
Seattle Pacific University Seattle Pacific University

Digital Commons @ SPU Digital Commons @ SPU

Honors Projects University Scholars

Spring 5-20-2023

Using Deep Neural Networks to Classify Astronomical Images Using Deep Neural Networks to Classify Astronomical Images

Andrew D. Macpherson
Seattle Pacific University

Follow this and additional works at: https://digitalcommons.spu.edu/honorsprojects

 Part of the Analysis Commons, Artificial Intelligence and Robotics Commons, External Galaxies

Commons, Other Astrophysics and Astronomy Commons, and the Other Physics Commons

Recommended Citation Recommended Citation
Macpherson, Andrew D., "Using Deep Neural Networks to Classify Astronomical Images" (2023). Honors
Projects. 181.
https://digitalcommons.spu.edu/honorsprojects/181

This Honors Project is brought to you for free and open access by the University Scholars at Digital Commons @
SPU. It has been accepted for inclusion in Honors Projects by an authorized administrator of Digital Commons @
SPU.

http://digitalcommons.spu.edu/
http://digitalcommons.spu.edu/
https://digitalcommons.spu.edu/
https://digitalcommons.spu.edu/honorsprojects
https://digitalcommons.spu.edu/univ-scholars
https://digitalcommons.spu.edu/honorsprojects?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/177?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/128?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/128?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/130?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/207?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.spu.edu/honorsprojects/181?utm_source=digitalcommons.spu.edu%2Fhonorsprojects%2F181&utm_medium=PDF&utm_campaign=PDFCoverPages

USING DEEP NEURAL NETWORKS TO CLASSIFY ASTRONOMICAL IMAGES

by

ANDREW MACPEHRSON

FACULTY MENTORS:
DR. LISA GOODHEW, DR. JOHN LINDBERG, DR. DENNIS VICKERS

HONORS PROGRAM DIRECTOR:

DR. CHRISTINE CHANEY

A project submitted in partial fulfillment of the requirements
for the Bachelor of Arts degree in Honors Liberal Arts

Seattle Pacific University
2023

Presented at the SPU Honors Research Symposium
Date May 20, 2023

Using Deep Neural Networks to Classify
Astronomical Images

Andrew Macpherson
Departments of Physics, Computer Science

Seattle Pacific University
Seattle, WA

macphersona@spu.edu

Abstract—As the quantity of astronomical data
available continues to exceed the resources available for
analysis, recent advances in artificial intelligence
encourage the development of automated classification
tools. This paper lays out a framework for constructing
a deep neural network capable of classifying individual
astronomical images by describing techniques to extract
and label these objects from large images.

Keywords—astronomy, deep neural networks, artificial
intelligence, machine learning, classification

I. INTRODUCTION

In the present age of Big Data, the quantity of
information available has surpassed an amount even
the most dedicated analysts can comprehend.1 The
challenge of data analysis is no longer grappling with
too little data but has transformed into the problem of
sense-making amidst a sea of information. As the field
of astrophysics continues to grow – and the
technologies it uses with it – so too has a chasm
between the quantity of data produced and the amount
scientists can process. Zooniverse, an astronomical
citizen science site, describes “the major challenge of
the 21st century” as “dealing with the flood of
information we can now collect about the world
around us [2].”

We are taking more photos of the sky than ever
before, yet we no longer have the resources to always
know what’s in them. Amidst a backdrop of thousands
of stars, only careful analysis may be able to
distinguish a similar object from those around it.
Challenges such as these, amidst an ever-growing
influx of data, implore the development of more
powerful image processing tools for the field of
astrophysics.

Astrophysics research has a rich history of
collaboration and thrives when its dedicated
community of amateurs contributes to outstanding
tasks. Citizen science sites have filled large gaps in
knowledge (particularly in classification) and
accelerate the understanding of the field as a whole.
They allow researchers to “analyze their information

1 Statista, a leading consumer data site, estimates that by the end of
2023, the world will have “captured, copied, and consumed” over

more quickly and accurately than would otherwise be
possible, saving time and resources…leading to faster
progress and understanding of the world, getting to
exciting results more quickly [2].”

The rapidly expanding field of artificial intelligence
(AI) provides an exciting new frontier for professional
and citizen scientists alike. New technologies like
GPT-4 [3] are ushering in a new wave of AI
technologies and their ever-growing roles in everyday
life demonstrate unexplored scientific potential for
astrophysics.

Presently, astronomical machine learning models
do exist but have seen limited capabilities. Existing
tools are predominantly only available to professional
research scientists at large institutions and their limited
deployments have not yet caught up with the new
wave of AI technologies.

This gap in research tools – especially those
available to the amateur astronomer – and the limited
capabilities available even to the most resourceful
implore the development of modern classification AIs
in the astronomical disciplines. In this paper, I have
striven to create a framework for machine learning
algorithms capable of handling dense astronomical
image data and categorizing the objects within them.

II. THEORETICAL BACKGROUND

A. What are Astronomical Images?

When analyzing astronomical images (any image
of outer space), it is useful for scientists to have more
data available to them than a photo from a typical
camera would provide. Everyday images are often
stored in formats like JPEG and PNG, but astronomers
prefer their own file type: the Flexible Image
Transport System (aka a FITS file) [4]. Now the
standard for astronomical imaging, the FITS format
has been endorsed by NASA and the International
Astronomical Union [5] and can store large amounts
of data in various formats, including multi-
dimensional arrays, tables, and header information, all

120 zettabytes (120 billion trillion bytes, or 1.2 × 10!" bytes) of
information [1].

of which can combine to give astronomers a better idea
of what they are looking at.

However, that additional data makes FITS files
hard to visualize and requires more work than a typical
photo. For example, FITS images often contain objects
“photographed” with non-visible light – i.e., colors
outside what we can see,2 which scientists need to turn
into an image we can comprehend. Nonetheless, FITS
files are incredibly useful because a single image can
contain hundreds or thousands of objects in its field of
view. Distinguishing these objects from one another
and extracting them individually is at the heart of this
project and of immense value to automating any
classification process.

B. What is AI?

The term artificial intelligence (AI) is becoming
increasingly common in everyday life and yet can
mean different things depending on the context.

François Chollet succinctly defines artificial
intelligence as “the effort to automate individual tasks
normally performed by humans [7].” Though AI fears
are on the rise as we enter a new wave of AI
development, this is not an inherently bad thing and is
actually responsible for many technologies we rely on
today. AI technologies are also responsible for
contributing to major world history events (such as the
British breaking Nazi codes to gain a tactical
advantage [8]) and are used for everything from media
content curation to detecting credit card fraud.

As with any technology, alongside every beneficial
application, there is real cause for concern. Yet some
AI technologies ought to elicit more (or less) concern
than others. There are many different types of AI, and
so it is often best to refer to AIs by what sort of
intelligence they possess. This paper is far from a
treatise on all the different types of AI, but it is worth
briefly exploring what certain AIs are and are not.

C. Generative AI

The popular image of a self-aware AI often found
in futuristic doomsday scenarios is referred to by
scientists as Artificial General Intelligence (AGI).
Shevlin et al. astutely noted in 2019 that “at a time
when headline-making AI breakthroughs are an

2 What we call visible light is an electromagnetic wave but most of
these waves are at frequencies the human eye cannot detect. For
more, see [6].
3 It is rarely a good idea to make predictions about how
technologies will (or more often - will not) develop but it is a
widespread consensus and the author’s personal belief that AGI is
a long, long ways off.
4 How original this content truly is has sparked numerous ethical
and artistic debates but it is sufficient to say here that much of the
content has at least never been made in the format the AI produce.

almost daily occurrence, it might seem that we are on
the cusp of living with artificial systems that match or
exceed human intelligence [9].” Recent advances in
AI technology like ChatGPT [10] and Dall·E Mini
[11] may make this feel like more of a reality than
ever, but it is still a long way from true. AGI does not
exist and likely will not for quite some time, if at all.3
These programs are instead classified as generative
AI, a type of artificial intelligence capable of
producing original4 content.

Generative AI technology certainly has many risks
associated with it, and the dangers of technologies
capable of presenting information as true and
producing unique images based on user input are not
to be underestimated. They can hurt people, either
through intentional misuse (e.g., deepfakes, which can
produce audio or video “recordings” of someone
saying or doing things that never happened5), or
unintentional failings (e.g., ChatGPT returning
information that is untrue or that infringes on
somebody’s intellectual property).

Nonetheless, these programs are not capable of
learning in the sense that humans are [9]. They are
entirely reliant on their input (which is exactly why
they are prone to misuse) and require training for
specific tasks on enormous datasets. Even broad tools
like ChatGPT do not know things in the same way
humans do; it is essentially a fancy search engine that
can recognize and output natural language. These
technologies do not have thoughts or desires, even if
they know how to say that they do [12].

D. Classification AI

This project focuses on the other primary type of
AI in use today: classification AI.6 This technology is
exactly what it sounds like, a type of artificial
intelligence capable of recognizing images and putting
them into a defined category. It should be apparent that
there are significantly fewer risks associated with this
type of technology and though misuses of this
technology are certainly possible they are less
apparent and of minor concern here where the worst-
case scenario is an incorrect scientific label and
systemic bias discriminates against groups of
inanimate objects not whole groups of people.

5 Deepfakes are certainly cause for concern and presently one of
the main dangers in AI usage. However, unless you are a politician
or have an excessive amount of images of yourself on the Internet,
you likely need not be personally worried just yet, though it may
be worth revisiting old Facebook content.
6 Various authors will define differing numbers of types of artificial
intelligence. I have chosen this dichotomy based on presently
available technologies.

E. What is machine learning?

In its broader definition, image classification is not
inherently a technology-dependent process. Each of us
classifies thousands of things every single day as we
receive images from our brains and put objects into
categories that we recognize. For example, if your
neighbor introduces you to their dog, you do not need
them to tell you that it is a dog. Even if you haven’t
seen your neighbor’s dog before (or even that dog’s
breed), you can pretty confidently recognize what a
dog is, so much so that it is not something we are often
aware of (think of the last time you had to ponder what
species of pet your neighbor has). However,
sometimes we also see things that don’t fit into a box
in our heads – perhaps on a vacation you’ve
encountered native wildlife and wondered what
species it belonged to. Eventually, you likely learned
its name, saw other examples, and became capable of
recognizing other animals like it.

