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Abstract 

Many companies rely on professional debt-
collection agencies to handle their outstanding debts. 
These agencies conduct a debt collection process 
consisting of successive, escalating actions with the aim 
of getting a debtor to settle an overdue claim. The 
sequence of actions is administered by agents who often 
have to make decisions on a case-by-case basis. This 
requires understanding of complex data and making 
decisions under uncertainty. This decision-making 
process has hardly been investigated so far. We are 
proposing Bayesian networks as the analytical basis for 
a decision support system. Bayesian networks are 
strong in dealing with uncertainties. They can be used 
for both predicting the success of a case and making 
recommendations on actions. The evaluation shows that 
Bayesian networks have a very good predictive 
performance which gets even better as the process 
evolves. With this instrument, the agents can make 
better-informed decisions in the debt collection process. 

1. Introduction

Late payments and nonrecoverable debts are
increasingly common phenomena in today’s economy. 
One in five of Europe’s SMEs (companies with less than 
250 employees) say that late payments are a threat to 
their business [1]. Collecting outstanding payments is a 
lengthy and time-consuming process and many 
companies are overwhelmed with their administration.  

Therefore, companies rely on professional debt-
collection agencies. These agencies are, in contrast to 
the creditor, specialized in the debt collection process. 
They work more efficiently and can also act more 
effectively towards the debtor.  

The core business of the debt collection service is 
the processing of collection files, a process that has been 
supported by IT systems for many years. However, 
decisions in this process are largely made manually by 
agents. The use of intelligent data analysis methods to 
increase efficiency and subsequently automate the 
process is still in an early stage. So et al. [2] call the debt 

collection process “little researched compared with 
other operations management activities”. 

This study contributes to addressing this gap by 
applying data analytics methods to the collection 
process in order to support processing with intelligent 
algorithms. Specifically, we investigate whether 
Bayesian networks can be used as a decision support 
system for the agents to deal with the many uncertainties 
in debt collection. 

1.1. The Debt Collection Process 

The debt collection process consists of a sequence of 
successive, escalating actions with the aim of getting the 
debtor to settle the overdue claim. Among these actions 
are formal reminders, telephone calls, the involvement 
of lawyers, the appeal to a court, foreclosure auctions, 
etc.  

The collection process is controlled by agents who 
often have to make decisions on a case-by-case basis. 
The agent must assess the future behavior of the debtor 
and the likelihood of payment in order to be able to 
make decisions about how to proceed. At any point in 
time, further investments in time and money must be 
weighed against the prospects for success. 

The wide range of actions that can be carried out by 
the agent in connection with the different possible 
(re)actions by the debtor results in a multitude of 
potential execution paths for a case. Certain process 
steps are required by the legal dunning procedure. But 
around this “core process”, many “ad-hoc” actions and 
decisions are made. Figure 1 gives an impression of this. 
Three cases are shown: (a) a case in which the debtor 
has fully paid his debt after a few actions triggered by 
the agent, (b) a case which included an installment plan 
and which was closed after the remaining debt was low, 
and (c) a case which is still open and whose progress is 
uncertain after a number of actions. 

Due to the high complexity of the collection process, 
it is common practice that the agent follows simple and 
pragmatic rules based on limited information and 
intuition in order to decide how to proceed. Thus, 
information may remain unused, and this can lead to 
suboptimal decisions. 
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A decision support system (DSS) is desirable that 
takes all information into account and assists the agent 
to make rational and objective decisions considering the 
likelihood of success. 

The objective of such a DSS is (a) to make a 
prediction at any time - from the start of the process - as 
to whether the case will ultimately be positive, i.e. 
whether the debtor will pay his outstanding debts in full, 
and (b) to show which effect follow-up actions and 
debtor responses have on the likelihood of the case 
being positive. 

 

2. Related Work 

Over the last years, a number of studies appeared 
that apply analytical methods to the debt collection 
process. Although the title of the publications may 
indicate a similarity with our problem - the underlying 
business situations can be very different. A distinction 
must be made according to (a) the relationship between 
the debtor and the creditor, (b) the question of whether 
a decision is to be made before or during the collection 
process, (c) the extent of data that is available for the 
decision-making process. The problem presented here 
addresses collection agencies that are not in a customer-
provider relationship with the debtor (a), supports 
decisions in the course of the collection process (b) and, 
due to the lack of a continuous, direct relationship, has 
little data on the debtor and relies mainly on data that is 
collected during the course of the process (c). 

