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Abstract

Frailty models are commonly used for analyzing clustered survival data and accounting for unobserved

heterogeneity. Shared frailty models are random-effect models in which the frailties are shared among indi-

viduals within groups. Several R packages, such as survival, frailtyEM, fraltypack, frailtysurv, and frailtyHL,

are available for fitting shared frailty models. However, little research has been conducted to compare their

performances, leaving users without clear guidance in selecting an appropriate tool for analyzing clustered

survival data. The first study in this thesis aims to address this gap by providing an overview of current

R packages for fitting shared frailty models and comparing their performances through simulation studies.

After fitting a shared frailty model, model diagnostics are an essential part of the modelling process. The

use of residuals in assessing model adequacy is a conventional tool for normal regression. In the second

study of this thesis, we propose to use the Z-residual for detecting the non-linearity in the shared frailty

model. Through a simulation study, we investigate the power of Z residuals in detecting non-linear effects

in covariates and demonstrate their effectiveness in diagnosing models using real data on the survival of

acute myeloid leukemia patients. Typically, all residuals in survival analysis are calculated using the full

dataset, resulting in a bias problem due to double usage of the dataset. In the third study of this thesis,

we propose applying cross-validation methods to compute residuals for diagnosing a semi-parametric shared

frailty model and investigate the performance of cross-validatory Z-residual for diagnosing a shared frailty

model with non-parametric baseline hazards. We compare Z-residuals calculated through three methods:

without cross-validation (No-CV) method which is the basic algorithm, 10-fold cross-validation (10-fold) and

leave-one-out cross-validation (LOOCV). Through simulation studies, we investigate their performances in

the detection of nonlinear effects in covariates and identification of the outliers in the dataset through graph-

ical visualization and overall GOF test. We also compared No-CV Z-residual and LOOCV Z-residual in a

real data application for identifying outliers for a kidney infection dataset. Finally, in the fourth study of

this thesis, we extended the Z residual to diagnose the proportional hazards assumption and compare it with

existing residual methods.
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1 Introduction

1.1 Background

In many public health and epidemiological studies, clustered survival data are often observed. This clustering

imposes a correlation among individuals within each cluster, which is known as within-cluster correlation.

For instance, within each long-term care facility, the elderly within the same care facility often have access to

similar healthcare which may affect the individuals’ health status. Other typical examples include matched

measurements on similar organs like eyes and kidneys. These patients who received organs from the same

individual can be considered as a cluster and share some common unobserved heterogeneity. As such,

individuals sharing the same hidden features may correlate with each other. The shared random effect

(frailty) models [1–4] were introduced as a generalization of the survival models allowing a random effect due

to the unobserved heterogeneity of each cluster.

Several R packages are available for fitting shared frailty models, including survival [5], frailtyEM [6],

frailtySurv [7], frailtyHL [8], parfm [9], and frailtypack [10]. However, little research has been conducted to

compare the performance of various R packages for fitting shared frailty models, making it difficult for users

to decide on an appropriate tool for analyzing clustered survival data. Therefore, a thorough comparison of

the performance of these packages will be useful for users who need to fit shared frailty models.

Despite the availability of many R packages for fitting shared frailty models, the examination of model

assumptions is often neglected, partly due to limitations in the available diagnostic tools for survival models.

A residual diagnosis is a conventional tool for assessing the validity of model assumptions in normal linear

regression. However, in shared frailty models with censored observations, residual diagnostics are not as

straightforward as those for a normal linear regression model. For diagnosing shared frailty models, several

residuals have been proposed [11]; such as Cox-Snell (CS) [12], martingale [13], deviance [14, 15] Schoenfeld

[11, 16] and scaled Schoenfeld residuals[11, 17]. Each of these residuals for diagnosing survival models has

its own limitations.

The most widely used tool for checking survival regression models for failure times is Cox-Snell (CS)

residual [12]. It is calculated as the negative logarithm of the estimated survival probability. When failure

times are not censored, the survival probability is uniformly distributed when the model is true; therefore,

the CS residual is exponentially distributed. However, when there are censored observations, CS residuals are

no longer exponentially distributed since the survival probability is not uniformly distributed. To account for

censored observations, diagnostics based on CS residuals compare the agreement of cumulative hazard plot

of CS residuals estimated with Kaplan-Meier method [18] and the 45◦ straight line, which is the cumulative

hazard of the standard exponential distribution. Although the cumulative hazard plot of CS residuals is

widely used in the graphical overall GOF assessment of the adequacy of a fitted model, the overall GOF

test reveals little information about the nature of the model inadequacies. Tailored graphical and numeric

diagnostic tools are therefore needed.

Martingale and deviance residuals have been often used to check the functional form of covariates in
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survival models. Martingale residuals are defined as the difference between the observed and expected values

of a subject’s failure indicator, integrated over the time at risk. They can help to identify outliers and assess

the functional form of covariates. Deviance residuals are a normalized transform of martingale residuals

that are approximately symmetrically distributed about zero with a mean of zero when the fitted model is

appropriate. Both types of residuals are available in the survival package in R. However, martingale residuals

are asymmetric, with no lower bound and an upper bound of one, making them difficult to visually inspect.

Deviance residuals are less skewed and more normally distributed than martingale residuals. Although

the locally weighted scatterplot smoothing (LOWESS) lines on the scatterplots of the residuals against the

continuous covariates are useful for revealing patterns in the residuals that would not otherwise be perceived,

visual inspection of LOWESS lines can be still subjective. Furthermore, martingale and deviance residuals

lack a reference distribution due to censoring, so it is challenging to derive a numerical test to measure the

statistical significance of the observed pattern in residual plots.

Schoenfeld residuals and Scaled Schoenfeld residuals are the most commonly used graphical diagnostic

tools to check the proportional hazards (PH) assumption in the survival models. The PH assumption states

that the hazard ratio between two groups is constant over time. Schoenfeld residuals represent the difference

between the observed and expected values of the covariate(s) given the risk set at that time. Scaled Schoenfeld

residuals, proposed by Grambsch and Therneau in 1994, are a variation of Schoenfeld residuals that are scaled

by the variance of the covariate. Scaled Schoenfeld residuals are a modification of Schoenfeld residuals that

can be more effective in detecting departures from the proportional hazards assumption, especially when

the variance of the covariate changes over time or is small [17]. The graphical diagnostics based on scaled

Schoenfeld residuals commonly use a plot of the Scaled Schoenfeld residuals versus the observed survival time,

and a horizontal line at zero indicates that the PH assumption is satisfied. A score test is commonly used to

check the proportional hazards (PH) assumption in Cox regression models by comparing the observed values

of the score function to their expected values under the null hypothesis of PH. The test is used to assess

whether the hazard ratio between two groups is constant over time and to determine if there is evidence of

non-proportional hazards. The survival package in R can compute the score test [5].

However, Schoenfeld residuals-based diagnostics only consider a specific case of PH violations due to

the time-varying covariate effect, and they may have low power in detecting other kinds of PH violations,

such as accelerated failure time. When the survival time does not follow the Cox model form but rather an

accelerated failure time model, Schoenfeld residuals-based diagnostics may fail to detect Non-PH. Therefore,

the detection of Non-PH using Schoenfeld residuals and related tests is not comprehensive.

Li et al. [19] proposed using randomized survival probabilities (RSPs) to define residuals for checking the

assumptions of accelerated failure time (AFT) models without random effects. The key idea of RSP is to

replace the survival probability of a censored failure time with a uniform random number between zero and the

survival probability of the censored time. The RSPs are uniformly distributed under the true model, hence,

can then be transformed into normally distributed residuals with the normal quantile function. The resulting

residual is called the normally-transformed RSP (NRSP) residual. Statistical tests can be derived based

on NRSP residuals for checking model assumptions, such as distributional assumptions and the functional

form of covariates, given the normally distributed reference distribution for NRSP residuals. However, NRSP

residuals have not been extended to diagnose Cox proportional hazard models or semi-parametric shared

frailty models.
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1.2 Literature Review

1.2.1 Shared Frailty Models

A shared frailty model is a frailty model where the frailties are common or shared among individuals within

groups. The formulation of a frailty model for clustered failure survival data is defined as follows. Suppose

there are g groups of individuals with ni individuals in the ith group, i = 1, 2, . . . , g. If the number of

subjects ni is 1 for all groups, then the univariate frailty model is obtained [3]. Otherwise, the model is called

the shared frailty model [2, 20, 21] because all subjects in the same cluster share the same frailty value zi.

Suppose tij is the true failure time for the jth individual of the ith group, which we assume to be a continuous

random variable in this article, where j = 1, 2, . . . , ni. Let t∗ij denote the realization of tij . In many

practical problems, we may not be able to observe t∗ij exactly, but we can observe that tij is greater than a

value cij , where cij be the corresponding censoring time. The observed failure times are denoted by the pair

(yij , δij), where yij = min(tij , cij), δij = I(tij < cij). The observed data can be written as y = (y11, · · · , ygng )

and δ = (δ11, · · · , δgng ). This is called right-censoring. Since we will consider only the right-censoring in this

article, we will use ”censoring” as a short for ”right-censoring”.

For the shared frailty models, the hazard of the event at time t for the jth individual, j = 1, 2, . . . , ni,

in the ith group, is then

hij(t) = zi exp(xijβ)h0(t); (1.1)

and the survival function for the jth individual of the ith group at time t follows:

Sij(t) = exp

{
−
∫ t

0

hij(t) dt

}
= exp

{
− zi exp(xijβ)H0(t)

}
, (1.2)

where xij is a row vector of values of p explanatory variables for the jth individual in the ith group, i.e.,

x = (x11, · · · , xgng ); β is the column vector of regression coefficients; h0(t) is the baseline hazard function,

H0(t) is the baseline cumulative hazard function, and zi is the frailty term that is common for all ni individuals

within the ith group, let z = (z1, · · · , zg). The hazard and survival functions with frailty effect can also be

written as:

hij(t) = exp(xijβ + ui)h0(t), (1.3)

and

Sij(t) = exp

{
− exp(xijβ + ui)H0(t)

}
, (1.4)

where ui= log(zi) is a random effect in the linear component of the proportional hazards model. Note that

zi cannot be negative, but ui can be any value. If ui is zero, the corresponding to zi is one, which means the

model does not have frailty. The form of the baseline hazard function may be assumed to be unspecified as

a semi-parametric model or fully specified to follow a parametric distribution.

In our study, we focus mainly on the shared gamma frailty model, since gamma distribution is the most

common distribution for modelling the frailty effect. It is easy to obtain a closed-form representation of

the observable survival, cumulative distribution, and hazard functions due to the simplicity of the Laplace

transform. The gamma distribution is a two-parameter distribution with a shape parameter k and scale

parameter θ. It takes a variety of shapes as k varies: when k = 1, it is identical to the well-known exponential

distribution; when k is large, it takes a bell-shaped form reminiscent of a normal distribution; when k is less

than one, it takes exponentially shaped and asymptotic to both the vertical and horizontal axes. Under
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the assumption k = 1
θ , the two-parameter gamma distribution turns into a one-parameter distribution. The

expected value is one and the variance is equal to θ.

1.2.2 Review of Existing Residual Diagnostic Methods for Survival Models

Cox-Snell residuals

Cox-Snell (CS) residual [12] is the most widely used tool for checking survival regression models for fail-

ure times. CS residuals are transformed from the survival probabilities with the quantile function of the

exponential distribution, which is defined as

rcij(tij) = − log(Sij(tij)) (1.5)

where tij is the true failure time. In the absence of censored observations, the survival probability is uniformly

distributed when the model is true; therefore, the CS residual is exponentially distributed. A plot of the CHF

against the true failure time will give a straight line through the origin with a unit slope when the residuals

have a unit exponential distribution, which is expected when the survival model is correctly specified. In

addition to the graphical checking, we can apply numerical GOF testing methods such as Kolmogorov-

Smirnov (KS) test to CS residuals. When there are censored failure times, the distribution of Sij(yij) is no

longer uniformly distributed under the true model, which means the CS residuals are no longer exponentially

distributed. The CS residuals rcij can be regarded as a dataset with censoring. The Kaplan-Meier (KM)

estimate of the survivor function can still be computed for CS residuals. Hence, the most widely used

diagnostics tool is to apply the KM method to get an estimate of the CHF of CS residuals and compare the

CHF against the 45o straight line.

Martingale residuals

Martingale residuals [13] can be viewed as the difference between the observed value of a subject’s failure

indicator and its expected value, integrated over the time for which that patient was at risk. The residuals

are defined as

rMij = δij − rcij (1.6)

where δij is the event indicator for the jth individual of the ith group observation, δij is equal to 1 if that

observation is an event; otherwise zero if censored, and rcij is the Cox-Snell residual.

The martingale residuals sum to zero but are not symmetrically distributed about zero when the fitted

model is appropriate. The scatterplot of the residual against the survival time or the continuous covariates

is used for assessing the functional form covariates and identifying outliers in the survival data. The locally

weighted scatterplot smoothing (LOWESS) lines on the scatterplots can be used for revealing patterns in the

residuals that would not otherwise be perceived.

Deviance residuals

The deviance residuals [14, 15] can be regarded as an attempt to make the martingale residuals symmetrically

distributed about zero, and are defined as

rDij = sgn(rMij )[−2(rMij + δij log
(
δij − rMij

)
)]

1
2 (1.7)
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where rMij is the martingale residual, the function sgn(.) is the sign function [11].

Deviance residuals are less skewed and more normally distributed than martingale residuals, the plots

based on deviance residuals tend to be easier to interpret. An index plot of Deviance residual can be used

to identify individuals with unusual survival times. Additionally, scatterplots of deviance residuals against

continuous covariates are also used in assessing the functional form of covariates, while LOWESS lines on

the scatterplots can reveal patterns in the residuals.

Schoenfeld residuals

Schoenfeld residuals [11, 16] were originally termed partial residuals. It can overcome two disadvantages of the

Cox Snell (CS) residuals [12], which depend heavily on the observed survival time and require an estimate

of the cumulative hazard function. In [16], Schoenfeld residual is perceived as the difference between the

observed and expected values of the xijp given the risk set at the time yij , one for each covariate in the fitted

Cox regression model, defined as

rSijp
= δij(xijp − âijp), (1.8)

where xijp is the value of the pth covariate, p = 1, 2, · · · , P , for the jth individual of the ith group in the

study,

âijp =

∑
lh∈R(yij)

xlhpzl exp
(
xlhβ̂

)
∑

lh∈R(yij)
zl exp

(
xlhβ̂

) , (1.9)

and R(tij) is the set of all individuals at risk at time yij .

Schoenfeld residuals are a commonly used graphical diagnostic method to evaluate the proportional haz-

ards assumption of a Cox PH model. If the PH assumption is met, the scatterplot of Schoenfeld residuals

versus survival time should be flat, centred around zero without exhibiting any pattern.

