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Abstract—As the quantity of astronomical data 
available continues to exceed the resources available for 
analysis, recent advances in artificial intelligence 
encourage the development of automated classification 
tools. This paper lays out a framework for constructing 
a deep neural network capable of classifying individual 
astronomical images by describing techniques to extract 
and label these objects from large images. 

Keywords—astronomy, deep neural networks, artificial 
intelligence, machine learning, classification  

I. INTRODUCTION 

In the present age of Big Data, the quantity of 
information available has surpassed an amount even 
the most dedicated analysts can comprehend.1 The 
challenge of data analysis is no longer grappling with 
too little data but has transformed into the problem of 
sense-making amidst a sea of information. As the field 
of astrophysics continues to grow – and the 
technologies it uses with it – so too has a chasm 
between the quantity of data produced and the amount 
scientists can process. Zooniverse, an astronomical 
citizen science site, describes “the major challenge of 
the 21st century” as “dealing with the flood of 
information we can now collect about the world 
around us [2].” 

We are taking more photos of the sky than ever 
before, yet we no longer have the resources to always 
know what’s in them. Amidst a backdrop of thousands 
of stars, only careful analysis may be able to 
distinguish a similar object from those around it. 
Challenges such as these, amidst an ever-growing 
influx of data, implore the development of more 
powerful image processing tools for the field of 
astrophysics.  

Astrophysics research has a rich history of 
collaboration and thrives when its dedicated 
community of amateurs contributes to outstanding 
tasks. Citizen science sites have filled large gaps in 
knowledge (particularly in classification) and 
accelerate the understanding of the field as a whole. 
They allow researchers to “analyze their information 

 
1 Statista, a leading consumer data site, estimates that by the end of 
2023, the world will have “captured, copied, and consumed” over 

more quickly and accurately than would otherwise be 
possible, saving time and resources…leading to faster 
progress and understanding of the world, getting to 
exciting results more quickly [2].” 

The rapidly expanding field of artificial intelligence 
(AI) provides an exciting new frontier for professional 
and citizen scientists alike. New technologies like 
GPT-4 [3] are ushering in a new wave of AI 
technologies and their ever-growing roles in everyday 
life demonstrate unexplored scientific potential for 
astrophysics. 

Presently, astronomical machine learning models 
do exist but have seen limited capabilities. Existing 
tools are predominantly only available to professional 
research scientists at large institutions and their limited 
deployments have not yet caught up with the new 
wave of AI technologies.   

This gap in research tools – especially those 
available to the amateur astronomer – and the limited 
capabilities available even to the most resourceful 
implore the development of modern classification AIs 
in the astronomical disciplines. In this paper, I have 
striven to create a framework for machine learning 
algorithms capable of handling dense astronomical 
image data and categorizing the objects within them. 

II. THEORETICAL BACKGROUND 

A. What are Astronomical Images? 

When analyzing astronomical images (any image 
of outer space), it is useful for scientists to have more 
data available to them than a photo from a typical 
camera would provide. Everyday images are often 
stored in formats like JPEG and PNG, but astronomers 
prefer their own file type: the Flexible Image 
Transport System (aka a FITS file) [4]. Now the 
standard for astronomical imaging, the FITS format 
has been endorsed by NASA and the International 
Astronomical Union [5] and can store large amounts 
of data in various formats, including multi-
dimensional arrays, tables, and header information, all 

120 zettabytes (120 billion trillion bytes, or 1.2 × 10!" bytes) of 
information [1]. 



of which can combine to give astronomers a better idea 
of what they are looking at. 

However, that additional data makes FITS files 
hard to visualize and requires more work than a typical 
photo. For example, FITS images often contain objects 
“photographed” with non-visible light – i.e., colors 
outside what we can see,2 which scientists need to turn 
into an image we can comprehend. Nonetheless, FITS 
files are incredibly useful because a single image can 
contain hundreds or thousands of objects in its field of 
view. Distinguishing these objects from one another 
and extracting them individually is at the heart of this 
project and of immense value to automating any 
classification process. 

B. What is AI? 

The term artificial intelligence (AI) is becoming 
increasingly common in everyday life and yet can 
mean different things depending on the context. 

François Chollet succinctly defines artificial 
intelligence as “the effort to automate individual tasks 
normally performed by humans [7].” Though AI fears 
are on the rise as we enter a new wave of AI 
development, this is not an inherently bad thing and is 
actually responsible for many technologies we rely on 
today. AI technologies are also responsible for 
contributing to major world history events (such as the 
British breaking Nazi codes to gain a tactical 
advantage [8]) and are used for everything from media 
content curation to detecting credit card fraud. 

As with any technology, alongside every beneficial 
application, there is real cause for concern. Yet some 
AI technologies ought to elicit more (or less) concern 
than others. There are many different types of AI, and 
so it is often best to refer to AIs by what sort of 
intelligence they possess. This paper is far from a 
treatise on all the different types of AI, but it is worth 
briefly exploring what certain AIs are and are not. 

C. Generative AI 

The popular image of a self-aware AI often found 
in futuristic doomsday scenarios is referred to by 
scientists as Artificial General Intelligence (AGI). 
Shevlin et al. astutely noted in 2019 that “at a time 
when headline-making AI breakthroughs are an 

 
2 What we call visible light is an electromagnetic wave but most of 
these waves are at frequencies the human eye cannot detect. For 
more, see [6]. 
3 It is rarely a good idea to make predictions about how 
technologies will (or more often - will not) develop but it is a 
widespread consensus and the author’s personal belief that AGI is 
a long, long ways off. 
4 How original this content truly is has sparked numerous ethical 
and artistic debates but it is sufficient to say here that much of the 
content has at least never been made in the format the AI produce. 

almost daily occurrence, it might seem that we are on 
the cusp of living with artificial systems that match or 
exceed human intelligence [9].” Recent advances in 
AI technology like ChatGPT [10] and Dall·E Mini 
[11] may make this feel like more of a reality than 
ever, but it is still a long way from true. AGI does not 
exist and likely will not for quite some time, if at all.3 
These programs are instead classified as generative 
AI, a type of artificial intelligence capable of 
producing original4 content.  

Generative AI technology certainly has many risks 
associated with it, and the dangers of technologies 
capable of presenting information as true and 
producing unique images based on user input are not 
to be underestimated. They can hurt people, either 
through intentional misuse (e.g., deepfakes, which can 
produce audio or video “recordings” of someone 
saying or doing things that never happened5), or 
unintentional failings (e.g., ChatGPT returning 
information that is untrue or that infringes on 
somebody’s intellectual property).  

Nonetheless, these programs are not capable of 
learning in the sense that humans are [9]. They are 
entirely reliant on their input (which is exactly why 
they are prone to misuse) and require training for 
specific tasks on enormous datasets. Even broad tools 
like ChatGPT do not know things in the same way 
humans do; it is essentially a fancy search engine that 
can recognize and output natural language. These 
technologies do not have thoughts or desires, even if 
they know how to say that they do [12]. 

D. Classification AI 

This project focuses on the other primary type of 
AI in use today: classification AI.6 This technology is 
exactly what it sounds like, a type of artificial 
intelligence capable of recognizing images and putting 
them into a defined category. It should be apparent that 
there are significantly fewer risks associated with this 
type of technology and though misuses of this 
technology are certainly possible they are less 
apparent and of minor concern here where the worst-
case scenario is an incorrect scientific label and 
systemic bias discriminates against groups of 
inanimate objects not whole groups of people.  

5 Deepfakes are certainly cause for concern and presently one of 
the main dangers in AI usage. However, unless you are a politician 
or have an excessive amount of images of yourself on the Internet, 
you likely need not be personally worried just yet, though it may 
be worth revisiting old Facebook content. 
6 Various authors will define differing numbers of types of artificial 
intelligence. I have chosen this dichotomy based on presently 
available technologies. 



 

E. What is machine learning? 

In its broader definition, image classification is not 
inherently a technology-dependent process. Each of us 
classifies thousands of things every single day as we 
receive images from our brains and put objects into 
categories that we recognize. For example, if your 
neighbor introduces you to their dog, you do not need 
them to tell you that it is a dog. Even if you haven’t 
seen your neighbor’s dog before (or even that dog’s 
breed), you can pretty confidently recognize what a 
dog is, so much so that it is not something we are often 
aware of (think of the last time you had to ponder what 
species of pet your neighbor has). However, 
sometimes we also see things that don’t fit into a box 
in our heads – perhaps on a vacation you’ve 
encountered native wildlife and wondered what 
species it belonged to. Eventually, you likely learned 
its name, saw other examples, and became capable of 
recognizing other animals like it. 

Essentially, this is what we are asking a computer 
to do when we talk about automated image 
classification. The computer has never seen a dog 
before, but by showing it pictures of dogs, it eventually 
starts to recognize what a dog looks like and, like you, 
will know that the neighbor’s dog is a dog without 
needing to be told explicitly. What you did on your 
vacation when you saw a new animal, the computer 
did as well. The difference lies in how you and the 
computer both went about the process of learning what 
a new animal looks like. For the computer, this process 
is called machine learning, a sub-field of artificial 
intelligence. 

