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Abstract 

Micro videos popularity prediction (MVPP) has recently attracted widespread research 
interests given the increasing prevalence of video-based social platforms. However, 
previous studies have overlooked the unique patterns between popular and unpopular 
videos and the interactions between asynchronous features different data dimensions. To 
address this, we propose a novel hierarchical attention contrastive learning method 
named HACL, which extracts explainable representation features, learns their 
asynchronous interactions from both temporal and spatial levels, and separates the 
positive and negative embeddings identities. This reveals video popularity in a 
contrastive and interrelated view, and thus can be responsible for a better MVPP. Dual 
neural networks account for separate positive and negative patterns via contrastive 
learning. To obtain the temporal-wise interaction coefficients, we propose a Hadamard-
product based attention approach to optimize the trainable attention-map matrices. 
Results from our experiments on a TikTok micro video dataset show that HACL 
outperforms benchmarks and provides insightful managerial implications. 

Keywords: Micro video popularity, multimodal learning, contrastive learning 
 

Introduction 

Recent years have witnessed rapid development in micro video industry. For example, TikTok, one of the 
largest worldwide social video platforms, has recently realized its maximum monthly active users of about 
1 billion1. The advantages held by these platforms, e.g., being easy-to-learn, convenient-to-use, and rapid-

 
Corresponding author: Chenghong Zhang (chzhang@fudan.edu.cn) 
1 https://www.demandsage.com/tiktok-user-statistics/ 
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to-separate, accelerate the generation of numerous micro videos. This brings benefits to multi-parties, such 
as enriching the entertainment life of users, broadening the marketing channels of sellers, and increasing 
the user traffic on the platform. Nonetheless, evaluating the business value of the booming micro videos 
poses considerable challenges. For users, the explosion of micro videos aggravates information overload, 
increasing the cost of searching. It is difficult for platforms to connect a large number of videos to their 
potential viewers, which is key to maintain stickiness and commercial values of users. Sellers also get stuck 
in the problem of selecting suitable micro videos for advertisement. All the above challenges point to the 
requirement micro video popularity prediction (short for MVPP hereafter), which aims to identify the 
potential extent to which the micro video will attract the attention and interest of users. For example, the 
MVPP offers supplementary user common interests, thereby providing complementary information to 
recommendation algorithms that rely on historical interaction data to learn individual preferences. This is 
particularly beneficial in addressing the cold start problem, where limited or no user data is available. By 
incorporating additional interests from MVPP, recommendation algorithms can gain a broader 
understanding of user preferences, enhancing their ability to generate accurate and relevant 
recommendations. This helps alleviate the issue of information overload for users and addresses the 
platform's challenge of matching the right content to the right users. Moreover, for merchants, the process 
of making advertising decisions is intricately linked to the exposure and visibility of their products. To 
effectively plan and strategize their advertising campaigns, merchants require accurate predictions of micro 
video popularity. This information plays a critical role in guiding their decision-making process and allows 
them to allocate resources effectively for optimal advertising outcomes. Micro video popularity (Chen et al., 
2016) has been recently quantified and predicted by a growing number of researchers in order to mitigate 
the overloaded micro videos (Jing et al., 2018; Xie et al., 2021). Consequently, how to better predict the 
micro video’s popularity is of considerable business value and has attracted widespread attention from the 
academia and industrial community.  

The MVPP task can be approached as either a regression or classification problem, depending on how micro 
video popularity is defined. Popularity can be measured as a continuous value, such as the average number 
of comments, likes, reposts, and loops/views, leading to a regression problem (Chen et al., 2016; Jing et al., 
2018). Alternatively, it can be represented as a binary label, indicating whether the number of likes exceeds 
a predefined threshold, resulting in a classification problem (Xie et al., 2020). Since a micro video can be 
deemed as a superposition of three information modalities, i.e., visual, acoustic, and textual information 
(i.e., multimodality), the quality of the representation learning and the rationality of the comprehensive 
modeling across multiple data modalities determine the effectiveness of MVPP. In this regard, extant 
research efforts have been made to develop either representation learning networks, e.g., variational-
encoder-decoder-based MVPP methods (Xie et al., 2021; Xie et al., 2020), or multimodal fusion frameworks, 
e.g., attention-based (Wang et al., 2022) and regularization-based (Jing et al., 2018) MVPP methods. 

However, these methods suffer from inherent defects in representing and fusing multimodal video 
information for MVPP. First, the deep representation features learned by existing methods from video data 
are the combination of positive and negative samples and thus make it difficult to reveal video popularity 
in an efficient way, resulting in an unstable performance of MVPP. Second, although a number of MVPP 
methods have provided approaches for exploring the temporal variation patterns (i.e., temporal modeling) 
and multimodal comparative patterns (i.e., multimodal fusion) in the video data, these methods are 
incompetent for modeling the complicated interrelations among asynchronous features2, which are pivotal 
for the video popularity in real MVPP scenarios. For example, in an entertainment micro video, the 
background music affects users’ attention (Shih et al., 2012), deciding whether the micro videos will be 
popular. Considering a charming and beautiful nature scenery, like massive glaciers, along with creepy 
nursery rhymes as background music, the inharmony between the visual modality and acoustic modality 
makes the micro video neither fish nor fowl, resulting in less popularity. It is the same for interaction 
between other modalities. Besides, there are complex spatial and temporal properties, along with their 
complex interactions. For users, their interest fluctuates with time steps, experiencing various emotions 
within a micro video. For micro videos, the visual, acoustic, and textual information varies with time steps 
simultaneously. Thus, the spatial and temporal properties cannot be learned separately. 

