resolving
set that has a minimal cardinality is called a basis of
G. The number of vertex on the basis of graph G is
called dimension of G and denoted by dim(G).

In (4) introduced the local
metric dimension of graph, they defined the
local resolving set and the local metric dimension
of agraph. In (5 6) studied the

commutative characterization of graph operations
with respect to the local metric dimension and
metric dimension, respectively.

The development of the metric dimension
is the fractional metric dimension. The
fractional metric dimensions were first examined
by (7) they defined the concept of the
fractional metric ~ dimension  of  involving
resolving set, resolving function and fractional
metric dimension. Then their research was
continued by (8). Furthermore, in (9) also found

characterization dim(G) =|V(2—G)I where G is a

connected graphs. Meanwhile, the
fractional metric dimension of trees and uncyclic
graphs can be seen in (10).

Furthermore, research about the fractional
metric dimensions of a product graph has been
investigated by (11, 8), and in (12) who studied the
fractional metric dimensions on permutation.

The latest development of fractional metric
dimension of graphs was conducted by (13). In (14,
15) found the fractional metric dimension of comb
product graph. Figure 1 shows examples of comb
product graphs
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Figure 1. graph G > K5

Below is the notation (index) of the graph G = H.

a. The set point of the parent is a member of
V(G). The point set of the parent is U =
vi:v; eV(G)}Iwithi=12,..,n.

b. The leaf set on the parent element v;; is
U; ={vijiu €V(H), j =23,4,..,m}.

In  (14) discussed fractional —metric
dimension of comb product graph. In this paper
discussing the fractional local metric dimension of
comb product graphs of ¢ and H, for G is an
arbitrary graph and graph H is a complete graph.

Results:

In this research, we investigate the
fractional local metric dimension of comb product
graphs where H are some special graphs. We first
recall some fractional local metric dimension of a
special graphs.
Theorem (1) : For the B,, dimg(P,) = 1.
Proof. Let V(P,) = {vy v, v3 ...,v, } and E(P,) =
{viviy1 i =1,2,...,n—1}. Given local resolving
function f;:V(B,) — [0,1], for any two adjacent
vertices v;,v; € V(P,) with v;v; € E(B,) then
Rf{vi,v;} =V (B, s0

fiv) + filvy) + -+ fi(vy) 2 1

filvp)) =1

veV(Py)

hence dlmfl(Pn) = min{zvev(pn)fl(vi)} =1.
Then dlmﬂ(Pn) =1.@
Theorem (2) : For the cycle graph C,,, then

1 if niseven
[ = n
dlmﬂ(cn) {m lf nis Odd
Proof. There are two cases
Case 1. n is odd.

Let g:V(C,) — [0,1] be the constant function
defined by g(vi)=ﬁ. Let v;,v;,; be two
adjacent vertices of C,. Then R {v;v; 1} =
V(C,) —{vr} is the unique vertex such that

-1
A, v;) = d(Vk, Viyq) = nT

g(Rfvi,v;}) =1. Thus g is a local resolving

function of C, and dimy; (Cy) < |g| = —==. Now let

-1

f be any local resolving function of C, with
If] = dims(Cn). Then f(R{v,vi11) =1 for
each edge v;v;,,. Adding these n inequalities is
obtained (n—1)|f|=n. Hence dimg(Cy) =
|f1 2 == Thus dimy,(C,) = —.
Case 2. n is even
In this case R,{v;, v;} = V(C,) for any edge v;v;,4.
Hence the constant function g:V(C,) — [0,1]
defined by g(v;) =% is a local resolving function
of G and |g| = 1. It follows from the definition of
local resolving function that 1 < dimg(G) <
dims(G) for any connected graph G, that
dimg(C,) = 1.®
Theorem (3) : Let G be a connected graph , then

1. dimg(G) = g if only if G a complete graph

(Kn)
2. dimﬂ(Sn) =1
3. for the wheel graph (W},), then

Hence

' 2 ifn=3
dimg (W) = {ﬁ ifn >4

The fractional local metric dimension of comb

product graph for some special graphs, is presented

as below.