When learning what a new thing is, the human 
brain performs differently than computers. If asked to 
describe a dog, you might point out its paws, four legs, 
and tail, but you could also easily distinguish it from a 
cat with those same features. Evidently, there is 
something intrinsic about how we distinguish what 
makes a dog a dog.7 Describing exactly what a dog is 
proves more challenging than you may think. Any 
description needs to keep the description broad enough 
to include all sizes and types of dogs (a Chihuahua and 
a Husky certainly aren’t very similar) but also distinct 
enough to distinguish non-dogs from dogs every time. 
It also needs to include dogs who may be missing 
characteristic features; a dog without a tail isn’t any 
less of a dog after all! It may be easy for humans to tell 
a dog from a cat but for a computer without any prior 

 
7 This ix meant in the context of the difficulty of describing our 
implicit ability to recognize, not the essence of a Platonic form or 
other philosophical construct.  

knowledge of these things, distinguishing the two may 
prove difficult. 

Further, the odds are good that you’ve met at least 
a few dogs in your life. Does the task of describing a 
dog become easier or more difficult if you’ve only 
ever seen photos? The question brings up another 
limitation of computer recognition and classification: 
inferences. Humans are capable of making various 
assumptions when looking at things that we can take 
for granted. If in a photo, you can’t see all 4 of a dog’s 
legs (perhaps because they are covered up or out of 
frame), you don’t immediately wonder what happened 
to them; your brain can typically infer that the dog still 
has 4 legs and is capable of recognizing the animal as 
a dog. A computer though may have been taught that 
dogs have 4 legs and upon seeing only 2, concludes 
that the animal must not be a dog. 

 
Fig. 1: A two-legged animal, according to an 

untrained computer. 

Used with permission of Grace Macpherson. 

Thankfully, computers use different techniques to 
figure out what’s an image (described later in the 
Machine Learning section). It may seem frustrating at 
first that a computer is not capable of distinguishing 
objects in the same fashion humans are, but it quickly 
becomes helpful to use quantifiable methods rather 
than trying to describe what exactly constitutes a dog.  

F. Understanding Deep Learning 

Image classification falls under the broad field of 
computer vision, a subset of machine learning that is 
rapidly expanding and which has applications in 
everything from searching Google Images to self-
driving cars and facial recognition systems.  



Nearly all computer vision models now use a 
technique called deep learning, which utilizes a 
structure modeled after the human brain: a neural 
network. A neural network consists of various layers, 
each of which acts as a sort of filter to distill the input 
into something more useful to the task at hand. Layers 
are made up of a series of neurons which each perform 
individual operations that combine to complete the 
larger task of the layer. The name deep learning refers 
to a model’s layer depth, i.e., how many layers there 
are [7, p. 7] in the neural network, and models that 
utilize this technique (including the one presented 
here) are known as deep neural networks (DNNs). 

III. ASTROMETRY 

A. About 

For training data, I used labeled images from 
astrometry.net (Astrometry), an online platform for 
users to share astronomical images that contains 
millions of high-quality, labeled images available in 
FITS format [13].  

B. Catalogs & Object Annotations 

All labels correspond to objects found within the 
Abell, Henry Draper, Tycho-2, Hipparcos, NGC/IC, 
and Yale Bright star catalogs [14], which contain an 
approximate 2.9 million combined objects [15]–[19], 
each consisting of different types of objects. 
Astrometry’s annotation feature checks each catalog 
based on the radius of the object in the image as 
described in Table 1.  

Catalog Object Type 
(Size) 

Radius 
value 
(pixels) 

Abell Galaxy 
clusters 
(4073) 

< 1 

Henry Draper Stars 
(359,083) 

< 1 

Tycho-
2/Hipparcos8 

Stars (2.5 
million) 

< 0.25 

NGC/IC Varies 
(13,226)9 

< 10 

Yale Bright Star Stars10 (9,110) < 10 

Table 1: Astrometry catalog parameterization 

 
8 Note that Tycho-2 is an extension of the Hipparcos catalog and so 
they have been treated as one catalog here. 
9 To be specific, the NGC/IC breaks categorizes every object as a 
Diffuse Nebula or Supernova Remnant, Planetary Nebula, Open 

 

Since most objects in an image are not found 
in a catalog, each astronomical image only contains a 
handful of objects identifiable to the machine for 
testing and training purposes.  

The discrepancy between the number of 
recognizable and labeled objects is easily made 
apparent by comparing Astrometry’s multiple views 
for an image. Figures 3 and 4 show the same image in 
two different views, the red-green view – which circles 
all prominent objects in each photo – and the annotated 
view – which circles recognized catalog objects. 

 

 
Fig. 2: Astrometry’s red-green view [21] 

 
Fig. 3: Astrometry’s annotated view [22] 

 

C. Utilization Percentage 

To capture an idea of the percentage of objects 
Astrometry has annotations for, I asked OpenAI’s 
ChatGPT to write me a program that could identify the 

Cluster, Globular Cluster, Part of other object, Duplication, or Not 
Found as described by Frommert [20]. 
10 The YBS actually only contains 9,095 stars with the remaining 
15 objects consisting of novae/supernovae (11), globular clusters 
(2), and open clusters (2). 



number of red circles (since green circles double 
count) in the red-green view of the image and divided 
it by the number of objects returned by the call to the 
API. I refer to this here as the utilization percentage. 
In this particular example, the programs identified 124 
red circles and 18 catalog images, a utilization 
percentage of 15%. However, these values should be 
treated as a rough estimate and an upper bound since 
the calculation assumes that all catalog images are 
identified in the red-green view, which we can see in 
this example is not always the case.  

In fact, there are even more objects visible that are 
not distinguished in either view. However, these 
objects tend to be very faint and thus not particularly 
useful for machine learning purposes. A view of all 
these objects can be seen in Figure 5, the image seen 
in Astronomy’s extraction view.  

 

 
Fig. 4: Astrometry’s extraction view [23] 

Identifying the commonalities between the two 
(useful) sets can prove challenging, especially visually 
as labels overlap (try and count the green circles) and 
in turn makes finding the exact percentage of 
cataloged vs identifiable images difficult to calculate. 
That said the average utilization percentage can be 
used to find a lower limit on the number of source 
images needed and should be considered in any further 
exploration of model limitations. The full program for 
finding the utilization percentage is shown in 
Appendix A as well as my conversation with ChatGPT 
to generate and modify it in Appendix B. 

IV. SOURCE EXTRACTOR 

A. About 

The other tool used for preprocessing was Source 
Extractor. Source Extractor (often abbreviated to 
SExtractor) is an incredibly powerful tool for 
processing astronomical data. It is capable of 
identifying and extracting individual objects in a large 
astronomical image and outputting specific data 

corresponding to each of them, which I used in 
combination with Astrometry data to produce training 
images. For a more comprehensive guide to Source 
Extractor’s capabilities, I highly recommend Dr. 
Benne Holwerda’s Source Extractor for Dummies 
[24]. 

B. Installation 

Since Source Extractor lacks any sort of GUI, it is 
more complex to install than a normal program that is 
usually downloadable from the Internet. Detailed steps 
for installing and using Source Extractor are found 
elsewhere, but since I worked on a MacBook, I 
installed Source Extractor using Homebrew [25] a 
powerful package manager for MacOS. The full 
software can be found on GitHub [26] and I imported 
the configuration folder directly from the repository to 
ensure its accuracy. 

C. Configuration 

Within the configuration files, there are two that 
required modification, and despite their 
unconventional file extensions, they are easily 
modified in a basic text editor. 

In default.sex, the CATALOG_NAME parameter 
was set to outputs.fits. Note that the actual file 
name is irrelevant so long as it ends with a .fits 
extension. The CATALOG_TYPE parameter should 
then be set to FITS_1.0. 

The default.param file contains all of the parameter 
options for running SExtractor, but by default, they are 
all commented out using the # symbol. X_MIN, 
X_MAX, Y_MIN, and Y_MAX should all be 
uncommented. 

To run Source Extractor on a given image, navigate 
in the terminal to the configuration folder. From there, 
simply run sex filename.fits in Bash, 
substituting as appropriate. I stored my data in a folder 
residing in the same directory as the configuration 
folder, and thus ran the command as sex 
../Data/filename.fits.  

V. COMBINING MATCHES 

A. Astrometry API 

With Source Extractor installed, I return 
momentarily to the Astrometry images. Astrometry 
provides an API [14], [27] capable of returning JSON 
data (quickly converted with a simple parse [28]) with 
various information about known objects in the image, 
including each object’s name(s), relevant catalog, 
location in the image (in x- and y-coordinates of 
pixels), and radius (size within the image). 



 

{"annotations": [{"type": "bright", 
"names": ["15 Mon"], "pixelx": 
2055.177912132401, "pixely": 
2618.5783134857497, "radius": 0.0, 
"vmag": 4.659999847412109}, 
{"type": "ngc", "names": ["NGC 
2259"], "pixelx": 449.805278967448, 
"pixely": 4818.564763317862, 
"radius": 115.41987644560295}, 
{"type": "ngc", "names": ["NGC 
2264"], "pixelx": 
2051.9800344569444, "pixely": 
2617.751152553472, "radius": 
219.29775922703007}]} 

Submission ID: 7301665 

Job ID: 8042724 

Figure 5: Sample Astrometry API output 

However, these data do not contain photometric 
information, which of course is the ultimate goal of the 
program. 

This is where Source Extractor comes into play. As 
previously mentioned, Source Extractor has hundreds 
of programmable parameters but here I made use of 4 
per object: X_MIN, X_MAX, Y_MIN, and Y_MAX, 
corresponding to the object’s positional data (within 
the image). 