 
2 Since there are three aspects for describing a feature extracted from video data, i.e., the feature dimension, 
the modality dimension, and the temporal dimension, we refer to asynchronous features as features that do 
not exist in a same data dimension, e.g., two features from different modalities and time steps. 
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In response to the aforementioned difficulties, we develop an innovative method, named hierarchical-
attention-based contrastive learning (HACL), which exploits the complicated interactions across modalities 
and time steps in a micro video, and adaptively leverages the interacted features to construct positive and 
negative views in terms of popularity for a rational MVPP. Specifically, HACL has three components. First, 
we extract multimodal features from micro videos with pre-trained models and then construct feature-wise 
representations to enhance the characterization. Second, we reproduce these representations and capture 
the joint correlations at the time step and modality levels. The Hadamard- product-based attention is used 
to calculate temporal weights, followed by a self-attention layer extracting the modality-wise interactions. 
Third, for the classification task, we use the contrastive loss for the training of the dual deep neural networks. 
We summarize our main contributions as follows: 

 We propose an end-to-end hierarchical contrastive learning model for MVPP. We apply dual deep 
networks to video samples and jointly leverage the positive and negative embeddings based on 
contrastive learning for the MVPP task. 

 We combine Hadamard-product-based attention and self-attention to attain the interactions 
within a modality at a time step and then measure the across-level interaction coefficients via a 
feedforward process. Besides, we propose the contrastive loss between positive and negative 
networks to improve the performance of our model. 

 We conduct extensive experiments to evaluate the MVPP performance of our proposed model based 
on a practical dataset from TikTok. From the numerical experiments, we find that HACL 
outperforms other state-of-the-art benchmarks. 

In the rest of this paper, we first summarize the related research and point out the research gap and our 
motivation in Section 2. Then, in Section 3, we formulate the MVPP problem, propose our HACL method, 
and describe the implementation in detail. In order to evaluate the performance of our proposed HACL, we 
design multiple comparison experiments followed by sensitive analysis and ablation studies and visualize 
the results, especially the interaction coefficients, in Section 4. Finally, we draw a conclusion on our paper 
in Section 5. 

Related Work 

 Multimodal Deep Learning 

Multimodal deep learning has experienced a surge in popularity in recent years, driven by the proliferation 
of various data types and formats. Unstructured data from multiple sources, with diverse forms and 
distributions, often contains valuable information. Consequently, researchers have focused on leveraging 
multimodal deep learning techniques to extract complementary information from each modality in a 
learning task. This approach aims to create a comprehensive representation that harnesses the strengths of 
different modalities, resulting in improved performance compared to relying on a single modality alone. By 
integrating information from multiple modalities, the potential for achieving superior results is greatly 
enhanced. 

Deep learning is a multi-level abstract representation of data that is learned via a hierarchical 
computational model (LeCun et al., 2015). Multimodal learning based on deep learning provides several 
benefits over classic machine learning approaches, particularly in the field of high-dimensional 
unstructured data. Research has shown that multimodal fusion strategies are crucial for the predictive 
performance of multimodal deep learning models (Zhang et al., 2020). For example, Ngiam et al. (Ngiam 
et al., 2011) studied numerous multimodal fusion techniques, including simple concatenation of inputs and 
shared representation learning, as well as cross-modality learning, after which many researches devoted to 
this area. Averaging (Shutova et al., 2016), voting (Morvant et al., 2014) and weighting (Ramirez et al., 2011) 
are the major strategies used in the feature fusion.  

Recent research has made significant strides in the field of multi-view learning, aiming to uncover 
correlations between different modalities and enhance learning outcomes. With the rise of self-attention 
mechanisms, researchers have employed attention mechanisms to achieve superior fusion representations 
of modalities by training importance weights for each modality (Gu et al., 2018). In line with this progress, 
Yan et al. (Yang et al., 2021) propose an innovative multimodal emotion analysis model called the Multi-
view Attentional Network (MVAN). MVAN takes into account the cross-modal relationships and employs a 
continuously updated memory network to extract deep semantic aspects from image-text pairs. However, 
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due to the input dimension limitations of the attention mechanism, this approach faces challenges when 
dealing with scenarios involving temporal and spatial fusion. To address these limitations, Cheng et al. 
(Cheng et al., 2020) introduced the Spatial-Temporal Attention-based Neural Network (STAN). STAN 
utilizes two distinct self-attention mechanisms and measures the importance of both temporal and spatial 
dimensions. This enables effective handling of scenarios involving temporal and spatial fusion. However, it 
is important to note that STAN still falls short in capturing the holistic interaction between time steps. 

Another important multimodal fusion method is contrastive learning. Contrastive learning is a 
discriminative deep learning technique that employs specific criteria to compare embedded features within 
positive and negative sample pairs during the representation learning process of multiple modalities. Its 
objective is to train similar samples, represented by positive sample pairs, to be closer together, while 
ensuring that dissimilar samples, represented by negative sample pairs, are separated in the learned feature 
space (Jaiswal et al., 2021). Drawing inspiration from contrastive learning, Ding et al. (Ding et al., 2015) 
introduced the Distance Loss, a novel multimodal fusion approach rooted in the concept of comparative 
loss. By simultaneously training multiple neural networks through the maximization of relative distances 
(which can be viewed as a specific instance of contrastive learning), this method aims to produce distinctive 
feature representations. 

