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Abstract

This paper presents a newly developed method with new algorithms to find the
numerical solution of nth-order state-space equations (SSE) of linear continuous-time
control system by using block method. The algorithms have been written in Matlab
language. The state-space equation is the modern representation to the analysis of
continuous-time system. It was treated numerically to the single-input-single-output
(SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using
fourth-order-six-steps block method. We show that it is possible to find the output values
of the state-space method using block method. Comparison between the numerical and
exact results has been given for some numerical examples for solving different types of
state-space equations using block method for conciliated the accuracy of the results of
this method.
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1. Introduction

Control systems are playing vital
role in our life for instance: thermostat,
automatic control of airplane, etc. The
system is a combination of component
that act together and perform a certain
objective [1,2].

In recent years, automatic control
systems have assumed an increasingly
important role in the development and
advancement of modern civilization and
technology. They are employed in
numerous applications, such as quality
control of manufactured products and
machine tooling. The basic control
system problem may be described by the
simple block diagram shown in figure
(1) [1,3,4].

Actuating Signal Output (controlled variable)
Control system N
—> >

Fig.(1) The basic control system.

Modern control theory adopts
what known as state-space equations
(SSE) for mathematical representation of
systems. Among its different advantages
it makes possible to deal with [4,5]:

e Time variant systems.

e Nonlinear systems.

e Multiple-input-multiple-
output system.

The linear state-space equation is
given by:
X (t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where x(t) eIR" is the state vector,
u(t) eIR™ is the control input of the

system, y(t) e IR is the output of the
system, A is the system matrix, B is the
control input matrix, C is the output or
measurement matrix and D is the direct
feed matrix. This description is said to be
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time-invariant if A,B,C and D are
constant matrices. The definitions of
state, state variable, state vector and
state-space are [1,4] :-

State: The state of a dynamic system is
the smallest set of variables, called state
variables, such that the knowledge of
these variables at time t=t, , together
with the input u(t) for t>t,, completely

determines the behavior of the system
for any time t > t,.

Thus, the state of a dynamic system
at time t is uniquely determined by the
state at time to and the input for t>t,,

and it is independent of the state and
input before ty. Note that, in dealing with
linear time-invariant systems, we usually
choose the reference time tq to be zero.

State variables: The state variables of a
dynamic system are the smallest set of
variables which determine the state of
the dynamic system. If at least n
variables x, (t), x,(t),...,x,(t) are needed

to completely describe the behavior of a
dynamic system, then such n variables

X (), %, (t),...,x, (t)are a set of state

variables.
State vector: If n state variables are
needed to completely describe the

behavior of a given system, then these n
state variables can be considered to be
the n components of a vector x(t). Such
a vector is called a state vector.

State-space: The n-dimensional space
whose coordinate axes consist of the
X, axis, X, axis,..., X, axis is called a state-

space. Any state can be represented by a
point in the state space.

State-space representation is
helpful to represent a complex system by
a simple first-order  vector-matrix
differential equations [2]. State-space
method of continuous-time system (i.e.
system that can be described by
differential equation), was solved by
several methods as Laplace
transformation and matrix exponential
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[1]. In this work different types of state-
space  representation are  solved
numerically by using fourth order block
method. The modeling of linear
continuous-time systems by using state
space method with their solutions have
been presented in the following section.

2. State - Space Method :

State-pace method has emerged
in the last fifty years, where toward the
end of 1950’s, the concept of
representing a continuous-time system
by a set of first order differential
equations has become a standard tool in
control  theory [2]. State space
representation has become popular in the
early 1970’s with high-speed digital
computers which become more readily
available, since this technique uses
vector and matrices for system
representation, it permits a simple
notation that is easily accepted and
processed by digital computer [6]. State
space method is ideally suited for the
analysis of  multiple-input-multiple-
output systems as well as single-input-
single-output systems.

State space method describes the
state of the system, where the “state” of a
system refers to the past, present and
future of the system. In particular, we see
how to represent an nth order linear
differential equation by a first-order
linear, vector-matrix differential
equation describing the evolution of an
n-dimensional state vector and an
equation relating the output to the
present state and input. We call these
linear equations the state equations and
output equations, or a state space
representation for the system of
differential equations [7,8]. On the other
word, if n elements of the vector are a set
of state variables, then the vector-matrix
differential equation is called a state
equation.