Essentially, this is what we are asking a computer
to do when we talk about automated image
classification. The computer has never seen a dog
before, but by showing it pictures of dogs, it eventually
starts to recognize what a dog looks like and, like you,
will know that the neighbor’s dog is a dog without
needing to be told explicitly. What you did on your
vacation when you saw a new animal, the computer
did as well. The difference lies in how you and the
computer both went about the process of learning what
a new animal looks like. For the computer, this process
is called machine learning, a sub-field of artificial
intelligence.

When learning what a new thing is, the human
brain performs differently than computers. If asked to
describe a dog, you might point out its paws, four legs,
and tail, but you could also easily distinguish it from a
cat with those same features. Evidently, there is
something intrinsic about how we distinguish what
makes a dog a dog.7 Describing exactly what a dog is
proves more challenging than you may think. Any
description needs to keep the description broad enough
to include all sizes and types of dogs (a Chihuahua and
a Husky certainly aren’t very similar) but also distinct
enough to distinguish non-dogs from dogs every time.
It also needs to include dogs who may be missing
characteristic features; a dog without a tail isn’t any
less of a dog after all! It may be easy for humans to tell
a dog from a cat but for a computer without any prior

7 This ix meant in the context of the difficulty of describing our
implicit ability to recognize, not the essence of a Platonic form or
other philosophical construct.

knowledge of these things, distinguishing the two may
prove difficult.

Further, the odds are good that you’ve met at least
a few dogs in your life. Does the task of describing a
dog become easier or more difficult if you’ve only
ever seen photos? The question brings up another
limitation of computer recognition and classification:
inferences. Humans are capable of making various
assumptions when looking at things that we can take
for granted. If in a photo, you can’t see all 4 of a dog’s
legs (perhaps because they are covered up or out of
frame), you don’t immediately wonder what happened
to them; your brain can typically infer that the dog still
has 4 legs and is capable of recognizing the animal as
a dog. A computer though may have been taught that
dogs have 4 legs and upon seeing only 2, concludes
that the animal must not be a dog.

Fig. 1: A two-legged animal, according to an

untrained computer.

Used with permission of Grace Macpherson.

Thankfully, computers use different techniques to
figure out what’s an image (described later in the
Machine Learning section). It may seem frustrating at
first that a computer is not capable of distinguishing
objects in the same fashion humans are, but it quickly
becomes helpful to use quantifiable methods rather
than trying to describe what exactly constitutes a dog.

F. Understanding Deep Learning

Image classification falls under the broad field of
computer vision, a subset of machine learning that is
rapidly expanding and which has applications in
everything from searching Google Images to self-
driving cars and facial recognition systems.

Nearly all computer vision models now use a
technique called deep learning, which utilizes a
structure modeled after the human brain: a neural
network. A neural network consists of various layers,
each of which acts as a sort of filter to distill the input
into something more useful to the task at hand. Layers
are made up of a series of neurons which each perform
individual operations that combine to complete the
larger task of the layer. The name deep learning refers
to a model’s layer depth, i.e., how many layers there
are [7, p. 7] in the neural network, and models that
utilize this technique (including the one presented
here) are known as deep neural networks (DNNs).

III. ASTROMETRY

A. About

For training data, I used labeled images from
astrometry.net (Astrometry), an online platform for
users to share astronomical images that contains
millions of high-quality, labeled images available in
FITS format [13].

B. Catalogs & Object Annotations

All labels correspond to objects found within the
Abell, Henry Draper, Tycho-2, Hipparcos, NGC/IC,
and Yale Bright star catalogs [14], which contain an
approximate 2.9 million combined objects [15]–[19],
each consisting of different types of objects.
Astrometry’s annotation feature checks each catalog
based on the radius of the object in the image as
described in Table 1.

Catalog Object Type
(Size)

Radius
value
(pixels)

Abell Galaxy
clusters
(4073)

< 1

Henry Draper Stars
(359,083)

< 1

Tycho-
2/Hipparcos8

Stars (2.5
million)

< 0.25

NGC/IC Varies
(13,226)9

< 10

Yale Bright Star Stars10 (9,110) < 10

Table 1: Astrometry catalog parameterization

8 Note that Tycho-2 is an extension of the Hipparcos catalog and so
they have been treated as one catalog here.
9 To be specific, the NGC/IC breaks categorizes every object as a
Diffuse Nebula or Supernova Remnant, Planetary Nebula, Open

Since most objects in an image are not found
in a catalog, each astronomical image only contains a
handful of objects identifiable to the machine for
testing and training purposes.

The discrepancy between the number of
recognizable and labeled objects is easily made
apparent by comparing Astrometry’s multiple views
for an image. Figures 3 and 4 show the same image in
two different views, the red-green view – which circles
all prominent objects in each photo – and the annotated
view – which circles recognized catalog objects.

Fig. 2: Astrometry’s red-green view [21]

Fig. 3: Astrometry’s annotated view [22]

C. Utilization Percentage

To capture an idea of the percentage of objects
Astrometry has annotations for, I asked OpenAI’s
ChatGPT to write me a program that could identify the

Cluster, Globular Cluster, Part of other object, Duplication, or Not
Found as described by Frommert [20].
10 The YBS actually only contains 9,095 stars with the remaining
15 objects consisting of novae/supernovae (11), globular clusters
(2), and open clusters (2).

number of red circles (since green circles double
count) in the red-green view of the image and divided
it by the number of objects returned by the call to the
API. I refer to this here as the utilization percentage.
In this particular example, the programs identified 124
red circles and 18 catalog images, a utilization
percentage of 15%. However, these values should be
treated as a rough estimate and an upper bound since
the calculation assumes that all catalog images are
identified in the red-green view, which we can see in
this example is not always the case.

In fact, there are even more objects visible that are
not distinguished in either view. However, these
objects tend to be very faint and thus not particularly
useful for machine learning purposes. A view of all
these objects can be seen in Figure 5, the image seen
in Astronomy’s extraction view.

Fig. 4: Astrometry’s extraction view [23]

Identifying the commonalities between the two
(useful) sets can prove challenging, especially visually
as labels overlap (try and count the green circles) and
in turn makes finding the exact percentage of
cataloged vs identifiable images difficult to calculate.
That said the average utilization percentage can be
used to find a lower limit on the number of source
images needed and should be considered in any further
exploration of model limitations. The full program for
finding the utilization percentage is shown in
Appendix A as well as my conversation with ChatGPT
to generate and modify it in Appendix B.

IV. SOURCE EXTRACTOR

A. About

The other tool used for preprocessing was Source
Extractor. Source Extractor (often abbreviated to
SExtractor) is an incredibly powerful tool for
processing astronomical data. It is capable of
identifying and extracting individual objects in a large
astronomical image and outputting specific data

corresponding to each of them, which I used in
combination with Astrometry data to produce training
images. For a more comprehensive guide to Source
Extractor’s capabilities, I highly recommend Dr.
Benne Holwerda’s Source Extractor for Dummies
[24].

B. Installation

Since Source Extractor lacks any sort of GUI, it is
more complex to install than a normal program that is
usually downloadable from the Internet. Detailed steps
for installing and using Source Extractor are found
elsewhere, but since I worked on a MacBook, I
installed Source Extractor using Homebrew [25] a
powerful package manager for MacOS. The full
software can be found on GitHub [26] and I imported
the configuration folder directly from the repository to
ensure its accuracy.

C. Configuration

Within the configuration files, there are two that
required modification, and despite their
unconventional file extensions, they are easily
modified in a basic text editor.

In default.sex, the CATALOG_NAME parameter
was set to outputs.fits. Note that the actual file
name is irrelevant so long as it ends with a .fits
extension. The CATALOG_TYPE parameter should
then be set to FITS_1.0.

The default.param file contains all of the parameter
options for running SExtractor, but by default, they are
all commented out using the # symbol. X_MIN,
X_MAX, Y_MIN, and Y_MAX should all be
uncommented.

To run Source Extractor on a given image, navigate
in the terminal to the configuration folder. From there,
simply run sex filename.fits in Bash,
substituting as appropriate. I stored my data in a folder
residing in the same directory as the configuration
folder, and thus ran the command as sex
../Data/filename.fits.

V. COMBINING MATCHES

A. Astrometry API

With Source Extractor installed, I return
momentarily to the Astrometry images. Astrometry
provides an API [14], [27] capable of returning JSON
data (quickly converted with a simple parse [28]) with
various information about known objects in the image,
including each object’s name(s), relevant catalog,
location in the image (in x- and y-coordinates of
pixels), and radius (size within the image).

{"annotations": [{"type": "bright",
"names": ["15 Mon"], "pixelx":
2055.177912132401, "pixely":
2618.5783134857497, "radius": 0.0,
"vmag": 4.659999847412109},
{"type": "ngc", "names": ["NGC
2259"], "pixelx": 449.805278967448,
"pixely": 4818.564763317862,
"radius": 115.41987644560295},
{"type": "ngc", "names": ["NGC
2264"], "pixelx":
2051.9800344569444, "pixely":
2617.751152553472, "radius":
219.29775922703007}]}

Submission ID: 7301665

Job ID: 8042724

Figure 5: Sample Astrometry API output

However, these data do not contain photometric
information, which of course is the ultimate goal of the
program.

This is where Source Extractor comes into play. As
previously mentioned, Source Extractor has hundreds
of programmable parameters but here I made use of 4
per object: X_MIN, X_MAX, Y_MIN, and Y_MAX,
corresponding to the object’s positional data (within
the image).

Source Extractor can be easily processed using the
tools of the AstroPy Python library [29]–[31]. AstroPy
can read the output file of Source Extractor and
transform it into a table whose values can be easily
read by Python.

At this point, I combine the Astrometry and Source
Extractor data to isolate individual objects while
retaining their classification information. Since both
programs return the position and radius of each object
in the image, the overlap between the two data sets
should yield a collection of objects with two different
types of information. Yet Astrometry and SExtractor
define each object’s position and radius differently.
This is why Source Extractor is used at all – because
of its ability to precisely carve out objects and provide
information on their photometric data. Astrometry
defines each object with a one-dimensional radius
(simply a circle) and may define the position of the
object differently than SExtractor which bounds the
object rectangularly and more precisely.