Given the widespread adoption of graph neural networks (GNNs), they have found utility in the realm of 
multimodal deep learning. In this paradigm, each modality and feature assume the role of a node, while the 
interaction among them is represented by edges. Addressing this context, Mai et al. (Mai et al., 2020) 
introduced the Adversarial Representation Graph Fusion, a comprehensive framework for multimodal 
fusion. By employing adversarial learning, this method facilitates the collective embedding of diverse 
modalities into a unified representation space, which is subsequently fused using a hierarchical graph 
network. Nonetheless, it is important to note that this approach encounters a similar limitation as that of 
attention mechanisms. 

Given multimodal deep learning’s superior performance in processing unstructured data, researchers tried 
to predict the popularity of online content with multimodal deep learning methods. For instance, Abousaleh 
et al. (Abousaleh et al., 2021) inspired by multimodal learning and CNN, combined social and visual 
information, predicting the popularity of online images with two CNN. Gu et al. (Gu, 2020) designed an 
attention mechanism, using the CNN and LSTM to extract features from images and text, respectively, 
solving the problem of tweets popularity prediction. To predict the popularity of social media content, Chen 
et al. (Chen et al., 2019) analyzed and fused a collection of rich information from texts, users, and videos. 
However, existing studies do not give sufficient consideration to the temporal feature, which is of great 
importance in micro-video popularity prediction. 

Micro Video Popularity Prediction 

Due to its significant commercial implications in various domains such as recommendation systems, 
advertising, and bandwidth allocation, the prediction of popularity has garnered considerable attention 
from researchers. This encompasses popularity prediction across different media types, including text, 
images, and videos. In the context of videos specifically, researchers have focused on extracting crucial 
elements from video content to understand the patterns of video propagation, thereby enabling subsequent 
studies on popularity prediction. In the current state of the art, two distinct research directions have 
emerged in the field of Multi-View Popularity Prediction (MVPP). 

On one hand, MVPP has been approached as a time series analysis, acknowledging the temporal variations 
in popularity. Li et al. (Li et al., 2013) developed a model that incorporates both video attractiveness and 
social context to describe video propagation and predict view counts on online social networks. Similarly, 
Ma et al. (Ma et al., 2017) proposed a lifetime-aware regression model utilizing time series analysis for long-
term video popularity prediction in complex networks. Although these methods outperform traditional 
approaches like time series analysis and multiple linear regression, they primarily rely on structured data, 
overlooking valuable content-related information. 

On the other hand, MVPP has been recognized as an instantaneous task with a focus on multimodal aspects. 
Chen et al. (Chen et al., 2016) introduced the Transductive Multimodal Learning Model (TMALL), which 
harnesses visual, acoustic, textual, and social features to effectively leverage heterogeneous multimodal 
data and identify key factors influencing micro video popularity. Building upon Chen et al.'s work, Jing et 
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al. (Jing et al., 2018) addressed internal noise by incorporating low-rank representation and multi-graph 
regularized least squares, refining the regression framework. Trzcinski et al. (Trzciński & Rokita, 2017) 
employed temporal and visual features, utilizing support vector regression with Gaussian radial basis 
functions to predict popularity, highlighting the crucial role of social features in video popularity prediction. 
Additionally, recurrent neural networks have been employed in popularity prediction research (Trzciński 
et al., 2017).To overcome internal and external uncertainties, Liao et al. (Liao et al., 2019) proposed the 
Deep Fusion of Temporal Process and Content Features method, combining recurrent neural networks and 
convolutional neural networks while incorporating temporal attention fusion. Moreover, Xie et al.(Xie et 
al., 2020) introduced a Hierarchical Multimodal Variational Encoder-Decoder designed for macro-video 
popularity prediction, which incorporates a deep information bottleneck constraint to control predictive 
information within hidden representations. Inspired by the multimodal extension of variational 
information bottleneck theory, this approach aims to mitigate uncertainties and enhance prediction 
accuracy. 

As with the case of multimodal deep learning, current MVPP techniques often simplify the complexity of 
the task by overlooking the intricate and nuanced meta-interactions among features. 

Research Gaps and Motivations 

Overall, our review of related works suggests their deficiencies in dealing with MVPP. Regardless of the 
wide usage of multimodal deep learning, the temporal connection among different modalities has not been 
fully developed. Moreover, it is crucial to consider positive and negative embedding separately. 
Nevertheless, current researches regard micro video embedding as a whole, integrating the different 
patterns. Consequently, a capable MVPP method is supposed to satisfy the following needs: (1) 
understanding a series of interactions: inter-modality interaction, temporal interaction, and hierarchically 
across interactions; (2) identifying the key points of positive and negative patterns. Given the excellent 
performance of multimodal deep learning and the suitable representation of interactions with contrastive 
learning, we proposed a novel hierarchical Hadamard-product attention contrastive learning network that 
constructs dual deep networks to trace the complicated interactions, learn the distinct identification of 
positive and negative samples, and enable the prediction of micro video popularity. A related work summary 
is shown in Table 1. Compared with them, the main contributions of our work are the dual networks and 
Hadamard-product-based attention, which conform to a better understanding of users’ interests. 

Study Multimodal 
deep learning 

Temporal analysis Dual 
networks 

Across-level 
interactions 

(Li et al., 2013)  √(non-video)   

(Ma et al., 2017)  √(non-video)   

(Chen et al., 2016) √ √(video)   

(Jing et al., 2018) √ √(video)   

(Trzciński & Rokita, 2017) √ √(non-video)   

(Trzciński et al., 2017) √ √(video)   

(Liao et al., 2019) √ √   

(Xie et al., 2021) √ √   

Our work √ √(video) √ √ 

Table 1. Comparison of HACL with Existing Relevant Methods. 
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The Proposed Model 

In this section, we first introduce the definitions and notations used in this paper, then give an overview of 
the proposed method, followed by a detailed illustration. Finally, we demonstrate the implementation of 
our method. 

