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Abstract: 
 In this paper, two elements of the multi-input multi-output (MIMO) antenna had been used to study 

the five (3.1-3.55GHz and 3.7-4.2GHz), (3.4-4.7 GHz), (3.4-3.8GHz) and (3.6-4.2GHz) 5G bands of 

smartphone applications that is to be introduced to the respective US, Korea, (Europe and China) and Japan 

markets. With a proposed dimension of 26 × 46 × 0.8 mm
3
, the medium-structured and small-sized MIMO 

antenna was not only found to have demonstrated a high degree of isolation and efficiency, it had also 

exhibited a lower level of envelope correlation coefficient and return loss, which are well-suited for the 5G 

bands application. From the fabrication of an inexpensive FR4 substrate with a 0.8 mm thickness level, a loss 

tangent of 0.035 and a dielectric constant of 4.3, the proposed MIMO antennas that had been simulated under 

the five different band coverage were discovered to have demonstrated a respective isolation level of about 

14dB, 12dB, 21.5dB, 19dB and 20dB under a -10dB impendence bandwidth. In the measurement and 

fabrication outcomes that were derived from the use of the prototype MIMO in the (3.4-3.8) band of the 

Europe and Chinese markets, the proposed MIMO was thus found to have produced a better performance in 

terms of efficiency, isolation, and envelope correlation coefficient (ECC). 

 

Key words: 5G bands, Envelope correlation coefficient, Isolation, MIMO antenna. 

 
Introduction: 

The endless concern on the high data 

demand level and channel bandwidth in the 

contemporary wireless system was found to have 

prompted the development of the numerous 

integrated single-input multiple-output and 

multiple-input multiple-output antennas of a client’s 

equipment. For this reason, the need to constantly 

improve the performance of the multi-input multi-

output antenna (MIMO) design had not only 

spurred the various studies on polarization diversity, 

gain value, bandwidth level, coupling reduction 

among the inter-elements and those of channel 

capacity, it had also allowed the designers to 

develop a more modern system network from the 

much improved multi-band resonance and 

impedance bandwidth.  
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Since these designs would also require 

reducing the size of the multiple-element antenna 

(MEA) for them to be fitted and matched according 

to the users’ robust applications and for supporting 

 the equipment’s multi-band coverage area, the 

development of a radiation diversity would then be 

helpful for reducing the correlation factor as well as 

improving the performance level of the MIMO 

system. Given that the MIMO wireless systems has 

the capacity to surge without requiring a rise in its 

spectrum or transmission power, the main challenge 

would then be to create an antennaed MIMO array 

that reduces the mutual coupling (1,2) from the 

introduction of a sixteen, twelve, ten and eight 

multi-element combination in its multi-input multi-

output arrays(3–6). 

In (4), although a group of sixteen antennas 

was analyzed at a developed channel capacity of 

about 70bps /Hz, the 10 dB isolation was only 

supported by just three neutralization lines, while 

the design in (7) had only utilised four small two-

antennaed building block structures in creating an 

eight-antennaed MIMO system. 
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Table 1. Comparisons of Previously Published Literature 
Ref. DM BW 

 (GHz) 

 

Size (mm
2
), 

material, 

number of port 

Eff. 

(%) 

ECC Iso. 

(dB) 

Weak Point 

(3) - (3.4 - 3.8), 

(-6 dB) 

140×70, 

FR4 substrate, 

(10- elements) 

(40 - 60) 0.1 -10 Not mentioned decoupling method, 

low isolation value and return loss 

start from 

 -6 dB 

(8) - (3.4 - 3.6), 

(-6 dB) 

120 × 60, 

Rogers 

R04003c, 

(8 - elements) 

(59 - 72) - - Not mentioned decoupling method, 

medium structure, not mentioned 

isolation value, not mentioned ECC 

value, expensive material, and return 

loss start from -6 dB. 

(9) - (2.55-2.65), 

(-10 dB) 

136 × 68, 

FR4 substrate, 

(8 - elements) 

(48 - 63) 0.15 -12 Not mentioned decoupling method, 

high ECC value, low isolation value. 

