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Abstract 
 

The epidemic of drug abuse is a serious public 

health issue in the U.S. The number of overdose deaths 

involving prescription opioids and illicit drugs has 

continuously increased over the last few years. The 

objective of this study is to develop a geospatial model 

that identifies geospatial clusters in terms of 

socioeconomic, and demographic characteristics with 

an unsupervised machine learning algorithm. Then, we 

suggest the most important features affecting heroin 

overdose both negatively and positively. The findings of 

this study may inform policymakers about strategies to 

mitigate the drug overdose crisis.  

 

1. Introduction  

Although slightly decreasing from 2017 to 2018, 

opioid-related overdose remains a leading cause of 

injury-related mortality in the US, with nearly 70% of 

drug overdoses involving opioids [1]. In general, 

opioids are a class of drugs used in reducing pain. The 

categories of opioids include natural opioid analgesics 

(morphine and codeine), semi-synthetic opioid 

analgesics (oxycodone, hydrocodone, hydromorphone, 

and oxymorphone), methadone, synthetic opioid 

analgesics (other than methadone, includes drugs, such 

as tramadol and fentanyl). Lastly, heroin is also an 

illegal opioid processed from morphine and extracted 

from certain poppy plants. Its use has also increased 

across the US among men and women, most age groups, 

and all income levels. In 2017 alone, there were 70,000 

fatalities in the US which is three times more than the 

number reported in 2000 [2].  

In particular, Ohio is one of the most seriously 

affected states regarding opioid abuse and death. A rate 

of 39.2 deaths per 100,000 persons is the second-highest 

rate in the US and 63.5 opioid prescriptions for every 

100 persons is also much higher than the national 

average [3]. Figure 1. shows that Ohio’s drug overdose 

rate is also higher than the US average and rapidly 

increasing [4]. Addiction and overdose-related to 

opiates have reached an epidemic level, creating an 

unprecedented crisis. In addition, the costs of this 

problem extend beyond just healthcare, including those 

tied to lost productivity, addiction treatment, and 

criminal justice involvement, as well as the many social 

costs that are challenging to quantify. The epidemic’s 

effects are being felt by commercial healthcare, 

pharmacies, government agencies and programs, and 

every industry which employs its victims. Therefore, it 

is imperative to identify individuals most likely to 

develop opioid abuse or dependence to inform large-

scale, targeted prevention efforts [5]. 

 

 
Figure 1. Drug Overdose Rates 1999-2016 

The Centers for Disease Control and Prevention 

(CDC) has been implementing various efforts for 

preventing opioid overdoses, such as Prescription Drug 

Monitoring Programs (PDMPs), Enhanced State Opioid 

Overdose Surveillance (ESOOS), Overdose Data to 

Action (OD2A), and Data-Driven Prevention Initiative 

(DDPI) [6]. However, Ohio is currently funded for only 

PDMPs at the statewide level and only three counties in 

Ohio are funded for OD2A. In addition, because the 

prevalence of opioid addiction and resources to address 

the crisis vary across Ohio, there is no standard 

prevention and monitoring model, and limited resources 
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for opioid addiction prevention services are often not 

allocated optimally, based on the areas of highest need.  

To date, research has shown that opiate addiction is 

associated with various socioeconomic factors. Several 

types of research have shown the importance of the 

measure of racial/ethnicity [7], opioid treatment [8], and 

trend analysis [9] with the modifiable areal unit problem 

(MAUP) to analyze the geospatial patterns of the opioid 

problem in terms of community-level as well as 

personal level. However, the geospatial analysis of 

opioid deaths by epidemiologists and healthcare 

researchers had been limited to higher geographical 

aggregates such as cities or, more often, provinces and 

states [10]. The primary reason for this is that, 

historically, deaths due to opioid overdose were 

significantly fewer than for other drugs. Although the 

rising number of annual opioid overdose deaths 

indicates that the opioid epidemic has not yet peaked, 

the relative contribution of different drug types to the 

epidemic is changing [11]. The dynamic nature of the 

opioid overdose epidemic poses continuous challenges 

to prevention efforts [12]. Lack of knowledge about 

vulnerabilities in a specific community, such as 

“hotspots” and “red-flagged times” causes challenges in 

responding to opioid-related incidents at the local level. 