Problem Formulation and Framework Overview 

Given that 𝑁𝑁 micro videos are labeled with popularity classification identification 𝐲𝐲 = [𝑦𝑦𝑖𝑖 ,⋯ ,𝑦𝑦𝑖𝑖 ,⋯ ,𝑦𝑦𝑛𝑛] ∈
ℝ𝑛𝑛 , where 𝑦𝑦𝑖𝑖 ∈ 0,1, we cut each video into 𝑇𝑇 time steps, extract 𝐹𝐹 types of features from 𝑀𝑀 modalities, and 
then obtain the representation of video 𝑖𝑖 at time step 𝑡𝑡 from modality 𝑚𝑚 as 𝐗𝐗𝑖𝑖𝑖𝑖𝑚𝑚 = �𝑥𝑥𝑖𝑖𝑖𝑖1𝑚𝑚,⋯ , 𝑥𝑥𝑖𝑖𝑖𝑖

𝑓𝑓𝑚𝑚,⋯ , 𝑥𝑥𝑖𝑖𝑖𝑖𝐹𝐹𝐹𝐹� ∈
ℝ𝐹𝐹 . Consequently, an input sample with a batch equaling 𝑏𝑏  can be written as 𝐗𝐗 = [𝐗𝐗1,⋯ ,𝐗𝐗𝑖𝑖 ,⋯𝐗𝐗𝑇𝑇] ∈
ℝ𝑏𝑏×𝑇𝑇×𝐹𝐹×𝐹𝐹  , where 𝐗𝐗𝑖𝑖 = [𝐗𝐗𝑖𝑖1,⋯ ,𝐗𝐗𝑖𝑖𝑚𝑚,⋯ ,𝐗𝐗𝑖𝑖𝐹𝐹] ∈ ℝ𝑏𝑏×𝐹𝐹×𝐹𝐹  and 𝐗𝐗𝑖𝑖𝑚𝑚 = �𝐱𝐱𝑖𝑖1𝑚𝑚,⋯ , 𝐱𝐱𝑖𝑖

𝑓𝑓𝑚𝑚,⋯ , 𝐱𝐱𝑖𝑖𝐹𝐹𝑚𝑚� ∈ ℝ𝑏𝑏×𝐹𝐹  indicate the 
representation matrixes at the 𝑡𝑡𝑖𝑖ℎ  time step and of the 𝑚𝑚𝑖𝑖ℎ  modality over 𝑏𝑏  (batch size) instances, 
separately. Our goal is to predict the micro video popularity and obtain interaction coefficients based on 
integrated information from all time steps and modalities. 

Our proposed HACL is an end-to-end MVPP-oriented method that acquires a comprehensive 
understanding by incorporating hierarchical attention mechanisms that operate across various time steps 
and modalities, while also accounting for the unique interactions between positive and negative samples. 
Figure 1 depicts the framework of the proposed model HACL, which includes five major components: 
multimode embedding, Hadamard-attention-based temporal-wise interaction, self-attention-based 
modality-wise interaction, contrastive-loss-based interaction separation, and popularity prediction.  

 

Figure 1. The Framework of HACL 
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First, it extracts multimodal features and gains input matrices through fine-tuned existing models. The 
input matrices are then fed into 𝑀𝑀 independent LSTM networks with the same structure depending on 
modalities. Then, the latent representations are concatenated and duplicated. Both copies are passed into 
two parallel deep networks to distill and recognize positive (popular) and negative (unpopular) patterns. 
Specifically, in each pipeline, it uses Hadamard-attention-based techniques and self-attention to obtain 
interaction coefficients within time steps and modalities separately. The outputs of these two pipelines will 
be utilized to compute the contrastive loss and optimize the trainable parameters for the optimization of 
positive and negative embeddings. Finally, via this contrastive learning objective, it leverages multi-level 
interactions to facilitate MVPP performance. 

Multimodal Embedding 

Multimodal embedding seeks to extract essential features from micro videos. Each micro video is divided 
into ten pieces, each of which has three different modalities. For textual features, we first turn audio into 
text using a voice-to-text application, and then get content and sentiment features using ENRIE 3 and 
SENTA4, respectively. Previous research has shown that suitable acoustic features are necessary for video 
popularity and has exploited acoustic features to improve prediction performance. Following previous 
studies, we extract twenty-one-dimensional features from the audio channel to characterize the acoustic 
modality of micro-videos. These features include mel-frequency cepstral coefficients (MFCCs), energy 
entropy, signal energy, zero crossing rate, spectral roll off, spectral centroid, and spectral flux. The ranges 
of the acoustic features consist of continuous real values. As for the fundamental elements in a micro video, 
visual features, like color histograms and objects have been harnessed in previous studies. To be more 
precise, we employ a frame difference algorithm with local maxima criteria to extract key frames at each 
time step for each video, and smoothing the average difference value prior to computing the local maximum 
may effectively eliminate noise and prevent the repeated extraction of frames from similar scenarios. Next, 
we get a 150-dimensional vector at each keyframe by classifying the color into 50 unique hues on a single 
RGB channel. The "AlexNet" ImageNet model is used to extract 1000-class labels for object recognition 
(Krizhevsky et al., 2017). In order to maintain the same dimensions for extracted features from various 
modalities, we use an MLP to transform each extracted feature into a unit hidden dimension. All feature 
vectors are then normalized to the length unit L2-norm. 