(10) - (3.4-3.6)- 

(5.15-5.92), 

(-6 dB) 

120 × 65, 

FR4 substrate, 

(8- elements) 

 

50 0.1 -12 Not mentioned decoupling method, 

medium structure, low efficiency, 

high ECC value, low isolation value 

and return loss start from 

 -6 dB. 

(11) - 

 

(3.45-3.55), 

(-6 dB) 

74 × 74, 

Rogers, 

RO4350b, 

Three layers, 

(24- elements) 

64 0.119 -15 Not mentioned decoupling method, 

very complex structure, expensive 

material and return loss start from 

 -6 dB. 

 

(12) DN (6-9), 

(-10 dB) 

40 × 40, 

Not mentioned, 

(2 - elements) 

- - −15  Very complex structure, not 

mentioned material, Not mentioned 

ECC value and Not mentioned 

efficiency value . 

(13) DN (0.7- 0. 96) 

and 

(1.7–2.17), 

(-10 dB) 

150 × 80, 

FR4 substrate, 

(2 - elements) 

 

(40 - 57) - –10 

and 

–15  

Large size , low efficiency, Not 

mentioned ECC value and Not 

mentioned efficiency value 

(14) MM 

 

(1-2) GHz 

(-10 dB) 

 

110 × 80, 

Not mentioned, 

(2 - elements) 

- - –25  

 

complex structure, Large size, Not 

mentioned ECC value and Not 

mentioned efficiency value. 

(4) NL (3.4 - 3.6), 

(-6 dB) 

 

150*75 

FR4 substrate, 

(8 and 16 

elements) 

(40 - 60) 0.32 -10 high ECC value, low isolation value 

and return loss start from 

 -6 dB 

(15) NL (1.66-2.84), 

(-10 dB) 

 

115×60 

FR4 substrate, 

(2 - elements) 

(63 – 65) 0.3 -15 

 

 

Medium structure, large size and 

high ECC value. 

(16) NL (3.4 - 3.8) 

(-6 dB) 

140 × 70, 

FR4 substrate, 

(10- elements) 

(40 - 57) 0.1 -10 Low efficiency, Low isolation value 

and return loss start from 

 -6 dB. 

(17) NL (3.1 – 12), 

(-6 dB) 

40 × 80, 

FR4 substrate, 

(2 - elements) 

- - -11 Medium structure, Large size ,Not 

mentioned ECC value , Not 

mentioned efficiency value and low 

isolation. 

(18) NL (3.4 - 3.6), 

(-10 dB) 

140 × 70, 

FR4 substrate 

( 8 - elements) 

(62 - 78) 02 -10 high ECC value and low isolation. 

(19) NL (3.4 - 3.6) 

(-6 dB) 

150 × 57, 

FR4 substrate, 

(16 - elements) 

(30 - 53) 0.3 -10 Medium structure, low efficiency, 

high ECC value, low isolation and 

return loss start from 

 -6 dB 

(20) NL (2.62-2.69) 

and 

(5.15-5.92), 

(-10 dB) 

140 × 70, 

FR4 substrate, 

(6 - elements) 

60 0.05 -10 High size, low isolation and return 

loss start from 

 -6 dB. 

(21) NL (3.4 - 3.6), 

(-6 dB) 

150 × 75, 

FR4 substrate, 

(8 - elements) 

(40 - 52) 0.15 -10 Medium structure, high ECC, low 

isolation, low efficiency and return 

loss start from 

 -6 dB. 

(22) NL (3.4 - 3.8) 

and 

(5.15-5.92), 

150 × 80, 

FR4 substrate, 

(12- elements) 

(41-80), 

(47-79) 

0.15 

and 

0.1 

-10 Medium structure, high ECC, low 

isolation and return loss start from 

 -6 dB. 
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(-6 dB) 

(23) DGS (3.3 - 3.6), 

(-10 dB) 

 

72 × 72, 

FR4 substrate, 

(4 - elements) 

78 0.3  -28.8 Very complex 

structure, high ECC, low, large size 

and return loss start from 

 -6 dB. 

(24) DGS (4.25 -4.65) 

and 

(3.25 -3.4), 

(-10 dB) 

102 × 80, 

FR4 substrate, 

(2 - elements) 

- 0.15 –18 

and 

–21  

Large size, high ECC, and not 

mentioned efficiency.  

