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Abstract: 

Evermann and Rönkkö (2023) review recent developments in partial least squares (PLS) with the aim of providing 
guidance to researchers. Indeed, the explosion of methodological advances in PLS in the last decade necessitates 
such overview articles. In so far as the goal is to provide an objective assessment of the technique, such articles are 
most welcome. Unfortunately, the authors’ extraordinary and questionable claims paint a misleading picture of PLS. 
Our goal in this short commentary is to address selected claims made by Evermann and Rönkkö (2023) using 
simulations and the latest research. Our objective is to bring a positive perspective to this debate and highlight the 
recent developments in PLS that make it an increasingly valuable technique in IS and management research in 
general. 
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1 Introduction 

Extraordinary claims require extraordinary evidence (Sagan, 1989). In their recent CAIS article, Evermann 
and Rönkkö (2023) make extraordinary claims regarding the alleged damage caused by the adoption and 
use of partial least squares (PLS) in information systems (IS) research. They not only cast doubt on the 
latest methodological research on PLS, but also on twenty-five years’ worth of foundational IS research 
using PLS, including the validity of the seminal articles by many distinguished scholars in the field (Table 1 
in Evermann and Rönkkö, 2023). Given the seriousness of these claims, one would expect thorough and 
irrefutable evidence, but Evermann and Rönkkö (2023) fail to provide such evidence. This disregards 
decades of hard-earned achievements by IS researchers. Our goal in this short commentary is to address 
selected claims made by Evermann and Rönkkö (2023) and allay the concerns regarding the use of PLS 
by providing a constructive assessment of its abilities. We hope to bring a positive perspective by 
highlighting that PLS is a valuable technique in IS research. 

2 Questionable Claims 

Evermann and Rönkkö (2023) make several questionable claims, some more subtle than others. As 
addressing all of them is beyond the scope of a short commentary, we focus on the following: (1) PLS as 
a known-to-be biased estimator, (2) PLS finds itself between a “rock and hard place” (i.e., explanation and 
prediction), (3) research is retrofitting PLS with “kludges upon kludges,” (4) PLS is unreliable in 
measurement error correction and inference testing, and (5) the premature adoption of PLS casts doubts 
on the validity of seminal studies and has caused significant damage to the field. 

2.1 Claim 1: PLS is a Known-to-be Biased Estimator. 

In section 2.3 (“Known Limitations”) of their paper, Evermann and Rönkkö (2023) discuss the “PLS bias,” 
which refers to the fact that PLS underestimates structural model relationships and overestimates 
measurement model relationships when the data originate from a common factor model. However, 
Evermann and Rönkkö's (2023) discussion provides an incomplete explanation of the deliberate design 
choices made by the pioneers of structural equation modeling (SEM), thereby creating unnecessary doubt 
among researchers applying the method. Worse, Evermann and Rönkkö's (2023) discussion can lead 
behavioral researchers to mistakenly equate PLS bias with “error” or “wrongness.” Evermann and Rönkkö 
(2023) cite both Wold—the originator of PLS—and Jöreskog—the originator of covariance-based 
structural equation modeling (CBSEM)—to state that bias in PLS has been well-known since its inception. 
Evermann and Rönkkö (2023), however, seem surprised by the subsequent adoption of PLS and note the 
following “one has to wonder why the IS discipline thought that adopting a designed-to-be-biased 
estimator for the common factor model was a good idea. This is of course a rhetorical question.” 
Unfortunately, this rhetorical question suggests that Evermann and Rönkkö (2023) are either unaware of, 
or disagree with, the common knowledge in statistical literature that bias is just one aspect on which to 
evaluate the suitability of a method (e.g., Friedman, 1997; Geman et al., 1992; Hastie et al., 2009). 
Evermann and Rönkkö's (2023) statement seems even more surprising given that the justification behind 
PLS bias often appears a few sentences away from the portions they selectively quote to make their case 
(see Jöreskog & Wold, 1982, p. 266; Wold, 1982, p. 28). In doing so, Evermann and Rönkkö (2023) 
ignore Jöreskog and Wold’s nuanced views of CBSEM and PLS and why they considered the methods 
“complementary rather than competitive” (Jöreskog & Wold, 1982, p. 270).  

