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Abstract  
This paper presents a newly developed method with new algorithms to find the 

numerical solution of nth-order state-space equations (SSE) of linear continuous-time 

control system by using block method. The algorithms have been written in Matlab 

language. The state-space equation is the modern representation to the analysis of 

continuous-time system. It was treated numerically to the single-input-single-output 

(SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using 

fourth-order-six-steps block method. We show that it is possible to find the output values 

of the state-space method using block method. Comparison between the numerical and 

exact results has been given for some numerical examples for solving different types of 

state-space equations using block method for conciliated the accuracy of the results of 

this method.  
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1. Introduction   
Control systems are playing vital 

role in our life for instance: thermostat, 

automatic control of airplane, etc.  The 

system is a combination of component 

that act together and perform a certain 

objective [1,2]. 

In recent years, automatic control 

systems have assumed an increasingly 

important role in the development and 

advancement of modern civilization and 

technology. They are employed in 

numerous applications, such as quality 

control of manufactured products and 

machine tooling. The basic control 

system problem may be described by the 

simple block diagram shown in figure 

(1) [1,3,4]. 

 

 
Actuating Signal                       Output (controlled variable) 

 

 

Fig.(1) The basic control system. 

 

Modern control theory adopts 

what known as state-space equations 

(SSE) for mathematical representation of 

systems. Among its different advantages 

it makes possible to deal with [4,5]: 

 Time variant systems. 

 Nonlinear systems. 

 Multiple-input-multiple-

output system. 

 

   The linear state-space equation is 

given by: 

)()()(

)()()(

tDutCxty

tButAxtx




 

 

where nlRtx )(  is the state vector, 
mlRtu )(  is the control input of the 

system, plRty )(  is the output of the 

system, A is the system matrix, B is the 

control input matrix, C is the output or 

measurement matrix and D is the direct 

feed matrix. This description is said to be 

Control system 
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time-invariant if A,B,C and D are 

constant matrices. The definitions of 

state, state variable, state vector and 

state-space are [1,4] :- 
 

State: The state of a dynamic system is 

the smallest set of variables, called state 

variables, such that the knowledge of 

these variables at time t=t0 , together 

with the input u(t) for  0tt  , completely 

determines the behavior of the system 

for any time 0tt  .    

      Thus, the state of a dynamic system 

at time t is uniquely determined by the 

state at time t0 and the input for 0tt  , 

and it is independent of the state and 

input before t0. Note that, in dealing with 

linear time-invariant systems, we usually 

choose the reference time t0 to be zero.   

State variables: The state variables of a 

dynamic system are the smallest set of 

variables which determine the state of 

the dynamic system. If at least n 

variables )(),...,(),( 21 txtxtx n are needed 

to completely describe the behavior of a 

dynamic system, then such n variables 

)(),...,(),( 21 txtxtx n are a set of state 

variables.   

State vector: If n state variables are 

needed to completely describe the 

behavior of a given system, then these n 

state variables can be considered to be 

the n components of a vector )(tx . Such 

a vector is called a state vector.   

State-space: The n-dimensional space 

whose coordinate axes consist of the 

1x axis, 2x axis,…, nx axis is called a state-

space. Any state can be represented by a 

point in the state space. 
   
State-space representation is 

helpful to represent a complex system by 

a simple first-order vector-matrix 

differential equations [2]. State-space 

method of continuous-time system (i.e. 

system that can be described by 

differential equation), was solved by 

several methods as Laplace 

transformation and matrix exponential 

[1]. In this work different types of state-

space representation are solved 

numerically by using fourth order block 

method. The modeling of linear 

continuous-time systems by using state 

space method with their solutions have 

been presented in the following section. 

 

2.  State - Space Method :  
 State-pace method has emerged 

in the last fifty years, where toward the 

end of  1950’s, the concept of 

representing a continuous-time system 

by a set of first order differential 

equations has become a standard tool in 

control theory [2]. State space 

representation has become popular in the 

early 1970’s with high-speed digital 

computers which become more readily 

available, since this technique uses 

vector and matrices for system 

representation, it permits a simple 

notation that is easily accepted and 

processed by digital computer [6]. State 

space method is ideally suited for the 

analysis of multiple-input-multiple-

output systems as well as single-input-

single-output systems. 

