Oscillations of Third Order Half Linear Neutral Differential Equations

Hussain A. Mohamad*
Layla M. Shehab
Department of Mathematics, College of Science for Women, University of Baghdad
*E-mail:hu_moha@yahoo.com

Received 14, May, 2014
Accepted 14, October, 2014

This work is licensed under a Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International Licens

Abstract

: In this paper the oscillation criterion was investigated for all solutions of the thirdorder half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of $$
\left(a(t)\left[(x(t) \pm p(t) x(\tau(t)))^{\prime \prime}\right]^{\gamma}\right)^{\prime}+q(t) x^{\gamma}(\sigma(t))=0, \quad t \geq t_{0}
$$ to be oscillatory. Examples are given to illustrate our main results.

Key words: Third order half linear Neutral differential equations, oscillation of solutions.

Introduction:

The study of oscillation theory for solution of half linear neutral differential equations has been recently considered the attention of many researches for the last several years, see [1]-[8]. A few of them have been investigated the case with variable coefficients and delays, see [5], [7-9]. Consider the half linear neutral differential equations.
$\left(a(t)\left[(x(t)+p(t) x(\tau(t)))^{\prime \prime}\right]^{\gamma}\right)^{\prime}+$ $\left.\begin{array}{ccc}q(t) x^{\gamma}(\sigma(t))=0, & t \geq t_{0} & (1 . \mathrm{i}) \\ \left(a(t)\left[(x(t)-p(t) x(\tau(t)))^{\prime \prime}\right]^{\gamma}\right)^{\prime}+ \\ q(t) x^{\gamma}(\sigma(t))=0, & t \geq t_{0} & \text { (1.ii) }\end{array}\right\}$
We define functions $Z(t)=x(t)+$ $p(t) x(\tau(t))$
$z(t)=x(t)-p(t) x(\tau(t))$
In this paper we will assume that the following conditions are satisfied
H1. $a(t), p(t) \in$
$C\left(\left[t_{0}, \infty\right), R^{+}\right), q(t) \in$ $C\left(\left[t_{0}, \infty\right), R\right), \gamma>0$ is the quotient of odd positive integers.

H2. $\tau(t), \sigma(t)$ are continuous functions $\sigma(t)<t, \lim _{t \rightarrow \infty} \tau(t)=\infty$, $\lim _{t \rightarrow \infty} \sigma(t)=\infty$.
H3. $\int_{T}^{\infty}\left(\frac{1}{a(s)}\right)^{\frac{1}{\gamma}} d s=\infty$.
Where $a(t)$ is continuous positive function. By a solution of eq.(1) we mean a nontrivial function $x(t) \in$ $C\left(\left[T_{x}, \infty\right), R\right), T_{x} \geq t_{0} \quad$ for \quad which $x(t) \pm p(t) x(\tau(t)) \in C^{2}\left(\left[T_{x}, \infty\right), R\right)$, $a(t)\left(z^{\prime \prime}(t)\right)^{\gamma} \in C^{1}\left(\left[T_{x}, \infty\right), R\right)$, and
(1.1) is satisfied on some interval ($\left[T_{x}, \infty\right), R$), where $T_{x} \geq t_{0}$, A non trivial solution of eq.(1) is said to be oscillatory if it has arbitrarily large zeros, otherwise is said to be nonoscillatory that is eventually positive solution or eventually negative solution. The purpose of this paper is to obtain necessary and sufficient conditions for the oscillation of all solutions of eq.(1).