Hadamard Product-based Attention Mechanism 

The HPA mechanism aims to extract temporal interactions among modalities. First, given the 𝑛𝑛𝑖𝑖ℎ sample 
from the interaction layer’s feature-time-step, we have: 

 1, , T T F d× × = ∈ Z Z Z   (1) 

 

The classic self-attention approach calculates weights via the similarity of features: 

 
( )

( )

/

/
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∑

q k

q k
 (2) 

where 𝐪𝐪 represents the query and 𝐤𝐤 represents the key. Both are derived from the linear transformation of 
𝐳𝐳. Despite this, the high-dimensionality and sparsity of the representation render the self-attention method 
computationally expensive, particularly for the matrix multiplication of high-dimensional matrices while 
computing 𝐐𝐐, 𝐊𝐊, and 𝐕𝐕 matrices. By transforming matrix multiplication into a Hadamard product and 
weighting input matrices from each time step (or feature), HPA alleviates this issue. To be more specific, 
the HPA weights can be derived as: 

 || ||i i Fe = °W Z  (3) 

 
3 https://github.com/PaddlePaddle/ERNIE/ 
4 https://github.com/baidu/Senta/ 



 MVPP via Attention-based Contrastive Learning 
  

 Pacific Asia Conference on Information Systems, Nanchang 2023
 8 

𝐖𝐖 is the trainable parameter that is adaptable to the loss function and aids in the distillation of the time-
step-wise (or feature-wise) weights. || ⋅ ||𝐹𝐹 stands for the F norm, which reduces high-dimensional matrices 
to a single real number. In addition, we use the SoftMax operation to get the normalized weight: 

 

1

i

j

e

i T
e

j

ea
e

=

=

∑
 (4) 

Via Eq.3 and Eq.4, HPA extracts the time-step-wise (or feature-wise) weights. The mechanism scheme is 
shown in Figure 2. The output of HPA is a weighted sum representation of all time steps (or features). 

 

Figure 2. The mechanism of HAP 

 

Model Implementation 

Considering that positive (popular) and negative (unpopular) samples hold distinct patterns, HACL 
constructs dual deep neural networks and adopts two independent pipelines to isolate unique 
representations. In particular, the outputs of LSTM networks, 𝐙𝐙𝑚𝑚 ∈ ℝ𝑏𝑏×𝑇𝑇×𝑑𝑑, where 𝑑𝑑 is the dimension of 
the hidden layer in LSTM, are the concatenated-on modality and changed into 𝐙𝐙 ∈ ℝ𝑏𝑏×𝑇𝑇×𝐹𝐹×𝑑𝑑. Then, we 
duplicate 𝐙𝐙 for positive and negative embeddings, which are denoted as 𝐙𝐙𝑃𝑃 and 𝐙𝐙𝑁𝑁 further. 

Besides, the interaction among features fluctuates with time steps on account of the diverse user 
perceptions. HACL then applies HPA to focus on temporal-wise interaction, in which the positive 
embeddings and negative embeddings at each time step are weighted by the HPA coefficient and summed 
on time steps separately. Since the elements that go into the attention mechanism are no longer vectors but 
matrices, HPA uses a query matrix 𝐖𝐖𝐻𝐻𝑃𝑃𝐻𝐻

(⋅) ∈ ℝ𝐹𝐹×𝑑𝑑 instead of the traditional query vector. After following the 
HPA proposed above, we have the positive and negative embeddings fused in time steps. 

 ( )( )
( )

( )( )1

1

P P
P

Tl l M d
b btbt

t
a

+ ×

=

= ∈∑Z Z   (5) 

 ( )( ) ( ) ( )( )1

1

N N
Tl lN M d

b bt bt
t

a
+ ×

=

= ∈∑Z Z   (6) 

where 𝐙𝐙𝑏𝑏
�𝑙𝑙+1(⋅)� denote the positive and negative embeddings of the 𝑏𝑏𝑖𝑖ℎ at the 𝑙𝑙𝑖𝑖ℎ layer; 𝑎𝑎𝑏𝑏𝑖𝑖

(⋅) a transformation 

of 𝐖𝐖𝐻𝐻𝑃𝑃𝐻𝐻
(⋅)  and 𝐙𝐙𝑏𝑏𝑖𝑖

�𝑙𝑙(⋅)�, indicating the interaction coefficients among time steps and revealing the temporal-wise 
correlations for video 𝑏𝑏’s popularity. 

Based on the temporal-wise interaction embeddings, we not only identify the temporal-wise interaction, 
but also reduce the dimensions and attain the representation as 𝐙𝐙�𝑙𝑙(⋅)� ∈ ℝ𝑏𝑏×𝐹𝐹×𝑑𝑑. Since the representations 
have been transformed into vectors, we follow Vaswani, Shazeer, and Parmar et al. (Vaswani et al., 2017) 
adopt the classic self-attention mechanism to capture modalities-wise interaction. Specifically, the deep 
representations from positive and negative embeddings are linearly transformed to obtain the query, key 
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and value matrix, denoted as 𝐐𝐐 ∈ ℝ𝑏𝑏×𝐹𝐹×𝑑𝑑 , 𝐊𝐊 ∈ ℝ𝑏𝑏×𝐹𝐹×𝑑𝑑 and 𝐕𝐕 ∈ ℝ𝑏𝑏×𝐹𝐹×𝑑𝑑 separately. And the outputs of the 
self-attention layer can be calculated as: 

 ( )( ) ( ) ( )
( )1 P

P P T
l P b M d

d
+ × ×= ∈

Q KZ V   (7) 