 State space method describes the 

state of the system, where the “state” of a 

system refers to the past, present and 

future of the system. In particular, we see 

how to represent an nth order linear 

differential equation by a first-order 

linear, vector-matrix differential 

equation describing the evolution of an 

n-dimensional state vector and an 

equation relating the output to the 

present state and input. We call these 

linear equations the state equations and 

output equations, or a state space 

representation for the system of 

differential equations [7,8]. On the other 

word, if n elements of the vector are a set 

of state variables, then the vector-matrix 

differential equation is called a state 

equation.  

J. John [9] used state-space 

representation for solving the pitch 

controller problem and Dk. James [10] 



Um-Salama Science Journal                                                     Vol.4(2)2007 
 

 320 

used state space equations to solve the 

cruise control problem. 

 In this section, we shall present 

methods for obtaining state-space 

representation of linear continuous-time 

systems. 

 

2.1 State-Space Representation of n
th

 

Order Continuous-Time Systems of 

Linear  Differential Equations In 

Which The Forcing Function Dose Not 

Involve Derivative Terms : 

A continuous system may be 

defined as a mathematical abstraction 

which utilizes three types of variables to 

represent or model the dynamics of a 

continuous-time process. The three 

variables are called the input (i.e. forcing 

function), the output and the state 

variables [1,4]. 

Consider the following nth-order 

dynamic system : 

  )()()(...)()( 1

)1(

1

)( tutyatyatyaty nn

nn  

   

…(1) 

Noting that the knowledge of 

)0(),...,0(),0( )1( nyyy  , together with the 

input or forcing function u(t) for 0t , 

determines  completely the future 

behavior of the system, we may take  

)(),...,(),( )1( tytyty n  as a set of n state 

variables. 

 Let us define the following state 

variable: 

  














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
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n

n



  …(2) 

Then Eq.(1) can be written as 
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


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












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







…(3) 

Or       )()()( tButAxtx     …(4) 

where x (t) is the  1n  state vector  as 

given by : 

 





















)(

)(
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)(
2

1

tx
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tx

tx

n


     , 

A is the square ( nn ) time-invariant 

system matrix (i.e. constant system 

matrix does not depend on the time t), 

defined by: 

    

nnnnn aaaa

A






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





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

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







121 ...

1...000

0...100

0...010


 

and B is the  ( 1n ) time-invariant input 

matrix (i.e. constant input matrix ) 

defined by : 

1
1

0

0

0


























n

B 
 . 

The output equation becomes 

  



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













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2

1
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n


  

Or         )()( tCxty      …(5) 

where               001 C .                   

The first-order differential equation, 

Eq.(4), is the state equation, and the 

algebraic equation, Eq.(5), is the output 

equation. 
 

2.2 State-Space Representation of n
th

 

Order Continuous-Time Systems of 

Linear  Differential Equations With  

(m) Forcing Functions : 

Consider the multiple-input-

multiple-output (MIMO) linear 

continuous system shown in figure (2). 

In this system, 

)(),...,(),( 21 txtxtx n represent the state 

variables;  )(),...,(),( 21 tututu m denote the 

input variables and 

)(),...,(),( 21 tytyty p are the output 

variables. From Fig.(2) we obtain the 

system equations as follows [2,7,4]: 
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where the a’s and b’s are constants. 

Expression (6) is a set of first order 

differential equations which may be put 

into the convenient matrix form:   

)()()( tButAxtx          …(7)  

where x (t) is the  1n  state vector  as 

given by : 

 





















)(

)(

)(

)(
2

1

tx

tx

tx

tx

n


   , 

while  u(t) is the  1m  input vector as 

given by : 
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Fig.(2) Multiple-input-multiple-output 

linear continuous system. 
   

Similarly, the output variables at 

continuous time t are linear combinations 

of the values of the input and state 

variables. That is : 
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A is the square ( nn ) time-invariant 

system matrix  defined by: 
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and B is the  ( mn ) time-invariant 

input matrix defined by : 
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Eq.(7) is the state equation for the 

system. 