Some Basic Lemmas

The following lemmas will be useful in the proof of the main results:
Lemma 1. [5]
Suppose that $p, q \in C\left[R^{+}, R^{+}\right]$, $q(t)<t$ for $t \geq t_{0}, \lim _{t \rightarrow \infty} q(t)=$ ∞ and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{q(t)}^{t} p(s) d s>\frac{1}{e} \tag{3}
\end{equation*}
$$

Then the inequality $y^{\prime}(t)+$ $p(t) y(q(t)) \leq 0 \quad$ has no eventually positive solutions, and the inequality $y^{\prime}(t)+p(t) y(q(t)) \geq 0 \quad$ has no eventually negative solutions.
Lemma 2. [4] Assume that $p \in$ $C\left(\left[t_{0}, \infty\right) ; R^{+}\right), \tau \in C\left(\left[t_{0}, \infty\right) ; R\right)$, for $t \geq t_{0}$,
i. suppose that $0<p(t) \leq 1$ for $t \geq t_{0}$. let $x(t)$ be a continuous nonoscillatory solution of a functional inequality
$x(t)[x(t)-p(t) x(\tau(t))]<0 \quad$ in a neighborhood of infinity.
Suppose that $\tau(t)<t$ for $t \geq t_{0}$, then $x(t)$ is bounded. If moreover $0<p(t) \leq \delta<1, t \geq t_{0}$, for some positive constant δ, then $\lim _{t \rightarrow \infty} x(t)=0$.
ii. suppose that $1 \leq p(t)$ for $t \geq t_{0}$. let $x(t)$ be a continuous nonoscillatory solution of a functional inequality
$x(t)[x(t)-p(t) x(\tau(t))]>0$ in a neighborhood of infinity.
Suppose that $\tau(t)>t$ for $t \geq t_{0}$, then $x(t)$ is bounded. If moreover $1<\delta \leq$ $p(t), t \geq t_{0}, \quad$ for \quad some positive constant δ, then $\lim _{t \rightarrow \infty} x(t)=0$.
Lemma 3. Suppose that H1-H3 holds, $q(t) \geq 0$ and let $x(t)$ be an eventually positive solution of (1.i) then there are only the following two cases for (2.i)
i. $\quad z(t)>0, z^{\prime}(t)>0, z^{\prime \prime}(t)>$ $0,\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime}<0, t \geq t_{1} \geq t_{0}$.
ii. $\quad z(t)>0, z^{\prime}(t)<0, z^{\prime \prime}(t)>$ $0,\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime}<0, t \geq t_{1} \geq t_{0}$.

Proof. Let $x(t)>0, x(\tau(t))>$ $0, x(\sigma(t))>0$, for $t \geq t_{0}$ then from eq.(1.i) we get
$\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime}=-q(t) x^{\gamma}(\sigma(t)) \leq$ $0, \quad t \geq t_{0}$, hence
$a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}$ is non increasing, so either
$a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}>0$
or $a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}<0, \quad t \geq t_{1} \geq t_{0}$, therefore $z^{\prime \prime}(t)>0$ or $z^{\prime \prime}(t)<0$, $t \geq t_{1}$ respectively.
Suppose that $a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}<0$, then there exists $d<0$ such that

$$
a(t)\left(z^{\prime \prime}(t)\right)^{\gamma} \leq d, \quad t \geq t_{2} \geq t_{1}
$$

then
$z^{\prime \prime}(t) \leq \frac{a^{\frac{1}{\bar{\gamma}}}}{a^{\frac{1}{\gamma}}(t)}$.
Integrating the last inequality from t_{2} to t and using H3 we get

$$
z^{\prime}(t)-z^{\prime}\left(t_{2}\right) \leq d^{\frac{1}{\bar{\gamma}}} \int_{t_{2}}^{t} \frac{1}{a^{\frac{1}{\bar{\gamma}}}(s)} d s
$$