Scaled Schoenfeld residuals, proposed by Grambsch and Therneau (1994) [17], are a variation of Schoenfeld

residuals that are scaled by the variance of the covariate [11, 17]. The purpose of scaling is to make the

residuals more sensitive to departures from the PH assumption, especially in cases where the variance of the

covariate changes over time or is very small. By scaling, the residuals are put on a similar scale, which makes

it easier to compare them and identify patterns of deviation from the PH assumption. The widely used scaled

Schoenfeld residuals are defined as

r⋆Sij
= dvar(β̂)rSij , (1.10)

where d is the number of events among all observed failure times, and var(β̂) is the variance-covariance

matrix of the parameter estimates in the fitted Cox regression model. Diagnostics based on scaled Schoenfeld

residuals commonly use a plot of the scaled Schoenfeld residuals against the observed survival time. A plot

that shows a random pattern around a horizontal line without showing a trend indicates the plausibility of

the PH assumption.

1.3 Research Contributions

Contribution I: A Comparative Study of R Packages for Shared Frailty Models

Several R packages are available for fitting shared frailty models, including survival [5], frailtyEM [6],

frailtySurv [7], frailtyHL [8], parfm [9], and frailtypack [10]. In this study, we provided a general
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overview of these R packages and comprehensively assess their algorithms and applications, creating a sum-

mary for each. We compare their performance through simulation studies, including the bias and variance of

the parameter estimates, rate of convergence, and computational time of the packages. We found that all the

R packages produced similar and unbiased parameter estimates for fixed-effect regression coefficients, regard-

less of the cluster sizes and censoring rates. However, differences were found with respect to the estimation

of the variance parameter for the frailty term, convergence rate and computational time. In addition, we

note that estimating standard errors for frailty variance is not straightforward, and not all R packages pro-

vide standard errors for the frailty variance. Furthermore, many packages assume that the estimated frailty

variance follows a roughly normal distribution, despite the fact that it is positively skewed, which makes a

symmetrical confidence interval inappropriate. To address this issue, we developed a confidence interval for

frailty variance, which demonstrated superior performance compared to the conventional confidence intervals

provided by some R packages. We thoroughly examined the strengths and limitations of the R packages.

Contribution II: Z-residual Diagnostics for Detecting Misspecification of the

Functional Form of Covariates for Shared Frailty Model

We have extended the concept of randomized survival probabilities (RSPs) and created a residual diagnostic

tool that can provide both graphical and numerical tests to assess the functional form of covariates in semi-

parametric shared frailty models. We have renamed this residual “Z-residuals” for simplicity, as the letter Z

is commonly used to represent a standard normal random variable. To implement this diagnostic tool, we

developed a general function that computes Z-residuals for semi-parametric shared frailty models using the

output from the coxph function in the survival package in R. We also proposed a non-homogeneity test to

determine if there is a trend in Z-residuals. To evaluate the performance of this diagnostic tool in detecting

misspecification of the functional form of covariates, we conducted simulation studies. Our results showed

that the non-homogeneity test based on Z-residuals has greater power and satisfactory type I error compared

to the overall goodness-of-fit (GOF) tests in detecting misspecification of the covariate functional form. In a

real data application involving modelling the survival time of acute myeloid leukemia patients, the Z-residual

diagnosis revealed that a model with log-transformation is not suitable for modelling the survival time, a

finding was not detected by other diagnostic methods.

Contribution III: Cross-validatory Z-Residual for Diagnosing Shared Frailty Mod-

els

Computing residuals based on the full dataset can result in a conservative bias that reduces the power of

detecting model misspecification, as the same dataset is used for both model fitting and validation. Although

cross-validation is a potential solution to this problem, it has not been commonly used in residual diagnostics

due to computational challenges and a lack of awareness of the severity of the bias caused by the double use

of the dataset. We proposed a cross-validation approach for computing Z-residuals in the context of shared

frailty models and compare them to the Z-residual without cross-validation. Specifically, we developed a

general function that calculates cross-validated Z-residuals using the output from the coxph function in

the survival package in R. We also built an R function for splitting data into K-fold to ensure adequate

representations of groups and other covariates in each fold. In our study design, the Z-residuals are calculated

using three methods: the full dataset (No-CV), 10-fold cross-validation (10-fold) and leave-one-out cross-

validation (LOOCV). We conduct simulation studies to investigate the performances of the three types of
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Z-residuals in detecting nonlinear covariate effects and identifying outliers through graphical visualization

and overall GOF tests. Our simulation studies demonstrate that the Shapiro-Wilk (SW) tests based on cross-

validatory Z-residuals are significantly more powerful and more discriminative than No-CV Z-residuals for

detecting non-linear covariate effects and identifying outliers. We also compare the performance of the No-CV

Z-residuals and LOOCV Z-residuals in identifying outliers in a real application that models the recurrence

time of kidney infection patients. Our findings suggest that LOOCV Z-residuals can identify outliers that

are missed by Z-residuals without cross-validation.

Contribution IV: Z-Residual Diagnostics for Detecting Non-Proportional Haz-

ards for Survival Models

Schoenfeld residuals-based diagnostics only consider a specific case of violations of PH due to the time-varying

covariate effect. Therefore, it may have low power in detecting other kinds of violations of the PH assumption,

for example, accelerated failure time. The accelerated failure time (AFT) model incorporates a wide variety

of survival time distributions, which is used in many fields as an alternative to the Cox PH model if the PH

assumption is not tenable. In this study, we propose using the Z-residual diagnostics for detecting Non-PH

in a survival model. Our simulation studies show that, compared to the score tests related to Schoenfeld

residuals, the tests based on Z-residuals have similar powers and type I error rates in time-varying covariate

effect scenarios but they have significantly higher powers in AFT scenarios. In a real data application, using

Z-residual diagnostics, we identify a severe violation of the PH assumption in the blindness time of a Diabetic

Retinopathy study, which was not detected by Schoenfeld residuals and related tests.

1.4 Organization of the Thesis

The remaining chapters of this thesis are structured as follows. Chapters 2 through 5 describe four research

studies in detail. Chapter 2 presents a comparative study of R packages for fitting shared frailty models,

in a complete publishable article format. Chapter 3, also in a publishable article format, examines Z-

residual diagnostics for detecting misspecification of the functional form of covariates for shared frailty models.

Chapter 4 provides a complete publishable article on cross-validatory Z-residual for diagnosing shared frailty

models. In Chapter 5, we investigate the performance of Z-residual diagnostic tools for detecting non-

proportional hazards for survival models. Chapter 6 summarizes the findings and includes a discussion of

the limitations of each study, as well as potential future research directions.
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2 A Comparative Study of R Packages for Shared

Frailty Models 1

Abstract: Frailty models are often used to model the unobserved heterogeneity and clustered survival

data. A shared frailty model is a random-effect model where the frailties are common or shared among

individuals within groups. Different R packages are available for fitting shared frailty models such as survival,

frailtyEM, fraltypack, frailtysurv, and frailtyHL. However, little research has been conducted to compare the

performance of various R packages for fitting shared frailty models, making it difficult for users to decide

on an appropriate tool for analyzing clustered survival data. We aim to compare the performance of the

R packages via a series of simulation studies. The bias and variance of the parameter estimates, rate of

convergence, and computational time of the packages are compared. The advantages and limitations of the

software are discussed in detail.

2.1 Introduction

In survival analysis, conventional Cox proportional hazard models [22] and accelerated failure time models

[23] assume that subjects are independent of one another. However, data with a multilevel structure occur

frequently in a wide range of research problems. For example, patients are often nested within hospitals.

The hazard of the event differs from one cluster to another cluster induced by unobserved cluster-level

factors. Random effects can be incorporated into conventional survival models to account for cluster-level

heterogeneity. Such heterogeneity is often called frailty in the context of survival analysis. Frailty models

extend the classic survival models by incorporating random effects (frailties) acting multiplicatively on the

baseline hazard function [24]. In cases where the frailty is greater than one, subjects experience an increased

hazard of failure. A shared frailty model is a frailty model where the frailties are common or shared among

individuals within a cluster or group [1–4].

Different R packages are available for fitting shared frailty models, such as survival [5], frailtyEM [6],

frailtySurv [7], frailtyHL [8], parfm [9], and frailtypack [10]. The survival, frailtyEM, frailtySurv,

frailtyHL packages can be used to implement semi-parametric survival models with frailties. The top

downloaded package for fitting a shared frailty model is survival package, which estimates the parameters

by maximizing the penalized partial likelihood [25, 26]. Since the frailty term can be assumed as a latent

variable, the general expectation-maximization (EM) algorithm [27, 28] is implemented by frailtyEM pack-

age. The frailtySurv package implements the parameter estimation via a pseudo full likelihood approach

[29, 30] and frailtyHL estimates the parameters through a hierarchical-likelihood approach [31]. The parfm

package can be used to fit parametric shared frailty models. Examples of such distribution are exponen-

tial, Weibull, inverse Weibull, Gompertz, lognormal, log-skewNormal, or loglogistic, among others. The

parameter estimation is performed based on the maximum marginal likelihood (MML) approach [32, 33].

1This paper has been submitted for possible publication in Statistics in Biosciences
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The frailtypack package fits flexible parametric frailty models for the gamma and log-normal distributions

(including correlated random effects, nested random effects and other scenarios). The maximization of the

penalized log-likelihood [34, 35] is used in frailtypack for estimating parameters.

Despite the wide range of R packages for fitting frailty models, it remains unclear if the R packages have

similar or different performances in terms of precision and efficiency of parameter estimates, computational

speed and convergence rate. Early research [36] included three R packages for fitting shared frailty models

in their comparison via simulation studies. However, in recent years, more R packages have been developed

for fitting shared frailty models. An updated comparison of R packages is therefore needed. The current

study aims at filling this gap by providing a general overview of current R packages for fitting shared frailty

models and comparing their performances via simulation studies. Our simulation studies showed that the

current R packages with the default parameter settings considered for fitting the shared frailty models yielded

very similar and unbiased parameter estimates for the fixed-effect regression coefficients, regardless of the

cluster sizes and censoring rates. However, differences were found with respect to the estimation of the

variance parameter for the frailty term, convergence rate and computational time. In addition, inference

for frailty variance is not straightforward. Not all the currently available R packages provide an estimation

of standard errors for the frailty variance. Most packages assume the distribution of the estimated frailty

variance is approximately normally distributed. However, frailty variance is positively skewed, so a symmetric

confidence interval is not ideal. To circumvent this problem, we developed a confidence interval for frailty

variance and showed its better performance compared to the conventional confidence intervals provided in

some of the R packages.

The rest of the article is structured as follows. Section 2.2 gives a brief review of shared frailty models.

Section 2.3 introduces the parameter estimation methods and corresponding R packages. Section 2.4 presents

the design and results of the simulation study for comparing the performance of the R packages. Finally, we

conclude the paper with a discussion of the advantages and limitations of each R package for fitting a shared

frailty model in Section 2.5. The recommendations for the selection of a package for fitting shared frailty

models are also presented in Section 2.5.

2.2 Shared Frailty Models

A shared frailty model is a frailty model where the frailties are common or shared among individuals within

groups. The formulation of a frailty model for clustered failure survival data is defined as follows. Suppose

there are g groups of individuals with ni individuals in the ith group, i = 1, 2, . . . , g. If the number of

subjects ni is 1 for all groups, then the univariate frailty model is obtained [3]. Otherwise, the model is called

the shared frailty model [2, 20, 21] because all subjects in the same cluster share the same frailty value zi.

Suppose tij is the true failure time for the jth individual of the ith group, which we assume to be a continuous

random variable in this article, where j = 1, 2, . . . , ni. Let t∗ij denote the realization of tij . In many

practical problems, we may not be able to observe t∗ij exactly, but we can observe that tij is greater than a

value cij , where cij be the corresponding censoring time. The observed failure times are denoted by the pair

(yij , δij), where yij = min(tij , cij), δij = I(tij < cij). The observed data can be written as y = (y11, · · · , ygng
)

and δ = (δ11, · · · , δgng
). This is called right-censoring. Since we will consider only the right-censoring in this

article, we will use ”censoring” as a short for ”right-censoring”.

For the shared frailty models, the hazard of the event at time t for the jth individual, j = 1, 2, . . . , ni,
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in the ith group, is then

hij(t) = zi exp(xijβ)h0(t); (2.1)

and the survival function for the jth individual of the ith group at time t follows:

Sij(t) = exp

{
−
∫ t

0

hij(t) dt

}
= exp

{
− zi exp(xijβ)H0(t)

}
, (2.2)

where xij is a row vector of values of p explanatory variables for the jth individual in the ith group, i.e.,

x = (x11, · · · , xgng
);β is the column vector of regression coefficients; h0(t) is the baseline hazard function,

H0(t) is the baseline cumulative hazard function, and zi is the frailty term that is common for all ni individuals

within the ith group, let z = (z1, · · · , zg). The hazard and survival functions with frailty effect can also be

written as:

hij(t) = exp(xijβ + ui)h0(t), (2.3)

and

Sij(t) = exp

{
− exp(xijβ + ui)H0(t)

}
, (2.4)

where ui= log(zi) is a random effect in the linear component of the proportional hazards model. Note that

zi cannot be negative, but ui can be any value. If ui is zero, the corresponding to zi is one, which means the

model does not have frailty. The form of the baseline hazard function may be assumed to be unspecified as

a semi-parametric model or fully specified to follow a parametric distribution.

In our study, we focus mainly on the shared gamma frailty model, since gamma distribution is the most

common distribution for modelling the frailty effect. It is easy to obtain a closed-form representation of the

observable survival, cumulative density, and hazard functions due to the simplicity of the Laplace transform.

The gamma distribution is a two-parameter distribution with a shape parameter k and scale parameter θ. It

takes a variety of shapes as k varies: when k = 1, it is identical to the well-known exponential distribution;

when k is large, it takes a bell-shaped form reminiscent of a normal distribution; when k is less than one, it

takes exponentially shaped and asymptotic to both the vertical and horizontal axes. Under the assumption

k = 1
θ , the two-parameter gamma distribution turns into a one-parameter distribution. The expected value

is one and the variance is equal to θ.

2.3 Estimation and Inference for Shared Frailty Models

2.3.1 Baseline Hazard Estimation

Breslow Method

In the Cox proportional hazards regression, the Breslow estimator [37] is the nonparametric maximum likeli-

hood estimation for the cumulative baseline hazard function. It has been implemented in all major statistical

software packages. The baseline cumulative hazard function is H0(t) =
∫ t

0
h0(s) ds. Breslow (1972) suggested

estimating the cumulative baseline hazard via maximizing likelihood function. After getting the estimators

β̂′ and ûi, it can provide the nonparametric maximum likelihood estimator of Ĥ0(t):

Ĥ0(t) =
∑

{v:y(v)≤t}

{
d(v)∑

(i,j)∈R(y(v))

exp
(
xij β̂ + ûi

)}, (2.5)
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where y(1) < · · · < y(r) are the ordered distinct event time among the yij ’s and R(y(v)) = {(i, j) : yij ≥ y(v)}
is the risk set at y(v), i.e., d(v) is the number of events at y(v).