 

(25) DGS (0.75-0.96) 

(1.38 - 2.7), 

(-10 dB) 

52×77.5 

FR4 substrate, 

(2 -elements) 

(40 - 67) 0.5 -15 Complex structure, large size, high 

ECC and low isolation. 

 

 

 

 

(26) DGS (2.4 - 2.48) 

and 

 (5.15-5.82) 

(-10 dB) 

 

25×24 

FR4 substrate, 

(2 - elements) 

- 0.04 -20 Not mentioned efficiency. 

(27) PB (1.7 - 2.28), 

(-10 dB) 

112×100 

FR4 substrate, 

(3 - elements) 

- - 20 Complex structure, large size, not 

mentioned ECC and Not mentioned 

efficiency.  

(28) PD (3.45-3.59), 

(-6 dB) 

160×68.8 

FR4 substrate, 

(8 - elements) 

- 0.08 -15 Not mentioned efficiency. 

(1) PD (3.5-5.7) 

and 

(5.8 – 4.3), 

(-10 dB) 

36×36, 

Not mentioned,    

(4 - elements) 

(63-65) 0.15 -15 Complex structure, large size, not 

mentioned ECC, not mentioned 

efficiency and return loss start from -

6 dB. 

(6) PO (3.4 - 3.6), 

(-6 dB) 

 

150×75 

FR4 substrate, 

(12 - elements) 

50 0.2 -12.5 Medium structure, low ECC, low 

isolation, low efficiency and return 

loss start from  -6 dB. 

(5) PO (2.55-2.65), 

(-6 dB) 

 

136×68 

FR4 substrate, 

(8 - elements) 

(40 – 60) 0.15 -12.5 Low ECC, low isolation, and return 

loss start from -6 dB. 

(29) Hyper  

(NL 

and 

DGS) 

(3.3 - 3.6), 

(-6 dB) 

 

124×74, 

FR4 substrate, 

(8 - element) 

40 0.15 -15 Low ECC, low efficiency and return 

loss start from 

 -6 dB. 

(30) Hyper  

(NL 

and 

DGS) 

(3.1-3.55) -

(4.4-4.99)/ 

(3.4-3.6) -

(5.1-5.85, 

(-10 dB) 

31×31, 

FR4 substrate, 

(2 - element) 

(60-70) -

(52-64) 

Or 

(66-70)-

(35-52) 

0.01, 

0.005 

Or 

0.02, 

0.005 

-10,  

 -19,  

 -12 

and    

 -19 

 

Medium structure and low 

efficiency. 

 

 

 

This 

study 

Hyper  

(NL 

and 

DGS) 

(3.1- 3.55)/ 

(3.4 - 4.7)/ 

(3.4 - 3.8)/ 

(3.6 - 4.2)/ 

Or 

(3.7 - 4.2), 

(-10 dB) 

26 × 46, 

FR4 substrate, 

(2 - elements) 

(64 - 72), 

(66 - 85), 

(70 - 81), 

(78 - 90) 

or 

(78 - 87) 

0.008 

0.008 

0.002 

0.007 

or 

0.003 

-14 

-12 

-21.5 

-19 

or 

-20 

Medium structure. 

 

DM= Decoupling Method; BW=Bandwidth;  

eff.=efficiency; ECC=Envelop Correlation 

Cofficient; Iso.=; NL= Neutralization Lines; 

DGS= Defected Ground Structures; DN= 

Decoupling Network; MM= Meta-materials; PB= 

Parasitic Branches; PD= Pattern Diversity; PO= 

Polarization Orthogonal. 