This lead to $\lim _{t \rightarrow \infty} z^{\prime}(t)=-\infty$
Then $z^{\prime}(t)<0 \quad t \geq t_{3}$, for t_{3} large enough, this implies that $z(t)<0$ which is
contradiction a. So $a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}>0$ hence $\quad z^{\prime \prime}(t)>0$.
Lemma 4. Suppose that H1-H3 hold, $1 \leq p(t) \leq p_{1}, \tau(t)>t, q(t) \leq 0$, let $x(t)$ be an eventually positive solution of eq.(1.ii) then there are only three cases for (2.ii)
i. $z(t)<0, z^{\prime}(t)>0, z^{\prime \prime}(t)<$ $0,\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime} \geq 0, t \geq t_{1} \geq t_{0}$.
ii. $z(t)>0, z^{\prime}(t)>0, z^{\prime \prime}(t)<$ $0,\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime} \geq 0, t \geq t_{1} \geq t_{0}$.
iii. $z(t)<0, z^{\prime}(t)<0, z^{\prime \prime}(t)<$ $0,\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime} \geq 0, t \geq t_{1} \geq t_{0}$.
Proof. Let $x(t)>0, x(\tau(t))>$ $0, x(\sigma(t))>0$, for $t \geq t_{0}$ then from eq.(1.1.ii) we get $\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime} \geq$ 0 hence $a(t)\left(z^{\prime \prime}(t)\right)^{r}$ is non decreasing then either $a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}$ is eventually positive or eventually negative, it follows that either $z^{\prime \prime}(t)$ is eventually positive or eventually negative, if $z^{\prime \prime}(t)>0$ which mean
that $a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}>0$, for $\quad t \geq t_{1} \geq$ t_{0} so there exists $\beta>0$ such that $a(t)\left(z^{\prime \prime}(t)\right)^{\gamma} \geq \beta>0, t \geq t_{2} \geq t_{1}$
that is

$$
z^{\prime \prime}(t) \geq \frac{\beta^{\frac{1}{\gamma}}}{a^{\frac{1}{\gamma}}(t)}, \quad t \geq t_{2}
$$

Integrating the last inequality from t_{2} to t and using H3 we get

$$
z^{\prime}(t)-z^{\prime}\left(t_{2}\right) \geq \beta^{\frac{1}{\gamma}} \int_{t_{2}}^{t} \frac{1}{a^{\frac{1}{\gamma}}(s)} d s
$$

then $\lim _{t \rightarrow \infty} z^{\prime}(t)=\infty$ which implies that $\lim _{t \rightarrow \infty} z(t)=\infty$ hence there exist $t_{3} \geq t_{2}$ such that $x(t) z(t)>0$, for $t \geq t_{3}$ then by Lemma 2 it follows that $x(t)$ is bounded which is a contradiction. Then $a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}<0$ eventually which implies that $z^{\prime \prime}(t)<$ 0 .

Main Results:

In this section, we give the main results.
Theorem 1. Suppose that H1-H3 hold, $0 \leq p(t)<1, \tau(t)<t, q(t) \geq 0$, and

$$
\begin{equation*}
\int_{t_{1}}^{\infty} q(s)[1-p(\sigma(s))]^{\gamma} d s=\infty \tag{4}
\end{equation*}
$$

Then every unbounded solution of eq.(1.1.i) oscillates.
Proof. Suppose the contrary that eq.(1.1.i) has eventually positive solution $x(t)$ then we have $\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime} \leq 0$, so by Lemma 3 there are only the following two cases for (2.i)
i. $\quad z(t)>0, z^{\prime}(t)>0, z^{\prime \prime}(t)>$ $0,\left(a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right)^{\prime} \leq 0, t \geq t_{1} \geq t_{0}$.
ii. $\quad z(t)>0, z^{\prime}(t)<0, z^{\prime \prime}(t)>$ $0,\left(a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right)^{\prime} \leq 0, t \geq t_{1} \geq t_{0}$.
Case i. In this case $a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}$ is positive non increasing,
$z(t) \leq x(t)+p(t) z(\tau(t))$, then $x(\sigma(t)) \geq z(\sigma(t))$
$-p(\sigma(t)) z(\tau(\sigma(t)))$
$\geq z(\sigma(t))[1$
$-p(\sigma(t))]$

$$
\begin{gather*}
x^{\gamma}(\sigma(t)) \geq z^{\gamma}(\sigma(t))[1- \\
p(\sigma(t))]^{\gamma}, \quad t \geq t_{1} \geq t_{0} \tag{5}
\end{gather*}
$$