J. John [9] used state-space
representation for solving the pitch
controller problem and Dk. James [10]
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used state space equations to solve the
cruise control problem.

In this section, we shall present
methods for obtaining state-space
representation of linear continuous-time
systems.

2.1 State-Space Representation of n™"
Order Continuous-Time Systems of
Linear Differential Equations In
Which The Forcing Function Dose Not
Involve Derivative Terms :

A continuous system may be
defined as a mathematical abstraction
which utilizes three types of variables to
represent or model the dynamics of a
continuous-time  process. The three
variables are called the input (i.e. forcing
function), the output and the state
variables [1,4].

Consider the following nth-order
dynamic system :

YO ) +ay P (O +..+a,, Y1) +a,y(0) =u()
(D)
Noting that the knowledge of
y(0), y(0),..., y"(0), together with the
input or forcing function u(t) for t >0,

determines completely the future
behavior of the system, we may take
y(t), y(t),..., y" ™ (t) as a set of n state
variables.

Let us define the following state
variable:

x, (1) = y(t)
X, () = y(t) (2
Xq (1) = 'y<”‘” (t)
Then Eq.(1) can be written as

% (1) = % (t)

X (t) = (1)
E ...(3)

Xo1 (1) = X, (t)

X, (t) = —a,x (t) —---—ax, (t) + u(t)

Or X(t) = Ax(t)+Bu(t) ...(4)

where x (t) is the nx1 state vector as

given by :

X (t)

t

x(t) = X2:()

Xn (1)
A is the square (nxn) time-invariant
system matrix (i.e. constant system
matrix does not depend on the time t),

defined by:
0 1 0 .. O
0 0 1 0
A= :
0 0 0 1
-3, —Q.y &, .. —a|

and B is the (nx1) time-invariant input
matrix (i.e. constant input matrix )
defined by :

0
0
B=|:
0
l nx1
The output equation becomes
Xy (1)
yo=p o - o] *=®
X, ()
or y(t) = Cx(t) NE))
where c=f o - 0.

The first-order differential equation,
Eq.(4), is the state equation, and the
algebraic equation, Eq.(5), is the output
equation.

2.2 State-Space Representation of n™"
Order Continuous-Time Systems of
Linear Differential Equations With
(m) Forcing Functions :

Consider the multiple-input-

multiple-output (MIMO) linear
continuous system shown in figure (2).
In this system,

X, (t), %, (t),..., X, (t) represent  the state
variables; u,(t),u,(t),...,u,,(t) denote the
input variables and
Y, (1), Y, ()., y, (t) are the output

variables. From Fig.(2) we obtain the
system equations as follows [2,7,4]:
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% (t)=a,,% (0) + 2%, (0) - +a, X,
X (8) = 2, (1) + 85X, (8) + -+ + 8y X, (1) #1055 (8) 4 by (6) + -+ 4,0, (1) )

(t) + b11u1(t) t b1zuz(t) oot byl (t)

m~m

Xn (t) = anlxl (t) + anZXZ (t) toet annxn (t) + bnlul (t) t anUZ (t) oot hnmum (t)

where the a’s and b’s are constants.
Expression (6) is a set of first order
differential equations which may be put
into the convenient matrix form:

X(t) = Ax(t) + Bu(t) (7

where x (t) is the nx1 state vector as
given by :

%, (1) ]

(=20

| X, (1),
while u(t) is the mx1 input vector as
given by :

u, (t)
u(t) = Uzz(t)
un, (t)
A is the square (Nnxn) time-invariant
system matrix defined by:

a; & Ay
A — Ay 8y Ay
[y Q... ann_nxn
and B is the (nxm) time-invariant

input matrix defined by :

bll b12 blm
B: b21 b22 b2m

b, b, ... bnm_nxm
Eq.(7) is the state equation for the
system.
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Fig.(2) Multiple-input-multiple-output
linear continuous system.