11 Note that this could be made more space-efficient by storing
only the object’s label since this is the only thing we will extract
from the data. However, in the interest of generality, I have kept all

To find the overlap in the sets, I compared each
possible pair of objects after filtering out all objects
with a radius of 0. First I checked if the radius of the
Astrometry object was roughly the same size as the “y-
radius” (!

"
 the length in the y-dimension) of the Source

Extractor radius (I chose y because most images are
oriented landscape and there is a slightly larger
percentage of objects with larger x-dimensions; the
two can be easily swapped however).

If any two objects are roughly the same size, then
they must also be located close to one another in the
image to be a match. Since Source Extractor and
Astrometry often find the same object but give it
different coordinates, I made sure to give variation in
the position but also ensured there was still overlap
between the two regions. Specifically, I defined that
their distance must then be within 9/10ths of the length
of the smaller radius.

Thus, the three conditions for two objects to be a
match are:

min(𝑟#$, 𝑟%) > 0 (1)

*0.5 ∗ 𝑟&,#$. ≤ 	 𝑟% ≤ *1.5 ∗ 𝑟&,#$. (2)

2(𝑥#$ − 𝑥%)" + (𝑦#$ − 𝑦%)" < 0.9 ∗ min	(𝑟#$, 𝑟%)(3)

Since varied radii yield a significant amount of
overlap, it is a difficult problem to keep a high
percentage of images while also ensuring near-perfect
accuracy. A machine is only as good as the data it is
provided and so these criteria are intentionally defined
strictly, preferring far fewer objects but with higher
accuracies since it is easier to add more data than to
classify with inaccurate data.

B. Processing Matches

Once a match has been found, relevant data from
both sources need to be cataloged. For Astrometry,
this is a simple matter of pushing the relevant object to
an array where each entry corresponds to an object.11

For Source Extractor, we are going to use the data
at hand straight away, rather than storing an index and
traversing an incredibly large file again or storing
whole Table components. Rather, Source Extractor
locates and bounds the image, so it makes sense to
store the cutout of the object directly.

Here, AstroPy’s Cutout2D method is useful.
Given coordinates and dimensions from Source
Extractor’s output and raw image data in the form of

the data since it is presumed that the number of objects identified
as matches is relatively small and is therefore not particularly
burdensome to the stack.

the original FITS file, it is capable of creating a cutout
of the image as a 2-dimensional array [32].

This and the index of the corresponding
Astrometry data are then stored in parallel arrays and
returned so that each object and both sets of its
corresponding data are now easily located.

C. Ascertaining Object Type

Of course, knowing the name of our object doesn’t
immediately tell us what type of object it is. “NGC
123” hardly provides any clues about whether we are
looking at a galaxy or a star. However, this is easily
searchable data, which I compiled into CSV files for
quick lookup ability in Python (Appendixes C, D, E).12

These catalogs provide a fairly large number of
object classifications, and for data sets of less than
extraordinary volume, it is often helpful to classify
more broadly than the catalogs’ level of detail. For
example, there are 38 different types of galaxy
classifications, ranging from specific types of galaxies
(disk galaxy, Seyfert galaxy, barred lenticular LINER
galaxy) to galaxies whose appearances are obscured
by other astronomical objects (spiral galaxy occulted
by another spiral galaxy, lenticular galaxy pair).
Referring to them simply as “galaxies” loses a degree
of specificity but also makes each result more useful
to a machine learning model and allows for more
accurate high-level classifications. This is also a useful
technique for invalid data types. Unknown,
nonexistent, and non-existent all essentially say the
same thing and are more usefully summarized with a
simple N/A. The full subclassification list and their
generalizations are found in Appendix F.

D. Combining Labels

At last, herein lies the goal of the exercise: creating
a labeled image for preprocessing centered on the
relevant object with the tightest dimensions possible.
It is a simple matter to generate a plot using the 2D
vector that displays the data as an ordinary image.
Note that is necessary to choose a color map, which
may affect the relative contrast between an object and
its surroundings.13 I have found the twilight
mapping to be most useful, but also particularly liked
gist_heat (see [34] for a full list of mapping
options). A quick lookup function will tell us the
generalized classification of the object and combining
it with the object’s Astrometry ID provides an image
name that clearly identifies the object and gives it a

12 Since these are CSV files they are not easily attached to this
paper as a regular appendix might be. Instead, they can be found at
[33].
13 It is commonplace within astronomy to recolor an image, even at
the collection level since many photographs are mappings of

unique ID, ensuring no name conflicts will occur. The
named cutout image is then easily saved to the local
machine and the process can be repeated for each
object in the file.

Fig. 5: Summary of the preprocessing dataflow

VI. MACHINE LEARNING

Having extracted and labeled astronomical objects
from large-scale FITS files, it is now time to ask the
computer to find patterns. As an undergraduate
research project, the scope of this project is not to
create an accurate model so much as to lay out the
technical framework for creating a model capable of
classifying images with a high degree of accuracy by
developing an initial codebase.

To that end, the code provided for classifying
images functions as a starter for those hoping to
accomplish this feat. It is largely built off François
Chollet’s Deep Learning with Python, a text that has
proved instrumental to this project and which any
serious student of machine learning should have
readily available.

While rather basic in its application of machine
learning principles, the code here nonetheless requires
a technical background and commensurate
understanding of the field of AI. Chollet steps through
his code better than I might, but I hope to outline the
basic principles relevant to this application.

A. Process Overview

There are five main steps in any machine learning
problem [35]:

1. Data collection
2. Data preparation
3. Training
4. Evaluation

wavelengths outside the visible light spectrum. Thus, there should
be no worries about the loss of an object’s “true color” when
choosing a color mapping.

5. Tuning

Perhaps the most difficult of these steps in our
current application is the first step. Having
accomplished this in the previous sections, we now
want to prepare our data in a format optimized for deep
learning.

B. Data Preparation

Our first step is telling the computer which things
we want to classify, to tell it what its options are.
Practically, this means sorting our images into folders
corresponding to object type (these are our categories).
Since we have already named our images accordingly,
this should be a relatively easy exercise.

Machine learning models also require their data to
be split into three categories: training, testing, and
validation. The basic workflow of programming any
machine learning algorithm (regardless of what type it
is) is to train it, test it, and validate its accuracy.
Training data is the most important of the sets and is
used to teach the model the features of what it is trying
to classify. The validation data is for evaluating the
model’s performance – giving it a test and checking its
responses against an answer key [7, p. 133]. The test
data is then used for one last evaluation of
performance; it is separate from the validation data to
identify potential overfitting (training the model to be
too accurate for a specific dataset with a loss of
generality) in the previous two sets.14 Research
suggests that roughly 70-80% of data should be used
as training data [36], with the rest being used to
evaluate the model via testing and validation.

These splits can be modeled as cutting across the
data both horizontally and vertically, as pictured in
Figure 6.

14 The definition and usage of the validation set is not very
consistent across machine learning applications (here I have used
Chollet’s definitions). However, the validation and testing sets are

Fig. 6: Splitting train/test/validation data by type
of astronomical object

The other, larger, challenge in data
preparation is converting the images to an input format
the machine can actually use. We will accomplish both
these tasks in the same command, using Keras’
image_dataset_from_directory()
function. Given properly sorted directories (train, test,
validate folders each with a folder per classification
set), this will apportion the data into the various sets
for the model and convert the image into batched
tensors of a common size based on RBG data from our
standard image format [7, p. 217].

Fig. 7: Sample directory

1) Tensor Conversion: While the computer
converts the images automatically, it is worth
understanding what is happening under the hood.
Every color can be modeled as a combination of red,
green, and blue. The standard format is to specify the
amount of each of these colors needed on a 0-255
scale. The appropriate combinations of each can then
display any color (this is how your computer screen
works). For each pixel then,
image_dataset_from_directory()
specifies the color as a combination of RGB values in
a quantifiable form. These will each be stored as a
vector with 3 channels (values) in the format [R, G,
B]. The pixel’s position in the image is then stored by

conceptually very similar, so data splitting is often referred to only
as a dichotomy of testing and training.

→ train

→ test

→ validation

→ galaxies

→	stars

→ nebulae

→ galaxies

→	stars

→ nebulae

→ galaxies

→	stars

→ nebulae

row and column, where each pixel is stored as an entry
in another vector representing the row. Each row is
also a vector and so the image data can be easily
accessed where the index of the pixel within the row
corresponds to the column and the index of the vector
containing the pixels corresponds to the row. Thus,
each pixel can be accessed with two indices and
individual channel values can be accessed as the
internal values of a three-dimensional vector (for
example, pixel[0][0][0] would access the value
of red of the first pixel in the first row).

2) Data Augmentation: One of the biggest
challenges in creating a machine learning model is
supplying it with sufficient data. When working with
small datasets, we can mitigate this problem by
artificially inflating the number of images for the
model to work on. Data augmentation can distort the
original images and give them back to the model as
new images to work on. This technique not only
increases the size of your training set but also trains
the model for non-standardized data. This is of less
concern for astronomical images which do not
necessarily have a proper orientation or zoom level but
it is still useful.15 To accomplish this in this context,
the images are flipped both horizontally and vertically,
randomly rotated by a random value within ±10%,
and zoomed in or out by a random factor of ±20%.

C. Training

Training the neural network is the step requiring
the most amount of care from a technological
perspective. Here we have followed Chollet’s example
of a very simple convolution network [7, p. 223]. After
augmenting the data, the model first adjusts the RGB
values by dividing each by 255, which results in every
value being in the range [0, 1], a far more regular scale
than [0, 255] which is derived from binary storage
limitations and arbitrary to the task at hand.

Thus far we have only converted the format of our
images and rescaled them to be more accessible to the
computer. It is now time to manipulate them with the
layers characteristic of a deep neural network.