Integrating eq(1.i) from t_{1} to t we get

$$
a(t)\left(z^{\prime \prime}(t)\right)^{r}-a\left(t_{1}\right)\left(z^{\prime \prime}\left(t_{1}\right)\right)^{r}
$$

$$
=-\int_{t_{1}}^{t} q(s) x^{\gamma}(\sigma(s)) d s
$$

$$
\leq-\int_{t_{1}}^{t} q(s) z^{\gamma}(\sigma(s))[1
$$

$$
-p(\sigma(s))]^{\gamma} d s
$$

$$
\leq-Z^{\gamma}\left(\sigma\left(t_{1}\right)\right) \int_{t_{1}}^{t} q(s)[1
$$

$$
-p(\sigma(s))]^{\gamma} d s
$$

Which as $t \rightarrow \infty$ leads to a contradiction.
Case ii. Since $x(t)$ is unbounded then $z(t)$ is unbounded which is a contradiction in this case.
Theorem 2. Suppose that H1-H3 hold, $0 \leq p(t)<1, \tau(t)>t, q(t) \geq 0$, and there exist a continuous functions $\alpha(t), \beta(t)$ such that $\alpha(t)>t, \beta(t)>$ t

$$
\begin{align*}
\lim _{t \rightarrow \infty} \inf \int_{\mathrm{F}(\mathrm{t})}^{\mathrm{t}} \int_{\mathrm{s}}^{\mathrm{\beta}(s)} & \left(\frac{1}{a(s)}\right)^{\frac{1}{\gamma}}\left(\int_{v}^{\alpha(v)} q(w)(1\right. \\
& \left.-p(\sigma(w)))^{\gamma} d w\right)^{\frac{1}{\gamma}} d v d s \\
& >\frac{1}{e} \tag{6}
\end{align*}
$$

$F(t)=\sigma(\alpha(\beta(t))) . \quad$ Then every bounded solution of eq.(1.i) oscillates. Proof. Suppose that eq.(1.i) has eventually positive solution $x(t)$ then we have $\quad\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime} \leq 0$, so by Lemma 3 there are only the following two cases for (2.i)
i. $\quad z(t)>0, z^{\prime}(t)>0, z^{\prime \prime}(t)>$ $0,\left(a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right)^{\prime} \leq 0, t \geq t_{1} \geq t_{0}$.
ii. $\quad z(t)>0, z^{\prime}(t)<0, z^{\prime \prime}(t)>$ $0,\left(a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right)^{\prime} \leq 0, t \geq t_{1} \geq t_{0}$..
Case i. In this case $\lim _{t \rightarrow \infty} z(t)=\infty$, however $x(t)$ and $p(t)$ are bounded
leads to $z(t)$ is bounded which is a contradiction.
Case ii. It follows from (2.a) $z(t) \leq x(t)+p(t) z(\tau(t))$, then
$x(\sigma(t)) \geq$
$z(\sigma(t))-p(\sigma(t)) z(\tau(\sigma(t))) \geq$
$z(\sigma(t))[1-p(\sigma(t))]$

$$
x^{\gamma}(\sigma(t)) \geq z^{\gamma}(\sigma(t))[1-
$$

$p(\sigma(t))]^{r}$
Integrating eq.(1.i) from t to $\alpha(t)$ we get

$$
\begin{aligned}
& -a(t)\left(z^{\prime \prime}(t)\right)^{\gamma} \\
& \leq-\int_{t}^{\alpha(t)} q(s) x^{\gamma}(\sigma(t)) d s \\
z^{\prime \prime}(t) \geq & \frac{1}{a^{\frac{1}{\gamma}}(t)}\left[\int_{t}^{\alpha(t)} q(s) x^{\gamma}(\sigma(s)) d s\right]^{\frac{1}{\gamma}}
\end{aligned}
$$