Related, but also quite different from debt collection 
is credit scoring. Credit scoring is used by companies to 
decide whether or not a credit should be granted to a 
customer. It is a one-time decision, and typically, the 
creditor has plenty of data available on the credit 
applicant. Credit scoring is a well-researched area and 
widely used in practice. All known classification 

methods have been applied to address this problem, e.g. 
linear regression, decision trees, support vector 
machines, neural networks, etc. (for an overview, see 
Louzada et al. [3]). In all characteristics (a), (b), and (c), 
credit scoring is different from debt collection. 

A group of publications addresses a situation in 
which an unsecured credit has been granted, e.g. in form 
of a service contract, and the customer is late with a 
payment. The creditor must decide what actions to take, 
typically based on a prediction of the likelihood of 
repayment. In contrast to credit scoring, where only ex-
ante information on the debtor is available, the creditor 
here has information about the customer's payment 
behavior over a longer period of time. This additional 
ex-post information is now used together with the 
regular customer data for the prediction. Examples in 
the literature are related to telecommunications service 
providers [4], [5], [6], credit card companies [7], 
microfinancing services [8], banks [2] or taxation 
authorities [9]. Possible actions are reminders, transfer 
to lawyers, transfer to debt collection agencies [10], 
[11], but also limitation or discontinuation of the service 
[4]. Since this situation can be viewed as a deferred 
credit scoring, it is no surprise that similar classification 
methods have been applied, e.g. k-nearest neighbor, 
random forest, SVM, neural networks, and naive Bayes 
classification [10], [8], [5]. Other approaches are rule-
based [7] or using fuzzy sets [8]. 

A contrary situation arises in hospitals that follow a 
“rescue first, pay after” strategy. For patients who 
cannot pay their bill, the hospital has almost no 
backward information and can only make a repayment 
prediction based on currently available personal data 
(age, marital status, occupation, etc.). [12] present such 
a case and use eight different classification methods, 
among them Bayesian networks, for the repayment 
prediction. 

Figure 1. The individual course of a case can vary greatly. 
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So et al. [2] is the work closest to our research. They 
formulate debt collection as a stochastic dynamic 
programming problem. The objective is to find an 
optimal solution for which actions should be carried out 
for how long and in which order. An example with three 
actions (or phases) is given: (1) communicating with the 
debtor, (2) using legal procedures, and (3) writing off 
the debt. The model is applied to a direct provider-
customer situation, the provider being a bank. 
Accordingly, the creditor has knowledge on the debtor’s 
previous repayment behavior.  

Hardly any publication is addressing decision 
making at debt collection agencies. An exception is 
[13], who present a solution for the following decision 
problem: should a portfolio of customer insolvency 
cases offered by a company be bought by a debt 
collector agency and at which price? The collector has 
to make an ex-ante prediction on the overall repayment 
and balance the incurred collection costs with the 
expected amount of recoverably money.  

Our presented problem differs from all others in that 
decisions can almost only be based on information that 
is captured in the course of the collection process. 
Almost every activity of the process changes the 
probability of repayment. We selected Bayesian 
networks because of their ability to model conditional 
and marginal probabilities, their ability to combine 
expert knowledge with data, their comprehensibility 
based on a graphic representation, and their predictive 
performance. Our use of Bayesian networks is dynamic 
in the process, and it is not comparable with the static 
application of Bayesian networks as presented in the 
work of Shi et al. [12]. 

3. Bayesian Networks 

A Bayesian network is a graphical representation of 
a set of random variables 𝑋1, 𝑋2, … , 𝑋𝑛 and the 
relationships that exist between them. The variables are 
symbolized by nodes and directed arcs between the 
nodes indicate causal or influential relationships 
between the individual variables. In most practical 
problems, the structure is relatively sparse, such that 
every node has only a few nodes that influence it (parent 
nodes) and every node has only a few nodes that it 
influences (children nodes). 

In mathematical terms, the Bayesian network 
reflects a joint probability distribution 𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) 
of the n variables. From probability theory, we know 
that the joint probability can be factorized into: 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) =
𝑃(𝑋1)𝑃(𝑋2|𝑋1) … 𝑃(𝑋𝑛|𝑋1, … 𝑋𝑛−1). 