What was the purpose of introducing bias into PLS, and more importantly, why would Wold and Jöreskog 
propagate a known-to-be-biased method? This was explicitly addressed by Jöreskog and Wold (1982, 
p. 266) who note that “the primary purpose of the ML approach is to study the structure of the observables 
as reflected by their dispersion (variance-covariance) matrix…the primary purpose of the PLS approach is 
to predict the indicators…” To achieve the goal of prediction, Wold (1982, p. 52) specifically mentions that 
“there is here a trade-off between estimation bias and reduction of standard errors.” It is well-known that 
bias is just one element of the bias-variance tradeoff that is necessary to achieve the goal of prediction, 
and that optimal prediction does not require unbiased coefficient estimates (Shmueli & Koppius, 2011). In 
fact, ensuring zero bias in coefficient estimates creates major problems for out-of-sample predictions, and 
techniques that focus solely on unbiasedness provide inferior predictions (Kleinberg et al., 2015). In this 
vein, Hastie et al. (2009, p. 52) remark that “from a more pragmatic point of view, most models are 
distortions of the truth, and hence are biased; picking the right model amounts to creating the right 
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balance between bias and variance.” It may come as a surprise to some readers to learn that multilevel 
techniques deliberately bias cluster estimates (through “shrinking” or “pooling”) toward estimated 
population averages (Yarkoni & Westfall, 2017). Techniques such as Lasso regression also produce 
intentionally biased estimates to improve prediction (Ranstam & Cook, 2018).   

The interplay between bias and variance is also reflected in the two SEM approaches: (1) the “hard” 

causal-explanation approach where one is interested in the optimal estimation of coefficients (unbiased     
in a given sample (CBSEM and consistent PLS) (Dijkstra, 2014; Dijkstra & Henseler, 2015),

1
 and (2) the 

“soft” causal-predictive approach followed by PLS where the goal is to balance the prediction of unseen 

cases (low error in   ) while providing consistent-at-large, but not necessarily unbiased,    estimates with 
the aim of generalizing out-of-sample (Wold, 1982).

2
 The latter approach requires a trade-off, where PLS 

sacrifices in-sample optimality for the ability to conduct out-of-sample prediction by producing explicit 
latent variable case values (Shmueli et al., 2016). Not surprisingly, PLS outperforms CBSEM and other 
methods in prediction (Becker et al., 2013; Evermann & Tate, 2016), while at the same time producing a 
small bias which is of no practical concern in the vast majority of explanatory studies—as extensively 
documented in early writings on PLS (e.g., Apel & Wold, 1982) and in numerous simulation studies 
contrasting CBSEM and PLS (e.g., Reinartz et al., 2009; Sarstedt et al., 2016). That PLS bias is generally 
small is also evidenced in our simulation results (Section 2.5 below), which show marginal differences 
between PLS and CBSEM estimates under the specific conditions that Evermann and Rönkkö (2023) 
claim as problematic; that is, under common factor model population with zero or weak effects. Perhaps a 
simple analogy is in order: a car engine that is designed to balance horsepower with mileage is expected 
to be different than engines that solely optimize either horsepower or mileage. The crucial takeaway is 
that all statistical techniques make certain functional tradeoffs that researchers need to be aware of. 

With regard to assessing the out-of-sample predictive abilities in PLS, as pointed out in recent research 
(Sarstedt & Danks, 2022; Sharma et al., 2019), the R

2
 metric is unsuitable for this specific purpose—yet it 

remains a useful measure of explained variance and potential overfit. Instead, through the cross-validation 
procedure, PLS uses the data itself to effectively simulate the bias-variance tradeoff and out-of-sample 
inferential tests and metrics (Liengaard et al., 2021; Shmueli et al., 2016). This opens avenues for the 
assessment of out-of-sample abilities of IS models. Thus, PLS models can serve as a bridge between fully 
explanatory and fully predictive models (Hair & Sarstedt, 2021).  

