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Abstract 
 

There is a continual push to make Artificial 

Intelligence (AI) as human-like as possible; however, 

this is a difficult task. A significant limitation is the 

inability of AI to learn beyond its current 

comprehension. Analogical reasoning (AR), whereby 

learning by analogy occurs, has been proposed as one 

method to achieve this goal. Current AR models have 

their roots in symbolist, connectionist, or hybrid 

approaches which indicate how analogies are 

evaluated. No current studies have compared 

psychologically-inspired and natural language 

processing (NLP)-produced algorithms to one 

another; this study compares seven AR algorithms 

from both realms on multiple-choice word-based 

analogy problems.  Assessment is based on selection 

of the correct answer, “correctness,” and their 

similarity score prediction compared to the “ideal” 

score, which is defined as the “goodness” metric. 

Psychologically-based models have an advantage 

based on our metrics; however, there is not a clear 

one-size-fits-all algorithm for all AR problems. 

 

 

1. Introduction  
 

Artificial Intelligence (AI) implies that machines 

can exhibit human-like reasoning, decision making, 

and problem-solving [1]. However, a considerable gap 

exists between AI capabilities and hype [2]. The 

entertainment industry portrays AI based on its 

“strong” definition, in which AI can completely mimic 

human thought processes [1]. In reality, the vast 

majority of what we consider to be AI is “weak,” 

meaning that it has been programmed with a very 

specific objective in mind and is incapable of 

developing other abilities on its own. 

Learning is a significant barrier in AI systems and 

many algorithms are narrow in that they can only 

analyze classes or groups they have been trained on 

[3].  Biological intelligent agents have this learning 

ability, which current AI systems overwhelmingly 

lack [4]. For AI agents to embody such biological 

characteristics of intelligence, they need to be able to 

reason and learn from novel scenarios [5]. One avenue 

being explored in hopes of advancing a step closer to 

“strong” AI is analogical reasoning (AR) [4] [6]. 

Analogies allow information about a familiar situation 

to be translated and interpreted in the context of a 

novel scenario [7]. Reasoning by analogy is common 

in biological intelligence development (as such with 

children), and is one hypothesis about how humans 

gain new knowledge [8]. Artificial AR methods have 

been developed by leveraging concepts from 

biological intelligence.  

One AI method used to solve AR problems is 

Natural Language Processing (NLP).  NLP allows 

machines to “understand” language as a human would 

[9]. Within NLP are vector space models (VSMs), 

which create word embeddings, that allow for 

geometrical manipulation on variables formerly 

considered to be nominal [10].  Recently, through 

these advances with NLP techniques, AR can compute 

similarity as measured between VSMs [11] [10].    

Overall, this paper examines a variety of AR 

models while providing a broad comparison of 

performance with discussion of the algorithms’ 

results. While prior comparisons between AR models 

exist [12] [13] [14] [15], performance on algorithms 

with psychology inspiration and those without has yet 

to appear in the literature. The results of this study 

show how algorithms from these two branches 

compare on our correctness and analogy “goodness” 

metrics. 

 

2. Background 
 

NLP, a subset of text mining, aims to allow 

machines to understand text similar to that of the 

human brain [9]. NLP focuses on understanding text, 

meanwhile, it does not always interpret meaning, 

which is potentially why it struggles with new 

information.  However, by focusing on analogies, AR 
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provides for improvements in current NLP methods by 

incorporating context for unknown words without 

having to explicitly train a model on such [16].  

Analogy problems take on many forms such as 

drawing parallels between lengthy stories to sentence-

based forms to simple word comparisons [17]. 

Currently, available solutions and approaches to AR 

depend on how the problem is posed and the type of 

analogies being considered. Identifying common links 

within an analogy is the subject of AR, which has three 

primary processes: (1) retrieval, (2) mapping, and (3) 

evaluation [7]. At the heart of AR, in its psychological 

sense, research is focused on how the mapping process 

takes place and the best hypothesis for how it occurs 

in humans [18].  