Apart from the orthogonally polarized 

technique(5,6,23), the use of the eight elements was 

also found to have enhanced the channel capacity 

with the three existing neutralization lines creating a 

secured MIMO dual antenna isolation (15,30).  In 

(31), a MIMO monopole antenna with a ground 

branch decoupling structure of less than 0.01 ECC, 

low mutual coupling and more than 20dB of high 

isolation was also proposed. Covering a band of 

2.2-2.48GHz, this dual polarized MIMO antenna 

system of four orthogonal thin copper dipoles (23) 

was also discovered to have been popularly used in 

the high-order decoupling modes (32).  The MIMO 

antenna elements that had been placed in the 

constant null-amplitude field points too were found 
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to have given rise to an enhanced isolation as a 

result of the respective usage from the decoupling 

network-based method (33) on a pair of narrow and 

wide slots as well as the two decoupling devices 

with an inverted T-shaped etched slot and a 

meandering resonant branch for the lower and 

higher bands. Besides the use of a compact split-

ring resonator structure (SRR) and a planar spiral 

line (PSL) in the resonance structure method(34), a 

high level of isolation was also observed by 

changing the electrical length of the radiators 

through the pattern diversity technique (1, 29) and 

decreasing the mutual coupling of the ordered pairs 

with the introduction of the orthogonal mode (35), 

although the latter condition can also be achieved 

by implementing the decoupling network (33), 

pattern diversity technique (1,28),  a resonance 

structure (34) and those of defected ground 

structures (25,26).  

Since the focus on smart device 

miniaturization would require a lesser space for 

antenna design and consequently, affecting the 

close association between those of isolations and 

bandwidth in the MIMO antenna system, this paper 

had therefore attempted to solve the above 

mentioned issues with a high isolation that is 

printed on two element arrays operating at a 

3.325GHz, 3.95GHz, 4.05GHz, 3.6GHz, 3.9GHz 

and the (3.1-3.55GHz and 3.7-4.2GHz), (3.4-4.7 

GHz), (3.4-3.8GHz) and (3.6-4.2GHz) bands that 

are to be used in the US, Korea, (Europe and China) 

and Japan markets. With that in mind, the MIMO 

antenna that had consisted of two elements was thus 

placed symmetrically on the frame with the patch 

slots and the grounded neutralization lines of the 

hybrid decoupling structures generating the high 

isolation level. 

By combining the neutralization line 

structure with the ground slots, the isolations from 

the mobile-phone antenna prototype that was 

measured and fabricated at the centre frequency 

band of 3.6GHz for (3.4-3.8) were then further 

enhanced with a centre frequency of 3.6GHz to 21.5 

dB, while the 0.002 ECC that had existed between 

the two-elements was found to have provided a 

favourable performance as shown by its field 

radiation characteristic and the minimum efficiency 

for antenna elements, which had exceeded 70% of 

the operating band. As shown by the comparison of 

the decoupling designs in Table1, the small 

antenna-designed of the proposed decoupling 

design as compared to the other two element MIMO 

designs was not only found to have exhibited a 

higher level of isolation and efficiency, but also the 

ability for accomodating to different bands as a 

result of its lower correlation coefficient from the 

hybrid decoupling structures. 

 

Design of Antenna Elements 
The proposed design of the two-port MIMO 

antenna, which had consisted of two closely spaced 

monopoles of 2mm that is printed on a 26 × 46 mm 

FR 4 substrate with a 4.3 dielectric constant, 0.035 

of copper thickness and a 0.8 mm of the FR4 

substrate thickness is thus shown in Fig.1.  

 
Figure 1. The Proposed Design Geometry of the MIMO Antenna (A) Front View (B) Back View 

 

As depicted in Fig.1, the ground plane of 

this design had utilised both the notch structure as 

well as a twofold U-shaped incision with the U- and 

L-shaped inserts in the patch monopole. The 
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impedance matching of the proposed antenna was 

also enhanced by cutting off a rectangular slot 

around the micro strip line of the ground plane that 

is located at the back of the substrate. The 

simulation is performed using computer 

simulation software (CST) (36–39).  

In this design, since the notched function had 

been limited by the slot length, the relationship 

between the length of the slot and the frequency 

band notch can therefore be expressed as such: 

 

 

𝑓𝑛𝑜𝑡𝑐ℎ =
𝐶

2𝐿𝑠𝑙𝑜𝑡√∈𝑒𝑓𝑓
                                (1) 

∈
𝒆𝒇𝒇  = 

∈𝑟−1

2
   

                                              (2) 

      

        where f notch is the resonant frequency, U-slot 

is the length of the slot, c is the speed of the light 

and ∈r is the constant dielectric of the substrate 

(40). A summary of the parameter dimensions for 

the MIMO antenna array is thus shown in Table 2.  

