Product of Conjugacy Classes of the Alternating Group $\mathbf{A n}_{\mathbf{n}}$

Lamia Hassan Raheef *

Received 25, October, 2010
Accepted 8, January, 2011

Abstract

: For a nonempty subset X of a group G and a positive integer m , the product of X , denoted by X^{m}, is the set $$
\mathrm{X}^{\mathrm{m}}=\left\{\prod_{i=1}^{m} x_{i}: x_{i} \in X\right\}
$$

That is, X^{m} is the subset of G formed by considering all possible ordered products of m elements form X. In the symmetric group S_{n}, the class C_{n} (n odd positive integer) split into two conjugacy classes in A_{n} denoted $\mathrm{C}_{\mathrm{n}}{ }^{+}$and $\mathrm{C}_{\mathrm{n}}{ }^{-} . \mathrm{C}^{+}$and C^{-}were used for these two parts of C_{n}. This work we prove that for some odd n , the class C of 5-cycle in S_{n} has the property that $C^{\frac{n-3}{2}}=\mathrm{A}_{\mathrm{n}} \mathrm{n} \geq 7$ and C^{+}has the property that each element of C^{+}is conjugate to its inverse, the square of each element of it is the element of C^{-}, these results were used to prove that $\mathrm{C}^{+} \mathrm{C}^{-}=\mathrm{A}_{\mathrm{n}}$ exceptional of I (I the identity conjugacy class), when $\mathrm{n}=5+4 \mathrm{k}, \mathrm{k}>=0$.

Key words: conjugacy classes ,split, Alternating Group, Product

Introduction:

The product of conjugacy classes of the symmetric group S_{n} is found to be a linear combination of conjugacy classes of the symmetric group with integer coefficients,[1]. Dvir in [2] developed a theory of the product of the conjugacy classes in A_{n} and S_{n}, $n \geq 5$ which satisfy $C^{3}=A_{n}$. Brenner proved that for the conjugacy class C of n - cycle of the Alternating group $\mathrm{A}_{\mathrm{n}}, \quad \mathrm{CCC}=\mathrm{A}_{\mathrm{n}}, \mathrm{n}=4 \mathrm{k}-1$ and $\mathrm{CC}=\mathrm{A}_{\mathrm{n}}$, $\mathrm{n}=4 \mathrm{k}+1>5$.[3] Lamia H.R. in [3] proved that for $n=5+8 k, C^{+} C^{+} C^{+}=A_{n}$, In the Symmetric group S_{n}, the class C $\in \mathrm{S}_{\mathrm{n}}$ splits into two conjugacy classes of the same order C^{+}and C^{-}, these splitting happens with respect to the conjugator if it is even or odd. For each $\mathrm{x}, \mathrm{y} \in \mathrm{C}, \delta \notin \mathrm{A}_{\mathrm{n}}$ we have $\delta^{-1} \mathrm{x}$ $\delta=y \in C^{-}$when $x \in C^{+}$. After splitting we can see if $x^{-1} \in C^{+}$or not by using the formula [(n-l)/2] which gives the number of transposition in the standard
conjugator, if it is even then $\mathrm{x}^{-1} \in \mathrm{C}^{+}$ and otherwise $\mathrm{x}^{-1} \notin \mathrm{C}^{+},[4]$.

The Conjugacy Classes of the Alternating Group $\mathbf{A}_{\mathbf{n}}$
In this section, some basic definitions and fundamental results which are necessary for the main results are given.

Proposition (1), [4]:

Let C_{α} be the conjugacy class of S_{n}. Then C_{α} splits into two A_{n}-classes of equal order if and only if $\mathrm{n}>1$ and the non-zero parts of α are pair wise different and odd. In all other cases C_{α} does not split. We denote these two split classes C^{+}and C^{-}.
Proposition (2), [2]:
For n odd, the cycle (12...n) is conjugate to its inverse in A_{n} if and only if $n \equiv 1 \quad(\bmod 4)$.