2.2 Claim 2: PLS Finds Itself between a Rock and Hard Place 

We are astounded by Evermann and Rönkkö's (2023) claim that “users of predictive models may be 
unwilling to accept lower predictive performance when all that is gained is a theoretically plausible, linear 
model. This trade-off between prediction and explanation is specific to every application, but is unlikely to 
always go well for PLS (or any other linear structural equation modeling method).” As a result, Evermann 
and Rönkkö (2023) claim that PLS finds itself between a “rock and hard place” (i.e., between explanation 
and predictive techniques).  

This is incorrect. Explanation and prediction are not an “either-or,” zero-sum game that Evermann and 
Rönkkö (2023) make it out to be. Evermann and Rönkkö (2023) assume that researchers will either be in 
the “explanation” or “prediction” mode, but not simultaneously both. Their stance goes against Gregor’s 
(2006) typology that identifies “explanatory-predictive” theories as one important class of IS theories. 
While approaches like neural networks or random forests provide high levels of predictive power, they are 
virtual interpretation black boxes. Prediction devoid of explanation is uninterpretable, while explanation 
devoid of predictive ability is questionable. 

If prediction without regard to the “gain” of a theoretical model was the only scientific goal, then we should 
not expect to see world-renowned machine-learning researchers making urgent calls to improve the 
interpretability of their computational models (Athey, 2017; Chernozhukov et al., 2018; Hofman et al., 
2017; Hofman et al., 2021; Wager & Athey, 2018). On the flip side, there have been numerous calls to 
improve the predictive abilities of behavioral models (Hofman et al., 2017; Shmueli & Koppius, 2011; 
Yarkoni & Westfall, 2017). Clearly, there is great interest in merging prediction with explanation in both 
behavioral and computational social science communities. In fact, in their recent Nature article Hofman et 

                                                      
1
 However, as the models become more complex CBSEM’s optimality aspirations also become untenable and “more or less illusory” 

(Wold, 1982, p. 53). 
2 On the other extreme, purely predictive machine-learning techniques are fine-tuned to provide best out-of-sample prediction (i.e., 

lowest error in    ) but provide no guarantees regarding    (Kleinberg et al., 2015). 
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al. (2021) recommend an “integrative modeling” approach that simultaneously considers explanation and 
prediction. Explanation and prediction, while philosophically compatible, require an empirical tradeoff in 
practice, as we discussed above (Shmueli & Koppius, 2011). Prediction is not a free lunch. Thus, to claim 
that researchers interested in combining explanation with prediction to create strong theory will be 
unwilling to make the tradeoff is presumptuous and without foundation. Contrary to Evermann and 
Rönkkö's (2023) assertion, a theoretically plausible model that provides a solid explanation of the 
underlying processes with adequate predictive ability is an extremely useful device (Shmueli, 2010). Such 
models help lay the foundation for future models with more accurate explanatory and predictive abilities. 
Indeed, PLS was deliberately designed to occupy the demanding space “between a rock and hard place,” 
that is, explanation and prediction (Wold, 2006). 

2.3 Claim 3: Research is Retrofitting PLS with Kludges upon Kludges  

On the one hand, Evermann and Rönkkö (2023) exhort researchers to not only “debate and argue back 
and forth about the merits of PLS, but to make significant progress in improving it and its use in applied 
research.” On the other hand, they complain that research is trying hard to “retrofit” PLS with additions 
that come naturally to the mathematically elegant CBSEM, and as a result PLS appears kludgy. Indeed, 
the quest for mathematical elegance is a personal driving force for many scientists. However, as Nobel 
laureate Steven Weinberg has said in this vein, “The universe doesn’t care about what makes theoretical 
physicists happy”

 
(Greene, 2015). For all their limitations and retrofitted kludges, the “standard model of 

particle physics” and the “periodic table of elements” remain among the most successful predictive models 
of all time.  

In contrast to what Evermann and Rönkkö (2023) assert, retrofitting (i.e., adding a component or ability 
not available in the initial design) is a valid, valuable, and inescapable fact in engineering and sciences. 
Consider these additional examples: String theory retrofitting quantum theory onto strings, retrofitting of 
radiocarbon dating protocols, retrofitting software using patches and updates, and the retrofitted protocols 
on which the entire Internet runs. Indeed, good designs leave room for future improvements and additions, 
and ones that do not run the risk of becoming evolutionary dead-ends. In this sense, PLS’s flexibility is an 
advantage. All scientific methods rely on continual fine-tuning and creation of scaffoldings to make sure 
they perform well as knowledge regarding their limitations and strengths accumulates. Thus, the goal of IS 
researchers should be to use this power responsibly (Petter & Hadavi, 2021). 