1) Convolution Layers: The first key layer we
apply is a Conv2D layer (aka a convolution layer).
Each convolution layer learns local patterns derived
from small subsets of the image. According to Chollet,
convolution layers have two key characteristics: first,
“the patterns they learn are translation invariant” –
meaning they can recognize the pattern anywhere in

15 A more traditional use case for augmentation is trying to
recognize objects where input images are always right side
up…the dog is still a dog even if it’s upside down.

the image; and second, “they can learn spatial
hierarchies of patterns” – meaning deeper convolution
layers can recognize patterns of earlier layers [7, p.
205].

The importance of this second property is not to be
understated. When I described earlier the different
ways in which humans and computers recognize
objects, I suggested that in describing what makes a
dog a dog, you might point out features like its paws,
legs, and tail. In fact, the way we recognize things may
not be that different from computers as this is what
hierarchical convolution layers are doing. Continuing
with the example of recognizing a dog, shallow
convolution layers (those coming first) might learn
what a dog’s nose looks like by recognizing patterns
that appear consistently in dogs’ noses. Over time, it
learns all sorts of these features and recognizes that
when put together they form a dog.

2) Max Pooling: The other primary type of layer
we work with here is MaxPooling2D (aka max
pooling). As Chollet describes, “max pooling consists
of extracting windows from the input feature maps and
outputting the max value of each channel. [7, p. 209]”
This results in “aggressive downsampling”, i.e.,
reducing the number of parameters in a layer [7, p.
209]. This is important because as our neural network
grows, the number of parameters the computer has to
handle can quickly grow out of proportion. Hence,
(almost) every time we apply a convolution layer, it is
necessary to max pool the resulting feature map. By
taking the maximum value of each channel, the max
pooling carries only the most prominent features of a
layer to the next level which functionally removes
background noise. This has the double effect of
widening the view of the convolution layers since they
will now pay attention to wider patterns – particularly
of lower convolution layers – while processing the
same amount of data. Of course, any data loss process
should be treated with caution, since perhaps the noise
being removed is instead essential data, but this data
removal is what allows for high-level pattern
recognition.

Essentially, hierarchical convolution layers allow
the computer to recognize patterns at the minute level
while also looking at the image as a whole. Max
pooling layers allow for that wider view of the picture
by extracting the most important features from each
layer and discarding the rest.

3) Other Layers

a) Flatten: Before our model is ready for
deployment there are a few layers left to configure.
After our final convolution layer, we have an output
with a shape of (7, 7, 257), a 7 x 7 feature map
with 256 channels each. Flatten condenses this
output to a 1-dimensional vector to pass to the
classifier (remember: so far we have prepared the
image for classification in the way we think is best for
the computer, but we have not yet classified it) [7, p.
203].

b) Dropout: The penultimate step is the
Dropout layer. This is our last line of defense against
overfitting. Developed by Geoff Hinton at the
University of Toronto, the idea of dropout “is to
randomly drop units (along with their connections)
from the neural network during training [37].” Despite
being a fairly simple technique, it has shown
incredible results and will make our model more
accurate.

Fig. 8: the model layers (as shown by
model.summary())

c) Dense: The last layer in the DNN is where the
magic happens: this is where our images are actually
classified. The Dense layer is not just one layer but
instead a series of layers that derive their name from
being densely connected. It takes two arguments that
are of note here: first the number of classification

16 As of writing this actually produces an error related to while
loops. It appears this is a bug in Keras [41] and does not affect the
functionality of the program.

categories we plan on having (3 in this example); and
second, the activation function, a mathematical vector
that tells the neural network what we’re asking it to do
[38], [39]. We have actually been using activation
functions all along with the activation=”relu”
argument we applied to each of our convolution layers.
Since this is a multi-class classification problem
(determining which of multiple classes an object
belongs to rather than sorting it into one of two
categories), softmax is best suited for this task. The
softmax activation asks the model to give a
probability distribution describing the likelihood that
the object in question belongs to each of the applicable
categories [7, p. 108]. Mathematically, softmax is
defined as\

𝜎(𝒛)(=
)!"

∑)!#$
#%&

 for 𝑖 = 1,… , 𝐾 and (𝑧!, … , 𝑧+) 	∈

	ℝ+ (4)

for an input vector 𝑧 of 𝐾 real numbers [40].

d) Sequential: You may also notice that at the top
of our neural network (as seen in Fig. 8), there is a
Sequential layer. This is essentially telling the
DNN to chain the layers we give it together
sequentially and is standard across deep neural
networks [7, p. 63].

D. Evaluation

Of course, the reason we feed the model labeled
data is so we can track how well it can come up with
labels of its own; creating a model without knowing
how well it performs is next to useless. Additionally,
we’re going to be updating our model a lot in an
attempt to make it better, but it’s not always going to
work. To that end, we want to make sure we update
our model only when it gets more accurate, which we
define as having the least amount of loss in our
validation set. To do so, we use the following piece
of code from Chollet [7, p. 219-220]:16
callbacks = [

keras.callbacks.ModelCheckpoint(

filepath="convnet_from_scratch.kera
s",

 save_best_only=True,

 monitor="val_loss")

]

history = model.fit(

 train_dataset,

 epochs=30,

validation_data=validation_dataset,

 callbacks=callbacks)

Finally, we can evaluate the accuracy of the
model over time with our preferred metric (here we
use validation set loss) and compare the accuracies at
each stage to potentially alert us to overfitting.

E. Tuning

In all likelihood, the first version of a model that
we try out is not going to be the best one. Different
techniques work better for different datasets, and
exploring the use of various layers is a great starting
place for future researchers. We have already built in
a functionality to keep only the best of our models, so
it is never a bad idea to continuously improve.
However, one may eventually reach a maximum
generalizable accuracy with the data they have. It is
worth mentioning yet again that overfitting can ruin a
model’s performance on further data and with a small
dataset that threshold of generalizable accuracy may
come sooner rather than later. If the threshold is too
low, adding more data will raise it higher. Once the
desired level of accuracy has been achieved, we are
finished!

VII. CODING ENVIRONMENT

It is expected that all results and methodologies will
be reproducible and are not dependent on operating
system but in the interest of omitting unforeseen
dependencies, all operating environments are provided
below.

The entirety of this project was conducted on a 2019
MacBook Air running the most current version of
MacOS (Ventura 13.0.1 as of writing). The processor
is a 1.6 GHz Dual-Core Intel Core i5 and the memory
is 8 GB (2133 MHz, LPDDR3).

All coding was done in a Jupyter Notebook
environment and written in Python or Bash. Python
was the primary language, but Source Extractor
utilizes a command line interface and so operating it
requires Bash scripting. However, Python allows for
inline Bash calls which was how all Source Extractor
commands after installation were executed. These are
of course operable in the local shell (Command
Prompt for Windows, Terminal for MacOS and
Linux), but doing so requires running commands
individually (one per image) and uploading results into
Python before proceeding. This is an obvious

inefficiency and placing the execution commands into
Python allows for easy looping and processing without
exiting the kernel.

VIII. SOURCING IMAGES

In the interest of first developing terminology and
an understanding of applicable tools, I have neglected
to discuss how astronomical images were/ought to be
sourced. As previously mentioned, all images were
downloaded from Astrometry, which hosts large
quantities of high-quality images. In truth, there is not
much of a methodology for finding images on a
systematic level. By default, Astrometry sorts images
by the most recent date of upload and this ought to be
sufficient in yielding quantities of images to comb
through. I am unaware of any systematic bias recency
may have on the model since images in FITS format
are necessarily of high quality and there have been few
major changes that would affect newer images.

However, there are best practices that may be of use
in selecting images for model usage. Images that have
prominent objects are easy for the model to identify
and provide high-resolution data, which often makes a
model more accurate.

Fig. 9: A prominent galaxy [42]

Conversely, it is advantageous to avoid
overly crowded images. Small objects in large fields
are difficult to distinguish from one another, especially
when using two programs that may define coordinates
and radii differently.

Fig. 10: A crowded image [43]

There are no inherent limitations on which images
the model can use – some are just more useful than
others. Likewise, the model may not be able to identify
less distinguishable objects with the same accuracies
as more prominent bodies.

IX. CONCLUSION

We have now accomplished the task we set out to
achieve: developed a framework for machine learning
in an astronomical context and provided a
comprehensive process that takes data from raw FITS
format and turns it into classified individual images.

With limited data, there is still much to do and
further inquiries to pursue before declaring broader
success. Yet the results accomplished thus far are
significant to the development of automated
classification programs for astronomy & astrophysics.
The techniques laid out herein demonstrate that
developing a program capable of classifying
individual astronomical objects is not only possible
but achievable using tools that are freely available to
any dedicated user with basic computer access.

X. LIMITATIONS AND FURTHER INQUIRIES

The astronomical community has a rich history of
collaboration, and it is my hope that this paper
provides a springboard for further inquiries and
development. The opportunities for further
exploration are numerous but likely begin with
processing enough images using the aforementioned
techniques to produce a large enough quantity of data
to instantiate a working machine learning model.

With this in mind, it is worth reviewing limitations
that may arise in future developments.

First, each astronomical image processed with this
algorithm yields a comparatively small number of
labeled object images, meaning a high quantity of

astronomical images is needed to produce a sufficient
data set.

Second, while I have made a good faith attempt to
build an accurate machine learning model, it is
impossible to determine its usefulness until it has a
substantial dataset to work on. I have attempted to
explain clearly and in enough detail the tools and
processes used to construct the model should further
revisions be required after more data have been
acquired.

It should also be noted that Source Extractor is an
incredibly powerful tool with uses far beyond object
recognition. (In fact, it has its own built-in classifier.
However, it has not been updated in quite some time
and faces significant limitations). It may be possible to
use some of these tools to generate more useful data
for the deep neural network. Again, I recommend Dr.
Benne Holwerda’s Source Extractor for Dummies
[24].

Future inquirers may also wish to tinker with the
mathematical conditions imposed to find matches
between Astrometry and Source Extractor objects.
These were found through repeated experimentation
but may be better with different values or by being
replaced altogether.

Despite these limitations, we have now produced a
framework for

1) Extracting color-mapped cutouts of individual
objects in FITS files

2) Labeling those cutouts by object types via API calls
and common astronomical catalogs

3) Training a deep neural network to recognize types
of objects.

