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Abstract: 
       In this study, a mathematical model for the kinetics of solute transport in liquid 

membrane systems (LMSs) has been formulated. This model merged the mechanisms 

of consecutive and reversible processes with a “semi-derived” diffusion expression, 

resulting in equations that describe solute concentrations in the three sections (donor, 

acceptor and membrane). These equations have been refined into linear forms, which 

are satisfying in the special conditions for simplification obtaining the important 

kinetic constants of the process experimentally. 

 
Key words: kinetic model, diffusion, liquid membranes, mathematical model, solute 

diffusion in a LMS. 

 

Introduction: 
      A liquid membrane system LMSs 

can be defined as a system containing a 

definite liquid split by another 

immiscible liquid; in general, it is a 

phase split by another phase. Despite of 

the simplicity of this definition, it does 

not reduce the wide spread cases that are 

represented by it and their importance. 

The cell membranes of living organisms 

can be considered as one of these 

systems [1-3]. Additionally, these 

systems are widely used in research and 

industry for selective separation and 

purification of many important materials 

[4-9], and the capability of using 

membrane selective electrodes in 

qualitative and quantitative 

identification carries a latent possibility 

for their use for sensing and controlling 

many processes [10]. In environmental 

fields of application, LMSs are currently 

attracting great interest, and this interest 

will increase in the future [11-14]. For 

the reasons mentioned above, the 

knowledge of the material transport 

kinetics in LMSs is a critical point in 
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understanding and developing 

applications of these systems. In LMSs, 

the kinetic theoretical treatment is not as 

simple as most of its practical 

procedures because it includes many 

complex stages based on reversible, 

consecutive and diffusion phenomena. 

Many researchers describe the process 

as an ordinary consecutive mechanism 

for the material transport from the donor 

phase to the receptor phase through the 

membrane [15-25]. Others have merged 

Fick’s second law of diffusion with the 

kinetics of reversible reactions [26-28], 

and some researchers have also 

described the process kinetics as first 

order mechanisms [29-34]. These 

schemes have sometimes merged the 

diffusion process in flux terms [35-40]. 

These schemes are still deficient 

because they address certain aspects of 

the state and neglect others. The driving 

aim of this study is to drive a 

mathematical expression that includes 

consecutive, reversible and diffusion 

mechanisms describing material 

transport in LMSs.                          

 

Model formulation   
Note: The model below was 

conjugated with practical work about 

atropine transport using LMSs, but 

for the generality of the model, that 

work is published separately [41].    

       The kinetic model for the transition 

of atropine (solute) dissolved in benzene 

(donor light phase) in the first arm of a 

U-shaped glass tube across a section of 

water (heavy phase) containing the 

copper ion Cu
+2

 as a carrier to the 

second arm containing benzene 

(accepter light phase) has been derived 

according to the following equation:  

(𝐴)𝐵1

𝑘1

⇌
𝑘2

(𝐴)𝐻

𝑘2

⇌
𝑘1

(𝐴)𝐵2 

        Where(𝐴)𝐵1,(𝐴)𝐵2 and (𝐴)𝐻 are 

the atropine concentrations dissolved in 

benzene in the first arm, second arm and 

aqueous phase, respectively, 𝑘1 is the 

rate constant of atropine transmission 

from benzene to the water and 𝑘2 is the 

rate constant of the reverse process. 

Panaggio in reference [42] described a 

similar equation with four rate 

constants, which we reduced to two rate 

constants due to the state of symmetry 

between the first and second arm. In 

addition, the final solution in the above 

reference is limited and includes many 

problems in the determination of the 

constants of the process. The general 

equations that describe the changes in 

the atropine concentration in the three 

segments with time are as following 

[43]: 
𝑑(𝐴)𝐵1

𝑑𝑡
= −𝑘1(𝐴)𝐵1 + 𝑘2(𝐴)𝐻 … . (1)  

𝑑(𝐴)𝐻

𝑑𝑡
= 𝑘1(𝐴)𝐵1 − 𝑘2(𝐴)𝐻 − 𝑘2(𝐴)𝐻 +

𝑘1(𝐴)𝐵2 … … . (2)  
𝑑(𝐴)𝐵2

𝑑𝑡
= 𝑘2(𝐴)𝐻 − 𝑘1(𝐴)𝐵2 … … . (3)  