Since a node is dependent only on its (few) parent 
nodes, this reduces to 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))𝑖   
with 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) ⊆ {𝑋1, . . . , 𝑋𝑖−1}. 

This formula allows to calculate the joint probability 
distribution 𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) and the marginal 
probability distributions 𝑃(𝑋1), 𝑃(𝑋2), 𝑃(𝑋𝑛), given 
that the conditional probability distributions 
P(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) are known. In the next section we 
will describe how the conditional probability 
distributions will be determined. 

A typical usage scenario of Bayesian networks is 
inference or causal reasoning: inference means 
determining 𝑃(𝑋𝑖|𝑋𝑗 = 𝑥𝑗, 𝑋𝑘 = 𝑥𝑘, 𝑋𝑙 = 𝑥𝑙, … ), the 
probability that 𝑋𝑖 occurs after the realization 
𝑥𝑗, 𝑥𝑘, 𝑥𝑙, … of the variables 𝑋𝑗, 𝑋𝑘, 𝑋𝑙, … is known (i.e. 
could been observed). Often, 𝑋𝑖 is called the variable of 
interest, or query variable 𝑋, whereas the observed 
variables 𝑋𝑗, 𝑋𝑘, 𝑋𝑙, … are called the evidence variables 
𝐸𝑗, 𝐸𝑘, 𝐸𝑙, … , so that the conditional probability is 
written as 

𝑃(𝑋|𝐸𝑗 = 𝑒𝑗, 𝐸𝑘 = 𝑒𝑘, 𝐸𝑙 = 𝑒𝑙, … ). 

However, it should be pointed out that any variable 
in the network could be a query or an evidence variable.  

The determination of the relevant variables, the 
network structure, and the conditional probability 
distributions together are called the construction of the 
Bayesian network. 

Construction of the Bayesian Network 

Relevant Variables. The careful selection of 
relevant variables is the first important step in 
constructing a Bayesian network. The selection should 
be guided by the objectives of the project and the 
available information. Domain knowledge is necessary; 
therefore, experts should be included in the discussion.  

Structure Learning. Very often, the domain expert 
already has an opinion on the direct relationships 
between certain variables. Thus, a dependency graph 
could be manually constructed. But depending on the 
complexity of the problem and the amount of data 
available, automatic learning from data might be the 
preferable option. 

Structure learning for Bayesian networks is a NP-
hard problem [14] and therefore intractable for larger 
networks. As a consequence, heuristic methods have 
been developed that use search and score approaches. 
The score is a measure of how well the structure fits to 
the given data. Frequently used scores are the Akaike 
information criterion (AIC), the Bayesian information 
criterion (BIC), and the log-likelihood criterion 
(LOGLIK) [15]. The search algorithms used in this 
research are the hill-climbing greedy search (HC) [15], 
the tabu search (TABU) [16], max-min hill-climbing 
(MMHC) [17], and the 2-phase restricted maximization 
HITON parents and children (RSMAX2) [18].  

Hill-climbing greedy search (HC) and tabu search 
(TABU) are widely applicable heuristics which can also 
be applied to Bayesian networks. HC [15] starts with an 
arbitrary network structure for which the selected score Page 1741



(BIC) is calculated. New structures are generated by 
randomly adding, removing, or reversing edges, and a 
new structure replaces the old structure if it has a higher 
score. The algorithm stops if modifications do not result 
in a further score improvement. It is obvious that hill-
climbing can easily lead to local optima. Tabu search 
[16] is a variation of HC that avoids getting trapped in 
local optima by keeping a list of already rejected 
solutions. HC and TABU are known as score-based 
algorithms. 

Other algorithms look deeper into the variable 
relationships to restrict the possible network structures 
for the search. They are called hybrid algorithms 
because they combine the score-based with a constraint-
based approach (maximize and restrict). Max-min hill-
climbing (MMHC) [17] starts with a skeleton (i.e. a 
graph with undirected edges) of the Bayesian network, 
learned by a local discovery algorithm called max-min 
parents and children (MMPC). Hill-climbing greedy 
search is then used to orient the edges in the network. A 
more general implementation of MMHC is RS2MAX 
(2-phase restricted maximization). It can combine 
different constraint-based and score-based algorithms. 
In this hybrid approach, we used HITON parents and 
children (RSMAX2) [18] to construct the skeleton and 
hill-climbing greedy search to orient the edges in the 
network. 