Therefore, there is a critical need for local communities 

to understand accurate risk “patterns” in opioid-related 

incidents, to develop and deliver a more nuanced 

prevention strategy, based on local needs. To effectively 

deploy policies and strategies for drug abuse in local 

communities, it is important to understand the spatial 

and temporal distributions of abuse risk promptly [13].  

In this paper, we present a geospatial analysis of the 

locations of reported heroin-related incidents associated 

with EMS dispatches in the city of Cincinnati, Ohio. We 

investigated the geospatial profile variability as a 

function of socioeconomic and demographic covariates, 

accessibility of medical facilities, and characteristics of 

the community environment. We applied an 

unsupervised machine learning algorithm to stratify the 

city of Cincinnati into subgroup clusters with similar 

covariates in terms of geospatial socioeconomic 

features. 

2. Materials and methods 

2.1. Cincinnati EMS data processing 

Emergency medical services (EMS) and first 

responders are critical parts of the emergency care 

system in the US and the first phase of emergency care 

[14]. There are more than 20 million EMS transports 

each year, and emergency 9-1-1 services offer 

immediate access to an operator who can provide basic 

life support coaching until help arrives on the scene 

[15]. In most cases, states and EMS have time limits 

within which patient care records must be submitted 

(24-72 hours), offering more timely information about 

suspected overdoses [13]. EMS dispatch datasets 

usually also have a high spatial resolution, with global 

positioning system (GPS) locations or addresses in the 

call records, making them a valuable resource for 

understanding characteristics of each overdose incident 

that happens [16] and for developing opioid use 

prevention programs [17]. However, EMS calls labeled 

by the dispatcher as related to overdose or opioids may 

not represent all such incidents and calls to EMS may be 

incorrectly labeled by dispatchers as heroin-related 

based on information obtained from the caller [13]. 

Although EMS records may contain glitches, 

information from EMS records can be considered the 

most timely and readily available data to local 

authorities for appropriate response [18], [19].  

In this paper, we obtained EMS response data 

related to heroin overdose from the City of Cincinnati’s 

computer-aided dispatch (CAD) database [20]. Figure 2. 

depicts a data processing process with the EMS data set 

retrieved from the City of Cincinnati. The EMS data is 

publicly available and captures all responses by the 

Cincinnati Fire Department to reported heroin overdose 

incidents. The CAD’s EMS data contains up to 6.3K 

heroin-related overdoses (OD) and 1.8K of other 

overdoses incidents in Cincinnati from 08/01/2015 to 

01/30/2019. Each incident recorded location 

information of an incident with GPS locations (i.e., 

latitude and longitude), address, neighborhood (e.g., 

Downtown, West End, Queensgate), start and end 

date/time of the incident, and disposition of the incident 

response (e.g., medic transport, investigation, cancel) 

[21]. We excluded incidents outside of the study area, 

without geospatial information, and with disposition 

codes not associated with medical events (e.g., not a 

disposition, fire disregard, reassigned), canceled, 

duplicated, or false alarms (e.g., false medical situation, 

medical response false) [21]. 

 

 
Figure 2. Data collection and processing process 

To count heron incidences by census block groups 

during the study period, we linked the latitude and 

longitude of each incident to the regions of block groups 

in the study area that can be represented on a map. Then, 

the average number of heroin-related incidents was 

estimated throughout 2015-2019 in each of these 
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regions, and it was used to estimate a block-level heroin-

related incident rate per 1000 adult population [21].  