Splines Method

The splines estimator [38] is an alternative solution to estimate the baseline hazard function h0(t). The

basis of splines with a specified number of knots Q for the baseline hazard can be approximated as: ĥ0(t) =
m∑
i=1

λiMi(t), with m = Q + 2, where λi’s are positive parameters and Mi(t)’s are called the M-spline basis

functions [39]. M-splines are considered a variant of the normalized version of B-splines [38] within boundary

knots. Cubic M-splines is a polynomial function of 3rd order that approximates a function on an interval

by combining linearly. The sum of the polynomial functions of 1st order can be approximated to the second

derivative of the baseline hazard function h′′0(t;λ). This approximation can reduce the number of parameters

and allows flexible shapes of the hazard function. The results are closer to the true hazard function if more

knots can be used.

2.3.2 Parameter Estimation Methods and R Packages

Penalized Partial Likelihood (PPL) Algorithm (R package: survival)

The penalized partial likelihood (PPL) approach can be used to estimate parameters in a shared frailty model

[40]. This estimation is based on maximizing the penalized partial log-likelihood, which consists of two parts.

The first part is the conditional likelihood of the data given the frailties. The second part corresponds to the

frailties distribution in which the likelihood is considered a penalty term. The PPL for the frailty model is

then given by

lppl(β, u, θ; y, δ) = lpart(β, u; y, δ) + lpen(θ;u), (2.6)

over both β and u. Here lpart(β, u) is the partial log-likelihood for the Cox model that includes the random

effects.

lpart(β, u; y, δ) =

g∑
i=1

ni∑
j=1

δij

{
ηij − log

[ ∑
(q,w)∈R(yij)

exp(ηqw)

]}
, (2.7)

where ηij = xijβ+ui and η = (η11, . . . , ηgng ). In the penalty function lpen(θ;u), θ is the parameter for frailty,

chosen by the investigator to restrict the values of u. The random effect ui is equal to log(zi), where zi is

usually taken to have either a lognormal or a gamma distribution. The penalty function can be written as,

lpen(θ;u) =

g∑
i=1

log fU (ui | θ), (2.8)

where fU (ui) denotes the density function of the random effect ui.

The maximisation of the PPL consists of an inner and an outer loop. For the log-normal frailty effects with

mean zero and variance θ, the penalized likelihood can be maximized with the Newton-Raphson algorithm

in the inner loop. The maximisation process proceeds iteratively by starting with a provisional θ and finding

the estimates of the β’s and the u’s that maximise lppl(β, u, θ). In the outer loop, the restricted maximum

likelihood estimator for the θ is obtained using the best linear unbiased predictors. The process is iterated

until convergence. For the gamma frailty effects with unit mean and variance θ, the estimates of β’s and

the u’s are first taken to be values that maximize lppl(β, u, θ) for a given value of the θ. The outer loop is
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based on the maximisation of a profiled version of the marginal likelihood for θ, at estimates, β̂ and û, is

then used to obtain a revised estimate of θ. The Breslow approximation is the first option to estimate the

baseline hazard function in nearly the currently available R packages for fitting Cox regression models with

or without frailties.

Arguably the most popular R package for fitting semiparametric shared frailty models is the survival

package [5]. The function coxph in the survival package offers a way of fitting shared frailty models via

the PPL method. The arguments are the terms including fixed effects of the model, random effects and the

data. The frailty distribution can be gamma, Gaussian, or t distribution. It accommodates the clustered

failures and recurrent events data with right, left, and interval censoring types. When coxph function fits

shared frailty models with clustered failures data, cluster size should be above five. Otherwise, the random

effects will be treated as fixed effects.

Expectation-maximization (EM) Algorithm (R package: frailtyEM)

The expectation-maximization (EM) algorithm [2, 27] is an iterative method for performing maximum likeli-

hood estimation when the model involves latent variables (missing values). The expectation (E) step attempts

to estimate the latent variables via the expectation of the log-likelihood evaluated based on the observed data.

The maximization (M) step attempts to optimize the parameters of the model, which computes parameters

by maximizing the expected log-likelihood found in the E step. If we consider the frailty effect z as missing

data in the frailty model, the problem can be approached by using EM Algorithm. In the E step, compute the

unobserved frailties as the expected values conditional on the observed information and the current param-

eter estimates are obtained. In the maximization step, we treat these expected values as true information,

and new estimates of the parameters of interest are obtained by maximization of the likelihood, given the

expected values.

We first consider the complete data log-likelihood in which the frailties zi are regarded as another set of

parameters:

lfull(θ, β, z) = log f(y, δ, z | h0, β, θ) = lfull,1(β; y, δ, ĥ0) + lfull,2(θ; z), (2.9)

where,

lfull,1(β; y, δ, ĥ0) =

g∑
i=1

ni∑
j=1

{
δij log

[
ĥ0(yij)zi exp(xijβ)

]
− Ĥ0(yij)zi exp(xijβ)

}
(2.10)

and

lfull,2(θ; z) =

g∑
i=1

log fZ(zi | θ). (2.11)

We use lfull,1(β; y, δ, ĥ0) to estimate β, and lfull,2(θ; z) to estimate θ. Within the framework of the EM

algorithm, the expected value of the full log-likelihood needs to be maximised. In the E step, the “posterior”

distribution of the frailties p(zi | yi, δi, β(k−1), θ(k−1)) can be obtained. Then, the E(k)(zi) and E(k)(log zi)

can be calculated. In the M step, the loglikelihood in (2.9) is profiled to a partial loglikelihood by considering

the frailties as fixed offset terms, then the E(k)(zi) and E(k)(log zi) are considered to be the true value to

replace the zi’s and log zi’s in the partial loglikelihood leading to

l
(k)
part,1(β) =

g∑
i=1

ni∑
j=1

δij

{
E(k)(log zi) + xijβ − log

( ∑
(q,w)∈R(yij)

E(k)(zq) exp(xqwβ)

)}
. (2.12)

The new estimates β(k) can be obtained from the lpart,1(β). A new estimate θ(k) can be obtained immediately
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by maximization of lfull,2(θ;u), replacing zi’s and log zi’s in (2.11) by the current expected values at iteration

step k. The Breslow estimator is applied to estimate the baseline hazard function, which is required in the

expectation step. In the initialization E step, θ(0) is set to one and an ordinary Cox model is fitted leading

to estimates β(0). Next, we iterate between the expectation and maximization steps until convergence. The

marginal loglikelihood can be used for assessing the convergence of the algorithm

The frailtyEM package was written by Theodor et al. [6]. It provides maximum likelihood estimation of

semiparametric shared frailty models using the expectation-maximization algorithm. The main model fitting

function in frailtyEM is emfrail, and the user has to define the main arguments formula, data set, distribution

and control. This formulation is common to most survival analysis packages, allowing for several scenarios,

including possibly left truncated clustered failures and recurrent events in both calendar time and gap time

formulation. The distribution argument determines the frailty distribution; the gamma, stable and power

variance function family distributions are supported. The control argument can be provided by the emfrail’s

control() function, and it controls parameters for emfrail. The package can access predicted survival and

cumulative hazard curves, both for an individual and on a population level. The results from frailtyEM

package are very close to the survival package.

Maximum Marginal Likelihood (MML) Algorithm (R package: parfm)

The maximum marginal likelihood (MML) approach was proposed for estimating the parameters for shared

frailty models [32, 33]. The frailties are integrated out by averaging the conditional likelihood with respect

to the frailty distribution. This method can be applied to any frailty distribution with explicit Laplace

transform.

For the right-censored clustered survival data, the observation for the jth individual in the ith group are

the triple (yij , δij , xij). Further, if left-truncation is also present, truncation times τij are gathered in the

vector τ , i.e., τ = (τ11 · · · , τgng ). Let ψ represent a vector of parameters for the baseline hazard function.

The marginal log-likelihood can be written as

lmarg(ψ, β, θ; y, δ, τ, x) =

g∑
i=1

{[ ni∑
j=1

δij(log(h0(yij | ψ)) + xijβ)

]

+ log

[
(−1)diLdi(

ni∑
j=1

H0(yij | ψ) exp(xijβ))
]

− log

[
L(

ni∑
j=1

H0(τij | ψ) exp(xijβ))
]}
,

(2.13)

where θ is used as the vector of parameters for the frailty distribution function, di =

ni∑
j=1

δij the number of

events in the i-th cluster, and Lq(·) is the q-th derivative of the Laplace transform of the frailty distribution,

which is defined as,

L(s) =
∫ ∞

0

exp(−sz)f(z) dz, (2.14)

where f(z) is the density function of frailty term z. If the higher-order derivatives Lq(·) of the Laplace

transform up to q = max{d1, . . . , dG} are able to compute, the estimates of ψ, β, θ, can be obtained by

maximising the marginal log-likelihood (2.13).

The parfm package [9] estimates the parameters for parametric frailty models by maximizing the marginal
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log-likelihood. The baseline hazard distributions can be exponential, Weibull, inverse Weibull (Frechet),

Gompertz, lognormal, log-skewNormal, and loglogistic. The frailty distribution can be gamma, positive

stable, inverse Gaussian, and lognormal distribution.

Hierarchical Likelihood (HL) Algorithm (R package: frailtyHL)

Lee & Nelder [41] proposed the use of hierarchical likelihood for fitting the model with random effects. The

hierarchical likelihood consists of data, parameters and unobserved random effects. This method can avoid

the integration over the random-effect distributions. The method is the statistically efficient estimation in

frailty models by using the Laplace approximation. Thus, the h-likelihood can be used directly for inference

on random effects.

For the observe yij and the censoring indicator is δij , the h-likelihood for a frailty model is defined by

hl(β, θ, u; y, δ, ĥ0) = l0(β; y, δ, z, ĥ0) + l1(θ;u), (2.15)

where l0 is the sum of conditional log densities for (y, δ) given the random effect u = (log z1, · · · , log zg); then
it follows:

l0(β; y, δ, u, ĥ0) =
∑
ij

log f(yij , δij | β, ui, ĥ0)

=
∑
ij

δij

{
log ĥ0(yij) + (xijβ + ui)

}
−
∑
ij

{
Ĥ0(yij) exp(xijβ + ui)

} (2.16)

l1 is the sum of log densities for random effects u with parameter θ, which is defined by

l1(θ;u) =
∑
i

log fU (ui | θ). (2.17)

The Breslow estimator is employed to estimate the baseline hazard function ĥ0. From the equation (2.6),

the penalized partial likelihood is defined as,

lppl(β, u, θ) =
∑
ij

δij

{
(xijβ + ui)− log

[ ∑
(q,w)∈R(yij)

exp(xqwβ + uq)

]}
+
∑
i

log fU (ui | θ). (2.18)

The papers [31, 42] showed that hl(θ, β) is equal to the lppl(β, u, θ) plus a constant,

hl(β, u, θ) = lppl(β, u, θ) +
∑

(q,w)∈R(yij)

dqw

{
log ĥ0(yqw)− 1

}
, (2.19)

where
∑

(q,w)∈R(yij)

dqw

{
log ĥ0(yqw)−1

}
is a constant and dqw is the number of element in the risk set R(yqw).

Accordingly, given the frailty parameter θ, the hierarchical likelihood methods for estimating the parameter

estimator β can be obtained by maximizing the profile marginal likelihood after eliminating H0(t). The

Laplace approximation can be used when the marginal likelihood is hard to obtain. Given β̂ and û, the

maximum adjusted profile hierarchical likelihood for estimating the frailty variance θ can be obtained. We

iterate these steps until convergence. The estimates of the standard errors can be computed.

The frailtyHL package created by Ha et al. [8] implements the hierarchical-likelihood procedures for
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fitting semi-parametric frailty models with non-parametric baseline hazards. The package fits shared or

multilevel frailty models for correlated survival data. The lognormal or gamma distributions can be adopted

as the frailty distribution, corresponding to the normal or log-gamma distributions for the log frailties. The

results of estimates of fixed effects, random effects, and variance components as well as their standard errors

are provided. In addition, it provides a statistical test for the variance components of frailties and three AIC

criteria for the model selection. However, the package does not provide the interval estimation of frailty.

Pseudo Full Likelihood (PFL) Algorithm (R package: frailtySurv)

Pseudo full likelihood [29, 30] is a new method that can handle any parametric frailty distribution with finite

moments. A simple univariate numerical integration can deal with non-conjugate frailty distributions. The

cumulative hazard function is estimated via a noniterative procedure. Other properties follow the consistency

and asymptotic normality of the parameter estimates and a direct, consistent covariance estimator. It is easy

to compute and implement. From the study of Gorfine et al. [30], the estimation results for fitting the shared

frailty model are very similar to the EM-based method.

In the shared frailty model, we assume further that the observed data consisting of y, δ, x are independent.

The proposed approach can estimate the regression coefficient column vector β, the frailty distribution’s

parameter θ, and the non-parametric cumulative baseline hazard H0. Let τ be the end of the observation

period. The full likelihood can be defined as

L(β, θ,H0) =

g∏
i=1

ni∏
j=1

{
h0(yij) exp(xijβ)

}δij g∏
i=1

(−1)Ni.(τ)L(Ni.){Hi.(τ)}, (2.20)

whereNij(t) = δijI(yij ≤ t), Ni.(t) =
∑ni

j=1Nij(t),Hij(t) = H0(min{yij , t}) exp(xijβ),Hi.(t) =
∑ni

j=1Hij(t),

L is the Laplace transform of the frailty distribution and L(m),m = 1, 2, · · · are themth derivatives of L. Note
that themth derivatives of the Laplace transform evaluated atHi.(τ) equals to (−1)Ni.(τ)

∫
zNi.(τ) exp{−zHi.(τ)}f(z) dz.

The log-likelihood equals to

l(h0, θ, β) =

g∑
i=1

ni∑
j=1

{
δij log{h0(yij) exp(xijβ)

}
+

g∑
i=1

logL(Ni.){Hi.(τ)}. (2.21)

Obviously, an estimator of H0 is required in the log-likelihood function to obtain estimators of β and θ. In

the initialization step, θ should be set as a value and a standard Cox model is fitted to obtain initial estimates

of β. For given these two initial values, H0 is estimated via the Breslow estimator with jumps at the ordered

observed failure times τv, v = 1, · · · , r. The detailed step of the baseline hazard estimation is referred to by

Gorfine et al. [30]. Then, Ĥ0 is substituted into the log-likelihood function. The estimators of β̂ and θ̂ can

be obtained by maximizing the log-likelihood function. Iterate these steps until convergence.

The R package frailtySurv [7] can be used for simulating and fitting semi-parametric shared frailty

models. It can be applied for a variety of frailty distributions, including gamma, log-normal, inverse Gaussian

and power variance functions v a pseudo full likelihood approach. The parameters’ estimators are consistent

and asymptotically normally distributed. The results of this package can be performed using the normal

distribution, such as hypothesis testing and confidence intervals. Only right-censoring with clustered failures

dataset is supported by frailtySurv.

