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Abstract. In this contribution, we present a multiscale and multidisciplinary VR architecture that 

aims at creating a common environment where cultural heritage and chemistry meet in order to 

strengthen the role already played by chemistry in the process of restoration of cultural goods. 

Our aim is to create a user friendly platform where experts of both fields can share data and ideas 

in a direct way, in order to achieve deeper insights into cultural goods combining the scientific 

and historical points of view. As a case study we present the 3D reconstruction of the “Sala degli 

Stemmi”, which is one of the two historical rooms at Palazzo della Carovana in Pisa, presenting 

a number of artworks that underwent a process of chemical analysis and restoration in 2012. The 

whole architecture has been developed using the Unity game engine, and it is usable with HTC 

Vive headsets. The implementation of the VR environment and the potential applications, from 

both the scientific and educational points of view, are discussed in some detail. 

Introduction

In the last decade, Virtual Reality (VR) has emerged as a powerful tool in several fields of hard sciences

and humanities and VR technologies are increasingly used in the world of academic research and

industry. Since the human beings manipulate tridimensional objects in their daily life, 3D virtual

environments extend users’ perception and enhance the possibility of managing big amounts of

heterogeneous data coming from different sources.

These new technologies also provide the means to increase the interactions between heterogeneous 

fields of study, like Cultural Heritage (CH) and chemistry, which have always been deeply connected, 

due to the fundamental role of several chemical techniques in the process of restoration of cultural 

heritage goods[1–4]. 

Cultural heritage is a cross-cutting field in which digital technology can dramatically improve 

different aspects, from the preservation of the physical objects and all their physical attributes to the 

fruition in the form of virtual reality experiences. Recent studies[5–8] show why it is important to focus 

not only on visual data (such as the 3D model of an artwork), but also on all the issues related to the 

creation, storage, and access to metadata. In this context, virtual reality plays an important role, as it 

offers the possibility to visualize and to interact with the virtual representation of the artwork in its 

original scale. At the same time, the latest developments show the increasing importance of the 

collaboration among different experts with heterogeneous backgrounds in order to improve the 

understanding of the cultural good[6,7]. 

On the other side, chemistry is a conceptual subject, which has always needed the support of models 

and representations capable of describing that microscopic world that we are unable to see. Therefore, 
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virtual reality plays an important role in the process of understanding a number of key chemical 

topics[9,10], to such an extent that several molecular viewers originally programmed for desktop 

systems are being upgraded for VR devices[11–15]. 

On these grounds, in the present contribution we propose a multiscale and multidisciplinary VR 

architecture (sketched in Figure 1) that aims at finding a meeting point between heterogeneous fields 

such as chemistry and cultural heritage. We tried to achieve this result by creating a tool for a “virtual 

tour” from the macroscopic to the microscopic level, as objects of different scales and of different 

disciplines are going to be inspected through VR devices. The proposed architecture includes: 1) a tool 

for the insertion of heterogeneous data sets directly on the virtual surface of the 3D model of the cultural 

good; 2) a virtual and realistic representation of both the artworks and their original environment, in 

which it is possible to integrate the collected information; 3) a software for the investigation of the 

results collected from the chemical analysis, performed to drive the restoration processes. 

Hence, this software encourages the sharing and confrontation of ideas among experts, with the 

common intent of enriching the knowledge of the subject. 

Figure 1: an overview of the different software modules that compose the architecture. 

Our proof-of-concept case presents the 3D reconstruction of “Sala degli Stemmi” located at Palazzo 

della Carovana in Pisa. In 2012, many artworks of this historical room underwent a process of chemical 

analysis and subsequent restoration. To develop our VR application, a model of the room has been first 

realized by 3D structure from motion procedure. The architecture has been enriched with the possibility 

to add the sampling points of the chemical analysis and, eventually, the issuing chemical data, like 

composition, molecular structures and spectroscopic information. Furthermore, the user is able to 

visualize and interact with both the original artwork and the molecular systems identified through 

chemical analysis run during the restoration process. 

In this architecture, a fundamental role is played by the molecular viewer. While UnityMol[15], 

developed using the well-known Unity cross-platform game engine [16], was initially developed only 

for desktop usage, its research team has recently released VR versions targeting both HTC Vive and 

Oculus Rift. Flexibility, expandability and modularity make UnityMol suitable for the creation of a 

multi-disciplinary tool, which is able to provide heterogeneous information. In the framework of an 

ongoing collaboration with the UnityMol team, we were able to modify the source code in order to 

satisfy the requirements of the sought application. 