2.2. Covariates 

We collected covariates information from variable 

sources. First of all, we gather information on the 

population in each block group from the 2013 to 2017 

estimates from US Census Bureau’s American 

Community Survey [22]. In addition, healthcare 

facilities datasets were from Health Resources and 

Services Administration (HRSA) [23] Data Warehouse 

and SAMHSA OTP Directory [24]. Demographic 

information included the adult population size, and the 

percentage of the population by age, gender, and 

race/ethnicity. Table 1 shows the geospatial covariates 

to conduct our data analytics approach.
Table 1. Complete list of covariates 

Variable Name Description Variable Name Description 

population Population size pc_nonhispanic_white 
The proportion of nonhispanic 

white 

pc_bachelor 
The proportion of bachelor's 

degree or higher 
pc_nonhispanic_black 

The proportion of nonhispanic 

black 

pc_poverty The proportion in poverty pc_hispanic The proportion of Hispanic 

pc_bus_half 
The proportion of half-mile 

bus coverage 

EF 

Theil.s.entropy 

Ethnicity Fractionization 

Theil’s entropy score 

(Diversity score) 

fire Distance to fire departments pc_male The proportion of male 

pc_park The proportion of parks pc_age18_24 The proportion of aged 18-24 

pharm Distance to pharmacies  pc_age25_34 The proportion of aged 25-34 

hospital Distance to hospitals  pc_age35_49 The proportion of aged 35-49 

fqhc 
Distance to federally qualified 

health centers 
pc_age50_64 The proportion of aged 50-64 

otp 
Distance to opioid treatment 

programs 
pc_age65up The proportion of aged 65 up 

bup 
Distance to Buprenorphine 

practitioners 
crime_rate Crime rate per population 

pc_commercial 
The proportion of commercial 

zoning 
Appalachian Appalachian score 

pc_downtown 
The proportion of downtown 

development zoning 
popdens Density of population 

pc_manufacturing 
The proportion of 

manufacturing zoning 
per_cap_income Per capita income 

pc_office 
The proportion of office 

zoning 
housing_units Number of housing units 

pc_residential_other 
The proportion of other 

residential zoning 
pc_vet_XXX 

The proportion of veteran/non-

veteran 

pc_development 
The proportion of planned 

development zoning 
pc_pop_age25+_XXX 

The proportion of educational 

levels 

pc_riverfront 
The proportion of riverfront 

zoning 
pc_pop_age3+_XXX 

The proportion of 

public/private school 

enrollment 

pc_singlefamily 
The proportion of single-

family zoning 
pc_urban_mixed 

The proportion of urban mixed 

zoning 
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Each covariate was calculated based on the census 

block level. In addition, additional socioeconomic 

covariates such as Theil’s entropy score, Appalachian 

score developed for an analysis of social needs in the 

City of Cincinnati (See Appendix) [25], veteran status, 

educational levels of adults, and public/private school 

enrollments were retrieved from US Census Bureau 

[18]. Lastly, the crime incidents data between 2015 and 

2019 were obtained from the Cincinnati Police 

Department [26]. Likewise, the same procedure was 

performed to compute the average crime rate per 1,000 

adult population in each census block. 

2.3. Methods 

To effectively identify geospatial similarity in 

terms of the covariate, we applied a geospatial clustering 

model armed with an unsupervised machine learning 

algorithm.  

Machine learning methods are commonly classified 

into supervised and unsupervised methods. Supervised 

methods, such as Support Vector Machines [21] and 

Random Forests [22], [23] have been extensively used 

in various fields. These methods classify new objects to 

a determinate set of discrete class labels while 

minimizing an empirical loss function (e.g., mean 

square error) [24]. However, supervised methods 

require the use of a training set that contains a priori 

information of several objects’ class labels. In contrast, 

unsupervised methods do not require a training set that 

contains a priori information of objects’ class labels as 

input. Unsupervised methods can detect potentially 

interesting and new cluster structures in a dataset. 