15



Maximization Penalized Likelihood (MPL) Algorithm (R package: frailtypack)

The maximum penalized likelihood estimation [34, 35] can be applied to the nonparametric estimation of a

continuous hazard function in a shared frailty model. This approach is based on the penalized full likelihood,

which is opposed to the penalized partial likelihood. We assume that the frailty effects are distributed from

a gamma distribution with mean 1 and variance θ. For the observe y, δ, and the truncation times τ , the full

marginal loglikelihood for the shared gamma frailty model has an analytical formulation [28]

l(β, θ, h0) =

g∑
i=1

{[ ni∑
j=1

δij log h0(yij)

]
− (

1

θ
+mi) log

[
1 + θ

ni∑
j=1

H0(yij)

]

+
1

θ
log

[
1 + θ

ni∑
j=1

H0(τij)

]
+ I(mi ̸= 0)

mi∑
k=1

log

(
1 + θ(mi − k)

)} (2.22)

where the number of recurrent events is mi =

ni∑
j=1

δij .

The penalized loglikelihood function for the shared gamma frailty model follows

pl(β, θ, h0) = l(β, θ, h0)− k

∫ ∞

0

h0
′′(t)2 dt (2.23)

where k is a positive smoothing parameter that controls the trade-off between the data fit and the smoothness

of the functions. The smoothing parameter needs to be a fixed value, and the estimators of β and θ can be

obtained via the maximization of the penalized likelihood. The robust Marquardt algorithm [43] is used to

estimate parameters, which is a combination between a Newton Raphson algorithm and the steepest descent

algorithm. The estimator of the baseline hazard function h0(·) can be approximated on the basis of Cubic

M-splines with Q knots. The splines, the regression coefficients, and the variance of the frailty term are

initialized to 0.1 in the shared frailty model. The model can be fit firstly, then adjusted Cox model to give

new initial values for the splines and the regression coefficients.

The frailtypack package [10] allows fitting Cox models and four types of frailty models (shared, nested,

joint, additive). The function frailtyPenal fits the shared frailty model by using the MPL method with the

splines to estimate the baseline hazard. Right-censored or left-truncated data are considered in this package.

The arguments are the terms including the fixed effect, the cluster variable, and the data set. In addition,

there are three arguments in the formula that need to be specified: n.knots (4 up to 20), kappa1 (smoothing

parameter), and frailty (a logical value).

Table 2.1 provides a summary of the above-mentioned six R packages for fitting shared frailty models in

terms of the frailty distribution, algorithm, censoring type and data type.
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Table 2.1: R packages for fitting shared frailty models in terms of the primary R function, frailty
distribution, fitting algorithm, censoring type and data type. PPL = penalized partial likelihood, MML
= maximum marginal likelihood, EM = expectation maximization, PFL = pseudo full likelihood, HL
= h-likelihood, MPL = maximization penalized loglikelihood.

Package Version Function Frailty distribution Algorithm Censoring Data

survival 3.2-13 coxph

Gamma,
Log-normal, t PPL

Right,
interval,
Left

Clustered failures,
Recurrent events

parfm 2.7.6 parfm

Gamma, Log-normal,
Positive Stable,
Inverse Gaussian MML Right

Clustered failures,
Left truncation

frailtyEM 1.0.1 emfrail

Gamma, Positive Stable,
Inverse Gaussian,
Compound Poisson,
Power Variance Function EM Right

Clustered failures,
Recurrent events,
Left truncation

frailtySurv 1.3.7 fitfrail

Gamma, Log-normal,
Inverse Gaussian,
Power Variance Function PFL Right Clustered failures

frailtyHL 2.3 frailtyHL Gamma, Log-normal HL Right Clustered failures

frailtypack 3.4.0 frailtyPenal Gamma, Log-normal MPL Right

Clustered failures,
Recurrent events,
Left truncation,
Correlated structure
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2.4 Simulations and Results

We conducted simulation studies to investigate the performances of R packages for fitting the shared frailty

models. We generated the true failure time from aWeibull regression model with shape parameter (α = 3) and

scale parameter (λ = 0.007). More specifically tij = {− log(uij)/[λ exp
(
β1x

(1)
ij + β2x

(2)
ij + β3x

(3)
ij + zi

)
]}(1/α),

where i = {1,· · ·, g}, j = {1,· · ·, ni} and uij was simulated from Uniform[0, 1]. The censoring time Ci was

simulated from an exponential distribution, exp(θ), where θ was set to obtain three different censoring rates

(c): 20%, 50%, and 80%, respectively. To investigate if the performances of R packages depend on sample

size, we simulated datasets with varying sample sizes n ranging from 100 to 800. For a sample of size 100,

the observations were grouped into 10 clusters of size 10. For a sample of size 400, the observations were

grouped into 10 clusters of size 40 or 40 clusters of size 10. For a sample of size 800, the observations were

grouped into 10 clusters of size 80 or 80 clusters of size 10. Three covariates were generated including x
(1)
ij

from a Uniform[0, 1], x
(2)
ij from a Normal(0, 1), and x

(3)
ij from a Bern(0.25). We set true regression parameters

for the three covariates as β1 = 1, β2 = −1, β3 = 0.5, respectively. The frailty term was generated from a

gamma distribution with a variance of 0.5. We considered fitting a shared frailty gamma model assuming

hij(tij) = zi exp
(
β1x

(1)
ij + β2x

(2)
ij + β3x

(3)
ij

)
h0(tij) as a true model. All current considered R packages were

applied to the same simulated dataset in each scenario. Using 1000 datasets generated under each scenario,

we examined the precision of the parameter estimates in terms of bias and standard errors of the estimated

parameters, as well as the coverage probability (CP) of the estimated parameters. We also investigated the

performance of the packages in terms of convergence rate and average computing time under each simulation

scenario.

2.4.1 Estimated parameters

Figure 2.1 presents the estimated regression coefficients over 1000 repeated samples when the sample size

n = 400. The results indicate that current available packages performed similarly. Only frailtypack slightly

overestimated β2. Not surprisingly, as the censoring rate increases, the estimated regression coefficients are

subject to more variability.

As displayed in the top panels of Figure 2.2, the estimated variance parameter of the frailty term was

underestimated. This phenomenon was more pronounced with 10 clusters of size 40 compared to 40 clusters of

size 10, suggesting a lower number of clusters leads to higher variability of the estimated variance parameter

of the frailty term. The distribution of the variance parameter of the random effect term is known to be

positively skewed [44]. To better visualize the distribution of the estimated frailty variance parameter, the

log-transformed frailty variance parameter was displayed in the bottom panels of Figure 2.2. As shown in

the Figure, the frailtypack package had a number of extremely small estimates of the variance parameter

of the frailty. In particular, this happens in scenarios with larger censoring rates with a smaller number of

clusters.

Tables 2.4, 2.5, and 2.6 in the Appendix present detailed information about parameter estimates including

the bias, mean and median of the standard error, empirical standard error and mean square error (MSE)

of the estimated model parameters when the total sample size is 400 and the percentage of censoring rate

is 20%, 50%, and 80%, respectively. The survival package does not provide the estimated standard error

of the frailty variance. The empirical standard errors for the regression coefficients and variance parame-

ter are defined based on their point estimates over simulated samples, which are calculated as: Empirical

SE=

√∑nsim
i=1 (θ̂i−θ̄)2

nsim−1 , where nsim is the number of successful fittings to the 1000 datasets, and θ donates the
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true regression coefficient or variance parameter of the frailty. The results indicate that when the censoring

rate increases, the frailty variance estimate has a smaller bias but larger variability. This finding is in line

with previous research [36, 45]. The underestimation was even observed in the settings without censoring.

The mean and median of the standard errors provided by all packages are very close to the empirical standard

errors. Figure 2.3 displays the MSEs of all the parameters in the scenario of 40 clusters of size 10 (left panels)

and 10 clusters of size 40 (right panels). The results of MSEs for all the estimated regression coefficients

indicate that as the percentage of censoring increases, the MSEs of the estimated regression coefficients in-

creased for the current R packages. However, the frailtypack had slightly larger MSEs for β2 compared to

other packages. The fourth row of Figure 2.3 shows the results of MSEs for frailty variance. The MSE of

frailty variance increases for most R packages as the percentage of censoring increases, but the MSE of 20%

censoring is larger than that 50 % censoring for frailtySurv package. Moreover, the MSE of frailty variance

decreases as the percentage of censoring increases for frailtypack package in the 10 clusters of size 40.

2.4.2 Coverage Probability (CP)

For the currently available R packages considered in this paper, the 95% confidence intervals (CI) of the

regression coefficients are calculated based on normal approximation, i.e., β̂ ± 1.96 ∗ SE(β̂). Figure 2.4

presents the CP of the 95% CIs of the regression coefficients in the scenario of 40 clusters of size 10 (left

panels) and 10 clusters of size 40 (right panels). The CPs of the 95% CIs for most of the R packages are very

close to 95%, while frailtypack yielded slightly lower CP for β2 and frailtySurv had slightly lower CP

for β3 in the case of 10 clusters of size 40. The detailed results are displayed in Table 2.7 in the Appendix.

For the frailty variance, most of the R packages calculate the CI based on normal approximation as:

θ̂ ± 1.96 ∗ SE(θ̂). We name this type of interval as CI(1). The left panels in Figure 2.5 clearly showed the

CPs for CI(1) failed to attain the 95% nominal level. This is not surprising, since the distribution of the

frailty variance is widely known for being skewed as shown by Figure 2.2; this was previously reported by

[44]. Better CI may be constructed with the sampling distribution of the logarithm of the frailty variance,

which is more symmetric. Then, the 95% CI for log θ̂ can be constructed as

[log θ̂ − 1.96× SE(log θ̂), log θ̂ + 1.96× SE(log θ̂)]. (2.24)

The 95% CI for θ̂ can be then calculated by exponentiating the lower and upper boundaries of the 95% CI

for log θ̂ as,

exp
[
log θ̂ − 1.96× SE(log θ̂), log θ̂ + 1.96× SE(log θ̂)

]
. (2.25)

We call this type of interval CI(2). Most R packages do not provide the value of SE(log θ̂) directly. However,

we can calculate it from the SE(θ̂) using the relationship of the Fisher information between θ and its log

transformation ϕ = log(θ), which is derived briefly in general terms as follows. Let X be a random vector

(data) with the probability density function f(x|θ). Let I1(θ) denote the Fisher information of θ and l1(θ;x)

denote the log-likelihood of θ given x. Suppose we re-parameterize θ = Θ(ϕ), where Θ(·) is a differentiable

function. The log-likelihood function for ϕ, l2(ϕ;x), is given by:

l2(ϕ;x) = l1(Θ(ϕ);x) = log f(x|Θ(ϕ)). (2.26)
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Figure 2.1: The estimated regression coefficients over 1000 samples simulated from the true model.
True values of the regression coefficients are indicated as horizontal lines. The first, second and third
columns correspond to 20%, 50% and 80% censoring rates, respectively. In each panel, the left half
corresponds to scenario (i) with 40 clusters of size 10; the right half corresponds to scenario (ii) with
10 clusters of size 40.

20



Figure 2.2: The estimated variance parameter of the random effect term over 1000 samples simulated
from the true model. True values of the variance parameters are indicated as horizontal lines. The
first, second and third columns correspond to 20%, 50% and 80% censoring rates, respectively. In each
panel, the left half corresponds to scenario (i) with 40 clusters of size 10; the right half corresponds to
scenario (ii) with 10 clusters of size 40. Note that some extreme values for the frailtyHL package have
been removed.
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Figure 2.3: The MSE for each estimated regression coefficient and frailty variance. The first, second,
third and fourth rows correspond to the results for β1, β2, β3 and σ2, respectively. The left panels
correspond to the scenario with 40 clusters of size 10, and the right panels correspond to the scenario
with 10 clusters of size 40. In each panel, the yellow, gray and green bars correspond to 20%, 50% and
80% censoring rates, respectively.
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Then the derivative of l2 is given by:

∂l2(ϕ;x)

∂ϕ
=

∂f(x|θ)
∂θ

∂Θ(ϕ)
∂ϕ

f(x|Θ(ϕ))
. (2.27)

It follows that the fish information of ϕ, I2(ϕ), is obtained as follows:

I2(ϕ) = EX


(

∂f(X|θ)
∂θ

f(X|θ(ϕ))

)2

(
∂Θ(ϕ)

∂ϕ

)2

= I1(θ)(Θ
′(ϕ))2, (2.28)

where Θ′ denotes the derivative function of Θ. Applying the above general rule to Θ(ϕ) = exp(ϕ) (ie,

ϕ = log(θ)), we arrive at the following equation:

I2(ϕ) = I1(θ)θ
2. (2.29)

We know that SE(θ̂) = 1√
I1(θ)

, where θ̂ is the maximum likelihood estimation (MLE) of θ. Finally, we arrive

at the following relationship:

SE(log
(
θ̂
)
) =

1√
I2(ϕ)

=
1

θ

1√
I1(θ)

=
1

θ
SE(θ̂). (2.30)

As shown in the second column of Figure 2.5, CI(2) had consistently higher CP than CI(1). Interestingly,

as the censoring rate increases, CPs of both CI(1) and CI(2) for θ̂ became closer to 95%. This is partly due

to the larger variability of the estimated parameters as a result of the higher censoring rate. This finding is

consistent with the results of Balan et al. [46]. In addition, the currently available packages had lower CPs

in the scenario with 10 clusters compared to the scenario with 40 clusters; this is presumably caused by that

the shape of the sampling distribution of the frailty variance (or its log) being closer to normal when the

number of clusters is larger.
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Figure 2.4: The coverage probability of the 95% confidence interval for each estimated regression
coefficient. The black horizontal line indicates the 95% nominal level. The first, second and third rows
correspond to the results for β1, β2 and β3, respectively. The left panels correspond to the scenario
with 40 clusters of size 10, and the right panels correspond to the scenario with 10 clusters of size
40. In each panel, the yellow, gray and green bars correspond to 20%, 50% and 80% censoring rates,
respectively.
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Figure 2.5: The coverage probability of the 95% confidence interval for the estimated frailty variance.
The black horizontal line indicates the 95% nominal level. The first and second rows correspond to
CI(1) under normal approximation and CI(2) under log transformation as described in section 4.2. The
left panels correspond to scenarios with 40 clusters of size 10, the right panels correspond to scenarios
with 10 clusters of size 40. In each panel, the yellow, gray and green bars correspond to 20%, 50% and
80% censoring rates, respectively.
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2.4.3 Convergence rate

Table 2.2 presents the results of the convergence rate of each package. The survival, frailtySurv, and

frailtypack packages had convergence rates over 97% in all scenarios. When the sample size is small with

a large censoring rate, frailtyHL, parfm and frailtyEM packages had relatively lower convergence rates. In

the scenario with an extremely low sample size of 100 at 80% censorship, the parfm and frailtyEM packages

had the lowest convergence rate compared with other packages at about 66.3% and 57.2%, respectively.