 

This set of equations may be put into the 

matrix form : 

)()()( tDutCxty       …(9)  

where  y(t) is the  1p  output vector as 

given by expression  
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C is the  np  time-invariant output 

matrix defined by : 
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 , 

and D is the  mp  time-invariant 

transmission matrix defined by : 

 
 

 
 

 

 

 
 

 
 
          

 
      u1(t)               x1(t)         y1(t) 

      u2(t)                 y2(t)  

      um(t)              yp(t) 

          xn(t) 

Linear 

plant 

Output 

element 
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 Eq.(9) is the output equation for 

the system. The matrices A, B, C and D 

completely characterize the system 

dynamics. 

Eq.(7) and Eq.(9) are the state-space 

equation of the continuous system. Note 

that, when the technique : 









)()()(

)()()(

tDutCxty

tButAxtx
   …(10) 

1- Has one input (m = 1) and one output 

(p = 1), then the system is called 

system with single-input-single-

output (SISO). 

2- Has one input (m = 1) and (p) 

outputs, then the system is called 

system with single-input-multiple-

output (SIMO). 

3- Has (m) inputs and one output (p = 

1), then the system is called system 

with multiple-input-single-output 

(MISO). 

4- Has (m) inputs and (p) outputs, then 

the system is called system with 

multiple-input-multiple-output 

(MIMO). 

 

A block diagram representation of the 

system defined by Eq.(10) is shown in 

figure (3). Double lines are used in the 

diagram to indicate vector quantities 

[1,4]. 

 

Fig.(3) Block diagram of the continuous-

time system described by state-space 

technique in Eq.(7) and Eq.(9). 

 

 

2.3 State-Space Representation of n
th

 

Order Continuous-Time Systems of 

Linear Differential Equations In 

Which The Forcing Function  

Involves Derivative Terms : 

  

If the differential equation of the 

system involves derivatives of the 

forcing function, such as 
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 …(11) 

then, we define the following n variables 

as a set of n state variables [1,2,5]: 
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where n ,...,,, 210  are determined 

from 
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Hence, the state equation and the output 

equation of state-space method are: 
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Or 
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The initial condition x(0) may be 

determined by using Eq.(12). 

 

3. Block Method: 
 Block method provides easy and 

efficient mean for the solution of the 

many problems. The concept of block 

method is essentially an extrapolation 

procedure and has the advantage of 

being self-starting. Block method was 

described for differential equation by 

Milne and for integral equations was 

given by Young [11,12]. 

  In this research block method 

was employed for finding the numerical 

solution for different types of nth-order 

state-space equations (SSE) of linear 

continuous-time control system. 

Consider the following first order 

differential equation : 
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A block method up to the fourth-order 

for Eq.(16) is computed by: 
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Block method of second and third 

order have been little used for ordinary 

differential equations, in general, and 

delay differential equations in particular 

because they required more evaluation of 

the function  f.  

However, the following fourth 

order block method which is most 

popular and more efficient for dealing 

with differential equations. 

 

Let 
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B
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…(17)   

 

Then the fourth order-six steps block 

method may be written in the form : 

)85(
12

4311 BBB
h

yy nn  …(18) 

)4(
3

6512 BBB
h

yy nn    …(19) 

 

4. Numerical Solution of State-

Space Equations (SSE) of Linear 

Continuous-Time Systems Using 

Block Method : 
 In this section different types of 

linear state-space equations have been 

solved using block method. 
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4.1 The Solution of n
th

 Order SSE In 

Which The Forcing Function Dose Not 

Involve Derivative Terms : 

        In this subsection the block method 

including fourth order is candidate to 

find the numerical solution for the 

following SSE: 

        Recall eq.(3) in section (2.1), eq.(3) 

can be written as: 

))(),(),...,(),((
)(

21 tutxtxtxf
dt

tdx
ni

i    

…(20) 

where )(),...,(),( 21 txtxtx n  are the state 

variables, u(t)  is the input of the system 

and  fi , i=1,2,…,n denotes the ith linear 

functional relationship. 