 

2.1. Forms of Analogies 
 

In general, an analogy consists of two parts, the 

“base” or “source” (familiar scenario) and the “target” 

(unfamiliar scenario). Common analogy problems are 

of the word form shown in Equation 1 where A and B 

form the “base” of the analogy and C and D form the 

“target” [17], 

 𝐴:𝐵 ∷ 𝐶:𝐷. 
(1). 

Examples of word-based analogies, originally 

from Sternberg and Nigro [19] and modified in 

Morrision et al. [20], are shown in Figure 1. In addition 

to the A, B, C, and D words shown in Equation 1, there 

is also D' [“D prime”], which we are calling the 

“distractor,” is contrasted with the “correct” D. Posed 

as A:B::C:?, the test subjects had a choice between D 

and D' based on which best completes the analogy. 

 

 
Figure 1. Analogy Categories and Examples 

Ideally, AR models would be able to seamlessly 

consider semantics, structure, or both.  However, an 

understanding of the AR methods’ mechanics is 

needed to further comprehend their capabilities. These 

inherently follow the AI schools of thought. 

 

2.2. Analogical Reasoning Model Types 

 
At a high level, artificial AR is an AI approach and 

understanding it requires a general knowledge of the 

AI schools of thought: symbolist, connectionist, and 

dynamicist [21] [22]. These schools of thought differ 

largely on how intelligence is understood and 

conceptualized through artificial means. Briefly, 

symbolicism considers the mind to be a 

computer/logic system, connectionism considers the 

mind to be a neural network, and dynamicism 

considers the mind a watt governor [21]. These ideas 

are briefly described in Table 1. Given that biological 

mental processes likely follow a combination of these 

approaches (or something yet to be discovered), 

hybrid AI paradigms are also of interest as discussed 

by Eliasmith [23]. 

AR models, similarly, are structured according to 

these paradigms, but largely, they follow two: 

symbolist and connectionist (with some models being 

hybrids) [12] [13]. In AR applications, symbolist 

approaches consider each element of an analogy to be 

separate and independent from one another similar to 

a top-down approach [12]. Originally, the first AR 

methods were symbolic, beginning with Evan’s 1963 

ANALOGY model for visual AR problems [12]. Later 

in 1989, Gentner’s word-based structure mapping 

theory (SMT) would be turned into the influential AR 

model, the structure mapping engine (SME) (part of 

the Many Are Called but Few Are Chosen 

(MAC/FAC) program) [24] [25]. Several symbolic 

models followed, such as the Incremental Analogy 

Machine (IAM) and Heuristic-Driven Theory 

Projection (HDTP) [13]. 

Though AR’s origins started with symbolist 

models, currently there is a push toward 

Table 1.  General differences across AI paradigms, adapted from [21] [22] 

Paradigm SYMBOLISM CONNECTIONISM DYNAMICISM 

Metaphor Symbol system Neural system Dynamical System 

Example Mind as Computer Mind as Brain Mind as Watt Governor 

Mechanism Logical Electrical Mechanical 

Description Syntactic Functional Behavioral 

Representation Localist Distributed Continuous 

Organization Structural Connectionist Differential 

Adaptation Substitution Tuning Rate Change 

Processing Sequential Parallel Dynamical 

Structure Procedure Network Equation 

Mathematics Logic, Formal Language Linear Algebra, Statistics Geometry, Calculus 

Space/Time Formal Spatial Temporal 
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connectionism [12]. These models are characterized 

by elements that are associated using a bottom-up 

approach; many do this in a distributed fashion. The 

first connectionist model was Holyoak and Thagard’s 

1989 Analogical Constraint Mapping Engine 

(ACME), though its methods followed symbolist 

ideals more so than today’s standard for 

connectionism [26]. However, some more recent 

models include Structure Tensor Analogical 

Reasoning (STAR) [27] [28], Learning and Inference 

with Schemas and Analogies (LISA) [29], Discovery 

Of Relations by Analogy (DORA) [30], and Bayesian 

Analogy with Relational Transformations (BART) 