Theorem (4) : For n,m =3, then dims (K, =

Km) = |V(Kn)|dimfl(Km—1) .

Proof. Let f;:V(K,>K,) —[0,1] be a local

resolving function. Any two adjacent vertices

u,v € V(K,, = K,,). There are three possibilities u

and v.

i. If wu,v are in the same leaf, then there is
i€{12,..,n} and j, ke€{23,..,m} with
j#k such that u=wv;; and v =y, is
obtained Rl{u, U} = {vij,vik}. So fl(vl]) +
fi(wir) = 1. The number of vertex on the same
leaf is m — 1 and the number of vertex on the
parent is n, then

(m-2) )= ) fiw)
ZEV (Kn>Km) veU
-1
=n. (m 2 )
n(m—1)!
(m—2) fiz) = 2(m =3
26V (Kn>Km)
(m-1)
fiz) = n. 5
2eV(Kn>Kyp)
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ii. If u,v are in the parent, then there are i,j €
{1,2,..,n} such that u=v; and v =vj.
Local resolving neighborhood R;{u,v} =
{Uil, Vi2y o Vim, Vj1,Vj2, «-) U]m} so that

fil Ry {u, v}) = Tueu, fitw) +
Zueujfl(u) + fitvi) + fi(vj1) = 1. Then

(=D ) L@+ -1 ) fiw

veu veU;

2 ()

n!
(n—-1) filz) = =212
Z€EV(Kn>Km)
nn—1)
(n—-1) fi(z) = —
26V (Kne-Kim)
n
fi(z) = 5
26V (Kne-Kim)

iii. If wisinparentand v is in leaf of wu, then
there are i€{l,2,..,n} and pE€
{2,3,...,m} such that u = v;; and v = v,
Local resolving neighborhood R;{u,v} =
V(K & Kp) — (VIUD\{vip}) so  that
fl( R; {u, v}) = ZZEV(KnDKm)f(Z) -
(Zuev, fitw) — fi(vip)) = 1. Then

n.(m—1) fi(z) — (m
2€V(KnOKm)
—1 Z

ueu;
Because Yyey, fi(w) = 0, then

fiw)=zn.(m—-1)

n(m-—1) fiz)=0=n.(m—-1)
2€V (Kn>Kym)

filz) =21

2€V (Kn>Km)

Based on the results of the description above, the
maximum values taken from equations 1), 2) and
3) are:
(m-1)

2

fiz) = n.
2€V (Kn>Kpy)
As a result:

dimg (K, & K;)

= min Z fi(2): f; local resolving function
Z€V (Kn>Km)

(m—1)

2
Because ordo of K, is n and dimy,(K;,) = = then
dimfl(Kn &> Kp) = |V(Kn)|dimfl(Km—1)- s
Theorem (5): For n,m = 3, then dimy, (P, =
Kin) = 1V (B dimy, (K1).
Proof. Let f:V(B, > K,,) — [0,1] be a local
resolving. Any two adjacent vertices u,v €
V (B, = K,,), there are three possibilities u and v.

i. If wu,v are in the same leaf, then there is
ie€{12,..,n} and j, ke{23,..,m} with
j#k such that wu=wv; and v=vy.
Rl{u, v} = {vl-j, vik}' So that fl(v”) +
fi(vir) = 1. The number of vertex on the same
leaf is m — 1 and the number of vertex on the
parent is n, then (2)

ﬁ@—ZﬁM)

Z€V (Pp>Kom) veU

=n (") -
n(m—1)!
= 2m =31

(m—-1)

fi(z) = n. B

(m—2)

(m—2)

2€V(Pp>Km)

2€V(PpeKpm)

ii. If u,v are in parent, then there are i,j €
{1,2,..,n} such that u=v; and v =vj.
Local resolving neighborhood R;{u,v} =
V(P> Ky) so that  fi(R{u v}) =
Yzev(Pyok,y) J1(Z) = 1. Then