 The output of the system is 

obtained from eq.(5) as: 

)()( 1 txty            …(21) 

 The numerical solution of  SSE 

in eq.(20) and eq.(21) can be found using 

fourth order block method as follows : 

 Consider the state equation in 

eq.(20). By applying block method for 

eq.(20) by using equations (17), (18) and 

(19), one gets the following formula : 

  )85(
12

)()( 4311 iiijiji BBB
h

txtx 
    …(22) 

)4(
3

)()( 6512 iiijiji BBB
h

txtx 
   …(23) 

  

where   i=1,2,…,n   ,    j=0,1,…,k    and 
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 …(24) 

 

for each   i=1,2,…,n   and    j=0,1,…, k.  

The output values of SSE in eq.(21) 

can be computed using block method as : 

)()( 1 jj txty    

where      j=0,1,…, k. 

 

The following (SS-SSEB) algorithm 

summarizes the steps for finding the 

numerical solution for the SISO-SSE in 

eq.(3) using block method. 

 

SS-SSEB Algorithm : 

Step 1:    Set  
k

tt
h k 0
    where (k + 1) 

is the number of the points 

( kttt ,...,, 10 ) and 0t is the initial 

state. 

Step 2:    Define the state equation in 

eq.(3). 

Step 3:    Set  j=0 

Step 4:    For each   i=1,2,…,n   

compute:  

))(),(),...,(),(( 211 jjnjjii tutxtxtxfB   

Step 5:   ni ,...,2,1   compute : 

))(,)(,...,)(,)(( 11221112 htuhBtxhBtxhBtxfB jnjnjjii 

    

Step 6:   ni ,...,2,1   compute : 









 )(,

2212
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212112
)(

13
h

j
tu

n
B

h

n
B

h

j
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n
xB

h
B
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j
tx

i
f

i
B

Step 7:   ni ,...,2,1   compute : 

))2(,2)(,...,2)(( 33114 htuhBtxhBtxfB jnjnjii 

                 

Step 8:   ni ,...,2,1   compute: 









 )(),85(

12
)(),...,85(
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)( 43141311115 htuBBB

h
txBBB

h
txfB jnnnjnjii

         

Step 9:   ni ,...,2,1   compute : 









 )2(),4(

3
)(),...,4(

3
)( 54151411116 htuBBB

h
txBBB

h
txfB jnnnjnjii
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Step 10:  ni ,...,2,1   compute : 

)85(
12

)()( 4311 iiijiji BBB
h

txtx 
  

  )4(
3

)()( 6512 iiijiji BBB
h

txtx 
  

                                                   

Step 11:    Put    j = j+1 

Step 12:    If   j = k   then go to (step 13). 

       Else go to (step 4)  

Step 13:    For  j=0,1,…, k  compute the 

output values of SSE : 

)()( 1 jj txty  .     

 
4.2 The Solution of n

th
 Order SSE 

With  (m) Forcing Functions : 

       The fourth order block method has 

been used to find the numerical solution 

for the following MIMO-SSE: 

        Recall eq.(6) in section (2.2), eq.(6) 

can be written as: 

))(),...,(),(),(),...,(),((
)(

2121 tutututxtxtxf
dt

tdx
mni

i  …(25) 

where )(),...,(),( 21 txtxtx n are the state 

variables, )(),...,(),( 21 tututu m are the 

input variables of the system and   fi ,  

i=1,2,…,n denotes the ith linear 

functional relationship. 

 The outputs ( yq(t), q =1,2,…,p) 

of the system in eq.(8) are related to the 

state variables and the input through the 

following expression:  
 ))(),...,(),(),(),...,(),(()( 2121 tutututxtxtxgty mnqq      

…(26) 

where )(),...,(),( 21 txtxtx n are the state 

variables, )(),...,(),( 21 tututu m  are the 

input variables of the system and gq , 

q=1,2,…,p denotes the qth linear 

functional relationship. 