Source Extractor can be easily processed using the 
tools of the AstroPy Python library [29]–[31]. AstroPy 
can read the output file of Source Extractor and 
transform it into a table whose values can be easily 
read by Python. 

At this point, I combine the Astrometry and Source 
Extractor data to isolate individual objects while 
retaining their classification information. Since both 
programs return the position and radius of each object 
in the image, the overlap between the two data sets 
should yield a collection of objects with two different 
types of information. Yet Astrometry and SExtractor 
define each object’s position and radius differently. 
This is why Source Extractor is used at all – because 
of its ability to precisely carve out objects and provide 
information on their photometric data. Astrometry 
defines each object with a one-dimensional radius 
(simply a circle) and may define the position of the 
object differently than SExtractor which bounds the 
object rectangularly and more precisely.  

 
11 Note that this could be made more space-efficient by storing 
only the object’s label since this is the only thing we will extract 
from the data. However, in the interest of generality, I have kept all 

To find the overlap in the sets, I compared each 
possible pair of objects after filtering out all objects 
with a radius of 0. First I checked if the radius of the 
Astrometry object was roughly the same size as the “y-
radius” (!

"
 the length in the y-dimension) of the Source 

Extractor radius (I chose y because most images are 
oriented landscape and there is a slightly larger 
percentage of objects with larger x-dimensions; the 
two can be easily swapped however). 

If any two objects are roughly the same size, then 
they must also be located close to one another in the 
image to be a match. Since Source Extractor and 
Astrometry often find the same object but give it 
different coordinates, I made sure to give variation in 
the position but also ensured there was still overlap 
between the two regions. Specifically, I defined that 
their distance must then be within 9/10ths of the length 
of the smaller radius. 

Thus, the three conditions for two objects to be a 
match are: 

min(𝑟#$ , 𝑟%) > 0                    (1) 

*0.5 ∗ 𝑟&,#$. ≤ 	 𝑟% ≤ *1.5 ∗ 𝑟&,#$.        (2) 

2(𝑥#$ − 𝑥%)" + (𝑦#$ − 𝑦%)" < 0.9 ∗ min	(𝑟#$ , 𝑟%)(3) 

Since varied radii yield a significant amount of 
overlap, it is a difficult problem to keep a high 
percentage of images while also ensuring near-perfect 
accuracy. A machine is only as good as the data it is 
provided and so these criteria are intentionally defined 
strictly, preferring far fewer objects but with higher 
accuracies since it is easier to add more data than to 
classify with inaccurate data. 

B. Processing Matches 

Once a match has been found, relevant data from 
both sources need to be cataloged. For Astrometry, 
this is a simple matter of pushing the relevant object to 
an array where each entry corresponds to an object.11 

For Source Extractor, we are going to use the data 
at hand straight away, rather than storing an index and 
traversing an incredibly large file again or storing 
whole Table components. Rather, Source Extractor 
locates and bounds the image, so it makes sense to 
store the cutout of the object directly. 

Here, AstroPy’s Cutout2D method is useful. 
Given coordinates and dimensions from Source 
Extractor’s output and raw image data in the form of 

the data since it is presumed that the number of objects identified 
as matches is relatively small and is therefore not particularly 
burdensome to the stack. 



the original FITS file, it is capable of creating a cutout 
of the image as a 2-dimensional array [32]. 

This and the index of the corresponding 
Astrometry data are then stored in parallel arrays and 
returned so that each object and both sets of its 
corresponding data are now easily located.  

C. Ascertaining Object Type 

Of course, knowing the name of our object doesn’t 
immediately tell us what type of object it is. “NGC 
123” hardly provides any clues about whether we are 
looking at a galaxy or a star. However, this is easily 
searchable data, which I compiled into CSV files for 
quick lookup ability in Python (Appendixes C, D, E).12 

These catalogs provide a fairly large number of 
object classifications, and for data sets of less than 
extraordinary volume, it is often helpful to classify 
more broadly than the catalogs’ level of detail. For 
example, there are 38 different types of galaxy 
classifications, ranging from specific types of galaxies 
(disk galaxy, Seyfert galaxy, barred lenticular LINER 
galaxy) to galaxies whose appearances are obscured 
by other astronomical objects (spiral galaxy occulted 
by another spiral galaxy, lenticular galaxy pair). 
Referring to them simply as “galaxies” loses a degree 
of specificity but also makes each result more useful 
to a machine learning model and allows for more 
accurate high-level classifications. This is also a useful 
technique for invalid data types. Unknown, 
nonexistent, and non-existent all essentially say the 
same thing and are more usefully summarized with a 
simple N/A. The full subclassification list and their 
generalizations are found in Appendix F.  

D. Combining Labels 

At last, herein lies the goal of the exercise: creating 
a labeled image for preprocessing centered on the 
relevant object with the tightest dimensions possible. 
It is a simple matter to generate a plot using the 2D 
vector that displays the data as an ordinary image. 
Note that is necessary to choose a color map, which 
may affect the relative contrast between an object and 
its surroundings.13 I have found the twilight 
mapping to be most useful, but also particularly liked 
gist_heat (see [34] for a full list of mapping 
options). A quick lookup function will tell us the 
generalized classification of the object and combining 
it with the object’s Astrometry ID provides an image 
name that clearly identifies the object and gives it a 

 
12 Since these are CSV files they are not easily attached to this 
paper as a regular appendix might be. Instead, they can be found at 
[33]. 
13 It is commonplace within astronomy to recolor an image, even at 
the collection level since many photographs are mappings of 

unique ID, ensuring no name conflicts will occur. The 
named cutout image is then easily saved to the local 
machine and the process can be repeated for each 
object in the file.  

 
Fig. 5: Summary of the preprocessing dataflow  

VI. MACHINE LEARNING 

Having extracted and labeled astronomical objects 
from large-scale FITS files, it is now time to ask the 
computer to find patterns. As an undergraduate 
research project, the scope of this project is not to 
create an accurate model so much as to lay out the 
technical framework for creating a model capable of 
classifying images with a high degree of accuracy by 
developing an initial codebase. 

To that end, the code provided for classifying 
images functions as a starter for those hoping to 
accomplish this feat. It is largely built off François 
Chollet’s Deep Learning with Python, a text that has 
proved instrumental to this project and which any 
serious student of machine learning should have 
readily available.  

While rather basic in its application of machine 
learning principles, the code here nonetheless requires 
a technical background and commensurate 
understanding of the field of AI. Chollet steps through 
his code better than I might, but I hope to outline the 
basic principles relevant to this application. 

A. Process Overview 

There are five main steps in any machine learning 
problem [35]: 

1. Data collection 
2. Data preparation 
3. Training 
4. Evaluation 

wavelengths outside the visible light spectrum. Thus, there should 
be no worries about the loss of an object’s “true color” when 
choosing a color mapping. 



5. Tuning 

Perhaps the most difficult of these steps in our 
current application is the first step. Having 
accomplished this in the previous sections, we now 
want to prepare our data in a format optimized for deep 
learning.  

B. Data Preparation 

Our first step is telling the computer which things 
we want to classify, to tell it what its options are. 
Practically, this means sorting our images into folders 
corresponding to object type (these are our categories). 
Since we have already named our images accordingly, 
this should be a relatively easy exercise.  

Machine learning models also require their data to 
be split into three categories: training, testing, and 
validation. The basic workflow of programming any 
machine learning algorithm (regardless of what type it 
is) is to train it, test it, and validate its accuracy. 
Training data is the most important of the sets and is 
used to teach the model the features of what it is trying 
to classify. The validation data is for evaluating the 
model’s performance – giving it a test and checking its 
responses against an answer key [7, p. 133]. The test 
data is then used for one last evaluation of 
performance; it is separate from the validation data to 
identify potential overfitting (training the model to be 
too accurate for a specific dataset with a loss of 
generality) in the previous two sets.14 Research 
suggests that roughly 70-80% of data should be used 
as training data [36], with the rest being used to 
evaluate the model via testing and validation.  

These splits can be modeled as cutting across the 
data both horizontally and vertically, as pictured in 
Figure 6. 

 
14 The definition and usage of the validation set is not very 
consistent across machine learning applications (here I have used 
Chollet’s definitions). However, the validation and testing sets are 

Fig. 6: Splitting train/test/validation data by type 
of astronomical object 

The other, larger, challenge in data 
preparation is converting the images to an input format 
the machine can actually use. We will accomplish both 
these tasks in the same command, using Keras’ 
image_dataset_from_directory() 
function. Given properly sorted directories (train, test, 
validate folders each with a folder per classification 
set), this will apportion the data into the various sets 
for the model and convert the image into batched 
tensors of a common size based on RBG data from our 
standard image format [7, p. 217]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Sample directory 

1) Tensor Conversion: While the computer 
converts the images automatically, it is worth 
understanding what is happening under the hood. 
Every color can be modeled as a combination of red, 
green, and blue. The standard format is to specify the 
amount of each of these colors needed on a 0-255 
scale. The appropriate combinations of each can then 
display any color (this is how your computer screen 
works). For each pixel then, 
image_dataset_from_directory() 
specifies the color as a combination of RGB values in 
a quantifiable form. These will each be stored as a 
vector with 3 channels (values) in the format [R, G, 
B]. The pixel’s position in the image is then stored by 

conceptually very similar, so data splitting is often referred to only 
as a dichotomy of testing and training. 