Importantly, not all additions to PLS come naturally to CBSEM (e.g., out-of-sample predictions). Evermann 
and Rönkkö (2023) further ask: what can be gained from such additions when researchers have CBSEM 
at their disposal? The answer is simple: because the central goal of PLS differs from CBSEM, the 
additions to PLS should not be seen as directly competing with CBSEM, as Evermann and Rönkkö (2023) 
do, but rather as complementary (see also Jöreskog & Wold, 1982), and help improve its ability to assess 
explanatory-predictive models. Complex socio-technical processes that give rise to noisy multivariate data 
do not care about what makes statisticians happy, or whether they believe in common factors or 
composites. Data simply are. The onus is on researchers to arm themselves with multiple tools of 
assessment and utilize them responsibly (Petter, 2018). 

2.4 Claim 4: PLS is Unreliable in Measurement Error Correction and Inference 
Testing 

Evermann and Rönkkö (2023) claim that PLS results are less reliable than sum scores and do not allow 
for inference testing. As evidence they cite their previous study (Rönkkö & Evermann, 2013), which has 
been criticized by scholars for its extremely sparse simulation design that does not allow for drawing 
generalizable conclusions (Henseler et al., 2014; Rigdon, 2016). Specifically, their study relied on an 
unrealistically simplified two-construct model with a zero relationship, a known boundary condition of PLS 
(Lohmöller, 1989; Wold, 2006)

3
. Evermann and Rönkkö (2023) acknowledge that this condition “breaks 

the method” and that these problems do not occur in other conditions, yet they claim that this is “precisely 
that condition when it [i.e., PLS] is used by applied researchers.” For this to have merit, two conditions 
must be simultaneously met. First, a vast majority of PLS path models must include two constructs that 
are not embedded in a larger nomological network of constructs (i.e., there are no significant effects going 

                                                      
3
 While testing methods for their extreme boundary conditions is useful in some situations, it doesn’t necessarily justify conclusions 

under normal, real-world conditions. For instance, showing that a car has problems running at -30° Celsius does not mean the car 
does not perform in normal temperatures. 
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into any of the two constructs). Second, the effect between the two constructs under consideration must 
be zero in the population.  

As for the first condition, Evermann and Rönkkö (2023) note: “Indeed, a review by Goodhue et al. (2015) 
concluded that such models are common in IS research and thus a large share of PLS-based IS research 
may be susceptible to this issue.” However, Goodhue et al. (2015, p. 11) did not conduct a “review” of 
published studies, but only note in passing that “a scan of models tested in MISQ revealed many [i.e., 
models] that included at least one construct with a single path into or out of it” (emphasis added). This 
hardly qualifies as evidence showing that “a large share of PLS-based IS research may be susceptible to 
this issue” as Evermann and Rönkkö (2023) claim.  

Regarding the second condition, Evermann and Rönkkö (2023) implicitly assume zero-effects are 
commonplace. This is in sharp contrast to Hofman et al. (2021, p. 182) who note that “in the complex 
world of human and social behaviour it is highly likely that many effects are non-zero.” This is also 
corroborated by a recent meta-analysis of published unified theory of acceptance and use of technology 
(UTAUT) studies by Blut et al. (2022) who assessed 25,619 effect sizes reported by 737,112 users in 
1,935 independent samples. While their meta-analysis finds significant variation in effect sizes (due to 
possible moderators), they find hardly any zero-effects and only very few relatively small effects (Blut et 
al., 2022).   

Considering the above, it is not surprising that none of the seminal models (Table 1 in Evermann and 
Rönkkö, 2023) assessed a PLS path model that meets these conditions. In fact, on reviewing the seminal 
models, we identified only 6 out of 124 (4.84%) path relations where a dependent construct is explained 
by only one independent construct in an isolated part of the model.