1. Related Works

Some prototypical tools have been presented in the last years, especially for the collection of 

heterogeneous data. 

One of the first solutions has been proposed by Tsirliganis et al.[17], who focused mainly on the 

creation of a general database in which it is possible to store cultural and technological data for artworks. 

The main contribution of this study in the world of CH “is the 3D recording and mapping of 

physicochemical properties in the form of a GIS-like system for every Cultural Heritage Object (CHO), 

while the majority of existing databases are bound to a 2D world. […] This way, the user-researcher 

will be able to examine CHOs from different points of view, avoiding at the same time to impose 
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possible strain to the actual artwork.” The fruition of the CHO is possible through a conjunct Virtual 

Reality Model Language (VRML) and Java solution, which nowadays is considered obsolete. 

The proposal presented by Meyer et al.[18] is based on open-source software modules for the 

development of a virtual reality environment for the exploitation of intra-site Cultural Heritage data, 

which makes it possible to explore and analyze data both at spatial and temporal levels. In this case as 

well, the proposed VR interaction takes advantage of a web solution, called X3D. 

A few years ago, Barone et al.[6] proposed RICH, an architecture conceived and developed at the 

Scuola Normale Superiore. This represented the first step toward the creation of a unified framework 

for collecting, promoting and sharing cultural heritage data. Within this architecture, the Virtual Reality 

Module (VRM) supports a broad variety of virtual reality and stereoscopic display devices. However, 

the possibility to investigate the microscopic data directly from the macroscopic level was not explored. 

Finally, Scopigno and Dellepiane [7] presented an interesting collection of tools for integration and 

analysis of sampled data. The SICAR software, based both on web and GIS systems, can be used to 

characterize the surface of the artwork, linking available knowledge to specific regions defined over it. 

It is a good solution for mapping information directly on the 3D surface of the artwork, however it 

appears to require a good expertise of the operator because of the complexity of use. The 3DHOP web 

software offers high-resolution single object visualizations, but it is not suited to manage complex scenes 

made of low-poly objects. Despite this drawback, it represents one of the most promising proposals, 

thanks to its availability on the web and the possibility to manage heterogeneous sets of data. To the 

best of our knowledge, none of the previous suggestions contemplates the use of virtual reality devices 

for the visualization and interaction with the artworks. 

2.  Implementation 

Given the multiscale and multidisciplinary character of the sought application, different aspects needed 

to be considered, in particular: 

1) acquisition of the point cloud to be transformed into the 3D model; 

2) digitization of the metadata and results of chemical analysis;  

3) integration of the digital representations inside a virtual environment;  

4) interaction with molecular structures at the microscopic level. 

In order to maintain uniformity, the whole architecture has been developed using Unity. The engine 

is widely used in the processes of creations of 3D experiences, including VR software. Furthermore, the 

Unity editor can be customizable in order to speed up application development and to execute part of 

code without having to run the application. 

2.1.  Acquisition of the 3D model 

The first issue to be addressed is the acquisition of the artwork and its surroundings as a 3D model. 

In fact, our objective is to recreate the original environment as a whole, so that the user can visit and 

interact with the artwork in its primary spot. A model of the “Sala degli Stemmi” has been realized by 

3D structure from motion procedure, as a result of 359 pictures shot and given as input to the Metashape 

[19] software. 

The acquisition of the room has required four rounds of shooting, two for the walls and two for the 

wooden coffered ceiling. The pictures of the walls have been shot at a different angle for the upper and 

the lower side, and at a fixed distance, so that the images could have an overlapping side for the 

Metashape software to work properly. For the coffered ceiling, it has been necessary to put the camera 

in a perpendicular position in respect to the ceiling itself, and also to shot diagonal pictures in order to 

acquire also the internal part of every coffer. On the contrary, the floor has been recreated using a 3D 

modelling software, since its pattern is easily replicable. 

Concerning the artworks to be inspected in the virtual scenario, to start we choose a wooden beam, 

whose colour was restored, positioned on the coffered ceiling. 

2.2.  Digitization  
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Chemical information collected during the restoration of 2012 were not digitized. All the metadata 

were transcribed to a PDF file. Even though our purpose is not to introduce a new standard for the 

targeted digitization of metadata in the cultural heritage field, we decided to enrich the architecture with 

the possibility to insert the results of the chemical analysis for each restored item. So, the objective of 

this phase is to add (or modify) new (or already existing) sample points on the 3D mesh representing 

the artwork. 