 ( )( ) ( ) ( )
( )1 N

N N T
l N b M d

d
+ × ×= ∈

Q KZ V   (8) 

where √𝑑𝑑 is for normalizing consideration. The weights for 𝐐𝐐, 𝐊𝐊 and 𝐕𝐕 are trainable and adaptive to the loss 
function, reflecting the interaction among modalities. Consequently, the output of attention layer is the 
weighted sum of the modality representation and contains the interrelationship. Considering that the 
feature interaction of short video has the character of across-time step, a simple single-layer interaction will 
lose important information. Thus, the total weight coefficient of modality 𝑚𝑚 at time step 𝑡𝑡 can be written as 

 mt m ta a a= ⋅  (9) 

Concatenating the positive and negative embeddings that are generated by two different processes and 
keeping 𝐙𝐙𝐹𝐹𝑖𝑖𝑛𝑛𝐹𝐹𝑙𝑙 ∈ ℝ𝑏𝑏×6𝑑𝑑 as the output allows us to encapsulate multi-level interaction as well as an across-
level pattern. In the end, in order to attain the definitive value for prediction, we utilize a linear layer, 
followed by a sigmoid activation function. 

In order to make the final prediction, we adopt binary-cross entropy. Given a dataset with 𝑏𝑏 samples, the 
prediction loss can be written as: 

 ( ) ( ) ( )1
1

1 ˆ ˆ1 1
b

i i i i
i

L y log y y log y
b =

= + − −  ∑  (10) 

Furthermore, to better leverage the positive and negative information for MVPP, HACL enhances the 
performance by adding a contrastive loss. Unlike standard contrastive losses, whose calculation is at the 
sample level, we manage to realize a global contractiveness: 

 
( ) ( )

( )2
1

1
| | | | | | | |

P T Nb
i i
P T

i i i

L
b =

= ∑ z z
z z

 (11) 

, where 𝐳𝐳𝑖𝑖
(⋅) is the positive or negative embeddings of the 𝑖𝑖𝑖𝑖ℎ sample. 

In summary, the total learning objective of HACL can be expressed as: 
 1 2TotalL L Lλ= +  (12) 

Empirical Evaluation 

In this section, we conduct numerical experiments to evaluate our proposed HACL model on binary 
popularity classification problem. To further justify the effectiveness of the proposed model, comparative 
experiments are delivered, followed by sensitivity analysis and ablative experiments. 

Data 

We have collected a micro video dataset from one of the most prominent micro-video sharing platforms, 
TikTok. In total, this dataset contains 8,790 user-generated micro videos, uploaded by 1,592 users. The 
length of all micro-videos is no longer than 60 seconds, with approximately 75 percent of the videos being 
35 seconds. Since our goal is to predict the popularity, each of the videos is assigned a label equaling 0 or 1, 
indicating the video is not popular or popular. 

Experiment Settings 

In experiments evaluation, we adopt Accuracy, Precision, and AUC score to measure the consistency.  
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To even further demonstrate the efficacy of the proposed model, we compare proposed HACL to nine 
existing benchmarks approaches for predicting the popularity of micro-videos. 

 Machine learning methods: 

 SVM (Cortes & Vapnik, 1995): Support vector machine is a classical classification method with a 
maximum margin criterion. We combined all the features from all modalities at all time steps as a 
unified input together and make a prediction of given micro videos. 

 MLP: multi-layer perception is a standard algorithm for supervised tasks. Exactly as the input used 
in SVM, distinct features are concatenated as one matrix, transiting into three linear layers with 
tanh function for activation. 

 Graph neural network methods: 

 ARGF (Mai et al., 2020): Adversarial Representation Graph Fusion is a multimodal fusion 
framework. In this method, various modalities are jointly embedded into the representation space 
through adversarial learning, and the modalities are fused with the hierarchical graph network. 

 MAGNN (Cheng et al., 2022): The Multi-modality Graph Neural Network is originally used for 
financial prediction. We harness its graph structure and attention mechanism for MVPP as a 
benchmark. 

 Other methods: 

 BBFN (Han et al., 2021): Bi-Bimodal Fusion Network is a framework that can fusion and separate 
modalities to gain better representations for the downstream tasks. 

 HMMVED (Xie et al., 2021): Hierarchical Multimodal Variational Encoder-Decoder adopt 
variational encoder-decoder framework encoding the input modalities to a lower dimensional 
stochastic variable. Nonetheless, on account of the absence of users’ information in our datasets, 
we degenerate HMMVED into HMMVED without users’ embeddings in our comparison. 

 MAG (Rahman et al., 2020): Multimodal Adaptation Gate provide fine-tuning operations for pre-
trained models, especially the natural language processing tasks. We utilize its multimodal fusion 
ability as our benchmarks. 

 STAN (Cheng et al., 2020): The Spatial-Temporal Attention-based Neural Network measures the 
importance of time and space dimensions in neural networks based on spatiotemporal attention. 

 Soft-HGR (Wang et al., 2019): Soft-Hirschfeld-Gebelein-Rényi is a framework for extracting useful 
features from multiple data modalities based on the modality correlation.  

Traditional classification methods such as SVM and MLP have been widely utilized. Besides, with the 
emergence and popularity of graph neural networks (GNN), researchers have started exploring their 
application in multimodal fusion. In this context, each modality or feature is treated as a node, while the 
edges represent the interactions between them. Notably, the adjacency matrix, formed by the product of 
query and key in attention mechanisms, leads to GNN yielding outcomes similar to attention mechanisms. 
Additionally, our comparison incorporates other methods like spatial-temporal attention (double self-
attention), Variational Autoencoder (VAE), and various benchmarks to ensure comprehensive evaluation. 