Table 2.2: Convergence rate of the R packages over 1000 simulated datasets. Note that some very
poorly fitted models are considered as not convergence.

n Clusters Obs 100c survival parfm frailtyEM frailtySurv frailtyHL frailtypack
100 10 10 20 100 96.3 93.3 99.8 97.9 99.4
400 40 10 20 100 100 99.1 100 100 99.6
400 10 40 20 100 99.9 96.2 100 99.2 99.3
800 80 10 20 100 100 99.4 100 100 99.8
800 10 80 20 100 100 94.7 100 98.7 99.5
100 10 10 50 99.9 88.5 83.1 99.2 97.1 100
400 40 10 50 100 100 99.6 100 100 99.7
400 10 40 50 100 99.5 97.5 100 99.2 99.4
800 80 10 50 100 100 99.5 100 100 100
800 10 80 50 100 100 95.8 100 98.7 98.5
100 10 10 80 97.2 66.3 57.2 98.1 91.4 99.1
400 40 10 80 100 97.7 95.8 100 99.5 99.7
400 10 40 80 100 96 93.2 99.7 98.1 99.8
800 80 10 80 100 99.9 99.3 100 99.9 99.8
800 10 80 80 100 99.5 97.8 100 99.2 99.8

2.4.4 Computing time

Table 2.3 reports the average computing time for fitting the shared frailty model using the R packages under

each simulation scenario. To evaluate these 6 packages, we generated 1000 datasets under each scenario,

which was a time-consuming task. Therefore, we submitted the job to Compute Canada Cedar to obtain

results and calculate the average computing time. Cedar has a theoretical peak double precision performance

of 14 petaflops with 74 islands, each with different configurations of nodes including CPUs, GPUs, and

large memory nodes. Cluster Cedar was used in this study. Cedar is a heterogeneous cluster suitable for

a variety of workloads; it is located at Simon Fraser University. It has a total of 94,528 CPU cores (Intel

Xeon microprocessor) and 1352 GPU(NVIDIA P100 data Center accelerator) devices for computation, which

provides a theoretical peak double precision performance of 14 petaflops. The package survival is the

fastest one, followed by frailtyEM and frailtypack, and parfm, frailtySurv and frailtyHL. In general,

the larger the number of clusters and cluster size requires more computing time for most packages, except

for frailtyEM package.
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Table 2.3: Average computing time (in minutes) of the R packages under each simulation scenario.

n Clusters Obs 100c survival parfm frailtyEM frailtySurv frailtyHL frailtypack
100 10 10 20 0.00022 0.05918 0.00810 0.00413 0.00771 0.00752
400 40 10 20 0.00050 0.17822 0.02198 0.24299 0.32823 0.01891
400 10 40 20 0.00033 0.10968 0.03585 0.16468 0.08406 0.01829
800 80 10 20 0.00098 0.29757 0.03849 2.74434 2.05797 0.03703
800 10 80 20 0.00053 0.26513 0.10853 2.07928 0.74127 0.03731
100 10 10 50 0.00023 0.06431 0.00647 0.00388 0.00922 0.00682
400 40 10 50 0.00033 0.12135 0.01271 0.23100 0.19286 0.01704
400 10 40 50 0.00033 0.10938 0.02084 0.16424 0.07566 0.01461
800 80 10 50 0.00099 0.41530 0.03447 3.84304 2.68267 0.04083
800 10 80 50 0.00039 0.16821 0.05750 2.09318 0.32363 0.02760
100 10 10 80 0.00019 0.05300 0.00463 0.00307 0.01072 0.00444
400 40 10 80 0.00035 0.15959 0.00797 0.22592 0.37690 0.01434
400 10 40 80 0.00029 0.10919 0.01019 0.16098 0.12193 0.01503
800 80 10 80 0.00054 0.27038 0.01256 2.70735 2.35211 0.02324
800 10 80 80 0.00034 0.15868 0.02353 2.07499 0.30798 0.02059
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2.5 Discussions and Conclusions

In this paper, the currently available R packages with the default parameter settings considered for fitting the

shared frailty models gave similar and unbiased parameter estimates for the fixed-effect regression coefficients,

regardless of the cluster sizes and censoring rates. However, there were differences between the packages with

respect to the estimation of the variance parameter for the frailty term. In general, the variance parameter

of the frailty term was consistently underestimated for the currently available R packages considered in this

paper. However, as the censoring rate increases, the bias is less pronounced but subject to more variability,

which leads to higher MSE. This finding is consistent with the finding in other studies [36, 45]. Our results

also showed that a larger number of clusters can lead to a higher precision of the estimated variance parameter

of the frailty term. The CP of the 95% CIs of the regression coefficients for most of the R packages are very

close to 95%, and the currently available packages of the frailty variance had lower CP in the scenario with

a smaller number of clusters compared to the scenario with a larger number of clusters. Most packages had

convergence rates over 97% in all scenarios, except for the parfm and frailtyEM packages in the scenario with

a small sample size (n=100) and large censorship (80%). The computing time for all scenarios of survival,

frailtyEM and frailtypack packages are within 0.1 minutes; the parfm takes no more than 0.5 minutes.

However, the computing time for frailtySurv and frailtyHL packages need two to three minutes under

the sample size n=800.

The best package to estimate the parameters of a frailty model is the survival package, which is com-

putationally fast with a high convergence rate in almost all simulation scenarios. However, the survival

package does not provide the estimate of standard error for the variance component of the frailty. Since the

EM and PPL algorithms lead to the same estimates in a frailty model, frailtyEM can be used to substitute

survival if the standard error of the frailty variance is required in a real application. However, we do not

suggest using frailtyEM package when the sample size is small with a large censoring rate due to its lower

convergence rate. The parfm has a lower convergence rate as well in the scenario with a small sample size

at a large censoring rate. The parametric estimation is more powerful if the baseline hazard distribution is

known, then the parfm is a good choice in the large sample size study. The frailtySurv fits the frailty model

with a wide range of frailty distributions, and the frailtyHL allows multilevel frailties in the frailty model.

However, the parfm, frailtySurv and frailtyHL packages require more computing time. The frailtypack

package performs similarly to the other packages in terms of the estimation of regression coefficients and

variance component of the random effect. However, frailtypack allows for more complex structures of the

frailty terms, such as the nested and joined frailties and the frailty interaction.

In this study, a new type of confidence interval for the frailty variance θ, using the standard error of

log
(
θ̂
)
was implemented. The coverage probability of the proposed confidence interval is much higher than

the confidence interval based on the standard error of the frailty variance. Most packages do not provide the

standard error of log θ̂. Our proposed approach provides a solution by using the Fisher information approach.

We recommend adding this approach to the R packages for calculating a more reliable 95% confidence interval

for the frailty variance in frailty models.

Supplementary Materials
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Table 2.4: Performance of the parameter estimation of different R packages. We only considered the
converged fitted models for 1000 simulated datasets for each package. The total sample size is 400 and
the censorship is 20%.

Parameter True Mean Bias Mean.se Emp. se Median Median.se MSE
40 clusters of size 10
survival
β1 1.000 0.992 -0.008 0.217 0.217 0.993 0.216 0.217
β2 -1.000 -0.990 0.010 0.076 0.081 -0.991 0.076 0.081
β3 0.500 0.488 -0.012 0.142 0.139 0.486 0.142 0.139
σ2 0.500 0.389 -0.111 - 0.163 0.366 - 0.175
parfm
β1 1.000 0.991 -0.009 0.215 0.214 0.990 0.214 0.214
β2 -1.000 -0.989 0.011 0.076 0.080 -0.988 0.076 0.080
β3 0.500 0.488 -0.012 0.141 0.139 0.487 0.141 0.139
σ2 0.500 0.391 -0.109 0.127 0.162 0.367 0.121 0.174
frailtyEM
β1 1.000 0.991 -0.009 0.217 0.215 0.993 0.216 0.215
β2 -1.000 -0.989 0.011 0.076 0.081 -0.990 0.076 0.081
β3 0.500 0.488 -0.012 0.142 0.138 0.486 0.142 0.138
σ2 0.500 0.386 -0.114 0.126 0.157 0.365 0.121 0.170
frailtySurv
β1 1.000 0.991 -0.009 0.249 0.223 0.990 0.244 0.223
β2 -1.000 -0.986 0.014 0.098 0.095 -0.993 0.090 0.095
β3 0.500 0.492 -0.008 0.144 0.143 0.490 0.141 0.143
σ2 0.500 0.438 -0.062 0.408 0.223 0.392 0.133 0.227
frailtyHL
β1 1.000 0.996 -0.004 0.217 0.218 0.996 0.216 0.218
β2 -1.000 -0.994 0.006 0.076 0.081 -0.995 0.076 0.081
β3 0.500 0.490 -0.010 0.142 0.140 0.488 0.142 0.140
σ2 0.500 0.411 -0.089 0.129 0.164 0.388 0.124 0.172
frailtypack
β1 1.000 1.014 0.014 0.215 0.217 1.013 0.216 0.217
β2 -1.000 -0.968 0.032 0.076 0.095 -0.974 0.076 0.096
β3 0.500 0.488 -0.012 0.141 0.139 0.486 0.141 0.139
σ2 0.500 0.359 -0.141 0.119 0.149 0.343 0.116 0.169
10 clusters of size 40
survival
β1 1.000 0.996 -0.004 0.208 0.198 0.995 0.208 0.198
β2 -1.000 -1.004 -0.004 0.074 0.073 -1.001 0.074 0.073
β3 0.500 0.501 0.001 0.136 0.133 0.503 0.136 0.133
σ2 0.500 0.568 0.068 - 0.382 0.510 - 0.387
parfm
β1 1.000 0.993 -0.007 0.205 0.197 0.995 0.204 0.197
β2 -1.000 -1.002 -0.002 0.072 0.072 -1.001 0.072 0.072
β3 0.500 0.500 0.000 0.134 0.133 0.499 0.134 0.133
σ2 0.500 0.468 -0.032 0.211 0.382 0.357 0.169 0.383
frailtyEM
β1 1.000 0.991 -0.009 0.207 0.193 0.990 0.207 0.193
β2 -1.000 -0.999 0.001 0.074 0.071 -0.997 0.074 0.071
β3 0.500 0.500 0.000 0.135 0.130 0.502 0.135 0.130
σ2 0.500 0.462 -0.038 0.206 0.372 0.346 0.164 0.373
frailtySurv
β1 1.000 1.000 0.000 0.209 0.205 0.998 0.207 0.205
β2 -1.000 -0.999 0.001 0.086 0.079 -0.998 0.084 0.079
β3 0.500 0.503 0.003 0.129 0.138 0.502 0.127 0.138
σ2 0.500 0.567 0.067 0.308 0.391 0.481 0.171 0.395
frailtyHL
β1 1.000 0.995 -0.005 0.207 0.197 0.994 0.207 0.197
β2 -1.000 -1.002 -0.002 0.074 0.072 -1.000 0.074 0.072
β3 0.500 0.501 0.001 0.135 0.133 0.502 0.135 0.133
σ2 0.500 0.516 0.016 0.237 0.404 0.394 0.192 0.404
frailtypack
β1 1.000 1.016 0.016 0.206 0.198 1.017 0.206 0.198
β2 -1.000 -0.984 0.016 0.073 0.078 -0.985 0.073 0.078
β3 0.500 0.500 0.000 0.135 0.133 0.503 0.134 0.133
σ2 0.500 0.480 -0.020 0.227 0.475 0.343 0.167 0.475
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Table 2.5: Performance of the parameter estimation of different R packages. We only considered the
converged fitted models for 1000 simulated datasets for each package. The total sample size is 400 and
the censorship is 50%.

Parameter True Mean Bias Mean.se Emp. se Median Median.se MSE
40 clusters of size 10
survival
β1 1 0.993 -0.007 0.283 0.29 0.984 0.283 0.290
β2 -1 -0.99 0.01 0.097 0.102 -0.992 0.096 0.102
β3 0.5 0.486 -0.014 0.183 0.182 0.489 0.182 0.182
σ2 0.5 0.383 -0.117 - 0.183 0.356 - 0.197
parfm
β1 1 0.997 -0.003 0.28 0.287 0.989 0.279 0.287
β2 -1 -0.993 0.007 0.097 0.1 -0.994 0.097 0.100
β3 0.5 0.487 -0.013 0.182 0.18 0.492 0.181 0.180
σ2 0.5 0.395 -0.105 0.147 0.18 0.364 0.141 0.191
frailtyEM
β1 1 0.994 -0.006 0.283 0.289 0.985 0.282 0.289
β2 -1 -0.991 0.009 0.097 0.102 -0.992 0.096 0.102
β3 0.5 0.487 -0.013 0.183 0.181 0.49 0.182 0.181
σ2 0.5 0.388 -0.112 0.147 0.177 0.361 0.141 0.190
frailtySurv
β1 1 0.990 -0.01 0.337 0.29 0.988 0.336 0.290
β2 -1 -0.997 0.003 0.11 0.105 -0.997 0.108 0.105
β3 0.5 0.493 -0.007 0.184 0.186 0.497 0.181 0.186
σ2 0.5 0.396 -0.104 0.164 0.182 0.374 0.149 0.193
frailtyHL
β1 1 1.002 0.002 0.284 0.292 0.996 0.284 0.292
β2 -1 -0.999 0.001 0.097 0.102 -1 0.097 0.102
β3 0.5 0.49 -0.01 0.184 0.183 0.493 0.183 0.183
σ2 0.5 0.424 -0.076 0.152 0.185 0.395 0.145 0.191
frailtypack
β1 1 1.018 0.018 0.274 0.295 1.01 0.279 0.295
β2 -1 -0.953 0.047 0.096 0.126 -0.967 0.097 0.128
β3 0.5 0.481 -0.019 0.181 0.177 0.476 0.181 0.177
σ2 0.5 0.342 -0.158 0.133 0.171 0.322 0.131 0.195
10 clusters of size 40
survival
β1 1.000 0.999 -0.001 0.280 0.268 0.995 0.278 0.268
β2 -1.000 -1.001 -0.001 0.097 0.097 -0.999 0.097 0.097
β3 0.500 0.503 0.003 0.180 0.178 0.496 0.179 0.178
σ2 0.500 0.499 -0.001 - 0.393 0.400 - 0.393
parfm
β1 1.000 1.001 0.001 0.275 0.265 1.001 0.274 0.265
β2 -1.000 -1.004 -0.004 0.095 0.096 -1.005 0.094 0.096
β3 0.500 0.505 0.005 0.177 0.176 0.497 0.177 0.176
σ2 0.500 0.465 -0.035 0.221 0.388 0.353 0.180 0.389
frailtyEM
β1 1.000 0.999 -0.001 0.279 0.266 0.993 0.278 0.266
β2 -1.000 -0.999 0.001 0.097 0.096 -0.997 0.097 0.096
β3 0.500 0.503 0.003 0.179 0.174 0.496 0.178 0.174
σ2 0.500 0.458 -0.042 0.218 0.377 0.350 0.179 0.379
frailtySurv
β1 1.000 1.009 0.009 0.290 0.271 1.010 0.286 0.271
β2 -1.000 -1.005 -0.005 0.103 0.101 -1.001 0.101 0.101
β3 0.500 0.506 0.006 0.166 0.181 0.500 0.164 0.181
σ2 0.500 0.465 -0.035 0.226 0.375 0.365 0.151 0.376
frailtyHL
β1 1.000 1.001 0.001 0.279 0.269 0.999 0.278 0.269
β2 -1.000 -1.003 -0.003 0.097 0.097 -1.000 0.097 0.097
β3 0.500 0.504 0.004 0.179 0.178 0.497 0.178 0.178
σ2 0.500 0.513 0.013 0.248 0.410 0.402 0.207 0.410
frailtypack
β1 1.000 1.023 0.023 0.272 0.275 1.023 0.274 0.276
β2 -1.000 -0.966 0.034 0.095 0.119 -0.980 0.095 0.120
β3 0.500 0.499 -0.001 0.178 0.177 0.491 0.177 0.177
σ2 0.500 0.437 -0.063 0.218 0.408 0.320 0.170 0.412
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Table 2.6: Performance of the parameter estimation of different R packages. We only considered the
converged fitted models for 1000 simulated datasets for each package. The total sample size is 400 and
the censorship is 80%.