→ train 

→ test 

→ validation 

→ galaxies 

→	stars 

→ nebulae 

→ galaxies 

→	stars 

→ nebulae 

→ galaxies 

→	stars 

→ nebulae 



row and column, where each pixel is stored as an entry 
in another vector representing the row. Each row is 
also a vector and so the image data can be easily 
accessed where the index of the pixel within the row 
corresponds to the column and the index of the vector 
containing the pixels corresponds to the row. Thus, 
each pixel can be accessed with two indices and 
individual channel values can be accessed as the 
internal values of a three-dimensional vector (for 
example, pixel[0][0][0] would access the value 
of red of the first pixel in the first row).  

2) Data Augmentation: One of the biggest 
challenges in creating a machine learning model is 
supplying it with sufficient data. When working with 
small datasets, we can mitigate this problem by 
artificially inflating the number of images for the 
model to work on. Data augmentation can distort the 
original images and give them back to the model as 
new images to work on. This technique not only 
increases the size of your training set but also trains 
the model for non-standardized data. This is of less 
concern for astronomical images which do not 
necessarily have a proper orientation or zoom level but 
it is still useful.15 To accomplish this in this context, 
the images are flipped both horizontally and vertically, 
randomly rotated by a random value within ±10%, 
and zoomed in or out by a random factor of ±20%.  

C. Training 

Training the neural network is the step requiring 
the most amount of care from a technological 
perspective. Here we have followed Chollet’s example 
of a very simple convolution network [7, p. 223]. After 
augmenting the data, the model first adjusts the RGB 
values by dividing each by 255, which results in every 
value being in the range [0, 1], a far more regular scale 
than [0, 255] which is derived from binary storage 
limitations and arbitrary to the task at hand. 

Thus far we have only converted the format of our 
images and rescaled them to be more accessible to the 
computer. It is now time to manipulate them with the 
layers characteristic of a deep neural network.  

1) Convolution Layers: The first key layer we 
apply is a Conv2D layer (aka a convolution layer). 
Each convolution layer learns local patterns derived 
from small subsets of the image. According to Chollet, 
convolution layers have two key characteristics: first, 
“the patterns they learn are translation invariant” – 
meaning they can recognize the pattern anywhere in 

 
15 A more traditional use case for augmentation is trying to 
recognize objects where input images are always right side 
up…the dog is still a dog even if it’s upside down. 

the image; and second, “they can learn spatial 
hierarchies of patterns” – meaning deeper convolution 
layers can recognize patterns of earlier layers [7, p. 
205].  

The importance of this second property is not to be 
understated. When I described earlier the different 
ways in which humans and computers recognize 
objects, I suggested that in describing what makes a 
dog a dog, you might point out features like its paws, 
legs, and tail. In fact, the way we recognize things may 
not be that different from computers as this is what 
hierarchical convolution layers are doing. Continuing 
with the example of recognizing a dog, shallow 
convolution layers (those coming first) might learn 
what a dog’s nose looks like by recognizing patterns 
that appear consistently in dogs’ noses. Over time, it 
learns all sorts of these features and recognizes that 
when put together they form a dog. 

2) Max Pooling: The other primary type of layer 
we work with here is MaxPooling2D (aka max 
pooling). As Chollet describes, “max pooling consists 
of extracting windows from the input feature maps and 
outputting the max value of each channel. [7, p. 209]” 
This results in “aggressive downsampling”, i.e., 
reducing the number of parameters in a layer [7, p. 
209]. This is important because as our neural network 
grows, the number of parameters the computer has to 
handle can quickly grow out of proportion. Hence, 
(almost) every time we apply a convolution layer, it is 
necessary to max pool the resulting feature map. By 
taking the maximum value of each channel, the max 
pooling carries only the most prominent features of a 
layer to the next level which functionally removes 
background noise. This has the double effect of 
widening the view of the convolution layers since they 
will now pay attention to wider patterns – particularly 
of lower convolution layers – while processing the 
same amount of data. Of course, any data loss process 
should be treated with caution, since perhaps the noise 
being removed is instead essential data, but this data 
removal is what allows for high-level pattern 
recognition. 

Essentially, hierarchical convolution layers allow 
the computer to recognize patterns at the minute level 
while also looking at the image as a whole. Max 
pooling layers allow for that wider view of the picture 
by extracting the most important features from each 
layer and discarding the rest. 



 
3) Other Layers 

a) Flatten: Before our model is ready for 
deployment there are a few layers left to configure. 
After our final convolution layer, we have an output 
with a shape of (7, 7, 257), a 7 x 7 feature map 
with 256 channels each. Flatten condenses this 
output to a 1-dimensional vector to pass to the 
classifier (remember: so far we have prepared the 
image for classification in the way we think is best for 
the computer, but we have not yet classified it) [7, p. 
203]. 

b) Dropout: The penultimate step is the 
Dropout layer. This is our last line of defense against 
overfitting. Developed by Geoff Hinton at the 
University of Toronto, the idea of dropout “is to 
randomly drop units (along with their connections) 
from the neural network during training [37].” Despite 
being a fairly simple technique, it has shown 
incredible results and will make our model more 
accurate. 

Fig. 8: the model layers (as shown by 
model.summary()) 

c) Dense: The last layer in the DNN is where the 
magic happens: this is where our images are actually 
classified. The Dense layer is not just one layer but 
instead a series of layers that derive their name from 
being densely connected. It takes two arguments that 
are of note here: first the number of classification 

 
16 As of writing this actually produces an error related to while 
loops. It appears this is a bug in Keras [41] and does not affect the 
functionality of the program. 

categories we plan on having (3 in this example); and 
second, the activation function, a mathematical vector 
that tells the neural network what we’re asking it to do 
[38], [39]. We have actually been using activation 
functions all along with the activation=”relu” 
argument we applied to each of our convolution layers. 
Since this is a multi-class classification problem 
(determining which of multiple classes an object 
belongs to rather than sorting it into one of two 
categories), softmax is best suited for this task. The 
softmax activation asks the model to give a 
probability distribution describing the likelihood that 
the object in question belongs to each of the applicable 
categories [7, p. 108]. Mathematically, softmax is 
defined as\ 
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for an input vector 𝑧 of 𝐾 real numbers [40]. 

d) Sequential: You may also notice that at the top 
of our neural network (as seen in Fig. 8), there is a 
Sequential layer. This is essentially telling the 
DNN to chain the layers we give it together 
sequentially and is standard across deep neural 
networks [7, p. 63]. 

D. Evaluation 

Of course, the reason we feed the model labeled 
data is so we can track how well it can come up with 
labels of its own; creating a model without knowing 
how well it performs is next to useless. Additionally, 
we’re going to be updating our model a lot in an 
attempt to make it better, but it’s not always going to 
work. To that end, we want to make sure we update 
our model only when it gets more accurate, which we 
define as having the least amount of loss in our 
validation set. To do so, we use the following piece 
of code from Chollet [7, p. 219-220]:16 
callbacks = [ 

    
keras.callbacks.ModelCheckpoint( 

        
filepath="convnet_from_scratch.kera
s", 

        save_best_only=True, 

        monitor="val_loss") 

] 



history = model.fit( 

    train_dataset, 

    epochs=30, 

    
validation_data=validation_dataset, 

    callbacks=callbacks) 

Finally, we can evaluate the accuracy of the 
model over time with our preferred metric (here we 
use validation set loss) and compare the accuracies at 
each stage to potentially alert us to overfitting.  

E. Tuning 

In all likelihood, the first version of a model that 
we try out is not going to be the best one. Different 
techniques work better for different datasets, and 
exploring the use of various layers is a great starting 
place for future researchers. We have already built in 
a functionality to keep only the best of our models, so 
it is never a bad idea to continuously improve. 
However, one may eventually reach a maximum 
generalizable accuracy with the data they have. It is 
worth mentioning yet again that overfitting can ruin a 
model’s performance on further data and with a small 
dataset that threshold of generalizable accuracy may 
come sooner rather than later. If the threshold is too 
low, adding more data will raise it higher. Once the 
desired level of accuracy has been achieved, we are 
finished! 

VII. CODING ENVIRONMENT 

It is expected that all results and methodologies will 
be reproducible and are not dependent on operating 
system but in the interest of omitting unforeseen 
dependencies, all operating environments are provided 
below. 

The entirety of this project was conducted on a 2019 
MacBook Air running the most current version of 
MacOS (Ventura 13.0.1 as of writing). The processor 
is a 1.6 GHz Dual-Core Intel Core i5 and the memory 
is 8 GB (2133 MHz, LPDDR3). 

All coding was done in a Jupyter Notebook 
environment and written in Python or Bash. Python 
was the primary language, but Source Extractor 
utilizes a command line interface and so operating it 
requires Bash scripting. However, Python allows for 
inline Bash calls which was how all Source Extractor 
commands after installation were executed. These are 
of course operable in the local shell (Command 
Prompt for Windows, Terminal for MacOS and 
Linux), but doing so requires running commands 
individually (one per image) and uploading results into 
Python before proceeding. This is an obvious 

inefficiency and placing the execution commands into 
Python allows for easy looping and processing without 
exiting the kernel. 