        The atropine concentration in the 

aqueous phase will increase until it 

reaches a maximum value. At that point, 

a steady-state will be established in the 

aqueous segment, and it will proceed to 

equilibrium. This phenomenon can be 

written by setting equation (2) equal to 

zero as following [44]:   
𝑑(𝐴)𝐻

𝑑𝑡
= 𝑘1(𝐴)𝐵1 − 𝑘2(𝐴)𝐻

𝑚𝑎𝑥
−

𝑘2(𝐴)𝐻
𝑚𝑎𝑥

+ 𝑘1(𝐴)𝐵2 = 0 … . (4)  

𝑘1(𝐴)𝐵1 + 𝑘1(𝐴)𝐵2 =
2𝑘2(𝐴)𝐻

𝑚𝑎𝑥
… … . (5)  

      Where (𝐴)𝐻
𝑚𝑎𝑥

 is the concentration 

of atropine in the aqueous phase when 

the steady-state is established and also 

when the full equilibrium of the system 

is achieved. The substitution of equation 

(5) into equation (2) produces the 

following equation: 
𝑑(𝐴)𝐻

𝑑𝑡
=

2𝑘2{(𝐴)𝐻
𝑚𝑎𝑥

− (𝐴)𝐻} … … . . (6)  

      This equation is similar to 

elementary first order equations and can 

be solved at the boundary conditions, 

which state that the concentration of 

atropine in the aqueous phase is zero at 
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time zero, leading to the following 

equation: 

𝑙𝑛 {
(𝐴)𝐻

𝑚𝑎𝑥
−(𝐴)𝐻

(𝐴)𝐻
𝑚𝑎𝑥 } = −2𝑘2𝑡 … … (7)  

Equation (7) can be written in the 

following form: 

(𝐴)𝐻 =
(𝐴)𝐻

𝑚𝑎𝑥{1 − 𝑒−2𝑘2𝑡} … … … … (8)  

      At t = 0, the limit exponential will be 

one, and therefore, (𝐴)𝐻 will be zero at 

the beginning of the process. When the 

system reaches equilibrium, a steady-

state or t = ∞, then the limit exponential 

will be zero, and thus, the concentration 

of atropine in the aqueous phase will 

adhere to the following:(𝐴)𝐻 =
(𝐴)𝐻

𝑚𝑎𝑥
.This is a logical description of 

what should be going on in the system. 

       Returning to equations (1) and (3), 

the substitution of equation (8) in these 

equations will produce two linear first 

order differential equations with just two 

variables. These equations can be solved 

using the method of integration 

coefficient (integrating factor) [45]. For 

example we can rewrite equation (1) 

after substitution in the following form: 
𝑑(𝐴)𝐵1

𝑑𝑡
+ 𝑘1(𝐴)𝐵1

= 𝑘2(𝐴)𝐻
𝑚𝑎𝑥{1

− 𝑒−2𝑘2𝑡} … … . (9) 
      Where the integration factor (IF) of 

this equation is 𝑒𝑘1𝑡𝑑𝑡. By multiplying 

this parameter with the above equation, 

we obtain the following equation: 

𝑑(𝐴)𝐵1. 𝑒𝑘1𝑡 + 𝑒𝑘1𝑡. 𝑘1𝑑𝑡(𝐴)𝐵1 =

𝑘2(𝐴)𝐻
𝑚𝑎𝑥

{𝑒𝑘1𝑡𝑑𝑡 −

𝑒(𝑘1−2𝑘2)𝑡𝑑𝑡} … (10)  

Carrying out the integration process of 

this equation produces the following 

equation: 

(𝐴)𝐵1. 𝑒𝑘1𝑡 = 𝑘2(𝐴)𝐻
𝑚𝑎𝑥

{
𝑒𝑘1𝑡

𝑘1
−

𝑒(𝑘1−2𝑘2)𝑡

(𝑘1−2𝑘2)
} + 𝐼. . . (11)  

      Where I is the constant of 

integration, which can be obtained by 

the substitution of the boundary 

condition (𝐴)𝐵1 = (𝐴)𝐵1
0
 when t = 0, 

and the concentration of atropine is 

equal to the initial concentration at time 

zero leading to equation (12). 

