Product of Conjugacy Classes of the Alternating Group A_n

Lamia Hassan Raheef *

Received 25, October, 2010 Accepted 8, January, 2011

Abstract:

For a nonempty subset X of a group G and a positive integer m , the product of X , denoted by X^m ,is the set

 $\mathbf{X}^{\mathbf{m}} = \left\{ \prod_{i=1}^{m} x_i \quad : x_i \in \mathbf{X} \right\}$

That is , X^m is the subset of G formed by considering all possible ordered products of m elements form X. In the symmetric group S_n , the class C_n (n odd positive integer) split into two conjugacy classes in A_n denoted C_n^+ and C_n^- . C^+ and C^- were used for these two parts of C_n . This work we prove that for some odd n ,the class C of 5- cycle in S_n has the property that $C^{\frac{n-3}{2}} = A_n$ $n \ge 7$ and C^+ has the property that each element of C^+ is conjugate to its inverse, the square of each element of it is the element of C^- , these results were used to prove that $C^+ = A_n$ exceptional of I (I the identity conjugacy class), when n=5+4k, k>=0.

Key words: conjugacy classes ,split, Alternating Group, Product

Introduction:

The product of conjugacy classes of the symmetric group S_n is found to be a linear combination of conjugacy classes of the symmetric group with integer coefficients,[1]. Dvir in [2] developed a theory of the product of the conjugacy classes in A_n and S_n , $n \ge 5$ which satisfy $C^3 = A_n$. Brenner proved that for the conjugacy class C n- cycle of the Alternating group of A_n , CCC= A_n , n=4k-1 and CC= A_n , n=4k+1>5.[3] Lamia H.R. in [3] proved that for n=5+8k, $C^+C^+C^+=A_n$,. In the Symmetric group S_n , the class C \in S_n splits into two conjugacy classes of the same order C^+ and C^- , these splitting happens with respect to the conjugator if it is even or odd. For each x,y \in C, $\delta \notin A_n$ we have $\delta^{-1}x$ $\delta = y \in C^-$ when $x \in C^+$. After splitting we can see if $x^{-1} \in C^+$ or not by using the formula [(n-1)/2] which gives the number of transposition in the standard

conjugator, if it is even then $x^{-1} \in C^+$ and otherwise $x^{-1} \notin C^+$,[4].

The Conjugacy Classes of the Alternating Group A_n

In this section, some basic definitions and fundamental results which are necessary for the main results are given.

Proposition (1), [4]:

Let C_{α} be the conjugacy class of S_n . Then C_{α} splits into two A_n -classes of equal order if and only if n>1 and the non-zero parts of α are pair wise different and odd. In all other cases C_{α} does not split. We denote these two split classes C^+ and C^- .

Proposition (2), [2]:

For n odd, the cycle (12...n) is conjugate to its inverse in A_n if and only if $n\equiv 1 \pmod{4}$.

*Computer Department, College of Medicine, AL- Mustansiriya University, Baghdad, Iraq.

Lemma (3), [5]:

If a finite subgroup H of a group G is the union of conjugacy classes in G, then H is a normal subgroup of G.

Results:

This section depends on two type of conjugacy classes of the symmetric group S_n

1- The conjugacy class C of type 51^{n-5} For S_7 the class C of type 51^{n-5} has the property that $CC=A_7$. The same for S_9 the class $CCC=A_9$ and so on.

2- The conjugacy class which split into two classes C^+ and C^- .

By using proposition (2.1), the class C of length n (n odd positive integer) split into two classes, this split happened with respect to n (proposition 2.2), for example in A_5 $C^+=$

[(12345),(15432),(13254),(14523),(13425),(15243), 12453), (12534)(14352), (13542), (15324), (14235)]

C = [(13524)]. (14253).(12435).(15342), (14532), (12354), (14325), (15423), (13245), (15234), 13452), (12543)].

these two type of classes were used to prove some results of this paper as in the following:

Lemma (1)

Let C be the class of the 5- cycle in S_7 , then $C^2 = A_7$.

Proof

Since each element of the class C of S_5 contains in the class C of S7

Then CC contains some elements of A7 For the other elements of A_7 we have:

$$(12345)(12346) = (136)(245) \in A_7$$

$$(12345)(12463) = (1452)(36) \in A_7$$

$$(12345)(12467)=(1452367) \in A$$

$$(12345)(12467)=(167)(23)(45) \in A_7$$

So CC contains all elements of A7

Then $C^2 = A_7$.

Lemma (2)

Let $n \ge 7$ be odd ,let C be the class of 5- cycle in S_n then $C^{\frac{1}{2}} = A_n$.

Proof

The proof is by induction on n: For n=7 we have from lemma (1), $C^2 =$ A₇, which implies that CC is the normal subgroup of S₇.Since n is odd, assume <u>n-5</u> its true for n-2 which is odd, C² = A_{n-1} 2, $C^{\frac{1}{2}}$ is the normal subgroup of S_{n-1} 2. Now we prove it true for n, since $C^{\frac{1}{2}}$ is the normal subgroup of S_{n-2} which contains all even conjugacy classes by product $C^{\frac{n-5}{2}}C$ we get the conjugacy classes of A_{n-2} as well as anther even conjugacy classes, since n-5 $C^{\overline{2}}$ is normal subgroup so the product $C^{\frac{n-5}{2}}C$ which equal two $C^{\frac{n-3}{2}}$ is also normal subgroup, then $C^{-2} = A_n$. Lemma (3) Let n=5+4k, (k=0,1,2,...), let C⁺ be the class of (12...n), C be the class of (21...n) in A_n then $C^+ C^-$ contains the conjugacy classes of period 2. Proof For n=5, we have for any two elements of C^+ & $C^$ of A₅ (12345)(12354)=(13)(25)So the class of type 2^2 contains in C^+C^- The same for n=9, we have (123456789) C⁺ ,(123985674)(12345 €89)(123985674): ∈ C^{-} (13)(29)(46)(57)For any two elements of the conjugacy classes C^+, C^- we have (12...n)(n...54123) = (13)(24)(n...85674123) (12...n)= (13)(2n)(46)(57)So C^+C^- contains the conjugacy classes of period two. Lemma (4) Let n=5+4k. Let C^+ be the class of (12...n), C⁻ be the class of (21...n) in A_n then C^+ C^- contains the conjugacy class of a 3- cycle.