Parameter Learning. Once the structure of the 
Bayesian network has been established, the conditional 
probability distributions need to be assigned to each 
node. While structure learning represents the qualitative 
subtask of the network construction, parameter learning 
represents the quantitative subtask. The conditional 
probability distributions are often estimated with the 
maximum-likelihood approach from the observed 
frequencies in the dataset associated with the network. 
In the case of discrete variables, it can simply be 
calculated by counting how often the value 𝑋𝑖

𝑘 of the 
variable 𝑋𝑖 is occurring in conjunction with each 
possible realization 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)𝑗 of the parent 
variables 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖), divided by the total occurrence 
of this realization [20]: 

𝑃(𝑋𝑖
𝑘|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)𝑗) =  

𝐶𝑜𝑢𝑛𝑡(𝑋𝑖
𝑘, 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)𝑗)

𝐶𝑜𝑢𝑛𝑡(𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)𝑗)
 

Maximum likelihood estimation (MLE) is the 
classical frequentist approach to parameter learning. If 
uncertainty is to be considered in parameter estimation, 
then Bayesian estimation (BE) is preferable. BE corrects 
to formula above by adding the prior probabilities to the 
terms in the numerator and denominator [20]. The 
advantage of Bayesian estimates is that they deliver 
more realistic results for small data sets [20] and that 
missing observations don’t result in zero probabilities in 
the network [15]. However, as the size of the data set 
increases, the two estimates converge.  

Inference. After structure and parameters of the 
Bayesian network have been determined, the network is 
„ready. As already mentioned, the primary usage 

scenario is inference, also called causal reasoning or 
belief updating: given that the values of some of the 
variables are known (evidence variables), what is the 
probability that a node 𝑋 (the query node) has a 
particular value of 𝑥? 

While this conditional probability can easily be 
calculated for small network structures, the 
computational effort increases more than exponentially 
for larger networks. Therefore, in addition to the exact 
approach, approximate interference algorithms have 
been proposed. Two well-known algorithms are 
simulation-based and called logic sampling and 
likelihood weighting [21]. 

Bayesian Network Classifier 

We introduced Bayesian inference as the problem of 
identifying the conditional probabilities 
𝑃(𝑋|𝐸𝑗 = 𝑒𝑗, 𝐸𝑘 = 𝑒𝑘, 𝐸𝑙 = 𝑒𝑙, … ) of a variable 𝑋 given 
evidence 𝐸𝑗 = 𝑒𝑗, 𝐸𝑘 = 𝑒𝑘, 𝐸𝑙 = 𝑒𝑙, …. If 𝑋 is a discrete 
variable that can take on the values 𝑥 (e.g. 𝑥 = 0 and 
𝑥 = 1 for a binary variable), then an assignment of the 
evidence (or now called predictor variables) 
 𝐸𝑗 = 𝑒𝑗, 𝐸𝑘 = 𝑒𝑘, 𝐸𝑙 = 𝑒𝑙, ….  to  

argmax
𝑥

𝑃(𝑋 = 𝑥|𝐸𝑗 = 𝑒𝑗, 𝐸𝑘 = 𝑒𝑘, 𝐸𝑙 = 𝑒𝑙, … ), 

the value of 𝑋 with the highest posterior probability, is 
a classification with the class variable 𝑋. By using a 
Bayesian network in this way, it becomes a Bayesian 
network classifier [22]. 

4. Bayesian Network Analysis of the Debt 
Collection Process 

4.1. Data and Variables  

The presented research was conducted in 
collaboration with a German debt collection agency 
whose clients are companies from all industries. Their 
debt collection process is fully digitized, i.e. the date of 
invoice, the amount due, the complete history of actions 
taken, etc. are all electronically available and accessible 
by the agents during the entire process. 

Due to the different approaches and types of 
communication, only claims against private individuals 
were considered in the present study; corporate debtors 
were excluded. The claims accessible to us originate 
from a period from March 2016 to June 2017. Cases 
were declared as successful or positive, if after one year, 
more than 95% of the total debt was recovered. They 
were declared as unsuccessful or negative, if less than 
5% were recovered. The small percentage of cases 
(2,76%) with partial repayments (between 5% and 95%) 
was excluded. This resulted in a number of 54.537 files, 
of which 40.549 (74,36%) were positive and 13.988 
(25,64%) were negative.  
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The debt collection system allows 688 different 
types of actions. A total of 6.7 million actions were 
recorded in the entirety of files. Together with the 
agents, we selected 117 of these action types as relevant 
for evaluating the collection process (other types were 
purely technical). These action types can be classified 
into 19 categories that became the underlying variables 
of the Bayesian network (Table 1). 