(n—-1) i)z (n—-1)
z€V(Pp>Kp)
fitz) =1 3)

2€V(PpeKnm)

iii. If w is in parent and v is in leaf of wu, then
there are i € {1,2,...,n} and p € {2,3,...,m}
such that u = v;; and v = v;,. Local resolving
neighborhood Ri{u,v}=V(B, > K,,) —
(VW\vyp))  so that fi(R, {u, v}) =
ZZEV(PnDKm) f(Z) - (ZuEUifl(u) -

fi(vip)) = 1. Then
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n.(m—1)
Z€EV(Pn>Kp)

~1 Z fiw) =n.(m—1)
U€eyU;

Because ¥.,ey, fi(w) = 0, then

n(m-1) fiz)—0=n.(m—-1)
ZEV (Pp>Koy)

fi(z) = (m

fila) =21

Z€EV(Pp>Km)

Based on the result of the above description, the
maximum values taken from equations 1), 2) and 3)
are

(m—1)

fi(z) = n.
Z2€V(Pp>Km)
As aresult :

= min Z fi(2): f; local resolving function
z€V (Pp>Km)

(m—1)
2

Because ordo of P, isn and dims;(K,,) = %then

dimgy (B & Kin) = V(B dimypy (Kp—p).

Theorem (6): For n,m = 3, then dimy,(C,, =

Kn) = [V(C)ldime (K1)

Proof. Let f;: V(C, > K,;,) = [0,1] be a local

resolving function. Any two adjacent vertices

u,v € V(C, > K,,). There are three possibilities u

and v.

i. If wu,v are in the same leaf, then there is
i€{1,2,..,n} and j,ke€{23,..,m} with
j#k such that wu=wv; and v=wvy.
Rl{u, 'U} = {Uij' vik}' So that fl(UU) +
fi(vir) = 1. The number of vertex on the same
leaf is m — 1 and the number of vertex on the
parent is n, then

(m-2) i) =) fiw)
Z€V (Cp>Knm) veU
-1
>n. (m 2 )
n(m —1)!
(m—2) fi(2) 2—2!(m_3)!
Z€V(Cp>Kp)
fiz) =n. (m—-1)
2V (CrtKp)

(1)

ii. If w,v are in parent, then there are i,j €€
{1,2,..,n} such that u=wv; and v =vj;.
Local resolving neighborhood

V(C, > Ky) if niseven
Ri{u,v} =
V(C, > Ky) =V, ifnisodd
with
%
k k=12 < ()
) j {vk<i+("7+1))' =12,...,m} fori >

n+1

l{vk(i_(nTH)+1) tk=12,...,m} fori= (

so that

fi( R, {w, v}) ®3)

if niseven

fiz) =1

2€V(Cr>Kpm)

fi(z) — Z fiw) =1 ifnisodd

zeV(Cp>Km) ueVy
Then
n Z fiiz) =n
2€V(CreoKpm)
filz) 21
ZEV(CneKom)
Or

no Y - fi) =n

2€V(Cr>Kpm) 2€V(Cr>Kpm)
(n—1) fiz) =n

Z€V(Cp>Kp)

fi(2) 2

2€V(Cn>Knm)

(n—-1)

iii. If wisin parent and v is in leaf of wu, then
there are i € {1,2,...,n} and p € {2,3,...,m}
such that u = v;; and v = v;,. Local resolving
neighborhood Ri{u, v} =V(, > K,,) —
(VW\[vy,)) so that fi( R, {u v}) =
ZZEV(CnDKm)f(Z) - (ZuEUl-fl(u) -
fi(vip)) = 1. Then

n.(m-—1)
2V (ChOKm)
>n.(m-—1)

[ =m=1) ) fiw

ueu;

Because Yyey, fi(w) = 0, then

1291



Open Access
2020, 17(4):1288-1293

Baghdad Science Journal

P-1SSN: 2078-8665
E-ISSN: 2411-7986

n(m—1) fiz)=0=n.(m—-1)