Similarly, the output variables at
continuous time t are linear combinations
of the values of the input and state
variables. That is :

Yo (€)= CpaXg (8) 4 CopXy () + -+ 4 Cy X, (1) + dygy (8) + Ay, (8) + -+ dy U, )
Yo (8) = CoX (8) + X, (1) + oo 4 5 X, () + Ayl () + AU, () + - + U (1)

2n%n 2m=m

Yo (0 =X () + €%, (0) + 4 € X () +d Uy (O) +d U, (8 +- 4 d U, ()

pn’n

This set of equations may be put into the
matrix form :

y(t) =Cx(t) + Du(t) ...(9)
where y(t) is the px1 output vector as
given by expression

Y (t)
Y, (t)
y()=| ", |
Yo (0)]
C is the pxn time-invariant output
matrix defined by :
C11 C12 Cln
C _ C.21 C22 C2n
[Co Cpo Con o
and D is the pxm time-invariant

transmission matrix defined by :
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dy dpp ... dy
o d:21 dyy ... dyn
dp Ay oo A

Eq.(9) is the output equation for

the system. The matrices A, B, C and D

completely characterize the system

dynamics.

Eq.(7) and EQ.(9) are the state-space

equation of the continuous system. Note

that, when the technique :

X(t) = Ax(t) + Bu(t)

y(t) = cx(t) + Dugt) [ 1Y

1- Has one input (m = 1) and one output
(p = 1), then the system is called
system  with  single-input-single-
output (SISO).

2- Has one input (m = 1) and (p)
outputs, then the system is called
system with single-input-multiple-
output (SIMO).

3- Has (m) inputs and one output (p =
1), then the system is called system
with multiple-input-single-output
(MISO).

4- Has (m) inputs and (p) outputs, then
the system is called system with
multiple-input-multiple-output
(MIMO).

A block diagram representation of the
system defined by Eq.(10) is shown in
figure (3). Double lines are used in the
diagram to indicate vector quantities
[1,4].

Fig.(3) Block diagram of the continuous-
time system described by state-space
technique in Eq.(7) and EqQ.(9).
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2.3 State-Space Representation of n'"
Order Continuous-Time Systems of
Linear Differential Equations In
Which  The Forcing Function
Involves Derivative Terms :

If the differential equation of the
system involves derivatives of the
forcing function, such as

YOO +ay" ) +..+ 2,50 +a,y(0 =bu O +bu" Q)+ +b, 00 +bu(t)

(1)

then, we define the following n variables
as a set of n state variables [1,2,5]:

X(t) = y() - Au(t)
%,(t) = Y(t) - BU(t) - Au(t) = x,(t) - Au(t)
X,(t) = Y(O) - Ali) - Aut) - Su(t) = X,(t) - pu(t)

KW=y O-F 0 O-A U O f 00 F00 = 4,0 fu0)
.(12)

where £, B, B, B, are determined
from

By :bo
B = bl_allBO
B, = bz —af-a,p5

..(13
By = b3 —a4, - 3,4 - a,p 43

:Hn = bn - aiﬂn—l T an—lﬁl - anﬂo

Hence, the state equation and the output
equation of state-space method are:

00 0 1 0 || %) | | £
=| Pl [u®)]

X, (t) 0 0 0 1 xa®| B

Xn(t) -8, —a, -3, -4 Xn(t) ﬁn
X (t)
X()

y = 0 0 -« 0] i |+u0)

X4 (t)
X, (t)
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Or
X(t) = Ax(t) + Bu(t) ..(14)
y(t) = Cx(t) + Du(t) ...(15)
Where
%, (t) 0 1 0 - 0
%, (t) ) 0 0 1 0|
X(t) = A=| : : :
X1 (t) 0 0 o - 1
X, (1) -3 —a; —a, -3
e
P,
B=|
ﬁn—l
LA |
C=fL 0 0 --- 0] and D=p,=h,
The initial condition x(0) may be

determined by using Eq.(12).

3. Block Method:

Block method provides easy and
efficient mean for the solution of the
many problems. The concept of block
method is essentially an extrapolation
procedure and has the advantage of
being self-starting. Block method was
described for differential equation by
Milne and for integral equations was
given by Young [11,12].

In this research block method
was employed for finding the numerical
solution for different types of nth-order
state-space equations (SSE) of linear
continuous-time control system.

Consider the following first order
differential equation :

y' = f(t, y(t)) with initial condition
y(t,) =Y, ..(16)

A block method up to the fourth-order
for EQ.(16) is computed by:
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Yo = Yo 20y, order 2
Yoir = Yo T20Y10 order 2
Yo = Yo + (W 2)[y; + Y54l order 3
Yoo = Yo + (N 2y, +Y50] order 3
You =Y, +(N/12)[5y, +8Y;,, - ;] order4
Yoo = Yo T (N3)[Y7 +4Y0 + Yio] order 4

Block method of second and third
order have been little used for ordinary
differential equations, in general, and
delay differential equations in particular
because they required more evaluation of
the function f.