4
 Moreover, coefficients in these six 

path relations vary between 0.23 and 0.81 with an average of 0.448, and all are significant at the 5% level. 
These findings put Evermann and Rönkkö's (2023) assertion on extremely thin ice.  

2.5 Claim 5: Premature Adoption of PLS Casts Doubts on the Validity of Seminal 
Studies and Caused Significant Damage to the Field 

Perhaps the most extraordinary claim Evermann and Rönkkö (2023) make is “the adoption of PLS in the 
IS discipline was premature and this now casts significant doubts on the validity of seminal studies” 
[emphasis added]. In effect, Evermann and Rönkkö (2023) cast doubt on foundational IS research by 
renowned scholars that have been replicated hundreds, in most cases thousands of times (Table 1 in 
Evermann and Rönkkö, 2023) without providing real evidence. Evermann and Rönkkö's (2023) 
counterfactual rhetorical device implies that, ceteris paribus, if researchers had used CBSEM or 
consistent PLS (PLSc) they would have arrived at vastly different conclusions.

5
 Moreover, it also implies 

these differences are solely attributable to the use of PLS. The onus rests on Evermann and Rönkkö 
(2023) to provide meaningful evidence for this extraordinary claim. 

Giving Evermann and Rönkkö (2023) the benefit of doubt, we decided to assess how PLS, PLSc, and 
CBSEM perform in practical situations in the presence of zero and weak relationships in a nomological 
network, as claimed by Evermann and Rönkkö (2023). Our simulation draws on the UTAUT model with 
three different set-ups and assumes a common factor model population, as Evermann and Rönkkö (2023) 
do, and not a composite model population where PLS has well-known advantages over CBSEM and PLSc 
(Sarstedt et al., 2016). Case 1 has no relations between any of the constructs. Case 2 has very weak 
relationships of 0.05 in the population, while Case 3 has weak relationships of 0.1 (Figure 1). We also 
added an incorrect path from FC to BI to assess if the misspecification is detected. We ran 5,000 
replications for all population models with a sample size of 500 and 2,000 bootstrap resamples. We used 
the cSEM (Rademaker & Schuberth, 2021) and lavaan packages (Rosseel et al., 2021) for this simulation. 

                                                      
4
 Note that this analysis is very conservative as we only considered the main models documented in each paper. 

5
 As PLSc was introduced by Dijkstra (2014; see also Dijkstra & Henseler, 2015), its possible role in the development of seminal 

theories, even in a counterfactual world, is at best hypothetical. 
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Notes: Dashed arrow signifies the misspecified path; PE = Performance expectancy, EE = Effort expectancy, 
SI = Social influence; FC = Facilitating conditions; BI = Behavioral intention; USE = Use behavior. 

Figure 1. Simulation Models 

Table 1 shows that PLS and CBSEM almost always provided admissible solutions, while PLSc rarely 
produced admissible solutions in these specific conditions. This calls into question Evermann and 
Rönkkö's (2023) recommendation #1.

6
 Thus, we restrict further discussion to PLS and CBSEM.  

Table 1. Percentage of Admissible Solutions  

 PLS PLSc CBSEM 
Case 1 2 3 1 2 3 1 2 3 

Percentage of admissible 
solutions 99.4% 99.8% 100% 0.6% 1.1% 4.6% 100% 100% 100% 

Note: In PLS and PLSc a solution is categorized as admissible if all the following hold: (1) Convergence achieved, (2) All absolute 

standardized loading estimates   1, (3) construct variance-covariance matrix is positive semi-definite, (4) all reliability 
estimates   1, and (5) model-implied indicator variance-covariance matrix is positive semi-definite. In CBSEM, a solution is 
categorized as inadmissible if either the algorithm did not converge or if a Heywood case is detected.  

Table 2 presents simulation results. We consider Type-I error rates for all zero-effects and power for non-
zero effects. For Case 1 (zero-effect case), PLS correctly finds no relation between the constructs 
indicating that the method is unbiased in this case. The variance of the PLS estimates is slightly higher 
than CBSEM by about 0.002. However, the PLS percentile bootstrap accounts for the fluctuation, 
producing a Type-1 error rate only marginally higher than 0.05, whereas the PLS bias-corrected and 
accelerated (BCa) bootstrap is more conservative. Overall, both PLS and CBSEM perform to the 
standards expected for Type-I error rate. 