Moreover, they can be implemented when class label 

data is unavailable [27]. Therefore, unsupervised 

machine learning is well appropriate for our research 

since the objective of our study is to discover the class 

labels that best describe a set of data. Clustering has 

been one of the most popular unsupervised machine 

learning algorithms. Clustering refers to techniques for 

grouping similar objects in clusters [28]. Since the 

objective of the study is to discover the class labels that 

are determined by similarity as stated above, we applied 

an unsupervised machine learning clustering algorithm, 

especially the K-Means algorithm to define clusters in 

the city of Cincinnati based on EMS data. 

K-Means algorithm partitions the data set into 

several cluster K that have been set up in the beginning. 

Partition data sets are performed to determine the 

characteristics of each cluster, so clusters that have 

similar characteristics are grouped into one cluster and 

that have different characteristics grouped into other 

clusters [29]. The advantages of the K-Means algorithm 

are that the required execution time is relatively fast and 

easy to implement. However, it is very tricky to 

determine the centroid of the cluster or the initial 

centroid randomly selected. Therefore, we evaluated the 

centroid determination process by the K-Means 

algorithm using the Davies-Bouldin index (DBI). DBI 

is a metric for evaluating clustering algorithms which 

are widely used for measuring the goodness of split by 

a K-Means clustering algorithm for a given number of 

clusters [30]. Cluster evaluation using the DBI uses an 

internal evaluation scheme in which the cluster results 

can be seen whether the quantity and proximity of the 

cluster data result. DBI’s criteria are based on the ratio 

in clusters and the distance between clusters. In the K-

Mean’s formulation, the cohesiveness of the 

corresponding clusters and the separation between them 

is the main parameter that distinguishes one cluster from 

another. Thus, k is the number of clusters, the smaller 

the DBI value obtained, the better the clusters obtained 

from clustering using the K-Means clustering algorithm. 

As a result, we could produce a proper number of 

clusters that have a good level of similarity with given 

EMS data and covariates.  

All analyses were conducted with Python 3.9, 

including the packages “scikit-learn 0.24.2” for 

determining the number of clusters and cluster 

exploration, “Matplotlib 3.4.2” and “seaborn 0.11.1” for 

visualization 

 

3. Results 

3.1. Number of the clusters 

Before identifying clusters based on geospatial 

covariates, we evaluated the goodness of split by a K-

Means clustering algorithm to determine a proper 

number of the clusters. To avoid preselecting input 

parameters a priori (e.g. the number of clusters), 

previous researches have implemented cluster 

validation metrics [29]-[35]. Hence, we applied the DBI 

score to the corresponding k randomly selected and 

determine a proper number of the clusters based on the 

minimum DBI score. Figure 3 shows the result of the 

DBI score analysis. 

 

 
Figure 3. Davies-Bouldin Index Analysis 
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The best DBI score was 1.439826 at six clusters 

when we applied the K-Mean clustering algorithm with 

the data set.  

3.2. Clustering results 

Since the proper number of the clusters was 

identified, the clustering procedure with the 

unsupervised machine learning techniques was used for 

the City of Cincinnati’s EMS data with covariates. In 

particular, our analyses were conducted based on K-

Means clustering algorithms with six clusters on 280 US 

Census blocks in terms of geospatial and socioeconomic 

covariates presented in Table 1. The clusters identified 

by the K-Means algorithm are shown in Figure 3, 

express as geographical mapping. Since two 

independent cities, Norwood and St. Bernard in 

Hamilton County, OH, are not governed by the city of 

Cincinnati, two white blocks in Figure 4 are excluded in 

the analysis. 

 

 
Figure 4. Clustering result in City of Cincinnati with 

K-Means clustering algorithm 

 

Table 2 shows how many blocks each cluster has.  

 
Table 2. Number of blocks in each cluster 

Cluster 
Number 

of blocks 

Average heroin overdose 

incident rate 

0 3 85.6314 

1 92 15.1278 

2 66 9.1742 

3 80 18.2073 

4 1 334.6696 

5 38 5.0973 

 

Cluster 4 was identified as the highest heroin 

overdose incident group with a single block, cluster 0 

was also identified as a relatively higher heroin 

overdose incident group with 3 blocks. Meanwhile, 

clusters 1, 2, 3, and 5 were identified as relatively lower 

heroin overdose incident groups.  