VIII. SOURCING IMAGES 

In the interest of first developing terminology and 
an understanding of applicable tools, I have neglected 
to discuss how astronomical images were/ought to be 
sourced. As previously mentioned, all images were 
downloaded from Astrometry, which hosts large 
quantities of high-quality images. In truth, there is not 
much of a methodology for finding images on a 
systematic level. By default, Astrometry sorts images 
by the most recent date of upload and this ought to be 
sufficient in yielding quantities of images to comb 
through. I am unaware of any systematic bias recency 
may have on the model since images in FITS format 
are necessarily of high quality and there have been few 
major changes that would affect newer images. 

However, there are best practices that may be of use 
in selecting images for model usage. Images that have 
prominent objects are easy for the model to identify 
and provide high-resolution data, which often makes a 
model more accurate. 

 
Fig. 9: A prominent galaxy [42] 

Conversely, it is advantageous to avoid 
overly crowded images. Small objects in large fields 
are difficult to distinguish from one another, especially 
when using two programs that may define coordinates 
and radii differently. 



 
Fig. 10: A crowded image [43] 

There are no inherent limitations on which images 
the model can use – some are just more useful than 
others. Likewise, the model may not be able to identify 
less distinguishable objects with the same accuracies 
as more prominent bodies. 

IX. CONCLUSION 

We have now accomplished the task we set out to 
achieve: developed a framework for machine learning 
in an astronomical context and provided a 
comprehensive process that takes data from raw FITS 
format and turns it into classified individual images. 

With limited data, there is still much to do and 
further inquiries to pursue before declaring broader 
success. Yet the results accomplished thus far are 
significant to the development of automated 
classification programs for astronomy & astrophysics. 
The techniques laid out herein demonstrate that 
developing a program capable of classifying 
individual astronomical objects is not only possible 
but achievable using tools that are freely available to 
any dedicated user with basic computer access.  

X. LIMITATIONS AND FURTHER INQUIRIES 

The astronomical community has a rich history of 
collaboration, and it is my hope that this paper 
provides a springboard for further inquiries and 
development. The opportunities for further 
exploration are numerous but likely begin with 
processing enough images using the aforementioned 
techniques to produce a large enough quantity of data 
to instantiate a working machine learning model.  

With this in mind, it is worth reviewing limitations 
that may arise in future developments. 

First, each astronomical image processed with this 
algorithm yields a comparatively small number of 
labeled object images, meaning a high quantity of 

astronomical images is needed to produce a sufficient 
data set.  

Second, while I have made a good faith attempt to 
build an accurate machine learning model, it is 
impossible to determine its usefulness until it has a 
substantial dataset to work on. I have attempted to 
explain clearly and in enough detail the tools and 
processes used to construct the model should further 
revisions be required after more data have been 
acquired. 

It should also be noted that Source Extractor is an 
incredibly powerful tool with uses far beyond object 
recognition. (In fact, it has its own built-in classifier. 
However, it has not been updated in quite some time 
and faces significant limitations). It may be possible to 
use some of these tools to generate more useful data 
for the deep neural network. Again, I recommend Dr. 
Benne Holwerda’s Source Extractor for Dummies 
[24]. 

Future inquirers may also wish to tinker with the 
mathematical conditions imposed to find matches 
between Astrometry and Source Extractor objects. 
These were found through repeated experimentation 
but may be better with different values or by being 
replaced altogether. 

Despite these limitations, we have now produced a 
framework for 

1) Extracting color-mapped cutouts of individual 
objects in FITS files 

2) Labeling those cutouts by object types via API calls 
and common astronomical catalogs 

3) Training a deep neural network to recognize types 
of objects. 

These tools allow scientists both amateur and 
professional to contribute to the body of knowledge of 
astronomical images using publicly available data and 
tools and to advance the understanding of our 
neighbors near and far in the universe. 

APPENDIX A: RED CIRCLE DETECTION – PYTHON 
IMPLEMENTATION 

# Load the image 

img = 
cv2.imread('/Users/andrewmacpherson
/Downloads/7874916.png') 

 

# Convert the image to HSV color 
space 

hsv = cv2.cvtColor(img, 
cv2.COLOR_BGR2HSV) 



 

import os 

 

image_path = 
'/Users/andrewmacpherson/Downloads/
7874916.png' 

 

if os.path.exists(image_path): 

    print('Image file found') 

else: 

    print('Image file not found') 

 

# Display the HSV image 

#cv2.imshow('HSV image', hsv) 

#cv2.waitKey(0) 

#cv2.destroyAllWindows() 

 

# Define the lower and upper bounds 
for the red color in HSV 

lower_red = np.array([0, 50, 50]) 

upper_red = np.array([10, 255, 
255]) 

mask1 = cv2.inRange(hsv, lower_red, 
upper_red) 

 

lower_red = np.array([170, 50, 50]) 

upper_red = np.array([180, 255, 
255]) 

mask2 = cv2.inRange(hsv, lower_red, 
upper_red) 

 

# Combine the masks to get the 
final mask for red color 

mask = mask1 + mask2 

 

# Apply morphological operations to 
the mask to remove noise 

kernel = np.ones((5,5),np.uint8) 

opening = cv2.morphologyEx(mask, 
cv2.MORPH_OPEN, kernel) 

 

# Detect circles in the image 

circles = cv2.HoughCircles(opening, 
cv2.HOUGH_GRADIENT, dp=1, 
minDist=10, param1=5, param2=3, 
minRadius=1, maxRadius=50) 

 

# Count the number of circles 

if circles is not None: 

    num_circles = len(circles[0]) 

    print("Number of red circles 
detected:", num_circles) 

else: 

    print("No circles detected in 
the image.") 

 

APPENDIX B: RED CIRCLE DETECTION – 
CONVERSATION WITH CHATGPT 

The following is a conversation with ChatGPT asking 
it to generate code to detect the number of circles in 
an image. The only things I changed were adjusting 
param1 and param2 to values of 5 and 3 from 50 
and 30, respectively after ChatGPT recommended 
that changes could improve results. 

Andrew: How could I count the number of items in an 
image? 

ChatGPT: Counting the number of items in an image 
can be a challenging task, and the best approach 
depends on the nature of the items you are trying to 
count. Here are a few possible ways to approach the 
problem: 

1. Manual counting: If the items are easily 
distinguishable and the image is not too large, you 
can simply count them manually by visually 
inspecting the image. 

2. Object detection: If the items are well-defined and 
distinct from the background, you could use 
object detection algorithms to identify and count 
the objects. Popular object detection frameworks 
include YOLO, Faster R-CNN, and RetinaNet. 

3. Image segmentation: If the items are overlapping 
or have irregular shapes, you could use image 
segmentation algorithms to separate the objects 
from the background and count them. Popular 
image segmentation frameworks include U-Net, 
Mask R-CNN, and DeepLab. 



4. Counting by color or texture: If the items 
have distinct colors or textures that differ from the 
background, you could use color or texture-based 
methods to count them. This approach may be less 
accurate than object detection or image segmentation, 
but it can be faster and simpler to implement. 

It's worth noting that all of these approaches may 
require some level of training or customization to 
work well with your specific image dataset. 

Andrew:    Are you able to count objects in an image? 

ChatGPT:  As an AI language model, I don't have the 
capability to count objects in an image on my own. 
However, there are various computer vision 
techniques and tools that can be used for object 
counting in images. These methods typically involve 
deep learning-based object detection or segmentation 
models, which can be trained on large datasets of 
annotated images to learn how to accurately identify 
and count objects of interest in new images. There are 
also various pre-trained object detection and 
segmentation models available that can be fine-tuned 
or applied directly to new images for object counting. 

Andrew:   Write me code that will detect the number 
of red circles in an image of outer space 

ChatGPT: Detecting red circles in an image of outer 
space can be a challenging task, especially since the 
presence of stars and other celestial objects in the 
image could make it difficult to distinguish the circles 
from the background. Nonetheless, here is some 
sample code that could help you get started with 
detecting red circles in an image using Python and 
OpenCV: 

 

 

This code first loads the image and converts it to the 
HSV color space. It then defines the lower and upper 
bounds for the red color in HSV and applies a mask to 
the image to isolate the red regions. Morphological 
operations are applied to the mask to remove noise, and 
circles are detected in the resulting image using the 
Hough circle transform. Finally, the number of circles 
detected is printed to the console. Note that the 
parameters used for Hough circle detection may need to 
be adjusted depending on the specifics of your image. 