In Cases 2 and 3, both PLS and CBSEM estimates are very close to the population value with differences 
in the third decimal place averaged across all runs. In contrast to Case 1, the variance of the PLS 
estimates is less than CBSEM for Case 3, showing that PLS estimates are more stable than CBSEM 
across runs in this setting. The power of the PLS percentile bootstrap is slightly higher than CBSEM for 
both Cases 2 and 3, whereas it is lower for PLS BCa bootstrap. The Type-I error rate for the misspecified 
path between FC and BI demonstrates that both PLS and CBSEM can reliably detect it at the 5% level in 
all cases.

7
 

                                                      
6
 We also specified a more complex simulation model based on the European customer satisfaction index model (Tenenhaus et al., 

2005) with zero relations between the constructs with sample size 500. Here the fraction of admissible solutions produced by 
CBSEM dropped sharply to approximately 28% (and 0.6% for PLSc), while PLS maintained 99.3% admissible solution rate, 
suggesting that both CBSEM and PLSc struggle to provide admissible solutions in more complex nomological networks with zero-
effects.  
7
 We also ran these simulations using sample size 50. CBSEM had a small drop in the percentage of admissible solutions (~92%), 

while PLS maintained its rate (~99%). While we find slightly elevated Type-I error rates and variance, and lower power for both PLS 
and CBSEM, the pattern of differences among the techniques are the same as the case with a sample size of 500. 
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Table 2. Simulation Results  

Path Method 
Average / variance Fraction of null hypothesis rejections 

Case 1 Case 2 Case 3 
Case 1 
(Type-I error) 

Case 2 
(Power) 

Case 3 
(Power) 

PE  BI 
PLS 0.001 / 0.005 0.053 / 0.004 0.095 / 0.002 0.067 / 0.033 0.187 / 0.095 0.509 /0.326 

CBSEM 0.001 / 0.003 0.051 / 0.003 0.099 / 0.003 0.058 0.172 0.488 

EE  BI 
PLS 0.000 / 0.005 0.052 / 0.004 0.097 / 0.002 0.06 / 0.033 0.173 / 0.085 0.515 / 0.336 

CBSEM 0.000 / 0.003 0.049 / 0.003 0.100 / 0.003 0.051 0.158 0.493 

SI  BI 
PLS -0.002 / 0.004 0.052 / 0.003 0.093 / 0.002 0.062 / 0.025 0.177 / 0.088 0.499 / 0.329 

CBSEM -0.002 / 0.003 0.051 / 0.003 0.100 / 0.003 0.051 0.159 0.474 

FC  USE 
PLS 0.000 / 0.005 0.054 / 0.003 0.095 / 0.002 0.061 / 0.031 0.177 / 0.072 0.500 / 0.280 

CBSEM 0.000 / 0.003 0.051 / 0.003 0.100 / 0.003 0.052 0.163 0.487 

BI  USE 
PLS 0.000 / 0.003 0.047 / 0.003 0.091 / 0.002 0.059 / 0.031 0.160 / 0.094 0.492 / 0.376 

CBSEM 0.000 / 0.003 0.049 / 0.003 0.100 / 0.003 0.055 0.155 0.487 

Misspecified 
path 

Method 
Average / variance Fraction of null hypothesis rejections 

Case 1 Case 2 Case 3 
Case 1 
(Type-I error) 

Case 2 
(Type-I error) 

Case 3 
(Type-I error) 

FC  BI  
PLS 0.000 / 0.003 0.000 / 0.003 0.001 / 0.002 0.052 / 0.034 0.053 / 0.030 0.049 / 0.034 

CBSEM 0.000 / 0.003 0.000 / 0.003 0.001 / 0.002 0.051 0.049 0.048 

Note: The “Average / variance” columns refer to the average and variance of the path estimates across all runs. The “Fraction 
of null hypothesis rejections” columns for PLS are based on p-values from percentile / BCa bootstrap confidence intervals, and 
CBSEM p-values. They represent the fraction of times (across all runs) the null hypothesis is rejected at the 5% significance 
level. 