The addition of sample points upon the virtual artefact surface requires to import the 3D model inside 

the virtual scene. According to a research performed some years ago [32], the total number of 3D file 

formats exceeds 140 units, even though only a few of them are widely used. Anyhow, each file format 

needs its own import algorithm. Unity, being a game engine, ensures the possibility to import different 

types of 3D files inside the scene during edit mode, but the source codes of these algorithms are not 

public, hence the source code cannot be used in play mode. It is therefore reasonable to take advantage 

of these algorithms by developing the sampling activity inside the edit mode. In this way, instead of 

setting up an executable, it will be possible to handle the sampling operations directly from the Unity 

engine. However, we plan to transform this part of the architecture into a stand-alone application in the 

future. 

After importing the textured 3D mesh of the artwork inside the Unity scene, the user must add the 

ImportedModel component to the game object, as it can be seen in Figure 2. This script gives 

different possibilities: 

 to create a new empty data container; 

 to load already existing metadata; 

 to add sample points directly on the surface of the mesh (see Figure 3); 

 to save all sample points inside the data container; 

 to export data inside a .unitypackage [20] (that will contain both sample points data and all the 

necessary scripts that another user will need in order to reproduce the same scene in its own 

Unity software). 

The creation of a new data container is required for the insertion of new sample points.  

The data collected for each sample point are both qualitative and quantitative. In particular, each 

sample information will contain: 

 an identification string; 

 a description of the results deriving from performed chemical analysis; 

 a list of the molecular structures which can be inspected in the Visualization scene. 

The molecular structures can be saved as: 

Figure 3: A screenshot of the script options when 

no data container has been created or loaded. 
Figure 2: A screenshot of the 3D mesh of the wooden 

beam inside Unity Editor, showing two sample 

points. Each sample point is represented as a red 

spot on the surface of the mesh. 
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 SMILES[33] string; 

 path of the PDB[21] file, if a structure is already available. 

The SMILES notation is one of the many possible input format that Open Babel is able to read and 

convert into a molecular 3D structure, which will be shown in the Visualization scene. Furthermore, 

Open Babel can convert a SMILES notation into a PDB file, which is the requested type of input file for 

the UnityMol VR viewer. 

The data container and the samples data are saved as a Unity asset, which are written to disk and 

therefore persistent between sessions. 

2.3.  Visualization 

When the Visualization scene starts, the user finds himself standing next to the entry door of the Sala 

degli Stemmi. It is possible to move around by physically walking (as the Vive offers positional 

tracking) and by using the controller for the teleport function. In this last scenario, the player can decide 

to teleport only to specific predefined spots inside the virtual room. Objects of interest are highlighted 

with a particle system, so they are easily visible. 

When an object of interest is selected, it approaches the user. At this point, the sample points are 

shown on the surface of the object as red spots. The user can grab the object with the controller, and 

open the metadata of each sample point by clicking a button on the controller and pointing directly on 

one of them. The metadata are shown on top of the other controller (the one not used for the selection), 

organized inside a panel. 

When the user selects a sample point with a controller, the data of all sample points are opened and 

organized in a Cover Flow-like structure, as shown in Figure 4. In addition, two arrows are shown on 

the controller, indicating that it is possible to move between metadata by pressing the touchpad button. 

 

 
Figure 4: the object of interest (in this case, a wooden beam from the ceiling) is in front of the user. 

The metadata are organized in panels on the left hand of the player. 

2.4.  Interaction modes 

In the VR visualization of Sala degli Stemmi, three types of interaction modes are available. 

2.4.1.  Long distance interaction. From a general point of view, two routes can be followed for 

allowing the user to reach far items: (i) bring the user close to the item, or (ii) bring the item in front of 

the user. In the first case, a possible approach would have been to move the user’s virtual camera toward 

the item. This would have caused motion sickness, as the user’s physical body movement would not 

match with the one in the virtual world. Another solution would have been to move instantaneously 
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(teleport) the player close to the item, resulting in the player floating in air. Also the latter solution has 

not been considered the most suitable for our scenario, and therefore option (ii) has been implemented. 

Once the player press a button on one of the Vive controllers, a laser beam appears. If the laser beam 

hits an object of interest, a circular animated timer is shown, indicating that the object will be selected 

in a few seconds if the laser beam stays still on it. When the selection is engaged, the object will move 

in front of the player. 