𝐼 = (𝐴)𝐵1
0 − 𝑘2(𝐴)𝐻

𝑚𝑎𝑥
{

1

𝑘1
−

1

(𝑘1−2𝑘2)
} … … (12)  

By substituting the constant of 

integration into equation (11) we obtain 

the following: 

(𝐴)𝐵1. 𝑒𝑘1𝑡 =

(𝐴)𝐵1
0 + 𝑘2(𝐴)𝐻

𝑚𝑎𝑥
{

[𝑒𝑘1𝑡−1]

𝑘1
−

[𝑒(𝑘1−2𝑘2)𝑡−1]

(𝑘1−2𝑘2)
} … … (13)  

By rearranging the above equation, 

equation (14) is obtained. 

(𝐴)𝐵1 =

(𝐴)𝐵1
0𝑒−𝑘1𝑡 + 𝑘2(𝐴)𝐻

𝑚𝑎𝑥
{

[1−𝑒−𝑘1𝑡]

𝑘1
−

[𝑒−2𝑘2𝑡−𝑒−𝑘1𝑡]

(𝑘1−2𝑘2)
} … … (14)  

   When you reach a state of equilibrium 

(t = ∞), the exponential terms in the 

previous equation will become zero, and 

thus, the concentration of atropine 

remaining in the first arm in the 

equilibrium state will be as following: 

(𝐴)𝐵1
∞ =

𝑘2(𝐴)𝐻
𝑚𝑎𝑥

𝑘1
↔ (𝐴)𝐻

𝑚𝑎𝑥
=

𝑘1

𝑘2
(𝐴)𝐵1

∞ … … . . (15)  

(𝐴)𝐻
𝑚𝑎𝑥

= 𝐾𝑒(𝐴)𝐵1
∞ … … … . (16)  

      Where 𝐾𝑒 is the thermodynamic 

equilibrium constant or distribution 

coefficient of atropine between the 

aqueous phase and benzene. Similarly 

we can obtain an equation that expresses 

the concentration of atropine in the 

second arm (𝐴)𝐵2 by the integration and 

application of appropriate boundary 

conditions, resulting in equation (17).  

(𝐴)𝐵2 = 𝑘2(𝐴)𝐻
𝑚𝑎𝑥

{
[1−𝑒−𝑘1𝑡]

𝑘1
−

[𝑒−2𝑘2𝑡−𝑒−𝑘1𝑡]

(𝑘1−2𝑘2)
} … … … … (17)  

          At time zero, it is clear that the 

concentration of atropine dissolved in 

benzene in the second arm is zero. At 

equilibrium (t = ∞), the exponential 

terms in equation (17) become zero, 

resulting in equation (18). 

(𝐴)𝐵2
∞ =

𝑘2

𝑘1
(𝐴)𝐻

𝑚𝑎𝑥
… … … (18)  
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      By the comparison of the previous 

equation with equation (15), it can stated 

that total equilibrium is established 

when the equilibrium concentration of 

atropine dissolved in benzene in the first 

arm is equal to the concentration of 

atropine dissolved in benzene in the 

second arm. In other words, the 

operation will continue until the 

concentration of atropine dissolved in 

benzene is equal in both arms of the U-

tube. 

       The above discussion describes the 

kinetic model through equations (8), 

(14) and (17) or the changes in the 

concentrations of atropine in the three 

sections with time. when variation in the 

concentration of atropine with location 

in one section (this situation exists when 

there is no efficient stirring of the 

solutions in these sections) is imposed, 

the transmission of atropine occurs from 

the site of a high concentration to the 

low concentration through the diffusion 

process. 

Kinetic model based on the diffusion 

process  
       The solution of the second order 

differential equation for the diffusion 

process depends on the specific 

boundary conditions, which include the 

time and the size and shape of the 

system being studied in addition to the 

initial and final concentrations of the 

solute [46]. Diffusion in one dimension 

within a limited volume fits the 

following general empirical formula 

[47]: 

𝐶(𝑥, 𝑡) = 𝑎 + 𝑏. 𝑒−𝛼𝑡{𝑐. sin(𝛽𝑥) +
𝑑. cos(𝛽𝑥)} … … (19)  
where (a, b) are a constants with the 

units of concentration, and (c, d) are 

constants that are determined through 

the normalization of a concentration 

distribution spread function over the 

space of diffusion. Constants (α, β) are 

identified by making the general above 

formula obey the second order Fick’s 

law. In this equation, it is clear that at a 

certain point the solute concentration 

decreases or increases exponentially 

with time depending on the sign of 

constant (𝛽). For the distribution of the 

solute concentration along the variable 

(x), it is clear that it is determined by the 

section containing the trigonometric 

functions in the diffusion equation. It is 

not necessary for these trigonometric 

functions to give periodic behavior with 

a change of location, but rather they 

describe the behavior of decline or 

increase in the function depending on 

the period of change specified with 

constant (β). 