Proof

By the same way of lemma (3)

We have ,for any two elements of C^+ , C^- we have

(12...n)(n...54312)=(1n2)

Then C^+ C^- contains the conjugacy class of 3- cycle

Theorem (5)

In the Alternating group A_n , if n=5+4k ≥ 5 , (k=0,1,...), then C^+ $C^- = A_n$ exceptional of I.

Proof

Let C be the conjugacy class of A_n of length n which split into C⁺ and C⁻. Since by lemma [2.2]

Then the inverse of each element of C^+ is belonging to C^+ .So C^+ C^- doesn't contain the identity.

Now we prove that C^+C^- contain all other conjugacy classes of A_n .

The prove is by induction on n , for n=5, let $a=(12345) \in C^+$ for each element of C⁻ we have :

 $(13452) \in \mathbb{C}^{-}$ (12345) (13452) =(24) $(35) \in \mathbb{A}_{5}$

 $(15342) \in \mathbf{C}^{-} \longrightarrow (12345)$

 $(15342) = (243) \quad \in \mathbf{A}_5$

 $(14253) \in \mathbf{C}^{-} \longrightarrow (12345)$

$$(14253) = (15432) \quad \in \mathbf{A}_5$$

$$(13524) \in \mathbf{C}^{-} \longrightarrow (12345)$$

 $(13524) = (14253) \quad \in A_5$

Since all conjugacy classes contain in A_5 , this implies that $C^+ C^- = A_5$ except for I. The theorem is valid for n=5.

Now for n-2, since n is odd so n-2 is odd , assume its true for n-2 which implies that $C^+C^- = A_{n-2}$.

We want to prove it for n

Let $S \neq I$ be a permutation of A_n . If the largest cycle in S is a 2- cycle, then by using [lemma 3], $C^+C^-=A_n$.

If S is a single 3-cycle, then by using [lemma 4] $C^+C^- = A_n$.

Next we must show that $S = k_1k_2$ and k_1 , k_2 are n-cycles belonging to different classes in A_n . To see this write

 d_1 = (123...n-2) , d_2 = (135...n-2 24...n-3) in different classes in A_{n-2}. By using t= (n n-1 n-3) such that $d_1 t^{-1} = (123...n-2)(n-3 n-1 n) = (123...n-1 n n-3) \in A_n.$

The two cycles displayed on the right – hand sides are in different classes in A_n , since d_1,d_2 are in different classes in A_{n-2} so the theorem follows.

Conclusions :

From this work some conclusions are drown ; they listed below:

- 1- The product of conjugacy classes C of type 51^{n-5} , $C^{\frac{n-3}{2}} = A_n$, for n n ≥ 7
- 2- The product of split conjugacy classes C^+C^- contains the conjugacy class of period 2 when n=5+4k.
- 3- The product of split conjugacy classes C^+C^- contains the conjugacy class of a 3- cycle when n=5+4k.
- 4- The product of split conjugacy classes $C^+C^-=A_n$, n=5+4k $\geq 5,$ exceptional of I.
- 5- In future we can study the split conjugacy class C_{α}^{\pm} with the property $\alpha_i \equiv 3 \pmod{4}$ is even.

References:

- 1- Goupil A. ,1990"On Products of Conjugacy classes of the Symmetric Group" , Disc. Math..79(3), 49-57.
- 2- Dvir Y., 1985 "Product of Conjugacy Classes in Groups", Lecture Notes in Math., 1112(2), 197-221.
- 3- Lamia H.R. , 2002" On product of character", University of Technology.
- 4- Gordon J. & Kerber A. ,1981,"The Rep. Theory of the Symmetric

Group", Encyclopedia of Math. and Publishing Company, (16), London, Amsterdam: 124-134.

5- Barnes J.W., 2002 "Using group theory and transition matrices to

its Applic., Addison - Wesley study a class of Metaheuristic neighborhoods", Eurp. J. Oper. Res., 138(5): 531-544.

حول ضرب صفوف التكافؤ بالزمرة المتناوبة A.

لمياء حسن رهيف *

*شعبة الحاسبات /كلبة الطب الجامعة المستنصر بة /بغداد /العر اق

الخلاصة: يعرف حاصل ضرب عناصر المجموعة الجزئية X في الزمرة G على أنه $\mathbf{X}^{\mathbf{m}} = \left\{ \prod_{i=1}^{m} x_i \quad : x_i \in \mathbf{X} \right\}$ A_n من التكافؤ C_n في الزمرة المتناظرة S_n عندما تكون n عدد فردي يتجزأ الى جزئين في الزمرة المتناوبة يرمز لهذين الجزئين C^{-}_{n}, C^{+}_{n} استخدمنا C^{-}, C^{+}_{n} لهذين النوعين من الصفوف في هذا البحث تم التوصل الي ان :-

= $A_n \ n \ge 7 \ C$ is the class of 5- cycle of $S_n C^{\frac{n-3}{2}}$ A_n exceptional of I(I identity conjugacy class) when n=5+4k $k>=0=C^+C^-$