 

Table2. The MIMO Antenna Dimensions 

Parameters 

Parameters L1 L2 L3 L4 L5 L6 

Dimensions 

(mm) 

15.4

5 

1.1

5 

 

9.25 

 

2 

 

1.15 
17.7 

Parameter

s 
L7 L8 L9 L10 L11 L12 

Dimensions 

(mm) 
13.5 22 2.5 2 3.3 7.07 

Parameter

s 
L13 L14 L15 L16 L17 L18 

Dimensions 

(mm) 
5 5 2 

22.7

2 

17.2

2 

15.1

6 

Parameter

s 
L19 L20 L21 L22 Lt Lf 

Dimensions 

(mm) 
1.35 1 

18.0

6 
4.06 46 8.69 

Parameter

s 
Wt Wf hs ht C R1 

Dimensions 

(mm) 
26 

1.4

7 
0.8 

0.03

5 
6.55 9.7 

Parameter

s 
R2 C1 C2 C3 C4 C5 

Dimensions 

(mm) 
3.35 1 1.5 0.5 1 0.5 

Parameter

s 
C6 C7 C8 LS3 LS4 L23 

Dimensions 

(mm) 
1 1 0.5 4 4 1 

Decoupling Structure: 

The geometric structure of the copper line 

with a circular ground plane that is depicted in Fig.1 

had not only composed of a vertical centre piece 

with two split up antennas and a neutralization line 

that had been inserted between the two antenna 

monopoles of the patch antenna, but also the use of 

slots for changing the bandwidth. 

For this reason, the 5G band decoupling had 

been successfully achieved from the two patch and 

ground metal stripped antennas as well as from the 

elliptical metal disc from the neutralization line, 

where it had provided the possible decoupling 

current paths with different lengths and overriding 

those on the ground plane.  

The two circular slots that were connected 

via an arch and etched on the elliptical metal disc of 

the neutralization line were also found to have 

greatly reduced the decoupling frequencies to a 

value that is lesser than 5 GHz.  

It is also important to note that the distance 

between the top of the ground plane and the 

elliptical disc (M1) had been that of 15.16 mm, 

while the respective distances from the bottom of 

the ground plane to the centre of the elliptical disc 

(on the neutralization line) (M2), the metal arch disc 

(M3), circular metal slot (M4) and circular slot 

(M5) had been of 15.16 mm, 6.59 mm, 8.12 mm 

and 8.12 mm. 

 

Simulation Results: 
The effects of the (LS1) and (LS2) slot 

widths on the frequency response and bandwidth 

that were explained from a parametric study had 

also shown the slot widths as having a high 

sensitivity level towards the MIMO antenna design, 

since the increase or decrease in the (LS1) and 

(LS2) ground plane slots width values were found 

to have induced a change in the centre resonant 

frequency of the design bandwidth. The isolations 

of the different adjacent antennas that had resulted 

from the changes of the (LS1) and (LS2) slot widths 

are thus illustrated in Fig.2.  

A summary of the centre frequency, 

bandwidth, ECC, isolation and the efficiency values 

from the change of the (LS1) and (LS2) slot widths 

is also shown in Table 3.  
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Table 3. Effects on Bandwidth and Isolation from the LS1 and LS2 Slots Width  
LS1 (mm) LS2 (mm) centre  (GHz) B.W (GHz) ECC Isolation dB Eff. dB 

4.8 

8.3 

6.8 

1.8 

6.8 

7.8 

2.8 

6.8 

4.8 

4.8 

3.325 

4.05 

3.6 

3.9 

3.95 

3.1-3.55 

3.4-4.7 

3.4-3.8 

3.6-4.2 

3.7-4.2 

0.008 

0.008 

0.002 

0.007 

0.003 

-14 

-12 

-21.5 

-19 

-20 

64-72 

66-85 

70-81 

78-90 

78-87 
 

To illustrate the effect of the bending 

structures on the production of operating bands, the 

proposed antenna was then simulated with the 

various LS1 and LS2 values, where the simulated 

S11, S22, S12 and S21 outcomes are shown in Fig. 