Andrew:     Debug this code for me:  

import cv2 

 
import cv2 
import numpy as np 
 
# Load the image 
img = cv2.imread('space_image.jpg') 
 
# Convert the image to HSV color 
space 
hsv = cv2.cvtColor(img, 
cv2.COLOR_BGR2HSV) 
 
# Define the lower and upper bounds  
lower_red = np.array([0, 50, 50]) 
upper_red = np.array([10, 255, 255]) 
mask1 = cv2.inRange(hsv, lower_red, 
upper_red) 
 
lower_red = np.array([170, 50, 50]) 
upper_red = np.array([180, 255, 

# Define the lower and upper bounds 
for the red color in HSV 
lower_red = np.array([0, 50, 50]) 
upper_red = np.array([10, 255, 255]) 
mask1 = cv2.inRange(hsv, lower_red, 
upper_red) 
 
lower_red = np.array([170, 50, 50]) 
upper_red = np.array([180, 255, 
255]) 
mask2 = cv2.inRange(hsv, lower_red, 
upper_red) 
 
# Combine the masks to get the final 
mask for red color 
mask = mask1 + mask2 
 
# Apply morphological operations to 
the mask to remove noise 
kernel = np.ones((5,5),np.uint8) 
opening = cv2.morphologyEx(mask, 
cv2.MORPH_OPEN, kernel) 
 
# Detect circles in the image 
circles = cv2.HoughCircles(opening, 
cv2.HOUGH_GRADIENT, dp=1, 
minDist=50, param1=50, param2=30, 
minRadius=0, maxRadius=0) 
 
# Count the number of circles 
num_circles = len(circles[0]) 
 
print("Number of red circles 
detected:", num_circles)  



import numpy as np 

 

# Load the image 

img = cv2.imread('space_image.jpg') 

 

# Convert the image to HSV color space 

hsv = cv2.cvtColor(img, 
cv2.COLOR_BGR2HSV) 

 

# Define the lower and upper bounds for 
the red color in HSV 

lower_red = np.array([0, 50, 50]) 

upper_red = np.array([10, 255, 255]) 

mask1 = cv2.inRange(hsv, lower_red, 
upper_red) 

 

lower_red = np.array([170, 50, 50]) 

upper_red = np.array([180, 255, 255]) 

mask2 = cv2.inRange(hsv, lower_red, 
upper_red) 

 

# Combine the masks to get the final mask 
for red color 

mask = mask1 + mask2 

 

# Apply morphological operations to the 
mask to remove noise 

kernel = np.ones((5,5),np.uint8) 

opening = cv2.morphologyEx(mask, 
cv2.MORPH_OPEN, kernel) 

 

# Detect circles in the image 

circles = cv2.HoughCircles(opening, 
cv2.HOUGH_GRADIENT, dp=1, 
minDist=50, param1=50, param2=30, 
minRadius=0, maxRadius=0) 

 

# Count the number of circles 

num_circles = len(circles[0]) 

 

print("Number of red circles detected:", num_circles)  

ChatGPT:  There are a few things that could be 
causing issues with this code: 

1. The image path: The image path specified in the 
cv2.imread function may not be correct. Make 
sure that the image is located in the same directory 
as the Python script or specify the full path to the 
image. 

2. No circles detected: It's possible that the Hough 
circle transform is not detecting any circles in the 
image. This could be due to factors such as 
insufficient contrast or too much noise in the 
image. You can try adjusting the parameters for 
Hough circle detection or applying additional 
preprocessing steps to improve circle detection. 

3. Error with accessing circles[0]: If no circles are 
detected in the image, circles will be None and 
trying to access circles[0] will result in an error. 
To avoid this, you can add a check to see if circles 
is not None before attempting to access circles[0]. 

Here’s an updated version of the code that addresses 
these issues: 

 

import cv2 
import numpy as np 
 
# Load the image 
img = cv2.imread('space_image.jpg') 
 
# Convert the image to HSV color 
space 
hsv = cv2.cvtColor(img, 
cv2.COLOR_BGR2HSV) 
 
# Define the lower and upper bounds 
for the red color in HSV 
lower_red = np.array([0, 50, 50]) 
upper_red = np.array([10, 255, 255]) 
mask1 = cv2.inRange(hsv, lower_red, 
upper_red) 
lower_red = np.array([170, 50, 50]) 
upper_red = np.array([180, 255, 255]) 



 

This updated version of the code includes a check to 
see if circles is None before attempting to access 
circles[0]. It also includes an additional print 
statement in case no circles are detected in the image. 

Andrew:    What do the masks in this code do? 

ChatGPT: The masks in this code are used to filter 
out all pixels in the image that are not within a 
specified range of red colors in the HSV color space. 

First, the image is converted to HSV color space using 
the cv2.cvtColor function. This is because HSV color 
space separates color information into three 
components: hue, saturation, and value. In this case, 
we are interested in the hue component, which 
represents the color itself. 

Next, two masks are created using the cv2.inRange 
function. These masks are binary images that are white 
wherever the original image falls within the specified 
lower and upper bounds, and black everywhere else. 
The mask1 and mask2 in the code are used to detect 
red colors that fall within the lower and upper hue 
values of 0-10 and 170-180, respectively. These values 
were chosen because the hue values for red colors fall 
within these ranges in the HSV color space. 

Finally, the two masks are combined using the + 
operator to get the final mask for red color. This mask 
is a binary image that is white wherever the original 
image falls within either of the specified hue ranges, 
and black everywhere else. This final mask is then 
used for further processing, such as circle detection 
using the Hough transform. 

Andrew: How can I view the HSV color space in this 
code? 

ChatGPT: You can view the HSV color space in this 
code using the cv2.imshow function to display the 
image after it has been converted to the HSV color 
space. Here's an example of how you can modify the 
code to display the HSV image: 

 

mask2 = cv2.inRange(hsv, lower_red, 
upper_red) 
 
# Combine the masks to get the final 
mask for red color 
# Apply morphological operations to 
the mask to remove noise 
kernel = np.ones((5,5),np.uint8) 
opening = cv2.morphologyEx(mask, 
cv2.MORPH_OPEN, kernel) 
 
# Detect circles in the image 
circles = cv2.HoughCircles(opening, 
cv2.HOUGH_GRADIENT, dp=1, 
minDist=50, param1=50, param2=30, 
minRadius=0, maxRadius=0) 
 
# Count the number of circles 
if circles is not None: 
    num_circles = len(circles[0]) 
    print("Number of red circles 
detected:", num_circles) 
else: 
    print("No circles detected in 
the image.") 
 
 
# Apply morphological operations to 
the mask to remove noise 
kernel = np.ones((5,5),np.uint8) 
opening = cv2.morphologyEx(mask, 
cv2.MORPH_OPEN, kernel) 
 
# Detect circles in the image 
circles = cv2.HoughCircles(opening, 
cv2.HOUGH_GRADIENT, dp=1, 
minDist=50, param1=50, param2=30, 
minRadius=0, maxRadius=0) 
 
# Count the number of circles 
if circles is not None: 
    num_circles = len(circles[0]) 
    print("Number of red circles 
detected:", num_circles) 
else: 
    print("No circles detected in 
the image.") 
 

 
import cv2 
import numpy as np 
 
# Load the image 
img = cv2.imread('space_image.jpg') 
 
# Convert the image to HSV color 
space 
hsv = cv2.cvtColor(img, 
cv2.COLOR_BGR2HSV) 
 
# Display the HSV image 
cv2.imshow('HSV image', hsv) 



 

 

This will display a window showing the HSV color 
space representation of the image. You can close the 
window by pressing any key. Note that the HSV image 
will look different from the original RGB image 
because it separates the color information into three 
components, as mentioned in my previous answer. 

Andrew:  Running this code gives me the error 
message: Assertion failed) !_src.empty() in function 
'cvtColor' 

ChatGPT: The error message "Assertion failed) 
!_src.empty() in function 'cvtColor'" means that the 
image you are trying to convert to the HSV color space 
is empty or does not exist in the specified file path. 

You should check the following: 

1. Make sure that the file name and file path are 
correct and that the image is in the specified 
location. You can check the file path by using the 
os.path.exists function: 

 

2. Make sure that the image file is in a format that 
OpenCV can read. OpenCV can read most 
common image formats, such as JPEG, PNG, and 
BMP. 

3. Make sure that the image file is not empty. You can 
check the size of the image file by using the 
os.path.getsize function: 

 

 
import cv2 
import numpy as np 
 
# Load the image 
img = cv2.imread('space_image.jpg') 
 
# Convert the image to HSV color 
space 
hsv = cv2.cvtColor(img, 
cv2.COLOR_BGR2HSV) 
 
# Display the HSV image 
cv2.imshow('HSV image', hsv) 
cv2.waitKey(0) 
cv2.destroyAllWindows() 
 
# Define the lower and upper bounds 
for the red color in HSV 
lower_red = np.array([0, 50, 50]) 
upper_red = np.array([10, 255, 255]) 
mask1 = cv2.inRange(hsv, lower_red, 
upper_red) 
 
lower_red = np.array([170, 50, 50]) 
upper_red = np.array([180, 255, 
255]) 
mask2 = cv2.inRange(hsv, lower_red, 
upper_red) 
 
# Combine the masks to get the final 
mask = mask1 + mask2 
 
# Apply morphological operations to 
the mask to remove noise 
kernel = np.ones((5,5),np.uint8) 
opening = cv2.morphologyEx(mask, 
cv2.MORPH_OPEN, kernel) 
 
# Detect circles in the image 
circles = cv2.HoughCircles(opening, 
cv2.HOUGH_GRADIENT, dp=1, 
minDist=50, param1=50, param2=30, 
minRadius=0, maxRadius=0) 
 
# Count the number of circles 
num_circles = len(circles[0]) 
 
print("Number of red circles 
detected:", num_circles) 
 

print("Number of red circles 
detected:", num_circles) 
 

import os 
 
image_path = 'path/to/image.jpg' 
 
if os.path.exists(image_path): 
    print('Image file found') 
else: 
    print('Image file not found') 
 

import os 
 
image_path = 'path/to/image.jpg' 
 
if os.path.getsize(image_path) > 0: 
    print('Image file not empty') 
else: 
    print('Image file empty') 

 



 

If you have confirmed that the image file exists, is in a 
supported format, and is not empty, you may need to 
check the syntax of your code to make sure that the 
image is being read and loaded correctly. 

Andrew:    How fast should the program you wrote 
run? 