 The numerical solution of  SSE 

in eq.(25) and eq.(26) can be found using 

fourth order block method as follows : 

 Consider the state equation in 

eq.(25). By applying block method for 

eq.(25) by using equations (17), (18) and 

(19), one gets the following formula : 

)85(
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)()( 4311 iiijiji BBB
h

txtx 
…(27) 

)4(
3

)()( 6512 iiijiji BBB
h

txtx 
 …(28) 

 

where   i=1,2,…,n   ,    j=0,1,…, k    and 
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 …(29) 

 

for each   i=1,2,…,n   and    j=0,1,…, k  .  

The outputs of SSE in eq.(26) can be computed using block method as : 

))(),...,(),(),(),...,(),(()( 2121 jmjjjnjjqjq tutututxtxtxgty  …(30)   

where      q=1,2,…,p  and   j=0,1,…, k  . 

 

 

The following (MM-SSEB) 

algorithm summarizes the steps for 

finding the numerical solution for the 

MIMO-SSE in eq.(6) and eq.(8) using 

block method. 

 

MM-SSEB Algorithm: 

Step 1: Set  
k

tt
h k 0
   where (k + 1) is 

the number of the points ( kttt ,...,, 10 ) and 

0t is the initial state. 
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Step 2:    Find the state equation as 

eq.(6) and the output equation 

as eq.(8). 

Step 3:    Set  j=0 

Step 4:    For each i=1,2,…,n compute: 

))(),...,(),(),...,(),(( 1211 jmjjnjjii tututxtxtxfB 

 

Step 5:   ni ,...,2,1   compute : 
))(),...(,)(,...,)(,)(( 111221112 htuhtuhBtxhBtxhBtxfB jmjnjnjjii 

     

Step 6:   ni ,...,2,1   compute : 

 









 )(),...,(,
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)(,...,
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h
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h
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h
B

h
txfB jmjnnjnjii

      

Step 7:   ni ,...,2,1   compute : 
))2(),...,2(,2)(,...,2)(( 133114 htuhtuhBtxhBtxfB jmjnjnjii 

 

Step 8:   ni ,...,2,1   compute : 






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
 )(),...,(),85(
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Step 9:   ni ,...,2,1   compute : 









 )2(),...,2(),4(
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Step 10:  ni ,...,2,1   compute : 

)85(
12

)()( 4311 iiijiji BBB
h

txtx    

)4(
3

)()( 6512 iiijiji BBB
h

txtx                     

Step 11:    pq ,...,2,1  compute the 

output values of  MIMO-SSE : 
))(),...,(),(),(),...,(),(()( 2121 jmjjjnjjqjq tutututxtxtxgty 

                   . 

Step 12:    Put    j = j+1 

Step 12:    If   j = k  then stop. 

       Else go to (step 4)  

 

4.3 The Solution of nth Order SSE In 

Which The Forcing Function Involves 

Derivative Terms : 

       The fourth order block method has 

been used to find the numerical solution 

for the following  SSE: 

        Recall eq.(14) in section (2.3), 

eq.(14) can be written as: 

 ))(),(),...,(),((
)(

21 tutxtxtxf
dt

tdx
ini

i   

…(31) 

where )(),...,(),( 21 txtxtx n are the state 

variables, )(tu are the input variable of 

the system, i  in eq.(13) and   fi ,  

i=1,2,…,n denotes the ith linear 

functional relationship. 

 The output of the system is 

obtained from eq.(15) as: 

)()()( 01 tutxty    …(32) 

 The numerical solution of SSE in 

eq.(31) and eq.(32) can be found using 

fourth order block method as prescribed 

in section (4.1). 

 

5. Numerical Examples: 

 The previous methods in section 

(4) are illustrated in the following 

examples:- 

 

Example (1) : 
In the Cruise Control Problem 

[10], the state-space model was derived 

as: 
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where the initial state is: 









1

0
)0(x  and 

the forcing function 0,)(  tetu t
. 

 The exact solution of the above 

SISO state-space model is: 
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When the algorithm (SS-SSEB) 

is applied, table (1) presents the 

comparison between the exact and 

numerical solution using block method 

for k=10, h=0.1 and  

kiiht i ,...,1,0,   depending on 

least square error (L.S.E.). The output 

variables y(t) of state space model by 
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applying (SS-SSEB) algorithm is also 

tabulated. 