Using (5) in the last inequality we get

$$
\begin{gathered}
z^{\prime \prime}(t) \geq \frac{1}{a^{\frac{1}{\gamma}}(t)}\left[\int_{t}^{\alpha(t)} q(s) z^{\gamma}(\sigma(s))(1\right. \\
\left.-p(\sigma(s)))^{\gamma} d s\right]^{\frac{1}{\gamma}} \\
\geq \frac{z(\sigma(\alpha(t)))}{\mathrm{a}^{\frac{1}{\gamma}}(\mathrm{t})}\left[\int_{\mathrm{t}}^{\alpha(t)} \mathrm{q}(\mathrm{~s})(1\right.
\end{gathered}
$$

$$
\left.-\mathrm{p}(\sigma(\mathrm{~s})))^{\gamma} \mathrm{ds}\right]^{\frac{1}{\gamma}}
$$

Integrating the last inequality from t to $\beta(t)$ we get

$$
\begin{array}{r}
-z^{\prime}(t) \geq \int_{t}^{\beta(t)} \frac{z(\sigma(\alpha(s)))}{a^{\frac{1}{\gamma}}(s)}\left[\int_{s}^{\alpha(s)} q(v)(1\right. \\
\left.-p(\sigma(v)))^{\gamma} d v\right]^{\frac{1}{\gamma}} d s
\end{array}
$$

$z^{\prime}(t)$
$\leq-z(\sigma(\alpha(\beta(t)))) \int_{t}^{\beta(t)} \frac{1}{a^{\frac{1}{\gamma}}(s)}\left[\int_{s}^{\alpha(s)} q(v)(1\right.$
$\left.-p(\sigma(v)))^{\gamma} d v\right]^{\frac{1}{\gamma}} d s$

$$
\begin{aligned}
z^{\prime}(t)+z(F(t)) & \int_{t}^{\beta(t)} \frac{1}{a^{\frac{1}{\gamma}}(s)}\left[\int_{s}^{\alpha(s)} q(v)(1\right. \\
& \left.-p(\sigma(v)))^{\gamma} d v\right]^{\frac{1}{\gamma}} d s \\
& \leq 0
\end{aligned}
$$

Where $F(t)=\sigma(\alpha(\beta(t)))$
by Lemma 1 and condition (6) the last inequality cannot has eventually positive solution which is a contradiction.

Example 1. Consider the third-order nonlinear differential equation

$$
\begin{gather*}
\left(\frac{1}{4}\left[\left(x(t)+\frac{1}{3} x(t+\pi)\right)^{\prime \prime}\right]\right)^{\prime} \\
+\frac{1}{6} x\left(t-\frac{3 \pi}{2}\right) \\
=0, \tag{E1}
\end{gather*}
$$

In equation ($E 1$) we find $\gamma=$ $1, a(t)=\frac{1}{4}, \tau(t)=t+\pi, \sigma(t)=t-$ $\frac{3 \pi}{2}$,
If we set $\alpha(t)=\beta(t)=t+\frac{\pi}{2}$, and using the condition (3.3) we get

$$
\begin{gathered}
\frac{4}{9} \lim _{t \rightarrow \infty} \inf \int_{t-\frac{\pi}{2}}^{t} \int_{s}^{t+\frac{\pi}{2}} \int_{v}^{s+\frac{\pi}{2}} d w d v d s=\frac{\pi^{3}}{18} \\
>\frac{1}{e}
\end{gathered}
$$