Collapsing the results across features within each 

cluster can provide further insight into cluster-level 

characteristics. Table 3 shows the clustering result with 

some selected features. Cluster 4 shows the 

characteristics of the highest crime rate, higher 

proportion of the male population, the lowest 

educational level, mostly manufacturing zone, low 

housing units, very young populations (age 18-24), and 

the close distance to the Buprenorphine practitioners. In 

general, cluster 4 is matched to the research result of a 

heroin overdose in a micropolitan area [36]. However, 

one thing particularly interesting in cluster 4 is that this 

area shows the highest income level among 240 blocks 

in the City of Cincinnati. This result is not well matched 

the characteristics of a micropolitan area. Cluster 4 area 

in the City of Cincinnati is “Queensgate” which sits in 

the valley of Downtown Cincinnati and has been 

dominated by industrial and commercial warehouses. 

The population of Queensgate has drastically decreased 

since 2010 and it caused the highest variation in the per-

capita income.  In other words, the very little number of 

highest income group dominates the income effect on 

the analysis. Maloney and Auffrey reported that the 

social needs should be addressed in the Queensgate area 

to reduce various problems including opioid addiction 

[25]. Another problem in the cluster 4  Queensgate area 

is that this area has been the hot-spot in illicit drug 

trading [21], [26].  

Cluster 0 shows different characteristics compare to 

cluster 4 despite both clusters record higher overdose 

incident rates. The cluster 0’s characteristics can be 

summarized as the highest education level, completely 

downtown area, white-collar working population (age 

25-49), less racial diversity, higher income level, and the 

closest distance to the Buprenorphine practitioners. 

Cluster 0 is relatively similar to the characteristics of the 

metropolitan area [36]. Cluster 0 is the downtown area 

in the City of Cincinnati that shows the features of the 

built environment, including the proportion of parks, 

commercial, manufacturing, and downtown districts 

and the number of fast-food restaurants, exhibit strong 

positive associations with the number of heroin-related 

calls. 

Clusters 1, 2, and 3 show that they are suburban 

areas with low-and middle-income matched to the 

small-town characteristics [36]. Among the cluster 1, 2, 

and 3, clusters 1 and 2 show less economic disparities 

such as poverty level and income level. Meanwhile, 

cluster 3 shows a relatively lower education level, lower 

income level, and higher poverty level than clusters 1 

and 2. In other words, economic stressors could be one 
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of the contributors to a heroin overdose in small-town 

suburban areas. 

However, cluster 5 shows that it is a wealthy 

suburban area [37] with very low racial diversity, very 

high income, and very high educational level. The 

cluster 5 area is identified as a non-Hispanic white 

residence area well equipped with support programs 

such as community-based opioid overdose recognition 

and response training programs, and a quick response 

team to revisit overdose victims within 2 weeks [13].  

 

3.3. Feature selection 

To develop further geospatial profiling and 

community-based overdose prevention strategy, a 

feature selection procedure based on random forest 

regression was conducted with a 10-fold cross-

validation random search. With the complete list of 

covariates, we ranked the most important features to 

contribute to the incident rate. Figure 5 shows the top 15 

important features based on the random forest 

regression algorithm. 