        The constants (a, b) can be 

determined by determining the initial 

and final concentrations of the solution 

at the times (0) and (∞) in the source 

point (x = 0). When a equilibrium (t = 

∞), the second term of equation (19) 

becomes zero so(𝐶𝑒  =  𝑎). On the other 

hand, when (t = 0) and at the source 

point (x = 0), the exponential term in 

equation (19) is one as well as the 

distribution of the trigonometric 

function because all of the solute will be 

at this point in time (t = 0). 

Thus,(𝐶(𝑥, 𝑡)  =  𝐶0), and so we obtain 

(𝑏 =  𝐶0 − 𝐶𝑒). 

       Constant (c) takes a zero value 

because the behavior of the diffusion 

function did not agree with the 𝑠𝑖𝑛(𝛽𝑥) 

function. This comes from the fact that 

100% of the solute will be at the point 

(𝑥 =  0) at time zero, while the 

𝑠𝑖𝑛(𝛽𝑥) function makes the amount of 

solute at this point equal to zero, and 

this contrasts with reality. Thus, 

equation (19) can be written as 

following: 
𝐶(𝑥, 𝑡) =
𝐶𝑒 + (𝐶0 − 𝐶𝑒)𝑒−𝛼𝑡 𝑑 cos(𝛽𝑥) … (20)  
      By applying the second law of one-

dimensional diffusion on this 

relationship, we obtain the following: 

𝜕 𝐶(𝑥,𝑡)

𝜕 𝑡
= 𝐷 

 𝜕2𝐶(𝑥,𝑡)

𝜕 𝑥2 … … … (21)  

𝛼 = 𝐷. 𝛽2 … … … (22)  
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       Where (𝐷) is the diffusion 

coefficient in the units (𝑚2/𝑠𝑒𝑐). The 

constant (β) can be determined by 

defining the behavior of 𝑐𝑜𝑠(𝛽𝑥), which 

fits with the experiment throughout the 

following states: the concentration of the 

substance is at its maximum at the 

starting point and then decreases to a 

value close to zero with increasing 

distance far from the source point. The 

concentration resembles the 

probabilistic distribution function along 

the distance, and the probability 

distribution functions do not take a 

negative value. Thus, this behavior is 

similar to the behavior of the 𝑐𝑜𝑠 

function in the first quarter of its 

period(0 →  𝜋 / 2). This behavior is 

happening along the field of 

diffusion(𝑙 ); therefore, the function 

𝑐𝑜𝑠(𝛽𝑥) will take the form 𝑐𝑜𝑠(
𝜋  

2𝑙
 𝑥), 

and we obtain the following: 

𝛽 =  
𝜋

2𝑙
    𝑎𝑛𝑑   𝛼 = 𝐷.

𝜋2

4𝑙2 … … . (23)  

In other words, the form of equation 

(20) becomes as follows:  
𝐶(𝑥, 𝑡) =

𝐶𝑒 + (𝐶0 − 𝐶𝑒)𝑒
−𝜋2

4𝑙2 𝐷𝑡
𝑑 cos (

𝜋

2𝑙
𝑥) … (24)   

      This format is compatible with the 

second order diffusion equation and 

consistent with the general formula for 

diffusion within a limited volume [48]. 

Returning to the practical way in which 

the concentration of dissolved atropine 

change over time was recorded by 

taking samples from both sides of the 

tube during the definite time periods, 

and then they were homogenized to 

measure the concentration of atropine in 

the sample with UV-vis. Apparatus. 

This means that the measurement 

process was beyond the problem of a 

concentration gradient along the 

distance through shaking the sample, 

which gives a unified concentration 

along length of the sample during the 

measurement process. It is clear here 

that the concentration that was being 

measured is the mean concentration 

along the length of the sample. Thus, 

from the mean value theory [49-51], the 

measured mean concentration in the 

specified section is as following: 

𝐶̅(𝑡) =
∫ 𝐶(𝑥,𝑡)𝑑𝑥

𝑙
0

∫ 𝑑𝑥
𝑙

0

… … . (25)  

Carrying out the integration process, we 

obtain equation (26): 

𝐶̅(𝑡) = 𝐶𝑒 + (𝐶0 − 𝐶𝑒)𝑒
−𝜋2

4𝑙2 𝐷𝑡
. 𝑑.