4.2. Network Construction 

After all data had been prepared and variables been 
defined, the network construction was carried out using 
the R package bnlearn [23]. The four algorithms HC, 
TABU, MMHC and RSMAX2 were used for structure 
learning. The algorithms created different network 
structures which were more or less complex.   

HC and TABU show the best results for the three 
indicators AIC, BIC and LOGLIK; the TABU model 
has a minimal lead (Table 2). This corresponds to the 
expectation, since the TABU algorithm, in contrast to 
Hill-Climbing Greedy Search (HC), can overcome local 
optima. The MMHC and RSMAX2 models are a bit be-
hind because they optimize BIC only in the second step.  

Due to the limited space, we present the structures 
of only two networks exemplarily. Figure 2 and Figure 
3 show the Bayesian networks which result from 
applying the MMHC and HC algorithms. 

The network structures were generated solely by 
learning from data. They have no prior information on 
how the debt collection process should look like. 
Different learning algorithms identify different 
dependencies between the variables. But at their core, 
both presented models show a sequence of actions that 
is predetermined by the legal dunning procedure:  
transfer to lawyer, court order, enforcement notice, 
enforcement. Even if the nodes of the network are 
random variables, not process steps, one could say that 
the learning algorithms have recreated at least parts of 
the collection process from data. In this respect, 
Bayesian network construction is comparable to process 
discovery techniques used in process mining [24]. 

The BIC-maximizing model HC (same as TABU) 
has a very confusing structure. The large amount of 
dependencies may optimize the BIC, but they are 
difficult to understand and could be caused by 
overfitting. The most transparent structure is the 
MMHC model. The agent’s actions are reflected in a 
straightforward escalation sequence which ultimately 
leads to repayment. Installment agreements and 
negative features accompany this sequence. The contact 
to the debtor via the telephone is positioned in a side 
branch of the network, which is linked to full recovery 
via the variable verbal commitment to pay. The variable 
arrest warrant is isolated from the rest of the network, 
i.e. it is recognized as independent from all other 
variables. This means that in the MMHC model, the 
presence of an arrest warrant doesn’t change the 
probability of a repayment. 

Table 1. Defined network variables, 
descriptions and frequencies 

(in alphabetical order). 

Variable Description 
Relative 
frequency 
in all files 

Announcement 
of Measures 

Follow-up measures are announced to 
the debtor, e.g., the judicial dunning 
procedure or a foreclosure.  

36,7% 

Arrest Warrant Coercive measure against the debtor to 
provide a statement of assets.  0,3% 

Contact Refusal The debtor refuses the contact with the 
debt collection agency, e.g., by refusing 
to take note of letters or not answering 
calls.  

0,4% 

Court Order Delivery of the payment order to the 
debtor by the competent dunning court.  38,0% 

Enforcement Execution of foreclosure against the 
debtor. Valuables or money of the 
debtor are garnished (usually by a 
bailiff). 

16,1% 

Enforcement 
Notice 

Issuance of an enforcement notice. 31,1% 

Formal 
Objection 

The debtor files a formal objection, 
querying all or part of the claim. 2,4% 

2nd Formal 
Reminder 

The debt collection agency sends a 
letter containing the second reminder. 60,2% 

3rd Formal 
Reminder  

The debt collection agency sends a 
letter containing the third reminder. 50,8% 

Formal 
Reminder by 
Lawyer 

Dispatch of a reminder by the lawyer. 
50,4% 

Full Recovery Settlement of all outstanding debt. The 
recovery is considered as full, if the 
remaining debt (including fees) is less 
than 5%.  

74,4% 

Installment 
Agreement 

Agreement of an installment plan 
between the debt collection agency and 
the debtor.  

16,5% 

Installment 
Reminder 

In case of missing installments, the 
debtor is reminded in writing of his 
obligation to pay.  

11,3% 

Negative 
Communication 

The debtor announces not to pay the 
claim.  0,2% 

Neutral 
Communication 

The debtor asks for information and 
announces to review the process.  1,4% 

Ongoing 
Bankruptcy 
Proceedings 

The debtor has declared personal 
bankruptcy within the past seven years 
before the start of the file.  