However, the following fourth
order block method which is most
popular and more efficient for dealing
with differential equations.

Let
Bl = (tn' y(tn))

.(17)

Then the fourth order-six steps block
method may be written in the form :

h
yn+1 = yn +E(581 +883 _B4) (18)

h
Yoz = Yn +§(Bl +4B; +Bg) ...(19)

4. Numerical Solution of State-
Space Equations (SSE) of Linear
Continuous-Time Systems Using

Block Method :

In this section different types of
linear state-space equations have been
solved using block method.
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4.1 The Solution of "™ Order SSE In
Which The Forcing Function Dose Not
Involve Derivative Terms :

In this subsection the block method
including fourth order is candidate to
find the numerical solution for the
following SSE:

Recall eq.(3) in section (2.1), eq.(3)
can be written as:

O _ £ 00, % O)....

dt
...(20)
where X (t), X, (t),...,x (t) are the state
variables, u(t) is the input of the system
and f;, i=1,2,...,n denotes the ith linear
functional relationship.

X, (0),u(t))

where i=1,2,...n , j=0,1,....k and
By = fi (% (t;), X, (t;),-, X, (t;),u(t;))

for each i=1,2,...,n and j=0,1,..., k.
The output values of SSE in eq.(21)
can be computed using block method as :

y(tj)le(tj)
where  j=0,1,..., k.

The following (SS-SSEB) algorithm
summarizes the steps for finding the
numerical solution for the SISO-SSE in
eq.(3) using block method.

SS-SSEB Algorithm :
Step1: Set h= %

is the number of the points
(t,,t,,....,t, ) and t,is the initial
state.

where (k + 1)

Step 2: Define the state equation in
eq.(3).
Step 3: Set j=0

The output of the system is
obtained from eq.(5) as:

y(t) =x, (1) ..(21)

The numerical solution of SSE
in eg.(20) and eq.(21) can be found using
fourth order block method as follows :

Consider the state equation in
eq.(20). By applying block method for
eq.(20) by using equations (17), (18) and
(19), one gets the following formula :

xi(tH):xi(tj)+1hz(581i+8B3i—B4i) ..(22)

) =X () + 3By +4B, +B,) (29

xn('[J.)+hBln ,u(tj + h))
gszn,u(tj +h)j ...(24)
Step _4: For each i=1,2,...,n
compute:
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B, = fi(Xl(tj)’X2(tj)""’xn(tj)’u(tj))
Step5: Vi=12,..,n compute:
B, = fi(x(t;) +hByy, X, (t;) + hB,y,..., X, (t;) + By, U(E; + )

Step6: Vi=12,..,n compute:

BSi = fi[xl(tj)+2811+2521 ..... xn(tJ.)+gBln+2B2n,u(tj +h)]
Step7: Vi=12,..,n compute:
B, = fi(x.(t;) +2hB,,,..., X, (t;) + 2hB, ,u(t; + 2h))

Step8: Vi=12,...,n compute:

Step9: Vi=12,..,n compute:

B = f.(xla,-) +§(B“ By +4B,). 0, 1) +§(Bm +B,, +4B, ) Ul +2h)j
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Step 10: Vi=12,...,n compute:
h
X (ti..) = X% (t;) +E(581i +8B; — B,)

h
X (ty,,) = Xi(tj)+§(Bli +4Bg; + Bg;)

Step11: Put j=j+1

Step 12: If j=k thengo to (step 13).
Else go to (step 4)

Step 13:  For j=0.,1,..., k compute the

output values of SSE :
y(tj) = Xl(tj)

4.2 The Solution of n™ Order SSE

With (m) Forcing Functions :

The fourth order block method has
been used to find the numerical solution
for the following MIMO-SSE:

Recall eq.(6) in section (2.2), eq.(6)
can be written as:

% £ 060,500 X, 0, L (0, Uy 0),.., U, 1) -+ (23)

where X, (t), %, (t),...,x,(t) are the state
variables,  u,(t),u,(t),...,u,(t)are the
input variables of the system and f;,

By = 0a(t;) X (t))s0 X, (1), Uy (), U, (8),0 Uy (E5))

By = fi(x(t;)) + By, X, (t)) + hBy,,.... X, () + hBy, U (t; + ), U (t) + 1))

i=1,2,...,n denotes the 1ith linear
functional relationship.