In addition to the primary experiments, we executed three types of exploratory experiments using HACL in 
order to get a deeper knowledge of its MVPP performance. First, we conducted ablation experiments by 
altering the input modalities to visual-acoustic, visual-text, and visual-only data. In ablation experiments, 
the impact of eliminating essential components such as the self-attention layer, Hadamard-product-based 
attention layer, and regulation item are also examined, shedding light on the predictive skills of each 
component. Second, we performed a sensitivity study on the main parameters in HACL 𝜆𝜆 to demonstrate 
how the regulatory item would improve MVPP performance. Thirdly, we conducted a visual analysis to give 
explanatory insights about the attractiveness of our suggested HACL and micro videos. 

Experiment implementations, using Python 3.7 under TensorFlow-GPU 2.10 and Keras 2.10, were executed 
on a server with NVIDIA-RTX-2080Ti, 64-GB-RAM, 3.00-GHz, and Inter-Core-i7-9700-CPU.   



 MVPP via Attention-based Contrastive Learning 
  

 Pacific Asia Conference on Information Systems, Nanchang 2023
 11 

Experiment Results 

Prediction Performance 

Table 2 summarizes the prediction performance of our proposed HACL versus the nine benchmarks versus 
the nine benchmarked multimodal deep learning methods. 

Means of accuracy, precision, and AUC are reported along with the standard deviation shown in brackets. 

Method Accuracy Precision AUC 
SVM 0.634 (0.017) 0.200 (0.400) 0.500 ((0.001) 
MLP 0.634 (0.017) 0.058 (0.175) 0.500 (0.002) 

ARGF 0.616 (0.016) 0.475 (0.043) 0.568 (0.011) 
BBFN 0.608 (0.020) 0.460 (0.026) 0.567 (0.022) 

HMMVED 0.491 (0.040) 0.366 (0.027) 0.493 (0.016) 
MAG 0.615 (0.013) 0.470 (0.034) 0.570 (0.016) 

MAGNN 0.610 (0.016) 0.463 (0.031) 0.566 (0.012) 
SoftHGR 0.366 (0.018) 0.366 (0.028) 0.500 (0.001) 

STAN 0.620 (0.016) 0.476 (0.029) 0.572 (0.014) 
HACL 0.645 (0.023) 0.557 (0.089) 0.610 (0.017) 

Table 2. Prediction Performance 
Compared with SOTA, HACL, the method proposed in this study, has achieved stable prediction advantages. 
HACL holds the best accuracy, precision, and AUC performance among the given methods; they are 
increased by 1.7%, 17.0%, and 7.4% separately in comparison to the second-best methods (SVM(MLP), 
STAN, and ARGF). Although both SVM and MLP have the second highest accuracy, they may be overfitted 
which is deduced from their relatively low precision. 

In order to further explore whether the performance results of the ten groups of experiments have 
significant differences, we conducted the Tukey test on the 10-fold cross-validation results. Table 3 reports 
the Tukey test results for this method and the comparison method. Taking AUC as an example, the 
differences between HACL and the other nine comparison methods are significant at 0.001 or below. The 
results show that the method proposed in this study is significantly better than the benchmarks in MVPP. 

Method1 Method2 MeanDiff p-value 

HACL 

SVM -0.1093 0.001 
MLP -0.1088 0.001 

ARGF -0.0416 0.001 
BBFN -0.0421 0.001 

HMMVED -0.1165 0.001 
MAG -0.0393 0.001 

MAGNN -0.0436 0.001 
SoftHGR -0.0376 0.001 

STAN -0.1095 0.001 
Table 3. Tukey Test Results 

Ablation Experiments 

Table 4 and Figure 3 demonstrate the ablation experimental results in MVPP. The ablation of HACL 
includes input modalities and model components and generates five ablated HACLs: (1) HACL-V: only 
visual modality is used in MVPP; (2) HACL-VT: visual and textual modalities are used in MVPP; (3) HACL-
VA: visual and acoustic modalities are used in MVPP; (4) HACL-SA: the latent representations from all 
modalities are no longer fed into the Hadamard-product attention, but are first concatenated and then sent 
into the self-attention layer; and (5) HACL-D: the two independent pipelines degenerate single sequence of 
layers. As can be observed, although they have similar accuracy, but HACL is more stable and less likely to 
be overfitted. Consequently, HACL outperformed all of its ablated variants in MVPP, demonstrating the 
indispensable roles of all components in better leveraging multimodal data for prediction. 
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Method Accuracy AUC 
HACL-V 0.645 (0.020) 0.551 (0.029) 

HACL-VT 0.641 (0.024) 0.604 (0.038) 
HACL-VA 0.648 (0.013) 0.568 (0.021) 
HACL-SA 0.648 (0.015) 0.605 (0.014) 
HACL-D 0.636 (0.019) 0.595 (0.016) 
Table 4. Ablation Experiment Results 

 

 

Figure 3. The Ablation Experimental Results 

 

Sensitivity Analysis 

Figure 4 shows the variation tendencies of HACL’s prediction performance along with its contrastive 
regulation item hyper-parameter 𝜆𝜆. The overall trend of HACL’s sensitivity to 𝜆𝜆 is partially inverted “U-
Shaped”. Nevertheless, performance varies from metrics to metrics. The performance increased till a peak 
and then dropped as 𝜆𝜆 increased. To be more specific, HACL achieved the best prediction performance in 
the given settings, when 𝜆𝜆 equals to 0.16 based on Accuracy and Precision. Such result implies that our 
contrastive regulation item is influential to facilitate the MVPP task and verify that popular and unpopular 
micro videos hold different key latent representations for identification, emphasizing the importance of 
dual networks in the MVPP task. 