These tools allow scientists both amateur and
professional to contribute to the body of knowledge of
astronomical images using publicly available data and
tools and to advance the understanding of our
neighbors near and far in the universe.

APPENDIX A: RED CIRCLE DETECTION – PYTHON
IMPLEMENTATION

Load the image

img =
cv2.imread('/Users/andrewmacpherson
/Downloads/7874916.png')

Convert the image to HSV color
space

hsv = cv2.cvtColor(img,
cv2.COLOR_BGR2HSV)

import os

image_path =
'/Users/andrewmacpherson/Downloads/
7874916.png'

if os.path.exists(image_path):

 print('Image file found')

else:

 print('Image file not found')

Display the HSV image

#cv2.imshow('HSV image', hsv)

#cv2.waitKey(0)

#cv2.destroyAllWindows()

Define the lower and upper bounds
for the red color in HSV

lower_red = np.array([0, 50, 50])

upper_red = np.array([10, 255,
255])

mask1 = cv2.inRange(hsv, lower_red,
upper_red)

lower_red = np.array([170, 50, 50])

upper_red = np.array([180, 255,
255])

mask2 = cv2.inRange(hsv, lower_red,
upper_red)

Combine the masks to get the
final mask for red color

mask = mask1 + mask2

Apply morphological operations to
the mask to remove noise

kernel = np.ones((5,5),np.uint8)

opening = cv2.morphologyEx(mask,
cv2.MORPH_OPEN, kernel)

Detect circles in the image

circles = cv2.HoughCircles(opening,
cv2.HOUGH_GRADIENT, dp=1,
minDist=10, param1=5, param2=3,
minRadius=1, maxRadius=50)

Count the number of circles

if circles is not None:

 num_circles = len(circles[0])

 print("Number of red circles
detected:", num_circles)

else:

 print("No circles detected in
the image.")

APPENDIX B: RED CIRCLE DETECTION –
CONVERSATION WITH CHATGPT

The following is a conversation with ChatGPT asking
it to generate code to detect the number of circles in
an image. The only things I changed were adjusting
param1 and param2 to values of 5 and 3 from 50
and 30, respectively after ChatGPT recommended
that changes could improve results.

Andrew: How could I count the number of items in an
image?

ChatGPT: Counting the number of items in an image
can be a challenging task, and the best approach
depends on the nature of the items you are trying to
count. Here are a few possible ways to approach the
problem:

1. Manual counting: If the items are easily
distinguishable and the image is not too large, you
can simply count them manually by visually
inspecting the image.

2. Object detection: If the items are well-defined and
distinct from the background, you could use
object detection algorithms to identify and count
the objects. Popular object detection frameworks
include YOLO, Faster R-CNN, and RetinaNet.

3. Image segmentation: If the items are overlapping
or have irregular shapes, you could use image
segmentation algorithms to separate the objects
from the background and count them. Popular
image segmentation frameworks include U-Net,
Mask R-CNN, and DeepLab.

4. Counting by color or texture: If the items
have distinct colors or textures that differ from the
background, you could use color or texture-based
methods to count them. This approach may be less
accurate than object detection or image segmentation,
but it can be faster and simpler to implement.

It's worth noting that all of these approaches may
require some level of training or customization to
work well with your specific image dataset.

Andrew: Are you able to count objects in an image?

ChatGPT: As an AI language model, I don't have the
capability to count objects in an image on my own.
However, there are various computer vision
techniques and tools that can be used for object
counting in images. These methods typically involve
deep learning-based object detection or segmentation
models, which can be trained on large datasets of
annotated images to learn how to accurately identify
and count objects of interest in new images. There are
also various pre-trained object detection and
segmentation models available that can be fine-tuned
or applied directly to new images for object counting.

Andrew: Write me code that will detect the number
of red circles in an image of outer space

ChatGPT: Detecting red circles in an image of outer
space can be a challenging task, especially since the
presence of stars and other celestial objects in the
image could make it difficult to distinguish the circles
from the background. Nonetheless, here is some
sample code that could help you get started with
detecting red circles in an image using Python and
OpenCV:

This code first loads the image and converts it to the
HSV color space. It then defines the lower and upper
bounds for the red color in HSV and applies a mask to
the image to isolate the red regions. Morphological
operations are applied to the mask to remove noise, and
circles are detected in the resulting image using the
Hough circle transform. Finally, the number of circles
detected is printed to the console. Note that the
parameters used for Hough circle detection may need to
be adjusted depending on the specifics of your image.

Andrew: Debug this code for me:

import cv2

import cv2
import numpy as np

Load the image
img = cv2.imread('space_image.jpg')

Convert the image to HSV color
space
hsv = cv2.cvtColor(img,
cv2.COLOR_BGR2HSV)

Define the lower and upper bounds
lower_red = np.array([0, 50, 50])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv, lower_red,
upper_red)

lower_red = np.array([170, 50, 50])
upper_red = np.array([180, 255,

Define the lower and upper bounds
for the red color in HSV
lower_red = np.array([0, 50, 50])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv, lower_red,
upper_red)

lower_red = np.array([170, 50, 50])
upper_red = np.array([180, 255,
255])
mask2 = cv2.inRange(hsv, lower_red,
upper_red)

Combine the masks to get the final
mask for red color
mask = mask1 + mask2

Apply morphological operations to
the mask to remove noise
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(mask,
cv2.MORPH_OPEN, kernel)

Detect circles in the image
circles = cv2.HoughCircles(opening,
cv2.HOUGH_GRADIENT, dp=1,
minDist=50, param1=50, param2=30,
minRadius=0, maxRadius=0)

Count the number of circles
num_circles = len(circles[0])

print("Number of red circles
detected:", num_circles)

import numpy as np

Load the image

img = cv2.imread('space_image.jpg')

Convert the image to HSV color space

hsv = cv2.cvtColor(img,
cv2.COLOR_BGR2HSV)

Define the lower and upper bounds for
the red color in HSV

lower_red = np.array([0, 50, 50])

upper_red = np.array([10, 255, 255])

mask1 = cv2.inRange(hsv, lower_red,
upper_red)

lower_red = np.array([170, 50, 50])

upper_red = np.array([180, 255, 255])

mask2 = cv2.inRange(hsv, lower_red,
upper_red)

Combine the masks to get the final mask
for red color

mask = mask1 + mask2

Apply morphological operations to the
mask to remove noise

kernel = np.ones((5,5),np.uint8)

opening = cv2.morphologyEx(mask,
cv2.MORPH_OPEN, kernel)

Detect circles in the image

circles = cv2.HoughCircles(opening,
cv2.HOUGH_GRADIENT, dp=1,
minDist=50, param1=50, param2=30,
minRadius=0, maxRadius=0)

Count the number of circles

num_circles = len(circles[0])

print("Number of red circles detected:", num_circles)

ChatGPT: There are a few things that could be
causing issues with this code:

1. The image path: The image path specified in the
cv2.imread function may not be correct. Make
sure that the image is located in the same directory
as the Python script or specify the full path to the
image.

2. No circles detected: It's possible that the Hough
circle transform is not detecting any circles in the
image. This could be due to factors such as
insufficient contrast or too much noise in the
image. You can try adjusting the parameters for
Hough circle detection or applying additional
preprocessing steps to improve circle detection.

3. Error with accessing circles[0]: If no circles are
detected in the image, circles will be None and
trying to access circles[0] will result in an error.
To avoid this, you can add a check to see if circles
is not None before attempting to access circles[0].

Here’s an updated version of the code that addresses
these issues:

import cv2
import numpy as np

Load the image
img = cv2.imread('space_image.jpg')

Convert the image to HSV color
space
hsv = cv2.cvtColor(img,
cv2.COLOR_BGR2HSV)

Define the lower and upper bounds
for the red color in HSV
lower_red = np.array([0, 50, 50])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv, lower_red,
upper_red)
lower_red = np.array([170, 50, 50])
upper_red = np.array([180, 255, 255])

This updated version of the code includes a check to
see if circles is None before attempting to access
circles[0]. It also includes an additional print
statement in case no circles are detected in the image.

Andrew: What do the masks in this code do?

ChatGPT: The masks in this code are used to filter
out all pixels in the image that are not within a
specified range of red colors in the HSV color space.

First, the image is converted to HSV color space using
the cv2.cvtColor function. This is because HSV color
space separates color information into three
components: hue, saturation, and value. In this case,
we are interested in the hue component, which
represents the color itself.

Next, two masks are created using the cv2.inRange
function. These masks are binary images that are white
wherever the original image falls within the specified
lower and upper bounds, and black everywhere else.
The mask1 and mask2 in the code are used to detect
red colors that fall within the lower and upper hue
values of 0-10 and 170-180, respectively. These values
were chosen because the hue values for red colors fall
within these ranges in the HSV color space.

Finally, the two masks are combined using the +
operator to get the final mask for red color. This mask
is a binary image that is white wherever the original
image falls within either of the specified hue ranges,
and black everywhere else. This final mask is then
used for further processing, such as circle detection
using the Hough transform.

Andrew: How can I view the HSV color space in this
code?

ChatGPT: You can view the HSV color space in this
code using the cv2.imshow function to display the
image after it has been converted to the HSV color
space. Here's an example of how you can modify the
code to display the HSV image:

mask2 = cv2.inRange(hsv, lower_red,
upper_red)

Combine the masks to get the final
mask for red color
Apply morphological operations to
the mask to remove noise
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(mask,
cv2.MORPH_OPEN, kernel)

Detect circles in the image
circles = cv2.HoughCircles(opening,
cv2.HOUGH_GRADIENT, dp=1,
minDist=50, param1=50, param2=30,
minRadius=0, maxRadius=0)

Count the number of circles
if circles is not None:
 num_circles = len(circles[0])
 print("Number of red circles
detected:", num_circles)
else:
 print("No circles detected in
the image.")