The outputs ( yq(t), g =1,2,....p)
of the system in eq.(8) are related to the
state variables and the input through the
following expression:

Yo () = 9 (4 (1), X, (1), X, (1), Uy (1), Uy (1), Uy, (1))
...(26)

where  x,(t), %, (t),..., X, (t) are the state
variables, u,(t),u,(t),...,u,(t) are the

input variables of the system and gq ,
g=1,2,....p denotes the qth linear
functional relationship.

The numerical solution of SSE
in eq.(25) and eq.(26) can be found using
fourth order block method as follows :

Consider the state equation in
eq.(25). By applying block method for
eq.(25) by using equations (17), (18) and
(19), one gets the following formula :

% (t.0) = % (t;) +%(SB1i +8B; —B,;) ...(27)

X; (tj+2) =X (tj)+g(B1i +4B,, +B;;) ...(28)

where i=1,2,....n , j=0,1,...,k and

B, = fi(><1(t].)+gsn+gsz1 ..... Xn(tj)+gBln ﬁuglzzn,ul(tj +h), i (8, +h)j ...(29)

foreach i=1,2,....n and j=0,1,....k .

The outputs of SSE in eq.(26) can be computed using block method as :
Yo (t5) = 9q O (8;), X (8 )1ens X, (85), U (), U (8o, U (E7)) .. (30)

where  g=1,2,....p and j=0,1,....k .

The following (MM-SSEB)
algorithm summarizes the steps for
finding the numerical solution for the
MIMO-SSE in eq.(6) and eq.(8) using
block method.
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MM-SSEB Algorithm:

Step 1: Set h z%

the number of the points (t,,t,...,t,) and
t, is the initial state.

where (k + 1) is
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Step 2: Find the state equation as
eq.(6) and the output equation
as eq.(8).

Step 3:  Set j=0

Step 4:  For each i=1,2,...,n compute:

By = fi(x(t;) X (t;).o. n(t)ul(t Joeens Uy (£)

Step5: Vi=12,...,n compute:

B, =f, (Xl(tj) +hBy,, Xz(tj)+hBIZ""’ Xn (tj)+hBln vul(tj +h)l"'um(t| +h)
Step6: Vi=12,...,n compute:

h h h h
BSI=f\[X1(tj)+EBll+EBZI ----- Xn(t|)+§Bin+§BvaU1(tJ+h) ----- um(tj+h)]

Step7: Vi=12,..,n compute:

By = f,(%(t;) + 2Ny, X, (t;) + 2NB, Uy ¢, + 2h),...,u, (t, +2)

Step8: Vi=12,..,n compute:
B, = f‘[x, (t‘)+%(58“ +8Bg; = Byy) X, () +%(SB]H +8By, = By ) Uy (t; + Nl (t + h))
Step9: Vi=12,..,n compute:

Bs‘:fl(xl(l)Jr (Byy + By +4Bgy), X, () + = (E&1 + By, +4B;,),u,(t; +2h),...,u, (t; +2h)]

Step 10: Vi—12, .,N compute :

%) = %)+ (5Bl.+853. By)

h
X (t,2) = Xi(tj)+§(Bli +4B;; +By;)

Step 11: Vv q=12,..,p compute the
output values of MIMO-SSE :

Yo ;) = G (Xt X (8 )rems X ()L ), U (1), Ui (E))
Step 12: Put j=j+1
Step 12: If j=k then stop.

Else go to (step 4)

4.3 The Solution of nth Order SSE In
Which The Forcing Function Involves
Derivative Terms :

The fourth order block method has
been used to find the numerical solution
for the following SSE:

Recall eq.(14) in section (2.3),
eq.(14) can be written as:

OIth(t) = fi (6 (0% (1), %, (1), B u ()

.31
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where X (t), %, (t),..., X, (t) are the state
variables, u(t)are the input variable of
the system, f in eq.(13) and fi ,
i=1,2,...,n denotes the 1ith linear
functional relationship.

The output of the system is
obtained from eq.(15) as:

y(t) =x )+ A u(t) ...(32)
The numerical solution of SSE in
eq.(31) and eq.(32) can be found using

fourth order block method as prescribed
in section (4.1).