[31] [32]. STAR is a tensor-product-based parallel 

distributed processing model embedded in a neural 

network [27], a framework popular for many AR 

models to come. LISA uses a neural network to 

process analogies while modeling a human’s short-

term and long-term memory [29]. DORA focuses on 

improving and incorporating self-supervised learning 

(SSL) into LISA [30]. SSL has enabled role-fillers to 

fire asynchronously; whereas, in LISA once fired, all 

corresponding semantic units are activated [30]. 

Additionally, VSMs have been included in the 

connectionist paradigm due to operating in a 

distributed fashion. Latent Relation Analysis (LRA) 

was one of the first VSMs created in 2006 (see [33]); 

however, since then, the creation of Word2vec, Global 

Vectors (GloVe), 3CosAvg, and LRCos, as well as 

many others, has been accomplished. 

Considering the benefits of both the symbolist and 

connectionist models, some research has investigated 

hybrid models that incorporate the best of both [12]. 

The first hybrid model was Copycat which had a 

unique domain of nonsensical strings (example: 

ABC:ABD::PQR:{PQS, PQD, or PQR}) [34]. 

Copycat later inspired the creation of an action-based 

analogy program called Tabletop [35]. The first 

generally accepted word/sentence-based hybrid model 

was created in 1994, called the Associative Memory-

Based Reasoning (AMBR) model [36] [37], which 

was followed by Distributed Representation Analogy 

Mapper (DRAMA) [38]. Few hybrid models exist due 

to their complexity compared to the number of 

symbolist and connectionist models [13].  

Following this reasoning, a general taxonomy of 

AR methods appears in Figure 2.  While no known 

dynamicist AR method exists to date, this paradigm of 

AI is included for completeness.   

 

 
Figure 2. AR Models in the Context of AI 

Schools of Thought 

To provide a more complete overview of the AR 

field, the general lineage of AR methods is presented 

in a temporal taxonomy in Figure 3.  Notably, several 

of these algorithms are the subject of continuous 

research and revision. Many models are refined and 

improved upon over time, by the same or different 

investigators, creating a sense of linearity with respect 

to one another similar to a “family.”  

 

 
Figure 3. AR Model Timeline 

3. Methodology  
 

Several in-depth theory comparisons of various 

AR models exist [11] [12] [13] [14] [15]; however, 

algorithm performance on a common dataset with 

consistent metrics across more recent connectionist 

and hybrid models has yet to appear in the literature. 

Additionally, while comparisons have been made 

between AR methods, these comparisons are 

exclusively limited to those with psychological 

heritage or with VSM-classification. Thus, this study 

aimed to review AR methods from both backgrounds 

and selected methods that could solve simple word-

based analogies.   

 

3.1. Selection of AR Methods for Analysis 
 

AR algorithms were selected for analysis based on 

their recency, previous success, and ease of 
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implementation on simple analogies. From the 

literature search, two psychological algorithms 

(DRAMA and BART) and four VSMs (Word2vec, 

GloVe, 3CosAvg, and LRCos) were selected. The 

lineages in Figure 2 show the most recently developed 

connectionist and hybrid models (based on our 

literature review) that were selected. As for the VSM 

selection, the baseline for new model performance has 

been Word2vec, e.g. [39],  and GloVe, e.g. [40]; 

therefore, they were selected [10] [41]. With VSMs’ 

ease of use and recent rise to popularity, many have 

been created, but 3CosAvg and LRCos were selected 

due to their early promising results (e.g. [11] [42]). 

 

3.2. Psychological AR Models 
 

As suggested earlier, psychological models have 

the potential for better applications compared to 

VSMs. Two models were selected for comparison in 

this study, but a review of other methods is presented 

for completeness. These models are considered to be 

“psychology-based” since their authors drew 

inspiration from and primarily worked in cognitive 

science at the time of their development(s). 