Then according to theorem 2 every solution of equation (E1) is oscillatory, for instance $x(t)=\sin t$ is such oscillatory solution.
Theorem 3. Suppose that H1-H3 hold, $1 \leq p(t) \leq p_{1}, \tau(t)>t, q(t) \leq 0$, and there exists continuous functions $\alpha(t), \beta(t)$ such that $\alpha(t)>t, \beta(t)>$ t
$\lim _{t \rightarrow \infty} \inf \int_{F(t)}^{t} \int_{s}^{t(s)}\left(\frac{1}{a(v)^{\frac{1}{r}}}\left[\int_{v}^{\frac{1}{\alpha(v)}} \frac{|q(w)|}{p^{r}\left(\tau^{-1}(\sigma(w))\right)} d w\right]^{\frac{1}{\gamma}} d v d s\right.$ $>\frac{1}{e}, \quad$ (7) $H(t)=\tau_{\alpha(t)}^{-1}(\sigma(\alpha(\beta(t))))<t$. $\liminf _{t \rightarrow \infty} \int_{t}^{\alpha(t)}|q(s)| d s>0$,
$\int_{t_{1}}^{\infty} \frac{|q(s)|}{p^{\gamma}\left(\tau^{-1}(\sigma(s))\right)} d s=\infty, \quad t \geq T$
Then every solution of eq (1.ii) is oscillatory.

Proof. Suppose that eq (1.ii) has eventually positive solution $x(t)$ then we have $\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime} \geq 0$, so by Lemma 4 there are only the following three cases for (2.b)
i. $\quad z(t)<0, z^{\prime}(t)>0, z^{\prime \prime}(t)<$ $0,\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime} \geq 0, t \geq t_{1} \geq t_{0}$.
ii. $z(t)>0, z^{\prime}(t)>0, z^{\prime \prime}(t)<$ $0,\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime} \geq 0, t \geq t_{1} \geq t_{0}$.
iii. $z(t)<0, z^{\prime}(t)<0, z^{\prime \prime}(t)<$ $0,\left[a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}\right]^{\prime} \geq 0, t \geq t_{1} \geq t_{0}$.
Case i. From eq (2.ii) it follows that

$$
\begin{align*}
& x(\tau(t))>\frac{-z(t)}{p(t)} \\
& x(t)>\frac{-z\left(\tau^{-1}(t)\right)}{p\left(\tau^{-1}(t)\right)} \\
& x(\sigma(t)) \\
& >\frac{-z\left(\tau^{-1}(\sigma(t))\right)}{p\left(\tau^{-1}(\sigma(t))\right)} \tag{10}
\end{align*}
$$

Integrating eq (1.ii) from t to $\alpha(t)$ and using (10) we get

$$
\begin{aligned}
&-a(t)\left(z^{\prime \prime}(t)\right)^{\gamma} \\
& \geq-\int_{t}^{\alpha(t)}|q(s)| \frac{z^{\gamma}\left(\tau^{-1}(\sigma(s))\right)}{p^{\gamma}\left(\tau^{-1}(\sigma(s))\right)} d s \\
& \geq-z^{\gamma}\left(\tau^{-1}(\sigma(\alpha(t)))\right) \int_{t}^{\alpha(t)} \frac{|q(s)|}{p^{\gamma}\left(\tau^{-1}(\sigma(s))\right.} d s \\
& z^{\prime \prime}(t) \\
& \leq \frac{z\left(\tau^{-1}(\sigma(\alpha(t)))\right)}{a^{\frac{1}{\gamma}}(t)}\left[\int_{t}^{\alpha(t)} \frac{|q(s)|}{p^{\gamma}\left(\tau^{-1}(\sigma(s))\right)} d s\right]^{\frac{1}{\gamma}}
\end{aligned}
$$

Integrating the last inequality from t to $\beta(t)$ we get

$$
\begin{gathered}
-z^{\prime}(t) \leq \int_{t}^{\beta(t)} \frac{z\left(\tau^{-1}(\sigma(\alpha(s)))\right.}{a^{\frac{1}{\gamma}}(s)} \\
{\left[\int_{s}^{\alpha(s)} \frac{|q(v)|}{p^{\gamma}\left(\tau^{-1}(\sigma(v))\right)} d v\right]^{\frac{1}{\gamma}} d s} \\
-z^{\prime}(t) \leq z\left(\tau^{-1}(\sigma(\alpha(\beta(t))))\right) \int_{t}^{\beta(t)} \frac{1}{a^{\frac{1}{\gamma}}(s)} \\
{\left[\int_{s}^{\alpha(s)} \frac{|q(v)|}{p^{\gamma}\left(\tau^{-1}(\sigma(v))\right)} d v\right]^{\frac{1}{\gamma}} d s}
\end{gathered}
$$