Parameter True Mean Bias Mean.se Emp. se Median Median.se MSE
40 clusters of size 10
survival
β1 1 0.985 -0.015 0.446 0.478 0.977 0.442 0.478
β2 -1 -0.993 0.007 0.146 0.16 -0.986 0.145 0.160
β3 0.5 0.484 -0.016 0.283 0.286 0.485 0.281 0.286
σ2 0.5 0.441 -0.059 - 0.276 0.391 - 0.279
parfm
β1 1 1.006 0.006 0.442 0.474 0.995 0.439 0.474
β2 -1 -1.006 -0.006 0.15 0.159 -1.001 0.148 0.159
β3 0.5 0.487 -0.013 0.284 0.285 0.494 0.282 0.285
σ2 0.5 0.467 -0.033 0.243 0.277 0.428 0.231 0.278
frailtyEM
β1 1 0.994 -0.006 0.447 0.469 0.989 0.443 0.469
β2 -1 -0.995 0.005 0.147 0.156 -0.986 0.146 0.156
β3 0.5 0.484 -0.016 0.283 0.280 0.487 0.281 0.280
σ2 0.5 0.446 -0.054 0.244 0.273 0.399 0.232 0.276
frailtySurv
β1 1 0.976 -0.024 0.572 0.48 0.98 0.557 0.481
β2 -1 -0.998 0.002 0.161 0.163 -0.99 0.156 0.163
β3 0.5 0.488 -0.012 0.292 0.29 0.49 0.285 0.290
σ2 0.5 0.436 -0.064 0.284 0.284 0.391 0.26 0.288
frailtyHL
β1 1 1.008 0.008 0.452 0.488 1.006 0.448 0.488
β2 -1 -1.015 -0.015 0.149 0.165 -1.007 0.148 0.165
β3 0.5 0.495 -0.005 0.286 0.293 0.492 0.284 0.293
σ2 0.5 0.525 0.025 0.261 0.308 0.481 0.251 0.309
frailtypack
β1 1 1.084 0.084 0.425 0.483 1.081 0.435 0.490
β2 -1 -0.963 0.037 0.148 0.172 -0.953 0.147 0.173
β3 0.5 0.492 -0.008 0.279 0.282 0.493 0.278 0.282
σ2 0.5 0.369 -0.131 0.21 0.249 0.339 0.21 0.266
10 clusters of size 40
survival
β1 1.000 0.997 -0.003 0.457 0.448 0.981 0.452 0.448
β2 -1.000 -1.008 -0.008 0.152 0.162 -0.999 0.150 0.162
β3 0.500 0.491 -0.009 0.288 0.293 0.488 0.285 0.293
σ2 0.500 0.479 -0.021 - 0.405 0.353 - 0.405
parfm
β1 1.000 1.008 0.008 0.446 0.432 1.000 0.443 0.432
β2 -1.000 -1.018 -0.018 0.149 0.154 -1.012 0.147 0.154
β3 0.500 0.498 -0.002 0.284 0.289 0.492 0.281 0.289
σ2 0.500 0.483 -0.017 0.271 0.414 0.353 0.227 0.414
frailtyEM
β1 1.000 0.998 -0.002 0.455 0.428 0.980 0.450 0.428
β2 -1.000 -1.008 -0.008 0.151 0.154 -1.000 0.149 0.154
β3 0.500 0.493 -0.007 0.286 0.283 0.497 0.284 0.283
σ2 0.500 0.472 -0.028 0.269 0.395 0.351 0.228 0.396
frailtySurv
β1 1.000 1.008 0.008 0.554 0.451 0.992 0.526 0.451
β2 -1.000 -1.010 -0.010 0.158 0.161 -1.001 0.151 0.161
β3 0.500 0.497 -0.003 0.275 0.295 0.494 0.267 0.295
σ2 0.500 0.454 -0.046 0.272 0.409 0.345 0.206 0.411
frailtyHL
β1 1.000 1.006 0.006 0.457 0.446 0.985 0.453 0.446
β2 -1.000 -1.015 -0.015 0.152 0.161 -1.007 0.150 0.161
β3 0.500 0.495 -0.005 0.288 0.293 0.497 0.285 0.293
σ2 0.500 0.534 0.034 0.299 0.445 0.407 0.257 0.446
frailtypack
β1 1.000 1.108 0.108 0.438 0.470 1.084 0.440 0.481
β2 -1.000 -0.980 0.020 0.150 0.170 -0.972 0.149 0.170
β3 0.500 0.502 0.002 0.284 0.290 0.503 0.281 0.290
σ2 0.500 0.411 -0.089 0.244 0.398 0.304 0.207 0.406
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Table 2.7: Coverage probability of the 95% CI for the estimated regression coefficients and frailty
variance.

Parameter survival parfm frailtyEM frailtySurv frailtyHL frailtypack
c= 20, cluster size = 10, 40 clusters
β1 93.5 94 93.54 95.7 93 93.72
β2 92.9 92.9 92.73 93.4 93.1 89.56
β3 95.6 95.3 95.56 94.7 95.6 95.48
CI(1)(σ2) - 70.2 69.32 73.7 73.8 63.65
CI(2)(σ2) - 82.6 79.1 85.6 85 78.51
c = 20, cluster size = 40, 10 clusters
β1 95.8 95.30 96.05 93 95.87 95.47
β2 96 94.99 95.53 95 95.87 93.96
β3 95.3 95.49 95.32 91.3 95.26 95.17
CI(1)(σ2) - 66.37 64.76 67.7 72.68 65.06
CI(2)(σ2) - 75.98 77.68 72 81.15 74.82
c= 50, cluster size = 10, 40 clusters
β1 94.5 94.7 94.48 97.7 94.5 91.88
β2 94 94.1 94.18 95.3 93.9 85.26
β3 95.5 95.8 95.58 94.1 95.5 95.69
CI(1)(σ2) - 75.6 72.69 76.7 80 63.29
CI(2)(σ2) - 92.1 84.9 92.1 93.3 87.26
c = 50, cluster size = 40, 10 clusters
β1 95.8 95.98 95.96 93.1 95.57 94.47
β2 95.3 95.07 95.18 92.7 95.37 86.52
β3 94.5 94.47 95.18 89.7 94.47 94.16
CI(1)(σ2) - 67.44 65.03 60.2 73.24 62.78
CI(2)(σ2) - 82.41 80.65 72.3 86.59 81.29
c= 80, cluster size = 10, 40 clusters
β1 92.7 92.53 92.90 97.4 92.96 91.37
β2 93.3 93.86 93.95 93.3 93.47 88.77
β3 94.9 95.39 94.89 94.9 94.57 95.29
CI(1)(σ2) - 87.41 86.01 87.6 90.95 76.33
CI(2)(σ2) - 96.83 93.04 97.8 93.25 98.60
c = 80, cluster size = 40, 10 clusters
β1 95.7 95.42 96.03 95.19 95.72 93.49
β2 93.8 93.85 93.99 91.88 93.78 89.98
β3 94.7 93.54 94.74 90.17 94.90 94.89
CI(1)(σ2) - 77.08 75.32 70.51 81.45 68.74
CI(2)(σ2) - 93.96 87.58 89 92.47 96.79
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3 Z-residual Diagnostics for Detecting Misspecification

of the Functional Form of Covariates for Shared Frailty

Models1.

Abstract: In survival analysis, the hazard function often depends on a set of covariates. Martingale

and deviance residual are most widely used for examining the validity of the function form of covariates by

checking whether there is a discernible trend in their scatterplot against continuous covariates. However,

visual inspection of martingale and deviance residuals is often subjective. In addition, these residuals lack a

reference distribution due to censoring. It is therefore challenging to derive numerical statistical tests based

on martingale or deviance residuals. In this paper, we extend the idea of randomized survival probability

(Li et al. 2021) and develop a residual diagnostic tool that can provide both graphical and numerical tests

for checking the covariate functional form in semi-parametric shared frailty models. We develop a general

function that calculates Z-residuals for semi-parametric shared frailty models based on the output from the

coxph function in the survival package in R. Our extensive simulation studies indicate that the derived

numerical test based on Z-residuals has great power for checking the functional form of covariates. In a real

data application on modelling the survival time of acute myeloid leukemia patients, the Z-residual diagnosis

results show that a model with log-transformation is inappropriate for modelling the survival time, which

could not be detected by other diagnostic methods.

3.1 Introduction

Survival data with a multilevel structure occur frequently in many applications. For example, patients are

often clustered within hospitals. The hazard of events differs from one cluster to another cluster induced

by unobserved cluster-level factors. In survival analysis, conventional Cox proportional hazard models [22]

and accelerated failure time models [23] assume that subjects are independent. Random effects can be

incorporated into conventional survival models to account for cluster-level heterogeneity. Such heterogeneity

is often called frailty in the context of survival analysis. A shared frailty model extends the classic survival

models by incorporating random effects (frailties) acting multiplicatively on the baseline hazard function

[24], where the frailties are common or shared among individuals within a cluster or group [1–4]. Despite

the increasing popularity of shared frailty models for modelling clustered survival data, examining model

assumptions is often overlooked partly due to the limited model diagnostic tools.

Residual diagnostics are often used to assess the overall goodness of fit (GOF) and to identify specific

model misspecification (e.g., functional form of covariate effects). However, in the presence of censored

observations, residual diagnostics is not as straightforward as a normal linear regression model. Cox-Snell

(CS) residual [12] is the most widely used tool for diagnosing survival models, which are defined as the negative

1This chapter has been deposited as an arXiv paper:2302.09106
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logarithm of estimated survival probability. In the absence of censored observations, the survival probability

is uniformly distributed when the model is true; therefore, the CS residual is exponentially distributed.

However, in the presence of censored observations, CS residuals are no longer exponentially distributed since

the survival probability is not uniformly distributed. To account for censored observations, diagnostics based

on CS residuals compares the agreement of cumulative hazard plot of CS residuals estimated with Kaplan-

Meier method [18] and the 45◦ straight line, which is the cumulative hazard of the standard exponential

distribution.

Although the overall GOF checking such as the cumulative hazard plot of CS residuals is widely used for

diagnosing survival models, the overall GOF test reveals little information about the nature of the model

inadequacies. Tailored graphical and numeric diagnostic tools are therefore needed. A number of residuals

diagnostics tools have been proposed [11] for checking the functional form of covariates, of which martingale

[13] and deviance [14, 15] residuals are most widely used. Martingale residuals can be viewed as the difference

between the observed value of a subject’s failure indicator and its expected value, integrated over the time

for which that patient was at risk, which can be used to assess the functional form covariates and identify

outliers in the survival data. Deviance residuals are a normalized transform of the martingale residuals.

They also have a mean of zero but are approximately symmetrically distributed about zero when the fitted

model is appropriate. Although these two types of residuals are widely used and available in the survival

package in R software, each of these traditional types of residuals has limitations. Martingale residuals

are asymmetric, with the upper bound of martingale residuals being one and no lower bound, making it

difficult for visual inspection. Deviance residuals are less skewed and more normally distributed. The locally

weighted scatterplot smoothing (LOWESS) lines on the scatterplots of the residuals against the continuous

covariates are useful for revealing patterns in the residuals that would not otherwise be perceived. However,

visual inspection of LOWESS lines can be still subjective. It is desirable to have a numerical measure of the

statistical significance of the observed trend. However, martingale and deviance residuals lack a reference

distribution due to censoring. It is therefore challenging to derive a numerical test to measure the statistical

significance of the observed pattern in the residual plots.

Li et al. [19] proposed to use randomized survival probabilities (RSPs) to define residuals for checking the

model assumptions of accelerated failure time (AFT) models without random effects. The key idea of RSP is

to replace the survival probability of a censored failure time with a uniform random number between 0 and the

survival probability of the censored time. The RSPs are uniformly distributed under the true model, hence,

can then be transformed into normally distributed residuals with the normal quantile function. The new

residual was called the normally-transformed RSP (NRSP) residual. Provided with the normally distributed

reference distribution for the NRSP residual, statistical tests can be derived based on NRSP residuals for

checking model assumptions, such as distributional assumption, functional form of covariates, etc. However,

NRSP residuals have not been extended to diagnose Cox proportional hazard models or semi-parametric

shared frailty models.

In this study, we extend the idea of NRSP residuals to develop residual diagnostics tools for checking the

functional form of the covariates in semi-parametric shared frailty models. We rename NRSP residuals as

Z-residuals for simplicity, as Z is often used to denote a standard normal random variable. For calculating

the Z-residuals, we treat the random effects as fixed effects; that is, our Z-residual is conditional on the group

identities. We developed a general function for calculating such conditional Z-residuals given the output of

coxph in the survival package in R and proposed a non-homogeneity test for testing whether there is a trend

in Z-residuals. We conducted extensive simulation studies to investigate the performance of the Z-residuals
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diagnostics tool in detecting misspecification of the functional form of covariates. Our results showed that the

non-homogeneity test based on Z-residuals has greater power and satisfactory type I error compared to the

overall GOF tests in detecting misspecification of the covariate functional form. We also demonstrated the

effectiveness of Z-residuals in diagnosing the functional form of covariates in real data analysis of mortality

risk of acute myeloid leukemia patients [47, 48]. Our proposed Z-residual diagnostic tool discovered that a

model with log transformation of a continuous covariate is inappropriate in this real data application, which

however can not be captured by other diagnostic methods.

The rest of this paper is organized as follows. Section 3.2 gives a brief review of semi-parametric shared

frailty models. In Section 3.3 we review the conventional residuals and model diagnostics methods for shared

frailty models. In Section 3.4 we present the definition of Z-residuals and the non-homogeneity test based on

Z-residuals. In Section 3.5, we conduct simulation studies to investigate the performances of the Z-residual

diagnostics tool. Section 3.6 presents the results of applying the Z-residual diagnostics tool for diagnosing

the functional form of covariates in a real data application. The article is concluded in Section3.7.