 

Figure 4. The Sensitivity Analysis 
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Visualization Analysis 

In order to examine whether our proposed dual neural network works, we plot the attention coefficients at 
HPA, self-attention, and the tensor at the contrastive layer. Figure 5 demonstrates the interaction within 
time steps, identifying that users’ interests vary from time to time. Y-label indicates which kinds of samples 
from which neural networks. For instance, TP is short for “total samples from positive network”. Although 
there is limited difference of the coefficients between positive and negative in the middle stage. Middle stage 
is much more crucial for popular (positive) samples than that of unpopular (negative) one. Meanwhile, for 
negative samples, the fluctuation over time steps is relatively narrow, indicating that unpopular micro 
videos cannot appeals viewers’ interests from time to time. In other words, users do not need to watch the 
whole micro video before deciding whether or not they enjoy it, which is consistent with reality. 

 

Figure 5. The Scaled Attention Coefficients (HPA) 

 

Figure 6 illustrates the interaction among modalities in positive and negative neural network. Overall, 
positive neural network places a greater emphasis on visual information, whereas a negative neural network 
prioritizes acoustic information (see Figure 6(a)). For positive samples, the coefficients from the positive 
and negative neural network coefficients are not statistically different, but the interaction between textual 
and visual information is more active in positive neural network (see Figure 6(b)). In comparison to positive 
samples, the disparity of negative samples between the dual neural network is more pronounced. 
Interactions between modalities on the negative neural network are more powerful when compared to the 
positive neural networks (see Figure 6(c)). Besides, interaction coefficients across modalities vary between 
positive and negative samples. For example, in popular latent representations, the correlation between 
visual and textual information is higher than that of the unpopular. Furthermore, inconsistent visual and 
linguistic information will also contribute to the decline in popularity of video. 

  
(a) Total samples from positive and negative 
neural networks 

(b) Positive samples from positive and negative 
neural networks 
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(c) Negative samples from positive and negative neural networks 

Figure 6. The Scaled Attention Coefficients (self-attention) 
 

Figure 7 directly shows the latent representations of the dual neural network at the contrastive layer. In 
order to facilitate the display of visualized results, we use principal component analysis (PCA) to reduce the 
dimension of hidden layer features to 3. The explained variance ratios of generated features are deceits in 
Table 5, where the proportion of interpreted data exceeds 95%, implying that the reduced dimension data 
can be used to represent the latent representations.  

Hidden 
representation Modality Explained variance ratio (%) 

F1 F2 F3 Total 

Positive  
neural network 

T 99.500 0.235 0.067 99.802 
A 99.558 0.184 0.066 99.808 
V 98.349 0.695 0.047 99.091 

Negative neural 
network 

T 99.674 0.105 0.067 99.846 
A 99.682 0.105 0.063 99.850 
V 98.862 0.562 0.293 99.717 

Table 5. The Results of PCA 
 

It is obviously that positive sample embeddings vary from modality to modality, whereas negative 
embeddings tent to be the same among modalities. Consequently, we can find difference between positive 
and negative network, which justifies the effectiveness of our proposed dual neural network in HACL. 

 

  
(a) Total samples from positive and negative 
neural networks 

(b) Positive samples from positive and negative 
neural networks 
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(c) Total samples from positive and negative neural networks 

Figure 7. The Tensor of Positive and Negative Networks 
 

Contributions and Implications 

This study's primary contribution is methodological. It offers the unique deep learning technique HACL, 
which draws power from two novel learning methods, namely Hadamard-product-based attention and dual 
network contrastive framework, to utilize the heterogeneous interaction across modalities and time steps. 
HACL provides a methodological instrument for aggregating temporal and spatial aspects to the MVPP 
research stream. Furthermore, the empirical findings in a real micro video dataset broaden our outlook 
about (1) on average in which time step of a micro video users are affected most, (2) to what extent 
popularity is determined by the modalities, (3) how the modalities are interacted with each other along with 
time steps. 

Our experiments and explanatory analysis provide managerial insights. Implications from temporal and 
spatial interactions learned by HACL. The popularity characteristics for micro videos learned by HACL 
provide insights helping micro video generators consternate on crucial modalities and time steps, as well 
as better leverage the interaction among modalities. For instance, when filming new micro videos, the 
interaction generated by HACL offers micro video generators the opportunities to grasp whether their 
contents will be popular and to comprehend the mechanism behind micro video popularity. Implications 
from dual neural network learned by HACL. HACL considers the MVPP task in two different channels in 
HACL, separating the characteristics of popular and unpopular micro videos. This process guarantees that 
the numerical results can not only explains the reason of popularity, but also point out that why a certain 
micro video is not popular, which facilities the production of generators. 

Conclusion 

In this paper, we propose a Hierarchical Hadamard-product-based Attention Contrastive Learning (HACL) 
for the micro video popularity prediction task. The crucial dual neural network designed for contrastive 
learning guarantee our proposed HACL is capable of isolating positive and negative embeddings. 
Specifically, the similarity based contrastive loss is added to the objective function to separate the latent 
representations and gain better informative embeddings. Based on the dimensions of matrices at temporal-
wise interaction, we design a Hadamard-product based attention to identify the coefficients among time 
steps. The learned hidden representations are then fed into classic self-attention for weighting the 
interaction among modalities. Finally, the positive and negative embeddings are concatenated and linearly 
projected to the output layer followed by a Sigmoid activation. Extensive experiments show the 
effectiveness of our proposed HACL in the field of MVPP. Our work considering micro video popularity as 
two problems, providing innovative insights for MVPP. Besides, it is not limited to MVPP, but transferable 
for other downstream tasks involving multimodal time series data. Nonetheless, social network information 
and video operation data are not involved in this paper with the limitation of the dataset. In the future, we 
will consider more external features and attempt to extend our model. 
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