2.4.2.  Natural Interaction. Once the object is in front of the user, it is possible to interact with it in the 

most natural way, i.e. by grabbing it with one of the two controllers. This action lets the player inspect 

the whole object and its sample points. In order to do so, the player approaches the controller close to 

the chosen sample point, which will light up to indicate it is going to be selected. Its data are shown on 

a User Interface (UI) panel. Both visual and haptic feedbacks are given in order to compensate the lack 

of physical collision.  

2.4.3.  Interaction with the UI. The player can read information about the chemical analysis on a panel 

that has a position in the virtual world. The UI panel position is the same of the controller; hence, the 

player is always able to read the data without moving. This interaction is the key to the virtual trip 

towards the microscopic level. In fact, the player can select a molecule to be displayed by putting in 

contact the controller with the panel. If the virtual head of the user gets close to the opened molecule, 

the change of scenario is accompanied by a gentle screen fade. At this point, the state of the application 

is saved, so that it will be available when the player comes back from the microscopic level. Then, the 

user finds himself inside the UnityMol VR environment. 

2.5.  The communication protocol 

In order to enable the exchange of messages between the upper (macroscopic) layer and the lower 

(microscopic) layer of the architecture, it has been necessary to implement a communication protocol. 

In particular, the two layers need to exchange messages about the path of the molecular file to be opened 

and the necessary information to switch between each other.  

In our scenario, as it can be seen from Figure 1, a Client-Server model fits properly. Unity’s 

networking has a “high-level” scripting API that, among other things, allows to control the networked 

state of the application, to serialize data using a general-purpose serializer, and to send and receive 

network messages between client (C) and server (S). 

The communication protocol is composed of several scripts that are assigned to different 

GameObjects inside all the scenes of the project. The “Sala degli Stemmi” scene’s objects include the 

server scripts, whereas the UnityMol scene’s objects include the client scripts. 

It has also been necessary to provide the following customized network messages, in particular: 

 “Init” message (S  C). The server send to the client an initial message right after receiving the 

notification of the client connection. This message contains: 

o the PDB path of the file to be opened, 

o the name of the window and the window identifier, both necessary for switching the 

focus to the other application; 

 “Init” message (C  S). The client sends to the server its window information as soon as they 

connect; 

 “PDB” message (S  C). This message is sent in order to visualize a molecular structure when 

UnityMol is already running, as there is no need to send the windows information again. 

2.6.  UnityMol VR 

UnityMol is a molecular viewer providing a user-friendly visualization and interaction UI developed at 

the Institut de Biologie Physico-Chimique (IBPC) in Paris. Among its functionalities, the latest version 

of the software offers Hyperballs representation[22], the possibility to load several molecules, a python 

console which can be used to operate on the loaded structures, and VR capabilities. [23] 
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UnityMol has been coded in C# inside the Unity game engine environment, which makes it easily 

adaptable and expandable with new features compared to similar software. 

In both desktop and VR versions, UnityMol works as stand-alone application. Therefore, in order to 

integrate the VR version in this project, it has been necessary to adapt some features and to add new 

ones, such as: 

 possibility to launch a UnityMol process with parameters, for example: 
> UnityMol.exe –i filename.pdb 

 integration of network scripts for the correct communication between “Sala degli Stemmi” VR 

scene and UnityMol; 

 integration of functionalities for changing scenario (from/to “Sala degli Stemmi” VR scene). 

When the virtual player’s head gets close to the molecule of interest inside the Visualization scene, he 

is “teleported” inside the UnityMol VR scenario, where the molecule is already loaded and ready to be 

inspected, as it can be seen in Figure 5. From this microscopic level, it is possible to go back to the 

macroscopic level. 

 
Figure 5: a screenshot of the UnityMol VR application, showing a representation of the alizarin 

molecule (1OAR.pdb). 

3.  Conclusions and future developments 

In this paper, we presented the first implementation of a multiscale and multidisciplinary architecture, 

whose aim is to allow a “virtual trip” from the macroscopic to the microscopic level, by exploiting the 

virtual reality technologies. We believe that the virtual journey in VR from the macroscopic to the 

microscopic worlds can bring to new results and insights that would have been difficult to achieve 

otherwise. As future developments, we would like to integrate the possibility to visualize both molecules 

and crystal structures. 
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