5. Numerical Examples:

The previous methods in section

(4) are illustrated in the following
examples:-
Example (1) :

In the Cruise Control Problem
[10], the state-space model was derived
as:

)0 om0 oo
xt)| |0 —0.05| x| |0.001

yit) =L 0]{ (J +[0Ju®)

0
where the initial state is: x(0) = L} and

the forcing function u(t) =e', t>0.
The exact solution of the above
SISO state-space model is:

=] [0

exact
—2098 o 20! 999
|: Tos © -l— + 356

t
1050 € :|
1049 20
1050e + 1050e

When the algorithm (SS-SSEB)
is applied, table (1) presents the
comparison between the exact and
numerical solution using block method
for k=10, h=0.1 and

=ih, 1=01...,K depending on

least square error (L.S.E.). The output
variables y(t) of state space model by
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applying (SS-SSEB) algorithm is also
tabulated.

Table (1) The solution x(t) and the output

variablesy(t) of state space model for Ex.(1).

The MIMO state-space model
was derived from fig.(4) as follows :

x®] [05 0 x®] [1 1] u)
L’(Z(t)} _{ 1 —1[%)}{0 1}_%)}

t Exact; ill(ztt:)k Exact, li';(;)k on;,t(;t))u t B;(()Sk

0 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000
0.1 0.0998 0.0998 0.9951 0.9951 0.0998 0.0998
0.2 0.1990 0.1990 0.9903 0.9903 0.1990 0.1990
0.3 0.2978 0.2978 0.9855 0.9855 0.2978 0.2978
0.4 0.3961 0.3961 0.9807 0.9807 0.3961 0.3961
0.5 0.4939 0.4939 0.9760 0.9760 0.4939 0.4939
0.6 0.5913 0.5913 0.9713 0.9713 0.5913 0.5913
0.7 0.6882 0.6882 0.9666 0.9666 0.6882 0.6882
0.8 0.7846 0.7846 0.9620 0.9620 0.7846 0.7846
0.9 0.8806 0.8806 0.9574 0.9574 0.8806 0.8806

1 0.9761 0.9761 0.9529 0.9529 0.9761 0.9761

L.S.E. 0.145e-13 L.S.E. 0.158e-13 L.S.E. 0.145e-13
Example (2) :
Consider the MIMO control

system shown in figure (4) :

Fig.(4) Simulation diagram for a

multivariable system.

yi(t)

v 1 2[x®7 [0 ol u
{yz(t)Ho J}Za)Ho 1}_%«)}

The initial state of the MIMO state-space

(0 o
model is: x(0) = % )}:{ and the
| X,(0) 0]
forcing function
u, (t 1
u(t) = O] _ ,t>0,
u(t)] |t

The exact solution of the above
MIMO state-space model is:

Clexact, | [x@®)] | —6-2t+6e?
X(t) = = = 1
exact, X, (t) —5—t+et +4e?

When the algorithm (MM-SSEB)
is applied, table (2) presents the
comparison between the exact and
numerical solution using block method
for k=10, h=0.1 and

t,=ih, 1=01..,k depending on
least square error (L.S.E.). The output
variables y(t) of state space model by
applying (MM-SSEB) algorithm is also
tabulated.

Table (2) The solution x(t) and the output variables
y(t) of state space model for Ex.(2).

t Exact, Block Exact, Block Output Block Output Block
xa(t) X(t) ya(t) ya(t) ya(t) ya(t)
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.1076 0.1076 0.0099 0.0099 0.1275 0.1274 0.1099 0.1099
0.2 0.2310 0.2310 0.039%4 0.0394 0.3099 0.3098 0.239%4 0.239%4
0.3 0.3710 0.3710 0.0882 0.0881 0.5473 0.5472 0.3882 0.3881
0.4 0.5284 0.5284 0.1559 0.1559 0.8403 0.8402 0.5559 0.5559
0.5 0.7042 0.7041 0.2426 0.2426 1.1894 1.1893 0.7426 0.7426
0.6 0.8992 0.8991 0.3482 0.3482 1.5956 1.5955 0.9482 0.9482
0.7 1.1144 1.1144 0.4729 0.4728 2.0601 2.0609 1.1729 1.1728
0.8 1.3509 1.3509 0.6166 0.6165 2.5842 2.5840 1.4166 1.4165
0.9 1.6099 1.6098 0.7798 0.7797 3.1695 3.1693 1.6798 1.6797
1 1.8923 1.8923 0.9628 0.9627 3.8179 3.8176 1.9628 1.9627
L.S.E. 0.153e-7 L.S.E. 0.419e-7 L.S.E. 0.283e-6 L.S.E. 0.419e-7
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Example (3) :