[^0]
Lemma (3), [5]:

If a finite subgroup H of a group G is the union of conjugacy classes in G, then H is a normal subgroup of G .

Results:

This section depends on two type of conjugacy classes of the symmetric group S_{n}
1- The conjugacy class C of type 51^{n-5} For S_{7} the class C of type $51^{\text {n-5 }}$ has the property that $\mathrm{CC}=\mathrm{A}_{7}$. The same for S_{9} the class $\mathrm{CCC}=\mathrm{A}_{9}$ and so on.
2- The conjugacy class which split into two classes C^{+}and C^{-}.
By using proposition (2.1), the class C of length n (n odd positive integer) split into two classes, this split happened with respect to n (proposition 2.2), for example in A_{5}
$\mathrm{C}^{+}=$
[(12345),(15432),(13254),(14523),(13
425),(15243), 12453), (12534) , (14352), (13542), (15324), (14235)] $\mathrm{C}^{-}=\quad[(13524), \quad(14253), \quad(12435)$, (15342), (14532), (12354), (14325), (15423), (13245), (15234), 13452), (12543)] .
these two type of classes were used to prove some results of this paper as in the following:
Lemma (1)
Let C be the class of the 5 - cycle in S_{7}, then $\mathrm{C}^{2}=\mathrm{A}_{7}$.

Proof

Since each element of the class C of S_{5} contains in the class C of S_{7}
Then CC contains some elements of A_{7} For the other elements of A_{7} we have:

$(12345)(12346)=(136)(245)$	$\in \mathrm{A}_{7}$
$(12345)(12463)=(1452)(36)$	$\in \mathrm{A}_{7}$
$(12345)(12467)=(1452367)$	$\in \mathrm{A}_{7}$
$(12345)(14267)=(167)(23)(45)$	$\in \mathrm{A}_{7}$

So CC contains all elements of A_{7}
Then $\mathrm{C}^{2}=\mathrm{A}_{7}$.
Lemma (2)
Let $n \geq 7$ be odd, let C be the class of 5 - cycle in S_{n} then $C^{\frac{n-3}{2}}=\mathrm{A}_{\mathrm{n}}$.

Proof

The proof is by induction on n :
For $\mathrm{n}=7$ we have from lemma (1), $\mathrm{C}^{2}=$ A_{7}, which implies that CC is the normal subgroup of S_{7}. Since n is odd, assume its true for $\mathrm{n}-2$ which is odd, $\mathrm{C}^{\frac{n-5}{2}}=\mathrm{A}_{\mathrm{n}}$ ${ }_{2}, \mathrm{C}^{\frac{n-5}{2}}$ is the normal subgroup of S_{n} 2. Now we prove it true for n, since $\mathrm{C}^{\frac{n-5}{2}}$ is the normal subgroup of $\mathrm{S}_{\mathrm{n}-2}$ which contains all even conjugacy classes by product $\mathrm{C}^{\frac{n-5}{2}} \mathrm{C}$ we get the conjugacy classes of A_{n-2} as well as anther even conjugacy classes, since $\mathrm{C}^{\frac{n-5}{2}}$ is normal subgroup so the product $\mathrm{C}^{\frac{n-5}{2}} \mathrm{C}$ which equal two $C^{\frac{n-3}{2}}$ is also normal subgroup , then $C^{\frac{n-3}{2}}=\mathrm{A}_{\mathrm{n}}$.
Lemma (3)
Let $\mathrm{n}=5+4 \mathrm{k},(\mathrm{k}=0,1,2, \ldots)$, let C^{+}be the class of $(12 \ldots \mathrm{n}), \mathrm{C}^{-}$be the class of (21...n) in A_{n} then $\mathrm{C}^{+} \mathrm{C}^{-}$contains the conjugacy classes of period 2 .