2l

π
… . (26)  

        Because the integration above is 

equivalent to the normalization of the 

function (in the sense that the amount of 

material scattered along the space must 

be 100% or 1 in all sections) and 

because the constant d contributes to 

this condition, the remainder of the 

extent of trigonometric functions after 

achieving this condition must be equal 

to 1, which means that 
𝑑.2𝑙  

𝜋
 =  1. Thus 

the value of the constant is (𝑑 =  
𝜋

2𝑙
). 

The use of the average concentration 

method that we performed practically 

allows simplifying the (x) dependent 

part of the concentration function to just 

sin and cos trigonometric functions that 

appear in equation (19), which is 

required to satisfy the Fick’s second law 

and results in no need to insert a Fourier 

series as in reference [47].      

       It remains to be noted that the 

primary concentration here, 𝐶0 replaced 

with concentration 𝐶𝑖 of acquired from 

the equations (8), (14) and (17). This is 

similar to the case in [27, 28] that 

qualifies 
𝜕𝐶

𝜕𝑡
 term in the diffusion 

equation with 
𝑑𝐶

𝑑𝑡
 in the kinetic equation, 

but the qualifying step in this work was 

performed after integration. This will 

give the concentration at the three 

sections with the contribution of the 

diffusion process so resulting in the 

following: 

𝐶̅(𝑡) = 𝐶𝑒 + (𝐶𝑖 − 𝐶𝑒)𝑒
−𝜋2

4𝑙2 𝐷𝑡
… . (27)  
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(𝐴)𝐵1
̅̅ ̅̅ ̅̅ ̅(𝑡) = (𝐴)𝐵1

∞ + {(𝐴)𝐵1
0

𝑒−𝑘1𝑡 +

𝑘2(𝐴)𝐻
𝑚𝑎𝑥

{
[1−𝑒−𝑘1𝑡]

𝑘1
−

[𝑒−2𝑘2𝑡−𝑒−𝑘1𝑡]

(𝑘1−2𝑘2)
} −

(𝐴)𝐵1
∞

}𝑒
−𝜋2

4.𝑙𝐵1
2𝐷𝐵𝑡

… . (28)  

(𝐴)𝐻
̅̅ ̅̅ ̅̅ (𝑡) =

(𝐴)𝐻
∞ − (𝐴)𝐻

∞𝑒−2𝑘2𝑡𝑒
−𝜋2

4.𝑙𝐻
2𝐷𝐻𝑡

… . (29)  

⟹ (𝐴)𝐻
̅̅ ̅̅ ̅̅ (𝑡) = (𝐴)𝐻

∞{1 −

𝑒
−(2𝑘2+

𝜋2

4.𝑙𝐻
2𝐷𝐻)𝑡

} … … . (30)  
 

(𝐴)𝐵2
̅̅ ̅̅ ̅̅ ̅(𝑡) =

(𝐴)𝐵2
∞ + [𝑘2(𝐴)𝐻

∞
{

[1−𝑒−𝑘1𝑡]

𝑘1
−

[𝑒−2𝑘2𝑡−𝑒−𝑘1𝑡]

(𝑘1−2𝑘2)
} − (𝐴)𝐵2

∞]𝑒
−𝜋2

4.𝑙𝐵2
2𝐷𝐵𝑡

. (31)  

      The linear form of equation (30) can 

be obtained by rearranging and taking 

the logarithm and is as following:   

ln [
(𝐴)𝐻

∞

(𝐴)𝐻
∞

−(𝐴)𝐻
̅̅ ̅̅ ̅̅ ̅(𝑡)

] = (2𝑘2 +

𝜋2

4.𝑙𝐻
2 𝐷𝐻) 𝑡 … … (32)  

      By drawing ln [
(𝐴)𝐻

∞

(𝐴)𝐻
∞

−(𝐴)𝐻
̅̅ ̅̅ ̅̅ ̅(𝑡)