          

Table (1) The solution x(t) and the output 

variablesy(t) of state space model for Ex.(1). 

t Exact1 
Block 

x1(t) 
Exact2 

Block 

x2(t) 

output 

y(t) 

Block 

y(t) 

0 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 

0.1 0.0998 0.0998 0.9951 0.9951 0.0998 0.0998 

0.2 0.1990 0.1990 0.9903 0.9903 0.1990 0.1990 

0.3 0.2978 0.2978 0.9855 0.9855 0.2978 0.2978 

0.4 0.3961 0.3961 0.9807 0.9807 0.3961 0.3961 

0.5 0.4939 0.4939 0.9760 0.9760 0.4939 0.4939 

0.6 0.5913 0.5913 0.9713 0.9713 0.5913 0.5913 

0.7 0.6882 0.6882 0.9666 0.9666 0.6882 0.6882 

0.8 0.7846 0.7846 0.9620 0.9620 0.7846 0.7846 

0.9 0.8806 0.8806 0.9574 0.9574 0.8806 0.8806 

1 0.9761 0.9761 0.9529 0.9529 0.9761 0.9761 

L.S.E. 0.145e-13 L.S.E. 0.158e-13 L.S.E. 0.145e-13 

 

Example (2) : 
Consider the MIMO control 

system shown in figure (4) : 

 

The MIMO state-space model 

was derived from fig.(4) as follows : 
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The initial state of the MIMO state-space 

model is: 
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 The exact solution of the above 

MIMO state-space model is: 
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When the algorithm (MM-SSEB) 

is applied, table (2) presents the 

comparison between the exact and 

numerical solution using block method 

for k=10, h=0.1 and  

kiiht i ,...,1,0,   depending on 

least square error (L.S.E.). The output 

variables y(t) of state space model by 

applying (MM-SSEB) algorithm is also 

tabulated. 
 

Fig.(4) Simulation diagram for a  

multivariable system. 

  

 

Table (2) The solution x(t) and the output variables 

y(t) of state space model for Ex.(2). 

t Exact1 
Block 
x1(t) 

Exact2 
Block 
x2(t) 

Output 
y1(t) 

Block 
y1(t) 

Output 
y2(t) 

Block 
y2(t) 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 0.1076 0.1076 0.0099 0.0099 0.1275 0.1274 0.1099 0.1099 

0.2 0.2310 0.2310 0.0394 0.0394 0.3099 0.3098 0.2394 0.2394 

0.3 0.3710 0.3710 0.0882 0.0881 0.5473 0.5472 0.3882 0.3881 

0.4 0.5284 0.5284 0.1559 0.1559 0.8403 0.8402 0.5559 0.5559 

0.5 0.7042 0.7041 0.2426 0.2426 1.1894 1.1893 0.7426 0.7426 

0.6 0.8992 0.8991 0.3482 0.3482 1.5956 1.5955 0.9482 0.9482 

0.7 1.1144 1.1144 0.4729 0.4728 2.0601 2.0609 1.1729 1.1728 

0.8 1.3509 1.3509 0.6166 0.6165 2.5842 2.5840 1.4166 1.4165 

0.9 1.6099 1.6098 0.7798 0.7797 3.1695 3.1693 1.6798 1.6797 

1 1.8923 1.8923 0.9628 0.9627 3.8179 3.8176 1.9628 1.9627 

L.S.E. 0.153e-7 L.S.E. 0.419e-7 L.S.E. 0.283e-6 L.S.E. 0.419e-7 
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Example (3) : 
          Consider the following SISO 

control system equation for the Pitch 

controller [9]: 

  uuuuxxxx 81786116           

with initial conditions: 

0)0(,1)0(,0)0(  yyy   and the 

forcing function 0,2)( 3  tttu . 

 

The state-space equation was 

derived using eq.(14) and eq.(15) as 

follows : 
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where the initial state of the state-space 

model is: 
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forcing function  0,2)( 3  tttu . 