 

3.2.1 SME. Due to its early prominence and symbolist 

nature, SME necessitates discussion. Originating in 

1989, SME has been continually expanded with the 

most recent version (v4) being published in 2017 [43]. 

SMT posits that parts of an analogy should be mapped 

based on object relationships, which emphasizes 

structure [18]. The resulting SME mappings are 

measured with a structural evaluation score, which is 

the sum of match rule weights for the given base and 

target [24]. 

 

3.2.2. STAR. STAR was a connectionist model first 

created in 1994 and then, later expanded in 2001 in 

what was dubbed the “STAR-2” model [27] [28]. The 

original STAR model was the first distributed 

connectionist model, which is characterized by having 

representations exist over multiple units rather than 

just one (as in AMCE [26]) [27].  STAR-2’s ability for 

hierarchically structured analogies allows it to solve 

problems the original STAR could not (such as the 

heat-flow/water-flow analogy e.g. [18]) in addition to 

an attempt to better mimic human capacity [28].  

 

3.2.3. AMBR. Copycat was the first, and perhaps the 

most prominent, hybrid model, but limited in the sense 

of only applying to alphabetic strings [34]. AMBR was 

one of the first word-based hybrid AR model and was 

later expanded into AMBR2A and AMBR2B versions 

[36] [44]. AMBR was built upon the DUAL cognitive 

architecture, whose key distinction was small “dual 

agents” that form “coalitions” to complete tasks [45]. 

These dual agents allow for the retrieval, mapping, and 

transfer processes to occur in parallel [36]. AMBR2A 

[37] added a variety of new features, but in particular, 

allowed for decentralized representations [44]. 

AMBR2B modifications improved the constraint 

satisfaction network and recall from the system’s long-

term memory (LTM) [44]. 

 

3.2.4. LISA/DORA. Similar to STAR, LISA was 

based on a neural network and allowed knowledge 

sharing between its working memory and long-term 

memory [29]. LISA’s performance was based on the 

difference between the correct mapping value and the 

highest incorrect mapping value [29]. LISA was the 

basis for the DORA model, which allowed for 

“asynchronous” firing as opposed to LISA’s 

“synchronous” ability [30]. DORA’s results were 

measured based on a “selectivity metric” (SM) 

associated with a semantic unit calculated by taking 

the average weight between the unit and relevant other 

units divided by the average weight between the unit 

and irrelevant other units plus one to help with 

standardization [30]. 

 

3.2.5. DRAMA. Despite using ACME as its basis, 

DRAMA has been generally accepted to be a hybrid 

model [46]. DRAMA uses holographic reduced 

representations (HRRs) (as discussed by Plate in [47]) 

and manipulates them through convolution and 

superimposition  [46]. By nature, HRRs are influenced 

by noise, and experimental data shows that HRRs can 

yield results similar to human recollection [46]. 

DRAMA compares elements in the source and target 

by taking their dot product and dividing it by an 

arbitrary weight on semantics called the “semantic 

similarity” parameter, which is incorporated into the 

“activation” variable directly used to determine the 

analogy’s final mapping [46].  

 

3.2.6. BART. BART is one of the more recent AR 

models, which initially focused on solving 

comparative judgment problems [31]. BART draws 

inferences based on simple analogies, which makes it 

one of the few psychology-based models unable to 

solve sentence-based data. In this limited sense, BART 

uses bootstrapping to create “probabilistic weight 

distributions,” which are then used to derive 

“importance-guided mappings.”  

 In 2017, the creators of BART wanted to make the 

model more general which led to the creation of 

BART-g [48]. BART-g is still limited to simple 

analogies; however, it has the further ability to answer 

questions (such as “What is an animal larger than a 

dog?”) that the original BART could not [48].  

Page 1313



 In 2019, the second version of BART (BART 2.0) 

was released with several improvements including 

using the SemEval-2012 Task-2 dataset to train BART 

2.0 on other semantic relationships in addition to the 

comparative ones that BART 1.0 focused on [32]. 