Apply morphological operations to
the mask to remove noise
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(mask,
cv2.MORPH_OPEN, kernel)

Detect circles in the image
circles = cv2.HoughCircles(opening,
cv2.HOUGH_GRADIENT, dp=1,
minDist=50, param1=50, param2=30,
minRadius=0, maxRadius=0)

Count the number of circles
if circles is not None:
 num_circles = len(circles[0])
 print("Number of red circles
detected:", num_circles)
else:
 print("No circles detected in
the image.")

import cv2
import numpy as np

Load the image
img = cv2.imread('space_image.jpg')

Convert the image to HSV color
space
hsv = cv2.cvtColor(img,
cv2.COLOR_BGR2HSV)

Display the HSV image
cv2.imshow('HSV image', hsv)

This will display a window showing the HSV color
space representation of the image. You can close the
window by pressing any key. Note that the HSV image
will look different from the original RGB image
because it separates the color information into three
components, as mentioned in my previous answer.

Andrew: Running this code gives me the error
message: Assertion failed) !_src.empty() in function
'cvtColor'

ChatGPT: The error message "Assertion failed)
!_src.empty() in function 'cvtColor'" means that the
image you are trying to convert to the HSV color space
is empty or does not exist in the specified file path.

You should check the following:

1. Make sure that the file name and file path are
correct and that the image is in the specified
location. You can check the file path by using the
os.path.exists function:

2. Make sure that the image file is in a format that
OpenCV can read. OpenCV can read most
common image formats, such as JPEG, PNG, and
BMP.

3. Make sure that the image file is not empty. You can
check the size of the image file by using the
os.path.getsize function:

import cv2
import numpy as np

Load the image
img = cv2.imread('space_image.jpg')

Convert the image to HSV color
space
hsv = cv2.cvtColor(img,
cv2.COLOR_BGR2HSV)

Display the HSV image
cv2.imshow('HSV image', hsv)
cv2.waitKey(0)
cv2.destroyAllWindows()

Define the lower and upper bounds
for the red color in HSV
lower_red = np.array([0, 50, 50])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv, lower_red,
upper_red)

lower_red = np.array([170, 50, 50])
upper_red = np.array([180, 255,
255])
mask2 = cv2.inRange(hsv, lower_red,
upper_red)

Combine the masks to get the final
mask = mask1 + mask2

Apply morphological operations to
the mask to remove noise
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(mask,
cv2.MORPH_OPEN, kernel)

Detect circles in the image
circles = cv2.HoughCircles(opening,
cv2.HOUGH_GRADIENT, dp=1,
minDist=50, param1=50, param2=30,
minRadius=0, maxRadius=0)

Count the number of circles
num_circles = len(circles[0])

print("Number of red circles
detected:", num_circles)

print("Number of red circles
detected:", num_circles)

import os

image_path = 'path/to/image.jpg'

if os.path.exists(image_path):
 print('Image file found')
else:
 print('Image file not found')

import os

image_path = 'path/to/image.jpg'

if os.path.getsize(image_path) > 0:
 print('Image file not empty')
else:
 print('Image file empty')

If you have confirmed that the image file exists, is in a
supported format, and is not empty, you may need to
check the syntax of your code to make sure that the
image is being read and loaded correctly.

Andrew: How fast should the program you wrote
run?

ChatGPT: The speed of the program I wrote for
detecting the number of red circles in an image can
vary depending on several factors, including the size
of the image, the number of circles in the image, and
the performance of the computer running the program.

In general, however, the program should run relatively
quickly for typical image sizes and numbers of circles.
The most time-consuming parts of the program are
usually the morphological operations and the circle
detection algorithm. The Hough circle detection
algorithm has a time complexity of O(n^2), which
means that the processing time increases quadratically
with the number of pixels in the image. However,
OpenCV's implementation of the algorithm is
optimized for speed and can handle images with large
numbers of pixels relatively quickly.

In most cases, the program should be able to detect the
number of red circles in an image within a few seconds
to a few minutes, depending on the factors mentioned
above. If the program is taking too long to run, you
may want to consider optimizing the parameters of the
circle detection algorithm or using a faster computer
or graphics processing unit (GPU) for processing the
image.

Andrew: I ran the code you gave me and it found the
image file but found no circles

ChatGPT: If the program was not able to detect any
circles in the image, there are several possible reasons
why this might have happened:

1. The red circles in the image may be too small or
too large to be detected by the circle detection
algorithm. You can try adjusting the minRadius
and maxRadius parameters in the
cv2.HoughCircles function to account for this.

2. The red circles in the image may be too faint or too
bright to be detected by the color thresholding

process. You can try adjusting the lower_red and
upper_red bounds in the HSV color space to
account for this.

3. There may be other objects or features in the image
that are being detected as circles, which are not
actually red circles. You can try adjusting the
morphological operations to remove noise and
non-circular features from the image.

4. The red circles in the image may be partially
obscured or hidden from view by other objects or
features in the image. In this case, it may not be
possible to detect all of the circles in the image
using the circle detection algorithm alone.

To troubleshoot the issue, you can try visualizing the
intermediate steps of the image processing pipeline,
such as the thresholded mask and the morphological
operations, to see if there are any issues with these
steps that are preventing the circles from being
detected. Additionally, you can try using a different
image or a subset of the image to test the program and
see if it is able to detect circles in that case.

Andrew: What size of circle did you ask the program
to detect?

ChatGPT: In the code I provided, the minRadius and
maxRadius parameters in the cv2.HoughCircles
function were set to 0, which means that the algorithm
will try to detect circles of any size.

If you want to detect circles of a specific size range,
you can adjust these parameters accordingly. For
example, setting minRadius and maxRadius to 10
and 50, respectively, would tell the algorithm to only
look for circles with radii between 10 and 50 pixels.
Note that the appropriate range of radii depends on the
size of the circles in the image you are trying to detect,
so you may need to experiment with different values
to get the best results.

Andrew: What does minDist represent?

ChatGPT: The minDist parameter in the
cv2.HoughCircles function represents the minimum
distance between the centers of detected circles.

When the Hough Circle Transform algorithm is
applied to an image, it can detect multiple circles that
overlap or are located close to each other. To avoid
detecting the same circle multiple times, the algorithm

else:
 print('Image file empty')

enforces a minimum distance between the centers of
the detected circles.

The minDist parameter specifies the minimum
distance between the centers of the detected circles, in
pixels. If two circles are detected with centers closer
than this distance, only the circle with the stronger
edge response will be returned.

The appropriate value for minDist depends on the size
of the circles you are trying to detect and the amount
of overlap between circles in the image. Setting a small
value for minDist will allow the algorithm to detect
circles that are close together, but may result in
duplicate detections. Setting a larger value for
minDist will reduce the likelihood of duplicate
detections, but may cause some circles to be missed.

Andrew: What do param1 and param2 represent?

ChatGPT: The param1 and param2 parameters in
the cv2.HoughCircles function control the sensitivity
and accuracy of the circle detection algorithm.

• param1 represents the threshold for the edge
detection stage of the algorithm. This value
determines how strong the edges in the image
need to be in order to be considered for circle
detection. Increasing param1 will result in the
algorithm being more selective about which edges
are considered, which can improve accuracy but
may also result in some circles being missed.

• param2 represents the threshold for the circle
detection stage of the algorithm. This value
determines how strong the accumulation of edge
points needs to be in order for a candidate circle
to be considered a valid detection. Decreasing
param2 will result in the algorithm being more
lenient about which edge accumulations are
considered, which can improve sensitivity but
may also result in false detections.

The appropriate values for param1 and param2
depend on the characteristics of the image you are
trying to detect circles in, such as the amount of noise
and the contrast between the circles and the
background. You may need to experiment with
different values to find the best combination for your
particular image.

Andrew: Can I export our conversation?

ChatGPT: I'm sorry, but as an AI language model, I
don't have the capability to export our conversation.
However, you can select and copy the text from this
chat and paste it into a text file or any other application
that you prefer.

Andrew: How should I cite our conversation?

ChatGPT: As an AI language model, I don't have an
official citation format, but you can cite our
conversation by including the following information:

• Name of the AI model: ChatGPT
• Developer: OpenAI
• Date of the conversation: [Insert the date of the

conversation here]
• URL or other identifying information, if

applicable: [Insert any relevant URL or other
identifying information, such as the platform or
application where the conversation took place]

Here's an example citation in APA style:

OpenAI. (n.d.). ChatGPT. Retrieved [insert date of
conversation here], from [insert platform or
application where conversation took place]

Alternatively, you can check with the guidelines of the
specific style guide you are using to determine the
appropriate citation format.

APPENDIX F: OBJECT SUBCLASSIFICATIONS AND
GENERALIZATIONS

Galaxy

Spiral galaxy

Lenticular galaxy

Elliptical galaxy

Barred spiral galaxy

Galaxy

Irregular galaxy

Interacting galaxy

Barred lenticular galaxy

Interacting galaxies

Intermediate spiral galaxy

Unbarred spiral galaxy

Seyfert galaxy

Unbarred lenticular galaxy

Lenticular

Intermediate lenticular galaxy

Barred Magellanic spiral galaxy

Barred irregular galaxy

Ring galaxy

Spiral galaxy occulted by another spiral galaxy

Barred spiral

Barred Magellanic irregular galaxy

Grand design spiral galaxy

Dwarf galaxy

Elliptical

Disk galaxy

Spiral galaxy, peculiar

Lenticular galaxy pair

Lenticular galaxy/Spiral galaxy

Dumbbell galaxy

Peculiar galaxy/Lenticular galaxy

Radio galaxy

Dwarf elliptical galaxy

Barred lenticular LINER galaxy

Starburst galaxy

Magellanic spiral

Intermediate lenticular galaxy

Dwarf spheroidal galaxy

Spiral arm

Asterism

Asterism

Asterism of four stars, mistaken for a galaxy

Asterism, mistaken for an open cluster

Unknown, possibly an asterism

Cluster

Globular cluster

Open cluster

Star cluster

Star cluster candidate

Diffuse nebula and star cluster

Nebula

Planetary nebula

Diffuse nebula

Emission nebula

Reflection nebula

Nebula

Star

Star

Double star

Association of stars

Triple star

Multiple star

Possible double star

Binary star

Stellar association

Other

Interstellar matter

Supernova remnant

Star forming region

Variable star and diffuse nebula

Star cloud

N/A

Unknown

non-existent

Doesn't exist

Nonexistent

(Identification uncertain)

ACKNOWLEDGEMENT

I owe a big thanks to a great many people,
starting first and foremost fellow researchers Susan
Nash and Cadence Moore whose support and feedback
were invaluable to my research.