]versus 

time, a straight line going through the 

origin point will result in its slope being 

equal to (2𝑘2 +
𝜋2

4.𝑙𝐻
2 𝐷𝐻). In contrast, 

the mean concentration of dissolved 

atropine in benzene in both arms of the 

tube does not give a simple expression 

that can be used to calculate the 

constants in an experimental way to 

compare the proposed kinetic model 

with experimental results, but it can 

simplify equations (28) and (31) through 

the study of these equations during the 

initial time periods (primary sections of 

the curves), where in the initial time 

periods, the exponential terms can be 

replaced by 𝑒 (− 𝑧)  ≈ 1 − 𝑧 according to 

the Taylor series [52]. Therefore, 

equation (28) becomes the following: 

(𝐴)𝐵1
̅̅ ̅̅ ̅̅ ̅(𝑡) =

(𝐴)𝐵1
∞ + {(𝐴)𝐵1

0(1−𝑘1𝑡) −

(𝐴)𝐵1
∞

}(1 −
𝜋2

4.𝑙𝐵1
2 𝐷𝐵𝑡) … (33)  

     This can be arranged into the form 

(𝐴)𝐵1
̅̅ ̅̅ ̅̅ ̅(𝑡) = (𝐴)𝐵1

0
− [(𝐴)𝐵1

0
𝑘1 +

𝜋2

4.𝑙𝐵1
2 𝐷𝐵((𝐴)𝐵1

0
− (𝐴)𝐵1

∞
)] 𝑡 +

(𝐴)𝐵1
0 𝜋2

4.𝑙𝐵1
2 𝐷𝐵𝑘1𝑡2 … . (34)  

   The linear form becomes as follows: 
(𝐴)𝐵1

0
−(𝐴)𝐵1

̅̅ ̅̅ ̅̅ ̅̅ (𝑡)

𝑡
= [(𝐴)𝐵1

0
𝑘1 +

𝜋2

4.𝑙𝐵1
2 𝐷𝐵((𝐴)𝐵1

0
− (𝐴)𝐵1

∞
)] −

(𝐴)𝐵1
0 𝜋2

4.𝑙𝐵1
2 𝐷𝐵𝑘1𝑡. . (35)  

    By plotting 
(𝐴)𝐵1

0
−(𝐴)𝐵1

̅̅ ̅̅ ̅̅ ̅̅ (𝑡)

𝑡
 versus 

time, a straight line is obtained with the 

intercept 

=[(𝐴)𝐵1
0

𝑘1 +
𝜋2

4.𝑙𝐵1
2 𝐷𝐵((𝐴)𝐵1

0
−

(𝐴)𝐵1
∞

)], and its slope 

is(𝐴)𝐵1
0 𝜋2

4.𝑙𝐵1
2 𝐷𝐵𝑘1.  

     Applying the same procedure to 

equation (31), we obtain equation (36): 

(𝐴)𝐵2
̅̅ ̅̅ ̅̅ ̅(𝑡) = (𝐴)𝐵2

∞ 𝜋2

4.𝑙𝐵2
2 𝐷𝐵𝑡 … (36)  

     The above equation states that when 

the primary section of the concentration 

(𝐴)𝐵2
̅̅ ̅̅ ̅̅ ̅(𝑡) is plotted versus time, we will 

obtain a straight line through the origin 

point that has the slope(𝐴)𝐵2
∞ 𝜋2

4.𝑙𝐵2
2 𝐷𝐵. 

Equations (32), (35) and (36) in addition 

to the equilibrium constant relationship 

which is: 

𝐾𝑒 =
𝑘1

𝑘2
=

(𝐴)𝐻
∞

(𝐴)𝐵
∞ … … … . (37)  

     All of the kinetic constants for this 

system can be determined, thus allowing 

the supposed kinetic model to be 

compared with the experimental results 

for the purpose of determining the 

efficiency of this model to describe the 

overall process. 
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 انظمة الاغشية السائلةنموذج حركي لانتشار المذاب في 
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  الخلاصة:
في هذه الدراسة تم صياغة نموذج حركي لانتقال المذاب في انظمة الاغشية السائلة. دمج هذا النموذج 

للانتشار، منتجا معادلات تصف تركيز المذاب بين حركيتي العمليات المتتابعة و الانعكاسية مع تعبير شبه مشتق 

في المقاطع الثلاثة )الواهب و المستقبل و الغشاء السائل(. تم تعديل المعادلات الناتجة الى الشكل الخطي و الذي 
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