2 (a), (b), (c), (d) and (e). Since the use of antenna 1 

in Fig. 1 had been symmetrical to that of antenna 2, 

the results from the proposed MIMO antennas were 

found to have exhibited an equal return loss values 

(S11 and S22) as well as those of isolation (S12 and 

S21). The difference in the results of the proposed 

MIMO antenna that was used in the 5G application 

had also implied the possible influence of the LS1  

and LS2 ground antenna slot lengths since 

the various LS1 and LS2 lengths that were used on 

the various bands (3.1-3.55GHz), (3.4-4.7 GHz), 

(3.4-3.8GHz), (3.6-4.2GHz) or (3.7-4.2GHz) for the 

US, Korea, Europe, China and Japan markets were 

discovered to have resulted a respective high 

isolation of about 14 dB, 12 dB, 21.5 dB, 19dB or 

20 dB. Apart from the above, the proposed antenna 

too was seen as providing a higher level of 

efficiency such as those of (64-72), (66-85), (70-

81), (78-90) and (78-87) on the respective (3.1-

3.55GHz), (3.4-4.7 GHz), (3.4-3.8GHz), (3.6-

4.2GHz) or (3.7-4.2GHz) operation bands. 

 

 

 
Figure 2. Simulated Reflection Coefficients and Transmission Coefficients of the Two Antennas with 

LS1 and LS2 Slots. (a) S- Parameters of the (3.1-3.55) GHz Band, (b) S- Parameters of the (3.4-3.8) 

GHz Band, (c) S- Parameters of the (3.6-4.2) GHz Band, (d) S- Parameters of the (3.4-4.7) GHz Band, 

and (e) S- Parameters of the (3.7-4.2) GHz Band. 
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Figure 3. Simulated Antenna Total Efficiency 

 

Besides showing the two antenna ports of 

the MIMO antenna for the (3.4-3.8) band as having 

a distributed surface current of 3.6 GHz, the 

diagram in Fig.3 had also successfully demonstrated 

the antenna as having a different set of feeding ports 

as well as the opposing current densities caused by 

the diverse polarization levels. The ground plane of 

the MIMO antenna as depicted in Fig.4 had also 

revealed its surface currents as being mainly 

distributed around the slot areas. 

 

 

 
Figure 4. Simulated current densities at 3.6 GHz 

central frequency of the (3.4-3.8) band  

(a) current densities of antenna1 and (b) 

current densities antenna2. 

 

Measured Results: 

By fabricating a mobile antenna prototype for 

the (3.4-3.8) band with a 3.6 GHz central frequency 

from an inexpensive FR4 dielectric with an overall 

dimension of 26 × 46 × 0.8 mm
3 

as those shown in 

Fig.5, the simulated and measured reflection and 

transmission coefficients that were demonstrated by 

the two representative antennas (antenna1 and 

antenna2) in Fig. 6 had therefore implied the two as 

having a similar level of performance.  

 

 
Figure 5. A photograph of the two fabricated 

antennas. 

 

 
Figure 6. Simulated and Measured (A) 

Transmission Coefficients and Reflection 

Coefficients of the two antennas. 

 

As depicted in the above figure, the (LS1 

and LS2) slots from the ground plane were found to 

have given rise to S-parameters with a low mutual 

coupling characteristic and a -10dB impedance 

bandwidth with the (3.4-3.8GHz) operating band 

coverage. While the measured results of the S12 

and S21 transmission parameters had indicated a 

good isolation property with less than -19 dB in the 

operating range and an isolation of less than -20 dB 

in the simulated outcome, some deviations from the 

measurement results were still being observed as a 

result of the errors that had stemmed from the 

feeding and fabrication processes. 

Since the correct operation of the multi-

input multi-output antennas can be safeguarded 

from the incorporation of an envelope correlation 

coefficient (ECC) in the MIMO antennas, this 

parameter can therefore be calculated from the S-

parameters by using the following method: 
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From the measured and simulated S-

parameters envelope correlation coefficient results 

of the proposed mobile phone antenna that were 

calculated in Fig.7, it was obvious that the 

calculated ECC results had been within the low 

mutual coupling of the (3.4-3.8GHz) band with a 

frequency of 3.6 GHz hence, confirming the 

existence of a high isolation between the two 

adjacent antenna elements from the use of the 

proposed MIMO antenna. 