The most important covariate is the crime rate in the 

block. The crime rate has a positive relationship with the 

overdose incident rate.
Table 3. Clustering results with covariates 

Cluster incident_rate crime_rate popdens pc_male pc_bachelor 

0 85.6314 0.0424 5862.7817 0.5680 0.5225 

1 15.1278 0.0124 6738.4864 0.5063 0.2171 

2 9.1742 0.0075 6510.6867 0.4625 0.1776 

3 18.2073 0.0138 4947.7543 0.4785 0.1321 

4 334.6696 0.1276 131.7923 0.8265 0.0255 

5 5.0973 0.0037 5074.8135 0.4904 0.5339 

Cluster pc_downtown pc_manufacturing Theil.s.entropy pc_nonhispanic_white pc_nonhispanic_black 

0 0.9928 0.0000 0.8115 0.7697 0.1012 

1 0.0107 0.0937 0.9972 0.4859 0.3583 

2 0.0000 0.0240 0.7194 0.4602 0.4736 

3 0.0071 0.0914 0.4735 0.3390 0.6307 

4 0.0000 0.8081 1.2764 0.2092 0.4694 

5 0.0217 0.0165 0.5349 0.8389 0.0766 

Cluster pc_age18_24 pc_age25_34 pc_age35_49   pc_age50_64 pc_age65up 

0 0.1563 0.2943 0.2242 0.1461 0.1537 

1 0.1700 0.1953 0.1691 0.1719 0.0983 

2 0.1100 0.1763 0.1724 0.1781 0.1231 

3 0.1042 0.1462 0.1645 0.2225 0.1426 

4 0.5918 0.0459 0.0663 0.0306 0.0255 

5 0.0806 0.2174 0.1992 0.1705 0.1529 

Cluster pc_poverty household_income housing_units   bup hospital 

0 0.2267 71835.0000 443.3333 0.1706 1.1332 

1 0.2101 36576.1975 520.6196 1.0367 1.5749 

2 0.2216 37807.9419 838.0303 2.0681 1.5129 

3 0.3178 30569.1129 430.5750 1.4061 1.7458 

4 0.1000 129167.0000 5.0000 0.3802 1.7354 

5 0.0415 84819.6053 606.1579 0.9110 2.7898 
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In addition, population density, the proportion of 

downtown zoning, the proportion of the male 

population, the proportion of manufacturing zoning, and 

diversity score are positively associated with the 

overdose incident rate. Meanwhile, educational level, 

age group, and diversity are negatively associated with 

the overdose incident rate. Interestingly, economic 

burden measures such as income and overdose support 

programs such as the distance to the Buprenorphine 

practitioners are a relatively low impact on the overall 

incident rate in the given data set. Another interesting 

point is that diversity is negatively associated with the 

overdose incident rate. It is known that the annual age-

adjusted death rates for drug overdose deaths that 

involved an opioid significantly increased for all 

racial/ethnic groups in metropolitan and non-

metropolitan areas from 1999 to 2017. The largest 

average annual increases in rates occurred among non-

Hispanic whites in non-metropolitan areas and medium-

small metropolitan areas, followed by non-Hispanic 

blacks in medium-small metropolitan areas [38]. 

However, the city of Cincinnati shows that higher 

diversity of racial/ethnicity could lead to a lower heroin 

incidents rate. 

 

 
Figure 5. Top 15 important features 

 

4. Discussion  

The primary objective of this study was to identify 

geographic profiling in terms of socioeconomic and 

demographic features in the place of residence of 

patients who abused heroin reported to the EMS. In 

particular, we identified areas as heroin-related 

incidents by EMS dispatchers in the city of Cincinnati, 

along with sociodemographic variables and features of 

the built environment associated with overdose counts. 

We used K-Means unsupervised machine learning 

algorithms to identify clusters that consist of blocks with 

similarities in terms of given covariates. In addition, we 

determined the appropriate number of the clusters using 

the Davies-Bouldin index to avoid preselecting input 

parameters a priori. As a result, we could split the City 

of Cincinnati into six distinct clusters stemming from 

the similarity of each level of census block groups.  

Originally fueled by prescription opioids, recent 

rises in overdoses are now driven by heroin and 

fentanyl, which is causing serious overdose mortality. 