4,8% 

Other Negative 
Indicators 

Information on negative indicators in 
past files such as financial and property 
information, foreclosure auction, etc.  

23,5% 

Signaling of 
Insolvency 

The debtor verbally announces 
payment difficulties, e. g. due to job 
loss or private bankruptcy. 

2,8% 

Telephone 
Collections 

Execution of telephone collections.  3,5% 

Verbal 
Commitment to 
Pay 

The debtor verbally announces to settle 
the claim. 8,2% 

Table 2. Average network scores AIC, BIC and 
LOGLIK. 

 HC TABU RSMAX2 MMHC 
AIC -226287 -226260 -231749 -229113 
BIC -227361 -227306 -232214 -229638 
LOGLIK -226042 -226022 -231643 -228993 
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After the structure of the networks was established, 
parameter learning was carried out on the basis of 
Bayesian estimates (BE). Inference was sampled using 
the likelihood weighting method.  

4.3. Classification 

Our first objective was to make a prediction at any 
time - from the start of the process - as to whether the 
case will ultimately be positive, i.e. whether the debtor 
will pay his outstanding debts in full (≥ 95%). This 
prediction can be achieved by Bayesian network 
classification with the target variable full recovery. Full 
recovery receives a value of 1, if the file is positive 
(successful), and a value of 0, if it is negative 
(unsuccessful). The evidence variables corresponding to 
agent’s actions (formal reminders, telephone 
collections, transfer to lawyer) or debtor’s responses 

(contact refusal, formal objection) are set to 1 if the 
action has taken place. 

Classification is a well understood and widely 
practiced task in machine learning. Standard procedures 
and techniques for learning and performance evaluation 
are available. One such technique concerns the handling 
of the dataset. We used 10-fold cross-validation on the 
available data to avoid bias and overfitting. The 
classification results were evaluated using the standard 
performance measures precision, recall, and F1-score 
(the harmonic mean of precision and recall). For 
comparison, we also applied a naive Bayes model for 
the target variable full recovery, which assumes 
statistical independence between all influencing 
variables and could be drawn as a simple, two-layer, 
tree-structured Bayesian network. 

Benchmark for all models is the trivial classifier that 
simply classifies all files as positive (because they are in 

Figure 2. Structure using Max-Min Hill-Climbing (Model MMHC). 
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the majority). According to the share of 74.36% positive 
and 25.64% negative files, the trivial classifier will 
achieve a precision of 0.7436, a recall of 1.0, and an F1-
score of 0.862. 

Table 3 shows the classification performance of the 
networks that result from applying the different 
structure learning algorithms. 

 

Table 3. Classification performance of the 
different networks 

 HC TABU RSMAX2 MMHC NAIVE 
Precision 88,9% 88,8% 87,4% 88,5% 88,9% 
Recall 93,5% 93,5% 94,2% 93,7% 83,8% 
F1-score 91,1% 91,1% 90,7% 91,0% 86,3% 

 

The precision results of all models are between 0.86 
and 0.89. This means that 86% to 89% of the files that 
are classified as positive are indeed positive. The 
RSMAX2 model lags a little behind. A clearer picture 
emerges for the recall, since the naive model 
consistently performs around 10% worse than the 
models obtained through structure learning. Their 
results are all in a very narrow range between 93% and 
94.2%. This means that 93% and 94.2% of the files that 
were truly positive were identified by the algorithms as 
positive. The trained models also achieve very good 
results in identifying positives without losing precision, 
which is reflected in the F1-score. Due to its poor recall, 
the naive model achieved an F1-score of only 86.3% on 
average, which is only slightly above that of the trivial 
classifier (86.2%).  

Figure 3. Structure using Hill-Climbing Greedy Search (Model HC). 

Page 1745



The classification results shown in Table 3 are based 
on the data available in the file after one year. On this 
basis, the models predict whether the case will be 
positive or negative. Essential to supporting case 
management, however, is a continuous assessment of 
the outcome as the process continues to evolve. 
Therefore, the measures precision, recall and F1-score 
were also evaluated over time. In order to estimate the 
success of the files after one year, the Bayesian 
networks were fed with the information available up to 
processing week w (w = 1, . . . 52). Figure 4 shows the 
results for all considered networks. For each model, the 
superimposed points represent the results of the ten 
folds; solid lines show the weekly arithmetic mean. 