ChatGPT: The speed of the program I wrote for 
detecting the number of red circles in an image can 
vary depending on several factors, including the size 
of the image, the number of circles in the image, and 
the performance of the computer running the program. 

In general, however, the program should run relatively 
quickly for typical image sizes and numbers of circles. 
The most time-consuming parts of the program are 
usually the morphological operations and the circle 
detection algorithm. The Hough circle detection 
algorithm has a time complexity of O(n^2), which 
means that the processing time increases quadratically 
with the number of pixels in the image. However, 
OpenCV's implementation of the algorithm is 
optimized for speed and can handle images with large 
numbers of pixels relatively quickly. 

In most cases, the program should be able to detect the 
number of red circles in an image within a few seconds 
to a few minutes, depending on the factors mentioned 
above. If the program is taking too long to run, you 
may want to consider optimizing the parameters of the 
circle detection algorithm or using a faster computer 
or graphics processing unit (GPU) for processing the 
image. 

Andrew:  I ran the code you gave me and it found the 
image file but found no circles 

ChatGPT: If the program was not able to detect any 
circles in the image, there are several possible reasons 
why this might have happened: 

1. The red circles in the image may be too small or 
too large to be detected by the circle detection 
algorithm. You can try adjusting the minRadius 
and maxRadius parameters in the 
cv2.HoughCircles function to account for this. 

2. The red circles in the image may be too faint or too 
bright to be detected by the color thresholding 

process. You can try adjusting the lower_red and 
upper_red bounds in the HSV color space to 
account for this. 

3. There may be other objects or features in the image 
that are being detected as circles, which are not 
actually red circles. You can try adjusting the 
morphological operations to remove noise and 
non-circular features from the image. 

4. The red circles in the image may be partially 
obscured or hidden from view by other objects or 
features in the image. In this case, it may not be 
possible to detect all of the circles in the image 
using the circle detection algorithm alone. 

To troubleshoot the issue, you can try visualizing the 
intermediate steps of the image processing pipeline, 
such as the thresholded mask and the morphological 
operations, to see if there are any issues with these 
steps that are preventing the circles from being 
detected. Additionally, you can try using a different 
image or a subset of the image to test the program and 
see if it is able to detect circles in that case. 

Andrew:   What size of circle did you ask the program 
to detect? 

ChatGPT: In the code I provided, the minRadius and 
maxRadius parameters in the cv2.HoughCircles 
function were set to 0, which means that the algorithm 
will try to detect circles of any size. 

If you want to detect circles of a specific size range, 
you can adjust these parameters accordingly. For 
example, setting minRadius and maxRadius to 10 
and 50, respectively, would tell the algorithm to only 
look for circles with radii between 10 and 50 pixels. 
Note that the appropriate range of radii depends on the 
size of the circles in the image you are trying to detect, 
so you may need to experiment with different values 
to get the best results. 

Andrew:   What does minDist represent? 

ChatGPT: The minDist parameter in the 
cv2.HoughCircles function represents the minimum 
distance between the centers of detected circles. 

When the Hough Circle Transform algorithm is 
applied to an image, it can detect multiple circles that 
overlap or are located close to each other. To avoid 
detecting the same circle multiple times, the algorithm 

else: 
    print('Image file empty') 

 



enforces a minimum distance between the centers of 
the detected circles. 

The minDist parameter specifies the minimum 
distance between the centers of the detected circles, in 
pixels. If two circles are detected with centers closer 
than this distance, only the circle with the stronger 
edge response will be returned. 

The appropriate value for minDist depends on the size 
of the circles you are trying to detect and the amount 
of overlap between circles in the image. Setting a small 
value for minDist will allow the algorithm to detect 
circles that are close together, but may result in 
duplicate detections. Setting a larger value for 
minDist will reduce the likelihood of duplicate 
detections, but may cause some circles to be missed. 

Andrew:   What do param1 and param2 represent? 

ChatGPT: The param1 and param2 parameters in 
the cv2.HoughCircles function control the sensitivity 
and accuracy of the circle detection algorithm. 

• param1 represents the threshold for the edge 
detection stage of the algorithm. This value 
determines how strong the edges in the image 
need to be in order to be considered for circle 
detection. Increasing param1 will result in the 
algorithm being more selective about which edges 
are considered, which can improve accuracy but 
may also result in some circles being missed. 

• param2 represents the threshold for the circle 
detection stage of the algorithm. This value 
determines how strong the accumulation of edge 
points needs to be in order for a candidate circle 
to be considered a valid detection. Decreasing 
param2 will result in the algorithm being more 
lenient about which edge accumulations are 
considered, which can improve sensitivity but 
may also result in false detections. 

The appropriate values for param1 and param2 
depend on the characteristics of the image you are 
trying to detect circles in, such as the amount of noise 
and the contrast between the circles and the 
background. You may need to experiment with 
different values to find the best combination for your 
particular image. 

Andrew:    Can I export our conversation? 

 

ChatGPT:  I'm sorry, but as an AI language model, I 
don't have the capability to export our conversation. 
However, you can select and copy the text from this 
chat and paste it into a text file or any other application 
that you prefer. 

Andrew:   How should I cite our conversation? 

ChatGPT: As an AI language model, I don't have an 
official citation format, but you can cite our 
conversation by including the following information: 

• Name of the AI model: ChatGPT 
• Developer: OpenAI 
• Date of the conversation: [Insert the date of the 

conversation here] 
• URL or other identifying information, if 

applicable: [Insert any relevant URL or other 
identifying information, such as the platform or 
application where the conversation took place] 

Here's an example citation in APA style: 

OpenAI. (n.d.). ChatGPT. Retrieved [insert date of 
conversation here], from [insert platform or 
application where conversation took place] 

Alternatively, you can check with the guidelines of the 
specific style guide you are using to determine the 
appropriate citation format. 

APPENDIX F: OBJECT SUBCLASSIFICATIONS AND 
GENERALIZATIONS 

Galaxy  

Spiral galaxy  

Lenticular galaxy 

Elliptical galaxy  

Barred spiral galaxy  

Galaxy 

Irregular galaxy  

Interacting galaxy  

Barred lenticular galaxy  

Interacting galaxies  

Intermediate spiral galaxy  

Unbarred spiral galaxy  

Seyfert galaxy 

Unbarred lenticular galaxy  

Lenticular  



Intermediate lenticular galaxy 

Barred Magellanic spiral galaxy 

Barred irregular galaxy  

Ring galaxy 

Spiral galaxy occulted by another spiral galaxy 

Barred spiral  

Barred Magellanic irregular galaxy  

Grand design spiral galaxy  

Dwarf galaxy  

Elliptical  

Disk galaxy  

Spiral galaxy, peculiar  

Lenticular galaxy pair  

Lenticular galaxy/Spiral galaxy 

Dumbbell galaxy 

Peculiar galaxy/Lenticular galaxy 

Radio galaxy 

Dwarf elliptical galaxy 

Barred lenticular LINER galaxy 

Starburst galaxy 

Magellanic spiral 

Intermediate lenticular galaxy 

Dwarf spheroidal galaxy 

Spiral arm 

 

Asterism 

Asterism 

Asterism of four stars, mistaken for a galaxy 

Asterism, mistaken for an open cluster 

Unknown, possibly an asterism 

 

Cluster 

Globular cluster 

Open cluster 

Star cluster 

Star cluster candidate 

Diffuse nebula and star cluster 

 

Nebula 

Planetary nebula 

Diffuse nebula 

Emission nebula 

Reflection nebula 

Nebula 

 

Star 

Star 

Double star 

Association of stars 

Triple star 

Multiple star 

Possible double star 

Binary star 

Stellar association 

 

Other 

Interstellar matter 

Supernova remnant 

Star forming region 

Variable star and diffuse nebula 

Star cloud 

 

N/A 

Unknown 

non-existent 

Doesn't exist 

Nonexistent 

(Identification uncertain) 
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APPENDIX G: SEATTLE PACIFIC UNIVERSITY HONORS SYMPOSIUM PRESENTATION 

Presented orally on May 20, 2023 at Seattle Pacific University to the 3rd Annual Honors Symposium as part of the 
panel “How Does Truth Grow?: Evolution and Adaptations of Knowledge” 

Good morning, thank you so much for being here. 

I’m excited to have the opportunity to share with you all what I’ve been working on over the past year alongside 
these illustrious other scholars. While our topics are quite different and we occupy a wide range of disciplines, we 
all share a mind for the liberal arts and see common themes among our work. It is our hope that, through the 
presentation of our work, we can make these connections apparent and challenge your perceptions of discontinuity 
between disciplines.  

As you may have seen in your programs, I have the pleasure of talking about Artificial Intelligence – AI – and the 
good fortune to have spent a year researching a topic that most people have only cared about for 6 months. You’ve 
probably heard a lot about AI in this last half-year or so but unless you’re as exceptionally intrigued by it as I am, 
may not have spent time deciphering and unpacking every piece of it.  

The term AI means a lot of things to a lot of people. When I asked my parents what they thought of when they heard 
the term, they said, “robots taking over” and “am I going to be able to trust anything I read ever again?” and I think 
this tracks with a lot of popular conceptions. 

A lot of us picture sentient machines coming to eradicate humanity, or maybe you’ve heard about “the end of High 
School English” as students use tools like ChatGPT to cheat on their essays. Some of these concerns are certainly 
more warranted than others, but they all fall under the umbrella of AI.  