 

3.3. VSMs for AR 
 

As mentioned earlier, there has been an increase in 

the use of VSMs for AR [11] [41]. Word2vec 

specifically, but VSMs in general, have made 

exceptional progress in the field of auto-generation of 

semantics [9]. VSMs compile words/terms within 

documents to create a term-document matrix, later 

used to calculate various metrics such as the 

association between a pair of words or documents 

[49]. However, VSMs are limited in their abilities due 

to their lack of consideration of syntax- and semantic-

related information, and their inability to identify 

analogies in sentence form [50]. The VSMs selected 

for this study can be customized with an alternative 

corpus; however, we used their default corpus, which 

was limited to the words the model was initially 

trained on. However, this limitation is addressed in 

FastText’s model [51] and is the subject of other NLP-

related research. 

 

3.3.1. Word2vec. Word2vec has its roots in NLP and 

uses Skip-gram (a feed-forward neural network (NN) 

discussed more in [52]) as its internal mechanism 

(which alternatively can be switched with its 

Continuous Bag of Words (CBOW) in another 

variation) [53]. What has allowed Word2vec to make 

such a lasting impression is its ability to perform 

vector calculations on word problems. As discussed in 

[53] given the analogy Spain:Madrid::France:?, 

Word2vec can successful identify “Paris” through 

manipulating the original problem into: 

 𝑣𝑃𝑎𝑟𝑖𝑠 = 𝑣𝑀𝑎𝑑𝑟𝑖𝑑 − 𝑣𝑆𝑝𝑎𝑖𝑛 + 𝑣𝐹𝑟𝑎𝑛𝑐𝑒 (1) 

where, when attempting to calculate vParis, Word2vec 

uses a formula called 3CosAdd, 

 
𝑎𝑟𝑔
 

𝑚𝑎𝑥
𝑏′ ∈ 𝑉

(cos(𝑏′, 𝑏 − 𝑎 + 𝑎′))
 

 
(2) 

which considers the statement in Equation (2) in the 

general form: a:a'::b:b' where b' represents the 

attempted solution(s) to the problem a:a'::b:b', not 

necessarily the b’ corresponding to the (most) 

“correct” solution. The 3CosAdd method requires 

vector normalization and requires the words 

corresponding to a, a’, and b to be excluded from the 

space of possibility for b’ [11]. 

 

3.3.2. LRA. In addition to the typical characteristics 

of a VSM, LRA allows the automatic derivation of 

corpus patterns and word pair synonyms and 

incorporates singular value decomposition [33]. LRA 

was applied to multiple-choice Scholastic Assessment 

Test (SAT) questions of the form: A:B::C:D, where C 

and D were presented in pairs among the choices [33]. 

LRA selects the best word pair based on a comparison 

of the source’s (A:B) and the target’s (C:D) “near 

analogies” and the commonalities amongst them [33]. 

The resulting frequencies are used to select the most 

correct answer to the given question. 

 

3.3.3. GloVe. Unlike Word2vec, GloVe does not 

make use of a NN, but rather a “co-occurrence matrix” 

[54]. The creators of GloVe also introduce a new way 

to measure similarity,  

 

𝑎𝑟𝑔                                                                    

𝑚𝑎𝑥 (𝑐𝑜𝑠 (𝑏′, 𝑏) − 𝑐𝑜𝑠(𝑏′, 𝑎) + 𝑐𝑜𝑠 (𝑏′, 𝑎′))

𝑏′ ∈ 𝑉                                                                     

 
(3) 

called 3CosMul or PairDistance, which replaces 

3CosAdd in Word2vec’s implementation. This 

method allows for more context to be considered by 

comparing the target, b’, individually with other 

elements of the analogy, a, a’, and b. 

 

3.3.4. 3CosAvg and LRCos. In 2016, Drozd et al. [42] 

developed two alternatives to the standard 

3CosAdd/3CosMul calculations used previously. 