3.2 Shared Frailty Model and Statistical Inference

3.2.1 Notation and Shared Frailty Model

A shared frailty model is a frailty model where the frailties are common or shared among individuals within

groups. The formulation of a frailty model for clustered failure survival data is defined as follows. Suppose

there are g groups of individuals with ni individuals in the ith group, i = 1, 2, . . . , g. If the number of subjects

ni is 1 for all groups, then the univariate frailty model is obtained [3]. Otherwise, the model is called the

shared frailty model [2, 20, 21] because all subjects in the same cluster share the same frailty value zi. Suppose

tij is the true failure time for the jth individual from the ith group, which we assume to be a continuous

random variable in this article, where j = 1, 2, · · · , ni. Let t∗ij denote the realization of tij . In the scenario of

right censoring, we can observe that tij is greater than a value cij , where cij is the corresponding censoring

time. The observed failure times are denoted by the pair (yij , δij), where yij = min(tij , cij), δij = I(tij < cij).

The observed data can be written as y = (y11, · · · , ygng
) and δ = (δ11, · · · , δgng

). Since we will consider only

the right-censoring in this article, we will use “censoring” as a short for “right-censoring”. The survival

function of tij based on a postulated model is defined as Sij(t
∗
ij) = P (tij > t∗ij), where the subscript ij

indicates that the probability depends on covariate xij for the jth individual of the ith group.

For a shared frailty model, the hazard of an event at time t for the jth individual, j = 1, 2, · · ·, ni, in the

ith group, is then

hij(t) = zi exp(xijβ)h0(t); (3.1)

and the survival function for the jth individual of the ith group at time t follows:

Sij(t) = exp

{
−
∫ t

0

hij(t) dt

}
= exp

{
− zi exp(xijβ)H0(t)

}
, (3.2)

where xij is a row vector of values of p explanatory variables for the jth individual in the ith group, i.e.,

x = (x11, · · · , xgng
); β is the column vector of regression coefficients; h0(t) is the baseline hazard function,

H0(t) is the baseline cumulative hazard function (CHF), and zi is the frailty term that is common for all ni

individuals within the ith group. Let z = (z1, · · · , zg). The hazard and survival functions with frailty can
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also be written as,

hij(t) = exp(xijβ + ui)h0(t), (3.3)

and

Sij(t) = exp

{
− exp(xijβ + ui)H0(t)

}
, (3.4)

where ui= log(zi) is a random effect in the linear component of the proportional hazards model. Note that

zi cannot be negative, but ui can be any value. If ui is zero, corresponding to zi is one, the model does not

have frailty. The form of the baseline hazard function may be assumed to be unspecified as a semi-parametric

model or fully specified to follow a parametric distribution.

In our study, we focus mainly on the shared gamma frailty model, since gamma distribution is one

of the most common distributions for modelling the frailty effect [11]. It is easy to obtain a closed-form

representation of the observable survival, cumulative density, and hazard functions due to the simplicity of

the Laplace transform [49]. The gamma distribution is a two-parameter distribution with a shape parameter

k and scale parameter θ. It takes a variety of shapes as k varies: when k = 1, it is identical to the well-known

exponential distribution; when k is large, it takes a bell-shaped form reminiscent of a normal distribution;

when k is less than one, it takes exponentially shaped and asymptotic to both the vertical and horizontal axes.

Under the assumption k = 1
θ , the two-parameter gamma distribution turns into a one-parameter distribution.

The expected value is one and the variance is equal to θ.

3.2.2 Parameter Estimation and Inference

Arguably the most popular R package for fitting semi-parametric shared frailty models is the survival

package [5]. The coxph function of the survival R package can be used to fit semi-parametric shared frailty

models via penalized partial likelihood method [25, 26, 40]; and the Breslow (1972) estimator [37] is used for

estimating the baseline CHF. The frailty distribution can be specified as Gamma, Gaussian, or t distribution.

It accommodates the clustered failures and recurrent events data with the right, left, and interval censoring

types. When the coxph function fits the shared frailty model with clustered failures data, the cluster size

should be above five. Otherwise, the random effects will be treated as fixed effects. The survival R package

is used for estimating parameters and inference in this study.

In Cox proportional hazards regression, the Breslow estimator [37] is the nonparametric maximum like-

lihood estimation for the baseline CHF. The baseline CHF is H0(t) =
∫ t

0
h0(s) ds. Breslow (1972) suggested

estimating the baseline CHF via maximizing the likelihood function. After getting the estimators β̂ and ûi,

nonparametric maximum likelihood estimator of Ĥ0(t) can be derived as:

Ĥ0(t) =
∑

{v:y(v)≤t}

{
d(v)∑

(i,j)∈R(y(v))

exp
(
xij β̂ + ûi

)}, (3.5)

where y(1) < · · · < y(r) are the ordered distinct event time among the yij ’s and R(y(v)) = {(i, j) : yij ≥ y(v)}
is the risk set at y(v), i.e., d(v) is the number of events at y(v). The Breslow approximation is the first option

to estimate the baseline hazard function in nearly all the R packages for fitting Cox regression models with

or without frailties.

The penalized partial likelihood (PPL) approach can be used to estimate parameters in a shared frailty

model [2, 40]. The full data log-likelihood contains the frailty terms z, which are assumed to be observed
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random variables first. The full data log-likelihood follows the joint density of (y, δ) and z, which can be

split into two parts. The first part is the conditional likelihood of the data given the frailties, which takes the

random effects u = log(z) as another set of the parameter in the first part of the likelihood. The second part

is the log-likelihood of the random effects. Since the full likelihood is only used to estimate the p components

of β and the g components of u, the terms involving θ alone can be omitted to give the penalized. The

second part corresponds to the frailties distribution in which the likelihood is considered a penalty term. The

estimation is based on maximizing the penalized partial log-likelihood (PPL) for the frailty model, which is

given by

lppl(β, u, θ; y, δ) = lpart(β, u; y, δ) + lpen(θ;u), (3.6)

over both β and u. Here lpart(β, u) is the partial log-likelihood for the Cox model that includes the random

effects.

lpart(β, u; y, δ) =

g∑
i=1

ni∑
j=1

δij

{
ηij − log

[ ∑
(q,w)∈R(yij)

exp(ηqw)

]}
, (3.7)

where ηij = xijβ + ui and η = (η11, . . . , ηgng
). In the penalty function lpen(θ;u), θ is the parameter for the

frailty. The random effect u is equal to log(z), where z is usually assumed to have a gamma distribution.

The penalty function can be written as,

lpen(θ;u) =

g∑
i=1

log fU (ui|θ), (3.8)

where fU (ui) denotes the density function of the random effect ui.

The maximization of the PPL consists of an inner and an outer loop [2]. For the gamma frailty effects with

unit mean and variance θ, the penalized likelihood can be maximized with the Newton-Raphson algorithm

in the inner loop. The estimates of β’s and the u’s are first taken to be values that maximize lppl(β, u, θ)

for a given value of the θ. The outer loop is based on the maximization of a profiled version of the marginal

likelihood for θ given estimates β̂ and û. The process is iterated until convergence.

3.3 Review of Existing Residuals and Test Methods

In this section, we review some existing residuals used in survival analysis. A central concept in these

residuals is formulated based on the survival probability (SP). The widely used CS residual is defined as

rcij(tij) = − log(Sij(tij)), where tij is the true failure time. In the absence of censored observations, the

survival probability is uniformly distributed when the model is true; therefore, the CS residual is exponentially

distributed. A plot of the CHF against the true failure time will give a straight line through the origin with

a unit slope when the residuals have a unit exponential distribution, which is expected when the survival

model is correctly specified. In addition to the graphical checking, we can apply numerical GOF testing

methods such as Kolmogorov-Smirnov (KS) test to CS residuals. When there are censored failure times, the

distribution of Sij(yij) is no longer uniformly distributed under the true model, which means the CS residuals

are no longer exponentially distributed. The CS residuals rcij can be regarded as a dataset with censoring.

The Kaplan-Meier (KM) estimate of the survivor function can still be computed for CS residuals. Hence, the

most widely used diagnostics tool is to apply the KM method to get an estimate of the CHF of CS residuals

and compare the CHF against the 45o straight line.

Transforming SPs into exponentially-distributed CS residuals is only one option among many others.
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For example, one can also transform SPs using the quantile of standard normal distribution [50], defined as

rnij(yij) = −Φ−1(Sij(yij)), where yij is the observed failure time or censoring time. We will call it censored

Z-residuals in this paper. The diagnosis of the GOF of Sij(yij) can be converted to the diagnosis of the

normality of rnij(yij). The function gofTestCensored in R package EnvStats [51, 52] provides an SF test

for testing the normality of multiply censored data. Hence, gofTestCensored can be applied to check the

normality of censored Z-residuals for checking the overall GOF of survival models. We will refer to this test

using the CZ-CSF method in this paper.

Although the aforementioned overall GOF checking methods can be used to determine how closely the

residuals are distributed corresponding to their reference distributions when the model assumptions are met,

they cannot be used to test the plausibility of specific model assumptions, in particular, the functional

form of covariates. For checking whether a functional form of individual covariates may be misspecified,

tailored graphical and quantitative diagnostics tools are needed. Martingale and deviance residuals have

been proposed to check the functional form in survival analysis. The martingale residuals [13] provide a

measure of the discrepancy between the number of predicted death by the model and the number of observed

failures in the interval (0, tij), which is either 1 or 0. The martingale residuals are defined as rMij = δij − rcij ,

where δij is the event indicator for the jth individual of the ith group observation, δij is equal to 1 if that

observation is an event; otherwise zero if censored, and rcij is the Cox-Snell residual. The martingale residuals

sum to zero, but are not symmetrically distributed about zero [11]. The deviance residuals [14, 15] can be

regarded as an attempt to make the martingale residuals symmetrically distributed about zero, and are

defined as rDij = sgn(rMij )[−2(rMij + δij log
(
δij − rMij

)
)]

1
2 , where rMij is the martingale residual, the function

sgn(.) is the sign function [11]. Other residual-based diagnostics tools have also been proposed for censored

survival models; see Grambsch and Therneau [17], Peng and Taylor [53], Keleş and Segal [54], Farrington

[55], Davison and Gigli [56], Lin et al. [57], Law and Jackson [58], Shepherd et al. [59], Hillis [60] and the

references therein. A common drawback for these residuals is that their distributions under the true model

are very complicated due to the censoring, hence, they cannot be characterized by a known distribution or

probability table, posing challenges for devising numerical tests based on these conventional residuals for

diagnosing survival models.

3.4 Z Residual

3.4.1 Definition of Z Residual

In this paper, we extended Z-residual [19], to diagnose shared frailty models in a Cox proportional hazard

setting with a baseline function unspecified. The normalized randomized survival probabilities (RSPs) for

yij in the shared frailty model is defined as:

SR
ij(yij , δij , Uij) =

{
Sij(yij), if yij is uncensored, i.e., δij = 1,

Uij Sij(yij), if yij is censored, i.e., δij = 0,
(3.9)

where Uij is a uniform random number on (0, 1), and Sij(·) is the postulated survival function for tij given

xij . SR
ij(yij , δij , Uij) is a random number between 0 and Sij(yij) when yij is censored. It is proved that

the RSPs are uniformly distributed on (0, 1) given xi under the true model [19]. Therefore, the RSPs can

be transformed into residuals with any desired distribution. We prefer to transform them with the normal
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quantile:

rZij(yij , δij , Uij) = −Φ−1(SR
ij(yij , δij , Uij)), (3.10)

which is normally distributed under the true model, so that we can conduct model diagnostics with Z-

residuals for censored data in the same way as conducting model diagnostics for a normal linear regression

model. There are a few advantages of transforming RSPs into Z-residuals. First, the diagnostics methods for

checking normal linear regression are rich in the literature. Second, transforming RSPs into normal deviates

facilitates the identification of extremely small and large RSPs. The frequency of such small RSPs may be

too small to be highlighted by the plots of RSPs. However, the presence of such extreme SPs, even very few,

is indicative of model misspecification. Normal transformation can highlight such extreme RSPs.

3.4.2 Diagnosis of the Functional Form of Covariates using Z-residuals

A QQ plot based on Z-residuals can be used to graphically assess the model’s overall GOF, and Shapiro-

Wilk (SW) or Shapiro-Francia (SF) test applied to Z-residuals can be used to numerically test the overall

GOF of the model. The conditional distribution of Z-residual given xi is approximately a standard normal

and is homogeneous at varying levels of covariates when a model is correctly specified. For checking the

functional form of the covariate, we can plot Z-residuals against covariates and/or linear predictors. When

the functional form is correctly specified, we expect that there is no trend in these scatterplots. However,

such a graphical examination is difficult to determine whether the observed trend in Z-residuals is caused by

chance or by the misspecification in the covariate function. Therefore, we desire a formal test to quantify

the statistical significance of the difference between the observed trend and the expected horizontal line at

0. In this paper, we propose the following diagnostics procedure. The Z-residuals can be divided into k

groups by cutting the covariates or linear predictors into equally-spaced intervals. Figure 3.1 demonstrates

two scatterplots about Z-residuals by cutting the covariate X into equally-spaced intervals. The left panel

shows that the Z-residuals are randomly scattered without showing differential group means or variances.

The right panel clearly shows that the Z-residuals are not homogeneous; particularly their group means differ

substantially. A quantitative method to assess the homogeneity of such grouped Z-residuals is to test the

equality of group means of the Z-residuals. We apply the F-test in ANOVA to test the equality of the means

of grouped Z-residuals as shown in Figure 3.1.

3.4.3 A P-value Upper Bound for Assessing Replicated Z-residuals GOF Test

p-values

A difficulty in conducting statistical tests with Z-residuals is the randomness in the test p-values. Given a

fitted model, we can generate many sets of Z-residuals and obtain replicated test p-values. According to the

distribution of order statistics of correlated random variables [61, 62], we can obtain the following inequality

for the rth order statistics p(r):

P (p(r) < t) ≤ min

(
1, t

J

r

)
. (3.11)

Based on (3.11), a p-value upper bound for observed (simulated) rth statistics pobs(r) is given by min
(
1, pobs(r)

J
r

)
.

To avoid the selection of r, we report the minimal upper bound for r = 1, . . . , J , denoted by pmin:

pmin = min
r=1,...,J

min

(
1, pobs(r)

J

r

)
. (3.12)
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Figure 3.1: An illustrative plot showing how to construct the non-homogeneity test with Z-residuals:
dividing Z-residuals by a covariate or linear predictor (LP) with equally-spaced interval, then testing
the equality of the means of grouped residuals. This figure shows two scatterplots of Z-residuals of two
models: a linear effect model (the left plot) and a nonlinear effect model (the right plot). The covariate
Xij is from positive Normal(0, 1), we generate the failure times tij from a shared frailty model with
Weibull baseline with the following hazard function: hij(tij) = zi exp(β log(Xij))h0(tij), where h0 is
the hazard function of Weibull with shape α=3 and scale λ=0.007. In addition to fitting the nonlinear
model with log(X) as a covariate to these datasets, we also consider fitting the shared frailty gamma
model assuming linear effect for X as a linear model. Then we can check whether the Z-residuals of
the k groups are homogeneously distributed.