Applying unsupervised machine learning models to 

geospatial overdose incident data, as demonstrated in 

this analysis can help communities struggling with 

overdoses, forecast overdose trends, and develop a 

targeted approach to early intervention and prevention 

efforts corresponding to the clustering results. This 

analysis provides inferences based on the current state, 

scope, and availability of data on heroin-related EMS 

calls in Cincinnati. EMS data, as well as data from other 

first responders, and additional demographic, social, 

and economic covariates coming from local settings 

may help develop a strategy to respond to the overdose 

crisis. To apply this analysis to other locations will 

require localized covariates because the pattern of 

opioids and socioeconomic backgrounds may differ 

from each place [39], [40].   

This study has several unique implications 

comparing to other research. First, this study used EMS 

data including geospatial information that can tell us the 

dynamic trends of heroin-overdose incidents. Therefore, 

this study demonstrates the usefulness of open source 

EMS data on how to rapidly detect changes in overdose 

problems in a local community. Secondly, this study 

used a refined common K-Means unsupervised 

clustering algorithm to detect a proper number of 

clusters given data sets. It is common knowledge that 

policymakers are experiencing troubles on how to 

define target areas in the local community regarding the 

opioid epidemic crisis [36]. This study could be a guide 

to find steps to implement monitoring and surveillance 

strategy to respond to opioid problems with publicly 

available information about opiate overdoses, combined 

with data on geospatial/socioeconomic risk factors, 

which may help municipalities plan, implement, and 

target harm-reduction measures. Finally, this study 

presents that racial/ethnic diversity could be an 

important factor to reduce heroin-related incidents in the 

City of Cincinnati. Other cities and communities similar 

to the City of Cincinnati could consider a geospatial 

social mix diversity strategy to overcome the opioid 

crises in the region.  

This study has a few limitations. First, we studied 

overdose incidents classified as heroin-related at the 

time of dispatch. The conclusion on the scene may be 

different but recoding does not apply on-site. Therefore, 

the classifications for the dispatches could be 

inaccurate. Second, we used census block levels to 

generate sociodemographic covariates. In addition, we 

generated data set without temporal considerations, 

rather retrospective analysis. Thus, we had to calculate 
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the mean value of the covariates in each census block 

level as input values. Finally, even though Cincinnati is 

a large city in the United States, it may not be 

representative of a major metropolitan area in the US 

that is experiencing an influx of opioid-related 

overdoses, nor do our results apply to rural areas which 

may have different demographics and risk factors. Our 

analysis shows that Cincinnati is located between 

metropolitan and micropolitan settings in terms of 

sociodemographic characteristics.  

Despite some limitations, our geospatial analysis of 

the most current data on suspected overdose calls can 

inform community programs on trending of overdose as 

well as help target specific populations that are 

experiencing increased overdose events by including 

certain demographic characteristics in the analysis. We 

are expanding our analyses on 1) applying unsupervised 

clustering machine learning algorithms to the other 

EMS data retrieved from various cities, 2) developing 

spatial clustering models which can observe the 

characteristics of cluster and assess the relationship 

between the heroin-related OD incidents and healthcare 

accessibility, 3) developing local spatial clustering with 

local indices of spatial association (LISA) statistics to 

identify hot-zone of substance abuse in the community, 

and 4) implementing various supervised machine 

learning predictive models with several classifiers such 

as support vector machine (SVM), neural network, 

random forest and gradient boosting machine (GBM) to 

the larger EMS data sets.  
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6. Appendix 

The Appalachian score is the binary variable 

defined by:  

 

1. Greater than 23% of the families are below the 

poverty level,  

2. Less than 41.0% of families are African 

American 

3. Less than 80% of the persons 25 years or older 

are high school graduates 

4. More than 7% of the persons 16-19 years old who 

are not in school are not high school graduates 

5. More than 62% of the persons 16-19 years old 

are jobless (includes those unemployed and those 

not in the civilian labor force) 

6. More than 3 persons per average family 

 

If at least four criteria were met, the neighborhood 

was identified as having a significant Appalachian 

population, but not as long as the African American 

population was more than 41.0 (the city-wide) 

percentage. 
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