$z^{\prime}(t)$
$+z(H(t)) \int_{t}^{\beta(t)} \frac{1}{a^{\frac{1}{\bar{\gamma}}}(s)}\left[\int_{s}^{\alpha(s)} \frac{|q(v)|}{p^{v}\left(\tau^{-1}(\sigma(v))\right)} d v\right]^{\frac{1}{\bar{\gamma}}} d s$ ≥ 0
Where $H(t)=\tau^{-1}(\sigma(\alpha(\beta(t))))$
By lemma 1 and condition (7) the last inequality cannot has eventually negative solution which is contradiction.
Case ii. From eq (2.ii)we get $\quad x(t)>$ $z(t), \quad t \geq t_{1} \geq t_{0}$

$$
\begin{equation*}
x(\sigma(t))>z(\sigma(t)) \tag{11}
\end{equation*}
$$

Integrating eq (1.1.ii) from t to $\alpha(t)$ and using (11) we get

$$
\begin{gathered}
\quad-a(t)\left(z^{\prime \prime}(t)\right)^{\gamma} \\
\geq-\int_{t}^{\alpha(t)} q(s) z^{\gamma}(\sigma(s)) d s \\
z^{\prime \prime}(t) \\
\leq \frac{-1}{a^{\frac{1}{\gamma}}(t)}\left[\int_{t}^{\alpha(t)}|q(s)| z^{\gamma}(\sigma(s)) d s\right]^{\gamma} \\
\leq \frac{-z(\sigma(t))}{a^{\frac{1}{\gamma}}(t)}\left[\int_{t}^{\alpha(t)}|q(s)| d s\right]^{\gamma}
\end{gathered}
$$

Integrating the last inequality from t_{1} to

$$
\begin{aligned}
& z^{\prime}(t)-z^{\prime}\left(t_{1}\right) \\
& \leq-\int_{t_{1}}^{t} \frac{z(\sigma(s))}{a^{\frac{1}{\gamma}}(s)}\left[\int_{s}^{\alpha(s)}|q(v)| d v\right]^{\gamma} d s \\
& \leq-z\left(\sigma\left(t_{1}\right)\right) \int_{t_{1}}^{t} \frac{1}{a^{\frac{1}{\gamma}}(s)}\left[\int_{s}^{\alpha(s)}|q(v)| d v\right]^{\gamma} d s
\end{aligned}
$$

as $t \rightarrow \infty$ and in view of condition H3 and (8) the last inequality leads to a contradiction.
Case iii. In this case $a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}<0$ and nondecreasing for $t \geq t_{1}$ hence it is bounded.
Integrating eq (1.ii) from t_{1} to t and using (10) we get

$$
\begin{aligned}
& a(t)\left(z^{\prime \prime}(t)\right)^{\gamma}-a\left(t_{1}\right)\left(z^{\prime \prime}\left(t_{1}\right)\right)^{\gamma} \\
& \geq-\int_{t_{1}}^{t}|q(s)| \frac{z^{\gamma}\left(\tau^{-1}(\sigma(s))\right)}{p^{\gamma}\left(\tau^{-1}(\sigma(s))\right)} d s
\end{aligned}
$$