3CosAvg takes into consideration all vectors in the 

initial training set instead of just the a:a' pair [42]. This 

is achieved through  

 
𝑎𝑟𝑔
 

𝑚𝑎𝑥
𝑏′ ∈ 𝑉

(cos(𝑏′, 𝑏 + 𝑎𝑣𝑔_𝑜𝑓𝑓𝑠𝑒𝑡))
 

 
(4) 

 𝑎𝑣𝑔𝑜𝑓𝑓𝑠𝑒𝑡 = 
∑ 𝑎′𝑖

𝑚
𝑖=0

𝑚
−

∑ 𝑎𝑖
𝑛
𝑖=0

𝑛
 

(5) 

where Equation (4) has been corrected from its 

original presentation in [42] as identified in [55]. 

Though still using cosine similarity, LRCos factors 

in linear regression, as its name suggests. LRCos 

considers the probability that b' belongs to the target 

class that corresponds with a'. The corresponding 

formula for LRCos is thus 

 
𝑎𝑟𝑔
 

𝑚𝑎𝑥
𝑏′ ∈ 𝑉

𝑃(𝑏′ ∈ 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐𝑙𝑎𝑠𝑠)cos (𝑏′, 𝑏)
 

  
(6). 

 

4. Comparative Assessment and 

Evaluation 
 

These models’ success has been proven in their 

own analyses, but their outcomes compared to one 
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another in an AR context have only been tested in a 

limited sense. To broadly compare these algorithms, it 

was necessary to find applicable data and appropriate 

metrics.   

 

4.1. Representative Example Data 

  
As mentioned previously, there are several 

different formats for analogy problems [17]. For our 

apples-to-apples comparison, the Sternberg and Nigro 

dataset (originally used in [19]) was selected; 

however, due to availability, a modified version (from 

Morrison et. al [20]) was used.  The modified version 

only provides two choices rather than the original four 

(as shown in Figure 1) to complete the A:B::C:? 

analogy. Within the dataset, there are five different 

analogy types: antonym, synonym, category (further 

broken down into subordinate and superordinate), 

functional, and linear ordering as identified in [19]. 

There are 40 antonym and 40 synonym analogies, 

which present opposite or alike words, respectively. 

There is a total of 40 categorical analogies with 35 

being subordinate (specific to broad class) and 5 being 

superordinate (broad to specific class). The 41 

functional analogies generally consider an object and 

an associated action or vice versa. Finally, there are 36 

linear ordering analogies, which have a sequential 

relationship. 

 

4.2. Performance Metrics 
 

To facilitate this comparision, appropriate 

performance metrics were developed and determined 

to be correctness and analogy goodness.  In general, 

correctness is the number of times the algorithm 

correctly selected D (over D') divided by the total (also 

called “raw”) or adjusted number of analogies as 

shown in Equations 7 and 8: 

 

𝑅𝑎𝑤 % 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 (𝑅𝑃𝐶) = 

    
# 𝐷 𝑤𝑎𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑑 𝑜𝑣𝑒𝑟 𝐷′

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑛𝑎𝑙𝑜𝑔𝑖𝑒𝑠
 

(7) 

 

𝐴𝑑𝑗.% 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 (𝐴𝑃𝐶) = 

    
# 𝐷 𝑤𝑎𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑑 𝑜𝑣𝑒𝑟 𝐷′

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑛𝑎𝑙𝑜𝑔𝑖𝑒𝑠
 

(8). 

The model’s selection between D and D' is based on a 

comparison of their similarity metric explained in the 

next paragraph. The “raw” values are the total number 

of analogies in the overall set for a given relationship, 

and the “adjusted” values are the number of analogies 

that the given algorithm has the potential to answer 

correctly. In several instances, the model was unaware 

of the A, B, and/or C words’ existence, which made the 

remainder of the analysis impossible. With that being 

said, the overall algorithm should not be penalized for 

this; however, if an algorithm has not encountered 

many words, it is also not ideal. 