The almost identical start values for precision and 
recall result from the scarcely available information on 
actions at the beginning of process. There are still no 
evidences available that would change the conditional 
probabilities in the network.  

As with the static analysis after one year (Table 3), 
the algorithmically learned models behave very 
similarly over time; only the naive model deviates from 
it. The course of the naive model is remarkable; it 
dominates in the precision, but drops extremely sharply 
in the recall. The model classifies relatively few files 
incorrectly as positive, but on the other side, many files 
that are actually positive are not recognized as such. 
This results in a very low F1-score from week 20 on, 
which is in the range of the trivial classifier. 

The models HC, TABU, RSMAX2 and MMHC are 
a little less performant in the first few weeks. From week 
15 on, however, they clearly surpass the naive, and 
especially the trivial classifier. A little behind is 
RSMAX2, which is slightly better in terms of recall, but 
clearly worse in terms of precision. The best performers 
are HC and TABU, which, despite the different 

structures, can hardly be distinguished in the diagram 
and achieve slightly better values than the MMHC 
model.  

The models HC and TABU show the best results for 
BIC and predictive performance. However, their 
structures are complex and some of the identified 
dependencies are difficult to understand. The MMHC 
model is hardly inferior to HC and TABU, but the 
dependency structure is much more transparent and 
comprehensible, reflecting the legally determined 
sequence of actions at their core. The RSMAX2 model 
is similarly transparent, however, achieves slightly 
worse performance results. Had a decision to be made, 
however, the MMHC model would be the favorite 
because of the good performance results and the 
transparent structure. 

4.4. Sensitivity Analysis 

In addition to the analysis of the network structures 
and their prediction performance, a one-dimensional 
sensitivity analysis was carried out. Sensitivity analysis 
answers the question: how sensitive is the target variable 
to small changes in the evidence values [25]? 

The sensitivity analysis (see Figure 5) showed that 
some of the actions represented by network variables, 
like formal reminders by the debt collection agency or 
the execution of telephone collections, had almost no 
influence on the assessment of the full recovery 
probability. Only increasing the probability for the 
handover of the file to the lawyer and the subsequent 
judicial dunning procedure with the steps court order, 
enforcement notice and enforcement (left) change the 
repayment probability significantly. The necessity that 
an action must be taken makes it less likely that the case 
will end positively. The same is true for a debtor 

Figure 4. Classification performance of the different networks in weekly progress. 
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response such as a formal objection (middle). In contrast 
to that, evidence on installment agreement (right) and 
verbal commitment to pay have a positive effect on the 
prospects of success.  

Based on this information, the agent in charge of the 
process can continuously evaluate the prospects of the 
case to determine whether it makes economic sense to 
continue the process or whether the file should be 
closed. 

5. Conclusion 

The objective of this study was to demonstrate that 
analytical, data-driven methods can be used as the basis 
for a decision support system for the debt collection 
process. It turned out that Bayesian networks best met 
the requirements of the problem. Unlike credit scoring, 
debt collection has very little data at hand at the 
beginning of the process but relies on data generated 
during the process. Bayesian networks are strong in 
dealing with uncertainties. They can be used to predict 
the probability of the debtor’s full repayment at the 
beginning of the process. This prediction can be 
improved in the course of the process as more and more 
information on the collector’s actions and debtor’s 
responses becomes available. The prediction quality is 
very good and gets better and better as time goes on. 
This allows the agent to decide at any time whether the 
case should be continued or not.   

However, the system not only predicts the prospects 
of the case, but also makes recommendations to the 
agent as to which actions will have an impact on the 
probability of repayment. This information is obtained 
through a sensitivity analysis of the Bayesian network. 

Bayesian networks are a valuable aid to support the 
agents in the debt collection process. They are 
predictive, but not prescriptive. Agents still have to 
make their own decisions - but now on a much better 
information basis.  

A possible next step might be the extension of the 
Bayesian networks to decision networks [20]. These 
distinguish more clearly between nodes which can be 

influenced by decisions (actions) and nodes which 
represent uncertainties. The decision nodes in the 
network can additionally be attached with costs, so that 
a sequence of decisions could be determined which 
optimizes the overall utility (expected repayment netted 
with collection costs). The present work establishes the 
basis for such a decision network. 
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