 

 
Figure 7. Simulated and Envelope correlation 

coefficient (ECC) of the two antennas 

 

Conclusion: 
A compact sized 5G MIMO antenna was 

designed and implemented at low cost. The results 

show good RL for the centre frequency in order for 

the antenna to be used for used the five (3.1-3.55 

GHz and 3.7-4.2 GHz), (3.4-4.7 GHz), (3.4-3.8 

GHz) and (3.6-4.2 GHz) 5G bands of smartphone 

applications. By controlling the different bands 

from the two slots in the ground plane, the different 

centre frequencies, S-parameters, efficiency levels 

and ECC results that had been exhibited by the 

antenna elements were thus studied and analysed. 

From the results of the analysis, the prototype of a 

mobile-phone antenna that was fabricated and 

measured at a 3.6GHz centre frequency for the (3.4-

3.8) band was not only found to have demonstrated 

a respective simulated and measured isolation 

results of (-21.5) dB and (-19) dB, but had also 

provided good characteristics and meeting the 

future usage requirements of mobile phones. 
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متعدد المدخلات متعدد المخرجات  ذو الفتحات مع نطاقات مختلفة وعزلة عالية لتطبيقات تصميم هوائي 

 الهواتف الذكية للجيل الخامس

 
 غزوان شاري نور                  عمران محمد إبراهيم            ايمن محمد إبراهيم  

 

، هانغ تواه جايا ،  (UTeM، كلية الإلكترونيات وهندسة الكمبيوتر ، جامعة مالاكا التقنية ) (CeTRI)مركز أبحاث الاتصالات والابتكار )

  دوريان سينجل ، ميلاكا ، ماليزيا. 76100
 

  : الخلاصة
 -( 3.55-3.1لدراسة النطاقات  )) ( MIMOفي هذه الورقة ، تم استخدام عنصرين من هوائي متعدد المدخلات متعدد المخرجات )

والمستخدمة في الهواتف الذكية التي سيتم  (5G(( جيجا هيرتز لتطبيقات الجيل الخامس)3.6-4.2) -( 3.4-3.8)  -( 3.4-4.7) -( 3.7-4.2)

هيكل  ملم مكعب، مع 0.8×  46×  26يبلغ حجم الهوائي المقترح   أسواق الولايات المتحدة وكوريا وأوروبا والصين واليابان. طرحها في 

، كذلك اظهر مستوى منخفض لمعامل الارتباط المغلف ائي المقترح عزلة وكفاءة عاليتينمناسب وصغير الحجم اضافة الى ذلك أظهر الهو

(ECC )هذوعودة الخسارة ،( 5ه المواصفات تتناسب تماما تطبيقات الجيل الخامسG)وقد تم تصنيع الهوائي المقترح من مادة . FR4  

المقترحة  MIMO ، اظهرت نتائج المحاكاة لهوائيات 4.3وثابت عازل قدره  0.035، وشدة فقدان مقدارها ملم 0.8الغيرمكلفة بمستوى سماكة 

 20ديسيبل و  19ديسيبل و  21.5ديسيبل و  12ديسيبل و  14التي تغطي النطاقات الخمسة المختلفة مستوى عزل عالي لكل منها حوالي 

( الذي يغطي النطاق MIMO )ديسيبل. ومن خلال التصنيع والقياس للنموذج الاولي  لهوائي  10-ديسيبل تحت عرض النطاق الترددي العائق 

المقترح قد حقق أداء أفضل من حيث الكفاءة والعزلة ومعامل الارتباط  الهوائي ، وجد أنلمستخدم  في كل من أوروبا والصين( ا3.4-3.8)

 .(ECC)المغلف

 

 .عزل الهوائيات، هوائي متعدد المخلات متعدد المخرجاتنطاقات ترددات الجيل الخامس، معامل الارتباط المغلف، الكلمات المفتاحية: 

 
 