But what is AI? Over my last year of research, I’ve come across all sorts of definitions that all draw different boxes 
around what’s included and what’s not. But I want to offer a definition of the term “AI” from François Chollet, the 
author of my favorite AI book and several AI tools, that I think captures our doomsday scenarios but also grounds it 
in more present applications.  

Before I define it, I actually owe a bit of an apology to my mom. I cut off her definition a little bit to make my doom 
and gloom point, and because it was a little too similar to my own. Her full response to my question was “robots 
taking over human activities.” What I came up with after a full year is “the effort to automate individual tasks 
normally performed by humans.” …So my mom may have a future as an AI researcher if she wants it. 

But I think this definition captures a lot. Automating human tasks is not inherently a bad thing. So much of what we 
interact with on a daily basis is built on automating jobs people used to do or maybe never would have done in the 
first place. 

Every time you swipe your credit card, your bank uses an AI to check for fraudulent activity instantly rather than 
having someone sort through paper logs all day. 

Every time you open Facebook or Twitter, you’re served a personalized feed based off what a machine thinks you 
would enjoy most. I wasn’t in those social media boardrooms, but I don’t think having a single guy behind the 
computer arranging all the tweets was ever on the table.  

But think about the last time you bought a book…how did you hear about it? For some of us, it may have been a 
friend, or we stepped into a bookstore and picked something out from the staff recommendations shelf. Or maybe it 
was the Amazon recommendations or something you saw on social media. Whether we like it or not, whether we 
realize it or not, AI is already part of our lives, and its role will only continue to expand. 

I want to talk more about what an AI revolution means in our modern age, but I think it may be helpful to examine a 
case study with ideas about the construction of knowledge in mind.  



My research hasn’t just covered AI generally but specifically expanding and applying this technology to my other 
area of focus: outer space.  

As we enter into an age of Big Data, the field of analytics has seen its mission change: rather than dealing with the 
challenges of too little information, we’re more often dealing with too much of it. When there are millions or 
billions of data points, how are we supposed to make sense of this sea of information? How do we determine which 
is useful and when?  

The field of astrophysics is not unique in facing this problem. Amidst a flood of images, humans simply no longer 
possess the resources to catalog and analyze every one of them. Astronomers might be able to recognize a galaxy or 
a nebula in a single image but what if it’s in a group of a thousand others? What about when there are ten thousand 
images?  

This is the context I want to apply AI to. Classification is something computers are actually really good at. 

But they don’t learn in the same way as you or I. If I showed you a hundred photos that were all of either a dog or 
cat, you could pretty confidently separate them into two categories. But try describing exactly what makes them 
different from each other or from any and every other animal without leaving any actual dogs or cats out. Can you 
come up with a definition that includes both golden retrievers and chihuahuas? What about if the dog is missing 
something like a leg or tail?  

I don’t think many of us would mistake a three-legged dog for a cat but if you’ve told a computer that a dog always 
has four legs then showed it a three-legged dog, it would have no idea what it was looking at. 

To solve this explicit definition problem, I used a technology called deep neural networks, which belong to a 
subfield of machine learning, a broad term referring to anything in AI where the program can receive feedback and 
improve itself from it. I won’t delve into the technical details here – though if you’re curious they’re all laid out in 
my paper – but we are in essence giving the computer a quiz.  

If we show it a hundred dogs and a hundred cats and ask it to categorize them, at first it will be randomly guessing 
which one each is. But if each time we tell it the correct answer afterwards, eventually it will start to pick up 
patterns. It will start learning features in images that give it clues to the right answer. And this is what I’m doing in 
the context of astronomy. We have lots of photos of things we know are galaxies and stars and nebulae that we can 
use to teach the computer. I spent a large part of my project figuring out how to extract photos of those individual 
bodies and label them in a way the neural network understands. But once we’ve prepared lots and lots of those 
images and given them to the machine, it will start to pick up distinguishing features of each object. The idea is to 
gradually filter each image from something you and I can look at to something the computer can recognize patterns 
from. 

The term neural network actually comes from what this technique was modeled after: the human brain. The model is 
built of a series of “neurons” that each perform an individual operation that slightly changes the image. When series 
of neurons work together, they form layers that perform recognizable large-scale changes to the image that are 
useful for machine learning. 

But though it’s modeled after the human brain, how much is this neural network actually “learning?” Stepping back 
further, what does it mean to learn? Does the computer actually know what a galaxy or a star is, or did it just learn to 
pass the tests we gave it?  

Without being an astrophysicist, you could still probably tell me stars and galaxies aren’t the same thing and offer a 
cursory definition of each. But to the computer, the difference in a star and a galaxy is just a set of clues in the image 
data, not anything intrinsic that describes the real world. To a computer, both of these are just pixels on a screen but 
to you and I, they define our place in the universe.  

With enough data, deep neural networks can get better at their tasks than any person ever could, but is it fair to say 
they know more? 



Many of you may be familiar with ChatGPT, the program I mentioned earlier that you can ask questions of like a 
person and get really accurate and specific knowledge from. But even though we can learn from the information the 
program gives us, does it know it? How can we learn from a teacher that doesn’t possess knowledge? 

I think this reveals another scary feature of artificial intelligences: because they don’t truly know anything, there’s 
no guarantee the information is accurate. It’s learned to pass enough tests that it can generally give you an answer 
that at least sounds right…and usually is. But if you ask it where it got its information from, it doesn’t always know. 

Neural networks are often called black boxes because, while we know what data we gave it and what we asked it to 
do, we don’t know exactly how it does it. 

I have up here a simplified diagram of a neural network but when there are thousands of data points and hundreds of 
layers, it becomes literally impossible to keep track of the flow of information. 

Or when the input is the entirety of what’s available online, we might not know what we even gave it. This is why 
chatbots often become quickly problematic. A few years ago, Microsoft unveiled a Twitter bot called Tay that 
learned from the speech patterns of users who interacted with it. But when users started posting hateful content, the 
bot quickly started echoing it, spouting Nazi propaganda and harmful conspiracy theories. 

Chatbots aren’t people. It may seem obvious to say that but what’s stopping Tay from saying those things? As far as 
“she’s” concerned, she’s getting better. She is emulating not only speech from real Twitter users but actual 
viewpoints. She doesn’t know that her words can cause real harm and that they correspond to things in the physical 
world that real people are affected by. 

I don’t mean to sound down about the future of artificial intelligence or scare you too much. But I do hope it scares 
you a little bit. AI, like any other technology, is an inherently neutral thing. Whether it becomes a tool for good or 
for evil depends entirely how we use it.  

In this way, I like to compare it to the Internet. Many of us, including myself, cannot remember a time before 
Google, but if you do, think about whether you thought it was a good or a bad thing when it first came out. Think 
about how you would classify it now. I think the vast majority of us would say Google has made our lives orders of 
magnitude easier and given us access to information we would never have had at a speed the entirety of human 
history could not even dare to imagine.  

But I don’t have to tell you that Google comes with harm too. The people behind it try to moderate its content as 
best they can but they don’t know everything that’s on there. Pornography, not always consensual, is rampant, and 
cybercrime steals from millions of people and can cripple whole nations. Is the tradeoff worth it? 

 I don’t think many of us would call it societal progress to go back to the pre-search engine days, but that progress 
doesn’t come without concurrent harm. The same technology that could be the bedrock of clean energy is also 
responsible for nuclear destruction. The morality of technology is exactly what we make it. 

I think AI is going to change the way we live in the same way the Internet did. Soon we’ll be wondering how we 
ever went about life without it and its incredible utility. But my hope is that along the way, instead of merely asking 
what we can do next, that we’ll ask what we should do as well. 

I want to leave you with one final thought experiment that’s sat with me for many years. There’s a short story by 
Jorge Borges that was published over 75 years ago but still holds tremendous relevance today. It’s called The 
Library of Babel and it imagines a library of almost infinite proportion that contains a book for every possible 
combination of letters.  

Evidently, the vast majority of these books are pure gibberish, but the library must also contain, word for word, 
every book ever written, every sentence ever spoken, and every one that’s not. Somewhere it describes every second 
of your life in perfect detail but also in complete error in many other copies. Your deepest desires and darkest secrets 



are written down but so are the ones that don’t belong to you at all. Shakespeare’s Hamlet is there word for word 
along with copies that switch out single words, sentences, or scenes for ones that make no sense at all. 

In this world where every novel statement has already been said, where no possible set of words and letters creates a 
unique permutation, what does it mean to create? To know? Does Hamlet mean anything if it was randomly 
generated?  

To the library, as with our computers, none of these combinations mean any more than the others. The difference 
between Hamlet and utter gibberish is only in our interpretations of it. Borges wrote his original story in Spanish, 
and it didn’t see an English translation until over 20 years later. If you presented that text to someone who spoke 
Spanish and to another who didn’t, only one of them would be impacted by it. There is a framework of 
understanding necessary to making meaning of anything. 

I invite you then to consider what it truly means to know and who or what is capable of it. Consider this question 
throughout the presentations of my colleagues and when you read the next headline proclaiming the newest skill AI 
is capable of perfecting.  

Thank you so much for your time and I’d now like to turn it over to Mr. C.J. Wisely. 

 

 


	Using Deep Neural Networks to Classify Astronomical Images
	Recommended Citation

	Microsoft Word - Final Paper + Speech | Digital Commons Format.docx