The similarity metric is a continuous value that 

measures how similar two words are. When 

calculating this, DRAMA uses the dot product 

between two word vectors, 𝑣1⃗⃗⃗⃗  and 𝑣2⃗⃗⃗⃗  (symbolized, 

𝑣1⃗⃗⃗⃗  ∙ 𝑣2⃗⃗⃗⃗ ); whereas, BART, Word2vec, GloVe, 

3CosAvg, and LRCos use cosine similarity to compare 

the potential solution space. DRAMA’s similarity 

scale ranges from [-1,1] instead of [0,1]; to normalize 

these values, DRAMA’s similarity scores were 

modified per  

 𝑠𝑖𝑚𝐷𝑅𝐴𝑀𝐴 =  
𝑣1⃗⃗ ⃗⃗  ∙𝑣2⃗⃗ ⃗⃗  

2
+

1

2
  

(9) 

which will be referred to as its “similarity metric” to 

normalize with the other models. 

In its original setting, the dataset was constructed 

so that there was a “correct” answer among the four 

choices [19]. Understanding that D is the best choice 

amongst the other options, it is assumed that A:B::C:D 

is an “ideal” analogy (though individuals may differ 

on whether this is true). If A:B::C:D  is, in fact, an 

ideal analogy, then the similarity ratio, simr (described 

in Equation (10), should theoretically equal one. The 

goodness metric evaluates how close the algorithm’s 

predicted simr compares to an ideal analogy’s 

similarity ratio. To calculate an analogy’s goodness 

metric, the following steps take place: 

i) Calculate the similarity score between A and B. 

simAB 

ii) Calculate the similarity score between C and D, 

simCD 

iii) Take the ratio between the similarity scores 

calculated above:  

 𝑠𝑖𝑚𝑟 =
𝑠𝑖𝑚𝐴𝐵

𝑠𝑖𝑚𝐶𝐷
 

(10) 

iv) Take the difference between the similarity ratio 

for an “ideal” analogy, 1, and the ratio 

calculated above for the resulting analogy 

goodness measure, 

 𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠 = 1 − 𝑠𝑖𝑚𝑟 = 1 −
𝑠𝑖𝑚𝐴𝐵

𝑠𝑖𝑚𝐶𝐷
 

(11). 

 

5. Results 
 

Results were obtained using the data from [19] and 

the correctness and goodness metrics for the 

algorithms: DRAMA, BART 1.0, BART 2.0, 

Word2Vec, GloVe, 3CosAvg, and LRCos.  
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5.1 Correctness Results 
 

Figure 4 presents the percentage correct using the 

raw and adjusted total number of analogies as the 

denominators as shown in Equations 8 and 9, 

respectively. While the APC is a fairer comparison, it 

is important to consider the difference between the 

RPC and APC values since if there is a large 

difference, this suggests that an algorithm lacks vital 

“vocabulary.”  An ideal algorithm would be able to 

identify every word so that it can at least attempt every 

analogy. DRAMA and BART 1.0 successfully 

attempted each problem; however, they were partially 

reliant on hand-coding, unlike the VSMs and BART 

2.0, which were completely autonomous in our 

scenario. 

Figure 4 presents each model’s performance 

within each analogical relationship type. DRAMA had 

the best overall performance and outperformed the 

other algorithms on the synonym, category, and linear 

ordering relationships. However, BART 2.0 tied 

DRAMA’s performance on functional analogies and 

had a slight advantage on those with an antonym 

relationship. DRAMA also had the highest 

performance for subordinate category problems; 

however, for the superordinate, BART 2.0 and LRCos 

tied one another. Since some of BART 1.0 and all of 

DRAMA’s mappings require hand-coding to identify 

the words within the analogies, their RPC and APC 

correctness scores are the same. All of the models were 

trained enough to attempt at least 188 of the total 197 

analogies.  