Proof

For $\mathrm{n}=5$, we have for any two elements of $\mathrm{C}^{+} \& \mathrm{C}^{-}$of A_{5} $(12345)(12354)=(13)(25)$
So the class of type 2^{2} contains in $\mathrm{C}^{+} \mathrm{C}^{-}$
The same for $\mathrm{n}=9$, we have
(123456789) C^{+},(123985674)
$\mathrm{C}^{-} \quad\left(12345, \epsilon_{89}\right)(123985674): \in$
(13)(29)(46)(57)

For any two elements of the conjugacy classes $\mathrm{C}^{+}, \mathrm{C}^{-}$we have
$(12 \ldots \mathrm{n})(\mathrm{n} . . .54123)=(13)(24)$
(12...n) (n...85674123) = (13)(2n)(46)(57)

So $\mathrm{C}^{+} \mathrm{C}^{-}$contains the conjugacy classes of period two.
Lemma (4)
Let $\mathrm{n}=5+4 \mathrm{k}$. Let C^{+}be the class of ($12 \ldots \mathrm{n}$), C^{-}be the class of $(21 \ldots \mathrm{n})$ in A_{n} then $\mathrm{C}^{+} \mathrm{C}^{-}$contains the conjugacy class of a 3- cycle.

Proof

By the same way of lemma (3)
We have ,for any two elements of C^{+}, C^{-}we have
$(12 \ldots \mathrm{n})(\mathrm{n} . . .54312)=(1 \mathrm{n} 2)$
Then $\mathrm{C}^{+} \mathrm{C}^{-}$contains the conjugacy class of 3-cycle
Theorem (5)
In the Alternating group A_{n}, if $\mathrm{n}=5+4 \mathrm{k}$ $\geq 5,(\mathrm{k}=0,1, \ldots)$, then $\mathrm{C}^{+} \mathrm{C}^{-}=\mathrm{A}_{\mathrm{n}}$ exceptional of I.

Proof

Let C be the conjugacy class of A_{n} of length n which split into C^{+}and C^{-} .Since by lemma [2.2]
Then the inverse of each element of C^{+} is belonging to $\mathrm{C}^{+} . \mathrm{So}^{+} \mathrm{C}^{-}$doesn't contain the identity.
Now we prove that $\mathrm{C}^{+} \mathrm{C}^{-}$contain all other conjugacy classes of A_{n}.
The prove is by induction on n , for $\mathrm{n}=5$, let $\mathrm{a}=(12345) \in \mathrm{C}^{+}$for each element of C^{-}we have :
$(13452) \in \mathrm{C}^{-} \longrightarrow(12345)(13452)=$ (24) (35) $\in \mathrm{A}_{5}$
(15342) $\in \mathrm{C}^{-} \longrightarrow$ (12345)
$(15342)=(243) \quad \in \mathrm{A}_{5}$
(14253) $\in \mathrm{C}^{-} \longrightarrow$ (12345)
$(14253)=(15432) \in \mathrm{A}_{5}$
(13524) $\in \mathrm{C}^{-} \longrightarrow$ (12345)
$(13524)=(14253) \in \mathrm{A}_{5}$
Since all conjugacy classes contain in A_{5}, this implies that $\mathrm{C}^{+} \mathrm{C}^{-}=\mathrm{A}_{5}$ except for I . The theorem is valid for $\mathrm{n}=5$.
Now for $\mathrm{n}-2$, since n is odd so $\mathrm{n}-2$ is odd, assume its true for $\mathrm{n}-2$ which implies that $\mathrm{C}^{+} \mathrm{C}^{-}=\mathrm{A}_{\mathrm{n}-2}$.
We want to prove it for n
Let $S \neq I$ be a permutation of A_{n}. If the largest cycle in S is a 2 - cycle, then by using [lemma 3], $\mathrm{C}^{+} \mathrm{C}^{-}=\mathrm{A}_{\mathrm{n}}$.
If S is a single 3-cycle, then by using [lemma 4] $\mathrm{C}^{+} \mathrm{C}^{-}=\mathrm{A}_{\mathrm{n}}$.
Next we must show that $S=k_{1} k_{2}$ and $\mathrm{k}_{1}, \mathrm{k}_{2}$ are n -cycles belonging to different classes in A_{n}. To see this write $\mathrm{d}_{1}=$ (123...n-2), $\mathrm{d}_{2}=$ (135...n-2 $24 \ldots \mathrm{n}-3$) in different classes in $\mathrm{A}_{\mathrm{n}-2}$. By using $\mathrm{t}=(\mathrm{n} \mathrm{n}-1 \mathrm{n}-3)$ such that
$d_{1} \mathrm{t}^{-1}=(123 \ldots \mathrm{n}-2)(\mathrm{n}-3 \mathrm{n}-1 \mathrm{n})=(123 \ldots \mathrm{n}-$ $1 \mathrm{nn}-3) \in \mathrm{A}_{\mathrm{n}}$.
d_{2} (n n-2 $\mathrm{n}-1$) $=(135 \ldots \mathrm{n}-2 \quad 24 \ldots \mathrm{n}-$ $3)=(135 \ldots n-1 n n-2) \in A_{n}$.