These results clearly show that PLS reliably estimates common factor models with zero and weak 
relationships with marginal differences from CBSEM. That is, even if seminal IS models had included zero 
paths, the use of PLS could not have created major theoretical discrepancies, especially given the 
numerous replication studies that were conducted later with CBSEM and updated PLS inference methods. 
Replication and meta-analyses are important error-correction mechanisms in this regard. Furthermore, 
estimating the same model with PLS and CBSEM on practical datasets typically shows marginal 

differences, producing similar implications
8

. In fact, Blut et al.’s (2022) meta-analysis shows that 

theoretical discrepancies in UTAUT studies are largely explained by considering contextual effects (e.g., 
age, cultures, technologies). Thus, Evermann and Rönkkö's (2023) extraordinary claim that the use of 
PLS, per se, has caused “significant” damage to IS research is extremely dubious. Note that the 
simulation discussion above pertains to PLS being used exclusively in the in-sample explanation mode 
(Type-I error and Power). Considering that PLS additionally allows out-of-sample prediction assessments 
enhances its appeal further (Liengaard et al., 2021). 

3 Discussion  

PLS has been used to create many seminal IS models. While we may debate about the value of these 
theoretical achievements (e.g., Blut et al., 2022), the fact remains these models have stood the test of 
time and represent hard-earned achievements of IS researchers. They also point to the robustness of the 
original PLS analyses and results.   

Science is not error-free, but rather error-correcting (Sarstedt et al., 2022). Oddly, it was PLS’s strength in 
providing a solution in most conditions that led to its misapplication in some studies and the ensuing 
criticisms. In contrast, CBSEM’s weakness in converging with complex models has shielded it from such 
criticisms. No technique can guard against a weak research design. The IS community has been quick to 
issue error-correcting calls for the appropriate use of PLS, rather than serving as critiques of the method 
itself (e.g., Marcoulides & Chin, 2013; Marcoulides & Saunders, 2006; Ringle et al., 2012).   

Methodological improvements in PLS have come thick and fast. Old model evaluation practices have 
been substantially revised and strengthened within the last decade making it difficult for editors, reviewers, 
and researchers to be fully abreast. Recent work has sought to address this situation via updated 
guidelines and proper use of PLS in IS research (Hair, 2021; Petter & Hadavi, 2021). Thus, in so far as 
the overarching goal is to objectively evaluate the strengths and weaknesses of PLS applications, the 
issues regarding the use of outdated practices (small samples, t-values) raised by Evermann and Rönkkö 

                                                      
8 We conducted this analysis for both TAM and UTAUT models and empirical data and report the results on https://www.pls-
sem.net/various/  
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(2023) should be welcomed—although these have already been addressed several times (e.g., Goodhue 
et al., 2012; Marcoulides et al., 2012). As with any multivariate analysis method, the use of outdated 
practices should be dealt with at the editorial level, if such papers do arrive for review.  

Scientific progress requires continuous epistemic and methodological iterations to refine both theories and 
methods (Elliott, 2012). There is uncertainty in the process—and it takes time. As researchers use and 
develop PLS, more knowledge regarding its strengths and weaknesses will emerge. The tenets of science 
require us to exercise humility and accept ambiguities inherent in the scientific process and to suspend 
judgement until all the evidence is in. They also require full consideration of available evidence, rather 
than cherry-picking results catering to a preferred storyline. 

Evidence regarding PLS’s abilities is now pouring in. Recent developments have brought PLS to the 
forefront of model evaluation using both explanatory and predictive lenses simultaneously, which was 
previously completely absent (Sharma et al., forthcoming; Shmueli et al., 2016, 2019). This contrasts with 
CBSEM which is an explanation-focused method. When the goal is to balance explanation with prediction, 
as is often the case, PLS is a valuable technique (Shmueli et al., 2019). Being armed with multiple 
methods (focusing on explanation, prediction, and explanation-prediction) enables scholars to channel 
their combined theoretical efforts over time toward a more stable scientific-tripod and develop a full 
spectrum of IS theories described by Gregor (2006). PLS plays an important role in this paradigm. 
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