I’m also very grateful to each of my advisors
for all the time and effort they each volunteered to help
me. Drs. Lisa Goodhew, John Lindberg, Dennis
Vickers, and Christine Chaney were all instrumental
in helping me navigate professional research and
writing and in providing insight when I needed a
sounding board.

I am also thankful to Emmanuel Byers
(creator of Source Extractor), Dustin Lang
(Astrometry), and Dr. Douglas Downing (SPU) for
their knowledge, to Tayler Quist of Blue Origin for her
mentorship in this project and my career, and to
Anthony Rinaldi for his technical abilities and the
inspiration for the degrees I am in. Thank you also to
my editors for helping turn my thoughts into a polished
academic paper. Lastly, I am eternally grateful for
each of my friends and my family for their support
throughout this process

REFERENCES

[1] Petroc Taylor, “Volume of Data/Information
Created, Captured, Copied, and Consumed
Worldwide from 2010 to 2020, with Forecasts
from 2021 to 2025,” IDC & Statista, Jun. 2021.
[Online]. Available: https://www.statista.com/
statistics/871513/worldwide-data-created/

[2] Zooniverse, “About,” Zooniverse. https://www.
zooniverse.org/about

[3] OpenAI, “GPT-4.” OpenAI, Mar. 14, 2023.
[Online]. Available: https://openai.com/
research/gpt-4

[4] High Energy Astrophysics Science Archive
Research Center, “The FITS Support Office at
NASA/GSFC.” National Aeronautics and Space
Administration. [Online]. Available: https://fits.
gsfc.nasa.gov

[5] IAU FITS Working Group, “IAU.”
International Astronomical Union. [Online].
Available: https://fits.gsfc.nasa.gov/iaufwg/
iaufwg.html

[6] Science Mission Directorate, “Visible Light.”
National Aeronautics and Space
Administration, 2010. [Online]. Available:
https://science.nasa.gov/ems/09_visiblelight

[7] François Chollet, Deep Learning with Python,
Second Edition. Shelter Island, NY: Manning
Publications, 2021.

[8] A. Turing, “Memorandum to OP-20-G on Naval
Enigma (c.1941),” in The Essential Turing,
Oxford University Press, 2004. doi:
10.1093/oso/9780198250791.003.0013.

[9] H. Shevlin, K. Vold, M. Crosby, and M. Halina,
“The Limits of Machine Intelligence: Despite
Progress In Machine Intelligence, Artificial
General Intelligence is Still a Major Challenge,”
EMBO Rep., vol. 20, no. 10, Oct. 2019, doi:
10.15252/embr.201949177.

[10] OpenAI, “Generative Pre-trained Transformer.”
OpenAI, 2021. [Online]. Available:
https://openai.com/blog/gpt-3-apps/

[11] B. Dayma et al., “Borisdayma/Dalle-Mini:
Initial Release.” Zenodo, Jul. 29, 2021. doi:
10.5281/ZENODO.5146400.

[12] Kevin Roose, “A Conversation With Bing’s
Chatbot Left Me Deeply Unsettled,” The New
York Times, Feb. 17, 2023. [Online]. Available:
https://www.nytimes.com/2023/02/16/technolo
gy/bing-chatbot-microsoft-chatgpt.html

[13] “Astrometry User Images,” Astrometry.
https://nova.astrometry.net/user_images

[14] Dustin Lang, “astrometry/net/api.py.”
Astrometry, Sep. 07, 2022. [Online]. Available:
https://github.com/dstndstn/astrometry.net/blob
/main/net/api.py#L462

[15] “Yale Bright Star Catalog.” Harvard University.
[Online]. Available: http://tdc-www.harvard
.edu/catalogs/bsc5.html

[16] George O. Abell, Harold G. Corwin Jr., and
Ronald P. Olowin, “A Catalog of Rich Clusters
of Galaxies,” Astrophys. J. Suppl., vol. 70, May
1989, doi: 10.1086/191333.

[17] Browse Software Development Team, “HDEC
- Henry Draper Extension Charts Catalog.”
NASA Goddard Space Flight Center, Nov. 23,
2022. [Online]. Available: https://heasarc.gsfc
.nasa.gov/W3Browse/star-catalog/hdec.html

[18] E. Høg et al., “The Tycho-2 catalogue of the 2.5
million brightest stars,” Astron. Astrophys., vol.
355, pp. L27-L30 (2000), Mar. 2000.

[19] Wolfgang Steinicke, “Revised New General
Catalogue and Index Catalogue.” NGC/IC
Project, Mar. 20, 2023. [Online]. Available:
http://www.klima-luft.de/steinicke/ngcic/
rev2000/Explan.htm

[20] Hartmut Frommert, “The Interactive NGC
Catalog Online.” Students for the Exploration
and Development of Space. [Online]. Available:
http://spider.seds.org/ngc/ngc.html

[21] AstroBin, "tmpdygg3587 " (Submission
7133065). 2023. [Photograph]. Available:

https://nova.astrometry.net/user_images/73044
70#redgreen

[22] AstroBin, "tmpdygg3587 " (Submission
7133065). 2023. [Photograph]. Available:
https://nova.astrometry.net/user_images/73044
70#annotated

[23] AstroBin, "tmpdygg3587 " (Submission
7133065). 2023. [Photograph]. Available:
https://nova.astrometry.net/user_images/73044
70#extraction

[24] Benne W. Holwerda, “Source Extractor for
Dummies.” Space Telescope Science Institute.
[Online]. Available: http://astroa.physics.metu
.edu.tr/MANUALS/sextractor/Guide2source_e
xtractor.pdf

[25] Max Howell, “Homebrew.” [Online].
Available: https://brew.sh

[26] Emmanuel Bertin, “Source Extractor.” GitHub.
[Online]. Available: https://github.com/
astromatic/sextractor

[27] Dustin Lang, David W. Hogg, Keir Mierle,
Michael Blanton, and Sam Roweis,
“Nova.astrometry.net: API.” [Online].
Available: http://astrometry.net/doc/net/api
.html

[28] Vishal Hule, “Parse a JSON Response Using
Python Requests Library.” PyNative.com, May
14, 2021. Accessed: Feb. 13, 2023. [Online].
Available: https://pynative.com/parse-json-
response-using-python-requests-library/

[29] The Astropy Collaboration et al., “The Astropy
Project: Sustaining and Growing a Community-
oriented Open-source Project and the Latest
Major Release (v5.0) of the Core Package,”
2022, doi: 10.48550/ARXIV.2206.14220.

[30] The Astropy Collaboration et al., “The Astropy
Project: Building an inclusive, open-science
project and status of the v2.0 core package,”
2018, doi: 10.48550/ARXIV.1801.02634.

[31] The Astropy Collaboration et al., “Astropy: A
Community Python Package for Astronomy,”
2013, doi: 10.48550/ARXIV.1307.6212.

[32] The Astropy Developers, “Cutout2D.” Astropy.
[Online]. Available: https://docs.astropy.org/
en/stable/api/astropy.nddata.Cutout2D.html

[33] Andrew Macpherson, “Astronomical
Identification ML Appendixes.” GitHub, May
01, 2023. [Online]. Available:
https://github.com/admacpherson/Astronomica
l-Identification-ML/tree/main/Appendixes

[34] John Hunter and Darren Dale, “Choosing
Colormaps in Matplotlib.” The Matplotlib
Development Team. [Online]. Available:
https://matplotlib.org/stable/tutorials/colors/col
ormaps.html

[35] Gavin Edwards, “Machine Learning | An
Introduction,” Towards Data Science, Nov. 18,
2018. https://towardsdatascience.com/machine-
learning-an-introduction-23b84d51e6d0

[36] Afshin Gholamy, Vladik Kreinovich, and Olga
Kosheleva, “Why 70/30 or 80/20 Relation
Between Training and Testing Sets: A
Pedagogical Explanation.” University of Texas
- El Paso, Feb. 2018. [Online]. Available:
https://scholarworks.utep.edu/cs_techrep/1209/

[37] G. E. Hinton, N. Srivastava, A. Krizhevsky, I.
Sutskever, and R. R. Salakhutdinov,
“Improving Neural Networks By Preventing
Co-Adaptation of Feature Detectors.” arXiv,
University of Toronto, Toronto, ON, Jul. 03,
2012. Accessed: Apr. 22, 2023. [Online].
Available: http://arxiv.org/abs/1207.0580

[38] Christopjer Pere, “What is activation
function?,” Towards Data Science, Jun. 09,
2020. https://towardsdatascience.com/what-is-
activation-function-1464a629cdca

[39] François Chollet, Keras, 2015. [Online].
Available: https://keras.io/api/layers/
core_layers/dense/

[40] Wikipedia contributors, “Softmax function ---
Wikipedia, The Free Encyclopedia.” Wikipedia,
2023. [Online]. Available: https://en.wikipedia
.org/wiki/Softmax_function

[41] Willy Lutz and AndrzejO,
“WARNING:tensorflow:Using a while_loop
for Converting Cause There Is No Registered
Converter for This Op,” stack overflow.
https://stackoverflow.com/questions/73770146/
warningtensorflowusing-a-while-loop-for-
converting-cause-there-is-no-registere

[42] AstroBin, "tmphs_u_rtl " (Submission
7580801). 2023. [Photograph]. Available:
https://nova.astrometry.net/user_images/77496
08#original

[43] anonymous, "00_dovesono.fit " (Submission
7611192). 2023. [Photograph]. Available:
https://nova.astrometry.net/user_images/77798
06#original

APPENDIX G: SEATTLE PACIFIC UNIVERSITY HONORS SYMPOSIUM PRESENTATION

Presented orally on May 20, 2023 at Seattle Pacific University to the 3rd Annual Honors Symposium as part of the
panel “How Does Truth Grow?: Evolution and Adaptations of Knowledge”

Good morning, thank you so much for being here.