The two cycles displayed on the right - hand sides are in different classes in A_{n}, since d_{1}, d_{2} are in different classes in $\mathrm{A}_{\mathrm{n}-2}$ so the theorem follows.

Conclusions :

From this work some conclusions are drown ; they listed below:
1- The product of conjugacy classes C of type $51^{\mathrm{n}-5}, C^{\frac{n-3}{2}}=$ A_{n}, for $\mathrm{n} \mathrm{n} \geq 7$
2- The product of split conjugacy classes $\mathrm{C}^{+} \mathrm{C}^{-}$contains the conjugacy class of period 2 when $\mathrm{n}=5+4 \mathrm{k}$.
3- The product of split conjugacy classes $\mathrm{C}^{+} \mathrm{C}^{-}$contains the conjugacy class of a 3- cycle when $\mathrm{n}=5+4 \mathrm{k}$.
4- The product of split conjugacy classes $\mathrm{C}^{+} \mathrm{C}^{-}=\mathrm{A}_{\mathrm{n}}, \mathrm{n}=5+4 \mathrm{k} \geq 5$, exceptional of I.
5- In future we can study the split conjugacy class $C_{\alpha}^{ \pm}$with the property $\alpha_{i} \equiv 3 \quad(\bmod 4)$ is even.

References:

1- Goupil A. ,1990"On Products of Conjugacy classes of the Symmetric Group" , Disc. Math..79(3), 49-57.
2- Dvir Y., 1985 "Product of Conjugacy Classes in Groups", Lecture Notes in Math. , 1112(2), 197-221.
3- Lamia H.R. , 2002" On product of character", University of Technology.
4- Gordon J. \& Kerber A. ,1981,"The Rep. Theory of the Symmetric

Group",Encyclopedia of Math. and Publishing Company, (16), London, Amsterdam: 124-134.
5- Barnes J.W. , 2002 "Using group theory and transition matrices to
its Applic., Addison - Wesley study a class of Metaheuristic neighborhoods", Eurp. J. Oper. Res., 138(5): 531-544.

حول ضرب صفوف التكافؤ بالزمرة المتتاوبة An

لمياء حسن رهيف

*شعبة الحاسبات /كلية الطب الجامعة المستتصرية /بغاد /العراق
يعرف حاصل ضرب عناصر المجموعة الجزئية X في الزمرة G على أنه

$$
\mathrm{X}^{\mathrm{m}}=\left\{\prod_{i=1}^{m} x_{i} \quad: x_{i} \in X\right\}
$$

 يرمز لهذين الجزئين

$=\mathrm{A}_{\mathrm{n}} \mathrm{n} \geq 7 \mathrm{C}$ is the class of 5 - cycle of $\mathrm{S}_{\mathrm{n}} C^{\frac{n-3}{2}}$
A_{n} exceptional of $I\left(I\right.$ identity conjugacy class) when $n=5+4 k \quad k>=0=\mathrm{C}^{+} \mathrm{C}^{-}$

[^0]: *Computer Department, College of Medicine, AL- Mustansiriya University, Baghdad, Iraq.