$\geq-Z^{\gamma}\left(\tau^{-1}\left(\sigma\left(t_{1}\right)\right)\right) \int_{t_{1}}^{t} \frac{|q(s)|}{p^{\gamma}\left(\tau^{-1}(\sigma(s))\right)} d s$
as $t \rightarrow \infty$ and in the view of (9) the last inequality leads to a contradiction
Example 2. Consider the third-order nonlinear differential equation

$$
\left(\frac{1}{t}[(x(t)-\right.
$$

$\left.\left.2 x(4 t))^{\prime \prime}\right]^{3}\right)^{\prime}-8 x\left(\frac{t}{2}\right)=$
$0, \quad(E 2)$
One can see that $\gamma=3, a(t)=$ $\frac{1}{t}, \tau(t)=4 t+, \sigma(t)=\frac{t}{2}$,
If we set $\alpha(t)=\beta(t)=2 t$, then $H(t)=\frac{t}{2}$
We can see that all conditions (6) hold as follows

$$
\begin{gathered}
\sqrt[3]{4} \lim _{t \rightarrow \infty} \int_{\frac{t}{2}}^{t} \int_{s}^{2 s}\left[v \int_{v}^{2 v} d w\right]^{\frac{1}{3}} d v d s=\infty>\frac{1}{e} \\
8 \lim _{t \rightarrow \infty} \int_{\int_{t}}^{2 t} d s=\infty>0 \\
\int_{t_{1}}^{\infty} d s=\infty
\end{gathered}
$$

so according to theorem 2 every solution of equation (E2) is oscillatory.

References:

[1] Baculikova, B. and Dzurina, J. 2010. Oscillation of third-order neutral differential equation, Math. Computer Modeling 52: 215-226.
[2] Baculikova, B. and Dzurina, J. 2010. On the asymptotic behavior of a class of third order nonlinear
neutral differential equations, Cent. Eurp. J. Math. 8: 10911103.
[3] Dzurina, J.; Thandapani, E. and Tamilvanan, S. 2012. Oscillation of solutions to third-order halflinear neutral differential equations, Electr. J. of diff. eqs., 2012 (29): 1-9.
[4] Jaros, J. and Kusano, T. 1990. On a class of first order nonlinear functional differential equation of neutral type, Czechoslovak Math. J., 40 (3): 475-490.
[5] Ladde, G. S. and Zhang, B. G. 1987. Oscillation theory of differential equations with deviating arguments, Marcel Dekker, Inc. New York and Basel, 1st ed, 1-14
[6] Tang, S.; Li, T. and Thandapani, E. 2013. Oscillation of higher-order half linear neutral differential equations, Demonstratio Mathematica, Xlvi (1): 101-109.
[7] Saker, S. H. and Dzurina, J. 2010. On the oscillation of certain class of third-order nonlinear delay differential equations, Mathmatica Bohemica, 135(3): 225-237.
[8] Saker, S. H. 2007. Oscillation criteria of hilla and nehari types for third order delay differential equations, Communications in Appl. Anal. (11): 451-468
[9] Thandapani, E. and Tamilvanan, S. 2012. Oscillation of third order mixed type nonlinear neutral differential equation, J. of mod. math. front. (2): 21-25.

تذبذب حلول المعادلات التفاضلية المحايدة نصف الخطية من الرتبة الثالثة

ليلى محمد شهاب

حسين علي محمد

قسم الرياضيات - كلية العلوم للبنات- جامعة بغداد.

[^0]الكلمات المفتاحية: المعادلات التفاضلية المحايدة نصف الخطيتمن الرتبة الثالثة، تذبذب الحلول.

[^0]: الخلاصة :
 فئ : البحث بعض المفاهيم التذبذب لكل حول المعادلات التفاضلية المحايدة نصف الخطية من الرتبة الثالثة نوقشت و تم استخر اج بعض الشروط الضروررية والكافية لحلول المعادلة: ك كي تكون متذبذبة.كما $\left(a(t)\left[(x(t) \pm p(t) x(\tau(t)))^{\prime \prime}\right]^{\gamma}\right)^{\prime}+q(t) x^{\gamma}(\sigma(t))=0, \quad t \geq t_{0}$, اعطينا بعض الامثلة لتوضيح النتائج المستخرجة.