Consider the following SISO
control system equation for the Pitch
controller [9]:

X +6X+11x+6x =0 +8lU+17u+8u
with initial conditions:
y(0)=0,y(0)=1 y(0)=0 and the

forcing function u(t) =2t%,t>0.

The state-space equation was
derived using eq.(14) and eq.(15) as
follows :

x®] [0 1 0] [2
{xz(t)} 0 1 |:Xz(t)]+ 6 ([u(t)]
%) ] [-6 -11 -6 %1 |16

%, (t)
y)=[L 0 O]{Xz(t)}w(t)

X3 (t)
where the initial state of the state-space
x(0)] |0
model is: x(0)=|%(0) |=|1]| and the
X;(0) 0

forcing function u(t)=2t%,t>0.

The exact solution of the above
SISO state-space model is:

exact, X, (t)
x(t) = | exact, [=| X, (t) |=

exact, | | Xs(t)
—fet 4+ ge —Re 420 + 117 — 4+ 2

-2t _ 89,3t | 19,4t 3 2,14 77
57 —HeT +Je” 47 +2t° + Yt - L

—10e ™ +827% —Le™ £ 12t% —12t% + 4t + 18

When the algorithm (SS-SSEB)
is applied, table (3) presents the
comparison between the exact and
numerical solution using block method
for k=10, h=0.01 and

t.=ih, i=01..,K depending on
least square error (L.S.E.). The output
variables y(t) of state space model by
applying (SS-SSEB) algorithm is also
tabulated.

Table (3) The solution x(t) and the output variables
y(t) of state space model for Ex.(3).

Block Block Block Output Block

t Exact, xi(t) Exact, ) Exacts ) y(0) v(t)

0 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.01 0.0100 0.0100 0.9995 0.9995 -0.1070 -0.1070 0.0100 0.0100
0.02 0.0200 0.0200 0.9979 0.9979 -0.2083 -0.2083 0.0200 0.0200
0.03 0.0300 0.0300 0.9953 0.9953 -0.3040 -0.3040 0.0300 0.0300
0.04 0.0399 0.0399 0.9918 0.9918 -0.3944 -0.3944 0.0400 0.0400
0.05 0.0498 0.0498 0.9874 0.9874 -0.4797 -0.4797 0.0500 0.0500
0.06 0.0596 0.0596 0.9822 0.9822 -0.5601 -0.5601 0.0601 0.0601
0.07 0.0695 0.0695 0.9762 0.9762 -0.6357 -0.6357 0.0701 0.0701
0.08 0.0792 0.0792 0.9694 0.9694 -0.7067 -0.7067 0.0802 0.0802
0.09 0.0889 0.0889 0.9619 0.9619 -0.7734 -0.7734 0.0903 0.0903

0.1 0.0985 0.0985 0.9538 0.9538 -0.8358 -0.8358 0.1005 0.1005
L.S.E. 0.159e-11 L.S.E. 0.249e-10 L.S.E. 0.299¢e-9 L.S.E. 0.159¢-11
6. Conclusion: examples the following points are
included:

Block method has been presented to
find the numerical solution for different
types of nth-order state-space equations
(SSE) of linear continuous-time control
system. The results show a marked
improvement in the least square errors
(L.S.E.). From solving some numerical
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1- Block method solves the SSE of the
SISO system as well as MIMO
system.

2- Block method gives a better accuracy
and consistent to the solution of
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different types of nth-order state- 6. Masanao, Aoki , 1987, State
space equations. Space Modeling of Time Series, Printed
3- The good approximation depends on in Germany, Springer-Verlag.
the size of h, if h is decreased then 7. Phillips ,Charles L. and Nagle ,H.
the number of points (knots) Troy , 1992, Digital Control System
increases and the L.S.E. approaches Analysis and Design , Englewood Cliffs,
zero where this gives the advantage N. J. ,Prentice Hall, Inc.,.
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