 

 

 The exact solution of the above 

SISO state-space model is: 
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When the algorithm (SS-SSEB) 

is applied, table (3) presents the 

comparison between the exact and 

numerical solution using block method 

for k=10, h=0.01 and  

kiiht i ,...,1,0,   depending on 

least square error (L.S.E.). The output 

variables y(t) of state space model by 

applying (SS-SSEB) algorithm is also 

tabulated.

 

Table (3) The solution x(t) and the output variables 

y(t) of state space model for Ex.(3). 

t Exact1 
Block 

x1(t) 
Exact2 

Block 

x2(t) 
Exact3 

Block 

x3(t) 

Output 

y(t) 

Block 

y(t) 

0 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 

0.01 0.0100 0.0100 0.9995 0.9995 -0.1070 -0.1070 0.0100 0.0100 

0.02 0.0200 0.0200 0.9979 0.9979 -0.2083 -0.2083 0.0200 0.0200 

0.03 0.0300 0.0300 0.9953 0.9953 -0.3040 -0.3040 0.0300 0.0300 

0.04 0.0399 0.0399 0.9918 0.9918 -0.3944 -0.3944 0.0400 0.0400 

0.05 0.0498 0.0498 0.9874 0.9874 -0.4797 -0.4797 0.0500 0.0500 

0.06 0.0596 0.0596 0.9822 0.9822 -0.5601 -0.5601 0.0601 0.0601 

0.07 0.0695 0.0695 0.9762 0.9762 -0.6357 -0.6357 0.0701 0.0701 

0.08 0.0792 0.0792 0.9694 0.9694 -0.7067 -0.7067 0.0802 0.0802 

0.09 0.0889 0.0889 0.9619 0.9619 -0.7734 -0.7734 0.0903 0.0903 

0.1 0.0985 0.0985 0.9538 0.9538 -0.8358 -0.8358 0.1005 0.1005 

L.S.E. 0.159e-11 L.S.E. 0.249e-10 L.S.E. 0.299e-9 L.S.E. 0.159e-11 

 

6. Conclusion: 
Block method has been presented to 

find the numerical solution for different 

types of nth-order state-space equations 

(SSE) of linear continuous-time control 

system. The results show a marked 

improvement in the least square errors 

(L.S.E.). From solving some numerical 

examples the following points are 

included: 

1- Block method solves the SSE of the 

SISO system as well as MIMO 

system. 

2- Block method gives a better accuracy 

and consistent to the solution of 
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different types of nth-order state-

space equations. 

3- The good approximation depends on 

the size of h, if h is decreased then 

the number of points (knots) 

increases and the L.S.E. approaches 

zero where this gives the advantage 

in numerical computation. 
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طـريـقة البلـوك لحـل معـادلات فضـاء الحالـة لأنـظمة السـيطرة الخطية المستمرة 

 الزمن

 

 *أثـيـر جــواد كاظم       *شـيماء حسين صـالح      *رغــد كاظم صـالح

 
   الجامعة التكنولوجية  قسم العلوم التطبيقية*

 

 الخلاصــة:
يقدد م الب ددي ط يقددة مطددو ر مددت جوا ةميدداد ج يدد ر ديجددا  ال ددض العدد  ة لمعددا  د   ددا  ال الددة الجطيددة 

معالجدة ننظمدة   دا  ال الدة اد  يان للمنظومداد  المستم ر الةمن لأنظمة السيط ر باستج ام ط يقة البلوك.  يي تمد
الم اجض والمجدا ج باسدتج ام ط يقدة البلدوك مدن ال تبدة ال ابعدة.  رالف  ية الم جض والمج ج مثلما للمنظوماد المتع  

( لب مجدة Matlabباد ا ة إلى ذلك تم نيجا  النتائج الع  ية لمعا لة ادج اج لتمثيدض   دا  ال الدة. اسدتج مد ل دة  
هذه الط يقة. كما تمد مقا نة النتائج الع  ية و ال قيقية لأندوا  مجتلفدة مدن معدا  د   دا  ال الدة مدن جد ض بعد  

 الأمثلة وق  تم ال صوض الى نتائج جي ر.
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