I’m excited to have the opportunity to share with you all what I’ve been working on over the past year alongside
these illustrious other scholars. While our topics are quite different and we occupy a wide range of disciplines, we
all share a mind for the liberal arts and see common themes among our work. It is our hope that, through the
presentation of our work, we can make these connections apparent and challenge your perceptions of discontinuity
between disciplines.

As you may have seen in your programs, I have the pleasure of talking about Artificial Intelligence – AI – and the
good fortune to have spent a year researching a topic that most people have only cared about for 6 months. You’ve
probably heard a lot about AI in this last half-year or so but unless you’re as exceptionally intrigued by it as I am,
may not have spent time deciphering and unpacking every piece of it.

The term AI means a lot of things to a lot of people. When I asked my parents what they thought of when they heard
the term, they said, “robots taking over” and “am I going to be able to trust anything I read ever again?” and I think
this tracks with a lot of popular conceptions.

A lot of us picture sentient machines coming to eradicate humanity, or maybe you’ve heard about “the end of High
School English” as students use tools like ChatGPT to cheat on their essays. Some of these concerns are certainly
more warranted than others, but they all fall under the umbrella of AI.

But what is AI? Over my last year of research, I’ve come across all sorts of definitions that all draw different boxes
around what’s included and what’s not. But I want to offer a definition of the term “AI” from François Chollet, the
author of my favorite AI book and several AI tools, that I think captures our doomsday scenarios but also grounds it
in more present applications.

Before I define it, I actually owe a bit of an apology to my mom. I cut off her definition a little bit to make my doom
and gloom point, and because it was a little too similar to my own. Her full response to my question was “robots
taking over human activities.” What I came up with after a full year is “the effort to automate individual tasks
normally performed by humans.” …So my mom may have a future as an AI researcher if she wants it.

But I think this definition captures a lot. Automating human tasks is not inherently a bad thing. So much of what we
interact with on a daily basis is built on automating jobs people used to do or maybe never would have done in the
first place.

Every time you swipe your credit card, your bank uses an AI to check for fraudulent activity instantly rather than
having someone sort through paper logs all day.

Every time you open Facebook or Twitter, you’re served a personalized feed based off what a machine thinks you
would enjoy most. I wasn’t in those social media boardrooms, but I don’t think having a single guy behind the
computer arranging all the tweets was ever on the table.

But think about the last time you bought a book…how did you hear about it? For some of us, it may have been a
friend, or we stepped into a bookstore and picked something out from the staff recommendations shelf. Or maybe it
was the Amazon recommendations or something you saw on social media. Whether we like it or not, whether we
realize it or not, AI is already part of our lives, and its role will only continue to expand.

I want to talk more about what an AI revolution means in our modern age, but I think it may be helpful to examine a
case study with ideas about the construction of knowledge in mind.

My research hasn’t just covered AI generally but specifically expanding and applying this technology to my other
area of focus: outer space.

As we enter into an age of Big Data, the field of analytics has seen its mission change: rather than dealing with the
challenges of too little information, we’re more often dealing with too much of it. When there are millions or
billions of data points, how are we supposed to make sense of this sea of information? How do we determine which
is useful and when?

The field of astrophysics is not unique in facing this problem. Amidst a flood of images, humans simply no longer
possess the resources to catalog and analyze every one of them. Astronomers might be able to recognize a galaxy or
a nebula in a single image but what if it’s in a group of a thousand others? What about when there are ten thousand
images?

This is the context I want to apply AI to. Classification is something computers are actually really good at.

But they don’t learn in the same way as you or I. If I showed you a hundred photos that were all of either a dog or
cat, you could pretty confidently separate them into two categories. But try describing exactly what makes them
different from each other or from any and every other animal without leaving any actual dogs or cats out. Can you
come up with a definition that includes both golden retrievers and chihuahuas? What about if the dog is missing
something like a leg or tail?

I don’t think many of us would mistake a three-legged dog for a cat but if you’ve told a computer that a dog always
has four legs then showed it a three-legged dog, it would have no idea what it was looking at.

To solve this explicit definition problem, I used a technology called deep neural networks, which belong to a
subfield of machine learning, a broad term referring to anything in AI where the program can receive feedback and
improve itself from it. I won’t delve into the technical details here – though if you’re curious they’re all laid out in
my paper – but we are in essence giving the computer a quiz.

If we show it a hundred dogs and a hundred cats and ask it to categorize them, at first it will be randomly guessing
which one each is. But if each time we tell it the correct answer afterwards, eventually it will start to pick up
patterns. It will start learning features in images that give it clues to the right answer. And this is what I’m doing in
the context of astronomy. We have lots of photos of things we know are galaxies and stars and nebulae that we can
use to teach the computer. I spent a large part of my project figuring out how to extract photos of those individual
bodies and label them in a way the neural network understands. But once we’ve prepared lots and lots of those
images and given them to the machine, it will start to pick up distinguishing features of each object. The idea is to
gradually filter each image from something you and I can look at to something the computer can recognize patterns
from.

The term neural network actually comes from what this technique was modeled after: the human brain. The model is
built of a series of “neurons” that each perform an individual operation that slightly changes the image. When series
of neurons work together, they form layers that perform recognizable large-scale changes to the image that are
useful for machine learning.

But though it’s modeled after the human brain, how much is this neural network actually “learning?” Stepping back
further, what does it mean to learn? Does the computer actually know what a galaxy or a star is, or did it just learn to
pass the tests we gave it?

Without being an astrophysicist, you could still probably tell me stars and galaxies aren’t the same thing and offer a
cursory definition of each. But to the computer, the difference in a star and a galaxy is just a set of clues in the image
data, not anything intrinsic that describes the real world. To a computer, both of these are just pixels on a screen but
to you and I, they define our place in the universe.

With enough data, deep neural networks can get better at their tasks than any person ever could, but is it fair to say
they know more?

Many of you may be familiar with ChatGPT, the program I mentioned earlier that you can ask questions of like a
person and get really accurate and specific knowledge from. But even though we can learn from the information the
program gives us, does it know it? How can we learn from a teacher that doesn’t possess knowledge?

I think this reveals another scary feature of artificial intelligences: because they don’t truly know anything, there’s
no guarantee the information is accurate. It’s learned to pass enough tests that it can generally give you an answer
that at least sounds right…and usually is. But if you ask it where it got its information from, it doesn’t always know.

Neural networks are often called black boxes because, while we know what data we gave it and what we asked it to
do, we don’t know exactly how it does it.

I have up here a simplified diagram of a neural network but when there are thousands of data points and hundreds of
layers, it becomes literally impossible to keep track of the flow of information.

Or when the input is the entirety of what’s available online, we might not know what we even gave it. This is why
chatbots often become quickly problematic. A few years ago, Microsoft unveiled a Twitter bot called Tay that
learned from the speech patterns of users who interacted with it. But when users started posting hateful content, the
bot quickly started echoing it, spouting Nazi propaganda and harmful conspiracy theories.

Chatbots aren’t people. It may seem obvious to say that but what’s stopping Tay from saying those things? As far as
“she’s” concerned, she’s getting better. She is emulating not only speech from real Twitter users but actual
viewpoints. She doesn’t know that her words can cause real harm and that they correspond to things in the physical
world that real people are affected by.

I don’t mean to sound down about the future of artificial intelligence or scare you too much. But I do hope it scares
you a little bit. AI, like any other technology, is an inherently neutral thing. Whether it becomes a tool for good or
for evil depends entirely how we use it.

In this way, I like to compare it to the Internet. Many of us, including myself, cannot remember a time before
Google, but if you do, think about whether you thought it was a good or a bad thing when it first came out. Think
about how you would classify it now. I think the vast majority of us would say Google has made our lives orders of
magnitude easier and given us access to information we would never have had at a speed the entirety of human
history could not even dare to imagine.

But I don’t have to tell you that Google comes with harm too. The people behind it try to moderate its content as
best they can but they don’t know everything that’s on there. Pornography, not always consensual, is rampant, and
cybercrime steals from millions of people and can cripple whole nations. Is the tradeoff worth it?

 I don’t think many of us would call it societal progress to go back to the pre-search engine days, but that progress
doesn’t come without concurrent harm. The same technology that could be the bedrock of clean energy is also
responsible for nuclear destruction. The morality of technology is exactly what we make it.

I think AI is going to change the way we live in the same way the Internet did. Soon we’ll be wondering how we
ever went about life without it and its incredible utility. But my hope is that along the way, instead of merely asking
what we can do next, that we’ll ask what we should do as well.

I want to leave you with one final thought experiment that’s sat with me for many years. There’s a short story by
Jorge Borges that was published over 75 years ago but still holds tremendous relevance today. It’s called The
Library of Babel and it imagines a library of almost infinite proportion that contains a book for every possible
combination of letters.

Evidently, the vast majority of these books are pure gibberish, but the library must also contain, word for word,
every book ever written, every sentence ever spoken, and every one that’s not. Somewhere it describes every second
of your life in perfect detail but also in complete error in many other copies. Your deepest desires and darkest secrets

are written down but so are the ones that don’t belong to you at all. Shakespeare’s Hamlet is there word for word
along with copies that switch out single words, sentences, or scenes for ones that make no sense at all.

In this world where every novel statement has already been said, where no possible set of words and letters creates a
unique permutation, what does it mean to create? To know? Does Hamlet mean anything if it was randomly
generated?

To the library, as with our computers, none of these combinations mean any more than the others. The difference
between Hamlet and utter gibberish is only in our interpretations of it. Borges wrote his original story in Spanish,
and it didn’t see an English translation until over 20 years later. If you presented that text to someone who spoke
Spanish and to another who didn’t, only one of them would be impacted by it. There is a framework of
understanding necessary to making meaning of anything.

I invite you then to consider what it truly means to know and who or what is capable of it. Consider this question
throughout the presentations of my colleagues and when you read the next headline proclaiming the newest skill AI
is capable of perfecting.

Thank you so much for your time and I’d now like to turn it over to Mr. C.J. Wisely.

	Using Deep Neural Networks to Classify Astronomical Images
	Recommended Citation

	Microsoft Word - Final Paper + Speech | Digital Commons Format.docx