ZEV(Cn>Km)

fi(z) = 1.

z€V(Cn>Km)

Based on the results of the description above, the
maximum values taken from equations 1), 2) and 3),
are
m-—1
fiz) = n.%
z€V(Cr>Kop)
As a result

For any two adjacent vertices u,v € V(G > K,;,),
by Lemma (7). There are two different vertex x, y
are in the same leaf so that x, y € R;{u, v}. Because

Ritx,y} ={x,y} then  fi(Ri{u,v}) = fi(x) +

fiy)=1. As a result, fi(v;;1)=0 for i€
{1,2,3, ...,n}. Because for every x,y in similar leaf
Ri{x,y} = {x,y}, than (3)
HOEDWIOEDIIO
Z€V(G>Kiy) veU veEU,
F D f@ et Y fW
VEUZ VEUn

= mm{ z fi(2): f local resolving functwn} <ZEV(G>Km) >
Z€V (Cp>Km)

(m—-1)
2

Because ordo of C, isn and dims(K,,) = %then

dimfl(cn & Km) = |V(Cn)|dimfl(Km—1)- a

Lemma (7): For every u,v € V(G > K,;;) where

uv € E(G > Ky ) with m > 3 then there are x and

y are in the same leaf that R;{x, y} S R;{u, v}.

Proof. Taken any u, v € V(G > K,,,) where

uv € E(G > K,,) then there are three possibilities

u and v.

i. If wv are in the same leaf or
V(Kpm—-1), then R;(u, v) = {u, v}

ii. If u,v are in the parent or uv € E(G), then
there are i,j € {1,2,...,n} such that u =vy
and v =vj;. Local resolving neighborhood
Rl{u, U} is obtained by Ui V) U] c Rl{u,v}.
Because m = 3 then |U;| = m — 1 = 2 so that
there are two vertices on a similiar leaf which
are members of R;{u, v}.

iii. If wis in parent and v is in leaf of wu, then
there are i € {1,2,..,n} and p € {2,3,...,m}
such that u = v;; and v = v;,. Local resolving
neighborhood R;{u,v} is obtained U; <
R;{u,v} where j€{1,2,..,n} and j#i,or
Rl{uJ U} = V(G e Km) - V(Km)\{uJ U}.

Based on the description above, it is proven that for

every u,veV(G>K,) and uv € E(G > K,),

there are two vertices x,y are in the same leaf

which are the local resolving neighborhood a pairs

of vertices {u, v} so that x, y € R/{u, v}.

Theorem (8): Let G be a connected graph of order

n, then dims (G & Kp,) = |V(G)|dims (Ky,—1) for

n,m= 3.

Proof: Let f:V(G > K,)—[0,1] be a local

resolving function of a graph G. Any two adjacent

vertices x and y in K,,, are in the same leaf satisfies

R {x,y} = {x,y} so that

i)+ () =1

u,v e

= min (Z f@)+ ) f@

veU veU,

SDWIOEEESY f(u)>

veU, vEUn

dims (G = K,) = min Z f(2)
z€V(G>Ky,)

= mian(v) + min Z fw)

veu veU,

+ min Z flu) + -

vEU,

+ min v;n fw)
= min Z f(uw)

veU,
+ min Z fw) + -

veU,
+ min Z fw)
veUy

= Z:;lmin Z fw)

veU;

= dimu(Kn)
1=
=n.dimg (Kp—1)
= V(6] dimyy (K.

So obtained,
dims (G = Ky) = [V(G)|. dimgy(Kpp—q1). ®

Conclusion:

In this paper the results of the fractional
local metric dimension of comb product graph
(G = K,,), namely dims (G & Kyy) =
[V(G)|. dims (K1) Where G is a connected
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graph. This research can be continued for G graph
and H graph is arbitrary graph, and for further
research Cartesian product can be used.
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