It is clear that overall, DRAMA was the best model 

for the given dataset, followed by BART 2.0 and 

GloVe, respectfully, with the remaining algorithms 

having a similar performance around the 50% mark.  

At the top level, there was not a large difference in 

results between the RPC and APC scores; however, 

there was some shifting among the lower-ranking 

algorithms such as 3CosAvg and LRCos. 

Despite DRAMA’s exceptional performance, there 

is not a “one size fits all” algorithm regarding the 

different analogy relationships tested. Though 

valuable, overall correctness may not be appropriate 

for studies that consider a large number of potential 

answers for D, an area where VSMs perform better. 

 

5.2 Goodness Results 
 

In a comparison of the similarity metric, a heatmap 

of the analogy goodness measure scores for all of the 

considered data is shown in Figure 5. In the figure, an 

analogy goodness measure of 0.000 indicates that the 

given A:B::C:D is equivalent to an “ideal” analogy as 

discussed in 4.2 and shown in (11. An “average” 

analogy was determined to be 0.251 based on an 

average of the goodness score across all the 

algorithms. Anything with a score equal to or greater 

than 1.000 was considered a “poor” analogy. As 

mentioned earlier, the VSMs and default BART 2.0 

were not trained on certain words, and a goodness 

score could not be calculated; these instances were 

denoted in black. 

Looking at the average shown in the bottom row of 

Figure 5, the algorithms rank as follows based on the 

goodness metric: 

1. LRCos (0.055) 

2. 3CosAvg (0.078) 

3. BART 1.0 (0.107) 

4. BART 2.0 (0.220) 

5. Word2Vec (0.417) 

6. DRAMA (0.434) 

7. GloVe (0.445). 

When doing a broad visual overview, 3CosAvg and 

LRCos appear to be roughly tied followed by BART 

1.0, BART 2.0, and the remaining models, which were 

tied on a different scale. In summary, LRCos provided 

the best possible comparison between analogies; 

however, it was followed relatively closely by 

3CosAvg and BART 1.0, respectively.  

 

6. Conclusions 
 

The authors presented a review and analysis of 

analogical reasoning (AR) algorithms for word-based 

analogies.  This review focused on 7 algorithms: 

DRAMA [46], BART 1.0 [31] & 2.0 [32], Word2vec 

[53], GloVe [54], 3CosAvg [42], and LRCos [42],   

 
Figure 4. Correctness Metric 
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Figure 5. Heatmap of Analogy Goodness Metric
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which encompass the general state of the art in the 

field today.  Previous comparisons, see [11] [12] [13] 

[14] [15], only considered a small subset of these 

algorithms.  In addition to providing a broad review of 

algorithms and their capabilities, the authors further 

provided comparison metrics and a consistent dataset 

for analysis. In a broad sense, it appears that 

psychological models currently have a slight 

advantage over VSMs based on our defined metrics, 

correctness and analogy goodness. When concerned 

with the selection of the correct answer, DRAMA is 

the best overall model (78.7% correctness); however, 

the “best” model may depend on the relationship of a 

given analogy. When comparing models based on how 

“good” the similarity of an analogy is, LRCos has a 

small advantage over the other models (goodness 

score of 0.055).  Overall, combining both metrics, the 

results show BART 2.0 and 3CosAvg tied at 1st, 

DRAMA and LRCos tied at 3rd, and then BART 1.0 

(5th), GloVe (6th), and Word2Vec (7th). Thus, there is 

no “one size fits all” AR algorithm. 

Further work in this field could look at similar 

metrics, with the addition of an analogy goodness 

metric to evaluate A:B::C:D’ in addition to what we 

considered with A:B::C:D. Another interesting metric 

could consider the similarity score between D and D’ 

and factoring that into the correctness metric since 

some of the D’ options seem trickier than others when 

identifying the correct answer. Finally, the inclusion 

of more models (specifically psychological ones) 

would help give future investigations a more 

comprehensive overview of the strengths and 

weaknesses of AR models as a whole. 
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