The pmin is rather conservative for assessing model fit because of its generality. When a model has a small

pmin, it is highly suspected that the model can be improved for better fitting the dataset. Considering the

conservatism of pmin, a rule of thumb for declaring model failure in practice should be much larger, say 0.25

as suggested by Yuan and Johnson [63], than the conventional 0.05 for exact p-values.

3.5 Simulation Studies

In this section, we present simulation studies to demonstrate the effectiveness of the Z-residuals in checking

the adequacy of the functional form of covariates. Three covariates are generated as follows: x
(1)
ij is from

Uniform[0, 1], x
(2)
ij is from positive Normal(0, 1), and x

(3)
ij is from Bern(0.25). We generate the failure times

tij from a shared frailty model with Weibull baseline with the following hazard function:

hij(tij) = zi exp
(
β1x

(1)
ij + β2 log

(
x
(2)
ij

)
+ β3x

(3)
ij

)
h0(tij), (3.13)

where h0 is the hazard function of Weibull with shape α=3 and scale λ=0.007. The data generator is given

by tij =

{
− log(uij)

λzi exp
(
x
(1)
ij −2 log

(
x
(2)
ij

)
+0.5x

(3)
ij

)}(1/α)

, where i = {1,· · ·, g } and j = {1,· · ·, ni } and uij is simulated

from Uniform ([0, 1]); the frailty term zi is generated from a gamma distribution with a variance of 0.5.

The censoring times Cij are simulated from exponential distributions. The rates γ were set to four different

values to obtain four different censoring rates: 0%, 20%, 50%, and 80%. We fixed the number of clusters

g = 20 and set the cluster size (ni, the sample size in each cluster) to be 10 values: 10, 20, . . . , 100. For each

combination of cluster size and censoring rate, we generated 1000 datasets for estimating model rejection

rates of different diagnostics methods. In addition to fitting the true model with log(x2) as a covariate to

these datasets, we also consider fitting the shared frailty gamma model assuming linear effect for x2 as a

wrong model to investigate the performance of different diagnostics methods.
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We first show the performance of graphical methods for assessing the overall GOF for a single simulated

dataset with 20 clusters of 40 observations in each cluster and the percentage of censoring c ≈ 50%. As shown

in the panels of the first row of Figure 3.2, the CHFs of the CS residuals of both of the true and wrong models

align well along the 45◦ straight line, suggesting that the CS residuals cannot effectively detect the model

misspecification of the wrong model with linear covariate effects. The normality of the Z-residual under the

true and the wrong models is examined via QQ plots, as shown in the panels of the second row of Figure 3.2.

The points in the two QQ plots for Z-residuals align very well along with straight lines, indicating that the

distributions of the Z-residuals under the true and the wrong models are very close to a normal distribution.

Therefore, the QQ plots of Z-residuals cannot detect the misspecification in the wrong model either.

The panels in the third and fourth rows of Figure 3.2 demonstrate the advantage of examining the

scatterplots of Z-residuals against the linear predictor for diagnosing the misspecification of the functional

form of covariates. Under the true model, the residuals are mostly bounded between -3 and 3 as the standard

normal variates without a visible trend. We can see the LOWESS curve in the scatterplot under the true

model is very close to the horizontal line at 0. For the wrong model, a non-linear trend in the Z-residuals

is clearly observed. In the fourth row, we first divide Z-residuals into k = 10 groups by cutting the linear

predictors into equally spaced intervals. The scatterplot and the boxplot indicate that the Z-residuals are

homogeneous across groups under the true model, but exhibit differential group means under the wrong

model. We further checked the scatterplots and grouped boxplots of Z-residuals against log(x2) under the

true and wrong models, as shown in the fifth and sixth rows of Figure 3.2. The Z-residuals of the true models

are fairly homogeneous against log(x2). By contrast, for the wrong model, we see a clear non-linear pattern

in the scatterplots and differential group means in the boxplots against log(x2); these plots suggest that the

model with linear covariate effects does not fit well to the dataset.

As a comparison, we also show the performance of martingale and deviance residuals for assessing the

functional form of x2 in Figure 3.3 by displaying the martingale and deviance residuals against the covariate

log(x2) under the true and wrong models, respectively. Under the true model, the martingale residuals are

mostly within the interval (-4, 1); the deviance residuals are more symmetrically distributed than martingale

residuals and they are mostly within the interval (-3, 3). The LOWESS curves in the scatterplots of martingale

and deviance residuals under the true model are very close to horizontal lines. Note that the LOWESS curve

is slightly tilted downward on the right because the censoring occurs more frequently for cases with large

log(x2). Under the wrong model, the LOWESS curves show more pronounced non-horizontal trends in the

scatterplots of martingale and deviance residuals. From this comparison, we see that the scatterplots of

martingale and deviance residuals can distinguish the true and wrong models and confirm that the true

model is a better model for the dataset. However, due to the lack of numerical measures, we cannot tell

whether the observed non-horizontal trend is caused by chance or due to a misspecified functional form for

the covariate. The decision based on visual inspection is often subjective.

In addition to the graphical assessment, numerical tests with Z-residuals can be constructed as Z-residuals

are approximately distributed as the standard normal under the true model. We compare a set of residual-

based testing methods for detecting the inadequacy of fitted models. The overall GOF test methods are

denoted by “R-T” with “R” denoting the residual name and “T” denoting the test method. For example,

Z-SW is the test method that the normality of Z-residuals is tested with the SW test. In particular, CZ-CSF

is the method that the normality of censored Z-residuals (shortened by CZ) is tested by an extended SF

method for censored observations, which is implemented with gofTestCensored in the R package EnvStats.

For detecting the misspecification in the covariate functional form, we can divide Z-residuals into groups by
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Figure 3.2: Performance of the Z-residuals and CS residuals as graphical tools for detecting the
misspecification of the functional form of covariates. The dataset was generated with 20 clusters of 40
observations in each cluster and a censoring rate c ≈ 50%.
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Figure 3.3: Performance of the martingale and deviance residuals as a graphical tool for checking the
functional form of covariates. The dataset has a sample size n = 800 and a censoring rate c ≈ 50%.

cutting the linear predictor or a covariate into equally-spaced intervals as shown by the boxplots of Figure

3.2. We can then test the homogeneity of Z-residuals across the groups. Z-AOV-LP is the method of applying

ANOVA to test the equality of the means of Z-residuals against the groups formed with the linear predictor

(LP) and Z-AOV-log(x2) is the method of testing the equality of the means of Z-residuals against the groups

formed with the covariate log(x2).

We simulated 1000 datasets for each combination of cluster size and censoring rate as described at the

beginning of this section. Using the 1000 datasets generated from the true model under each scenario, the

model rejection rate of each test method was estimated by the proportion of the test p-values less than

0.05. The model rejection rates of all the considered test methods are shown in Figures 3.4 and 3.7. The

non-homogeneity test methods, Z-AOV-LP and Z-AOV-log(x2), can detect the non-linear covariate effects

with very high true-positive rates (model rejection rates under the wrong models) and low false-positive rates

(model rejection rates under the true models). Of all the compared test methods, Z-AOV-log(x2) performs

the best for detecting the nonlinear covariate effects with the highest powers, which are nearly 100%, and

the powers stay high even for the scenario with a cluster size as small as 10. The Z-SW, Z-SF, and CZ-CSF

tests have false-positive rates close to the nominal level of 5% for all scenarios and have certain powers when

the censoring rate is less than 80%. We also note that their powers increase as the cluster size increases.

However, the powers of these overall GOF tests are significantly smaller than the corresponding powers of

the Z-AOV-LP and Z-AOV-log(x2) methods. The comparison demonstrates the advantage of testing the

homogeneity of Z-residuals for checking the assumption of covariate functional form in addition to the overall

GOF tests, which do not inspect the relationship between residuals and covariates.
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In appended Figure 3.7, we show the performances of the Z-KS and Dev-SW tests, which were separated

from Figure 3.4 for better visualization. Z-KS test has low false-positive rates but also very low powers,

which shows the conservatism of the KS test for testing the normality of Z-residuals. When the censorship is

0, the performance of Dev-SW is satisfactory. However, when there are censored observations, the Dev-SW

method has very high (nearly 100%) model rejection rates when the model is correctly specified. Hence, the

high powers of Dev-SW do not indicate that it is a good test method.

Figure 3.4: Model rejection rates of various statistical tests based on Z-residual. A model is rejected
when the test p-value is smaller than 5%. Note that we use a random Z-residual test p-value rather
than the pmin.

3.6 A Real Data Example

In this section, we apply the proposed residual diagnostics tools based on Z-residuals to diagnose the functional

form of covariates in a real application for modelling the survival times of acute myeloid leukemia patients.

The dataset contains 1498 patients recorded at the M. D. Anderson Cancer Center between 1980 and 1996

[47]. The dataset used in our analysis contains 411 patients who are aged below 60 from 24 administrative

districts recorded at the M.D Anderson Cancer Center between 1980 and 1996. The data collected information

on the survival time for acute myeloid leukemia and prognostic factors, including age, sex, white blood cell
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count (wbc) at diagnosis, and the townsend score (tpi) for which higher values indicate less affluent areas.

The censoring rate is 29.2%. The response variable of interest is the survival time in days, which is the time

from entry to the study or death. The preliminary study showed that the wbc is highly right-skewed. Natural

logarithm transformation is often used to reduce the impact of extremely large values of the covariate on the

response variable, such as the wbc variable in this application. However, a natural logarithm transformation

may mask the impact of extremely large values of the covariate on the outcome variable.

This study was deemed exempt from ethics approval since the data utilized were publicly available in the

journal [47], and no personally identifiable information was collected or used. This research adhered to the

principles outlined in TCPS 2-2nd Edition of Tri-Council Policy Statement: Ethical Conduct for Research

Involving Humans [64].

We fitted two shared frailty models, one with covariates wbc, age, sex and tpi, which is labelled as the wbc

model, and the other with natural log(wbc) replacing wbc, which is labelled as the lwbc model. Table 3.1

shows the estimated regression coefficients, the corresponding standard errors and p-values for the covariate

effects from fitting the two shared frailty models. The results indicate that the estimated effect of wbc is

statistically significant (p-value < 0.001) but the effect of log(wbc) is not significant (p-value=0.135). The

difference in the p-values for wbc and log(wbc) highlights that the statistical inference of the covariate effect

may depend on the assumption of the functional form of the covariates.

Table 3.1: Parameter estimates of the shared gamma frailty model in the real data application.

(a) The wbc model

Covariates Estimate SE P-value
Age 0.021 0.005 0.000
SexMale 0.215 0.118 0.068
wbc 0.005 0.001 0.000
tpi 0.023 0.016 0.140
Frailty 0.906

(b) The lwbc model

Covariates Estimate SE P-value
Age 0.021 0.005 0.000
SexMale 0.216 0.118 0.069
log(wbc) 0.035 0.024 0.135
tpi 0.024 0.016 0.128
Frailty 0.906

The overall GOF tests and graphical checking with CS residuals and Z-residuals show that both the wbc

and lwbc models provide adequate fits to the dataset. The first row of Figure 3.5 shows that the estimated

CHFs of the CS residuals of both of the wbc and lwbc models align closely along the 45◦ diagonal line.

Similarly, the QQ plots (the second row of Figure 3.5) of Z-residuals of these two models align well with the

45◦ diagonal line. The scatterplots of Z-residuals against the linear predictor don’t exhibit visible trends;

their LOWESS lines are very close to the horizontal line at 0; the boxplots of Z-residuals grouped by cutting

linear predictors into equal-spaced intervals (the fourth row of Figure 3.5) appear to have equal means and

variance across groups. The Z-AOV-LP test also gives large p-values for the wbc and lwbc models (0.63 and

0.76 respectively).

The above diagnostics results reveal no serious misspecification in these two models. However, the in-

spection of the Z-residuals against the covariate log(wbc) reveals that the functional form of the lwbc model

is likely misspecified. The scatterplots and comparative boxplots of the Z-residuals against log(wbc) are

shown in the fifth and sixth rows of Figure 3.5. The LOWESS curve of the wbc model appears to align well

with the horizontal line at 0 and the grouped Z-residuals of the wbc model appear to have equal means and

variances across groups. However, the diagnosis results for the lwbc model are very different. It appears

that there is a non-linear trend in the LOWESS curve of the lwbc model and the grouped Z-residuals appear

to have different means across groups. To measure the statistical significance of the observed trends, we
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apply Z-AOV-log(wbc) to test the equality of the means of the grouped Z-residuals of these two models. The

p-values are 0.16 and < 0.001 respectively for the wbc and lwbc models as shown in the boxplots. The very

small p-value of the Z-AOV-log(wbc) test for the lwbc models strongly suggests that the log transformation

of wbc is likely inappropriate for modelling the survival time.

The Z-residual test p-values quoted above contain randomness because of the randomization in generating

Z-residuals. To ensure the robustness of the model diagnostics results, we generated 1000 replicated test p-

values with 1000 sets of regenerated Z-residuals for each test method. Figure 3.6 displays the histograms

of 1000 replicated Z-residual test p-values for the wbc and lwbc models. The red vertical lines in these

histograms show the upper bound summaries of these replicated p-values, pmin (see Sec. 3.4.3 for details).

These histograms show that the Z-SW, Z-SF, and Z-AOV-LP tests for both models give a large proportion

of p-values greater than 0.05, and the large p-values result in large pmin values. In contrast, the replicated

Z-AOV-log(wbc) p-values for the lwbc model are almost all smaller than 0.001. The consistently small Z-

AOV-log(wbc) p-values further confirm that the log transformation of wbc is inappropriate for modelling the

survival time.

Table 3.2 tabulates all the pmin values (shown with red lines in Figure 3.6) for diagnosing the two models

with Z-residual-based tests. In addition, we also report the non-random CZ-CSF test p-values for the two

models and the AIC values for comparing these two models. The CZ-CSF p-values of both models are larger

than 5% (Table 3.2). Therefore, the CZ-CSF test does not identify the inadequacy of the lwbc model either.

The AIC value, 3132.105, of the lwbc model, is much larger than the AIC value 3111.669 of the wbc model,

which indicates that the wbc model provides a better model fit compared to the lwbc model. This conclusion

is consistent with the model diagnostics results as given by the Z-AOV-log(wbc) test, which reveals that the

lwbc model is inappropriate for modelling the survival time of this dataset by checking the homogeneity of

Z-residuals against log(wbc). Although the AIC of the wbc model is smaller than that of the lwbc model,

we also see that a large proportion of Z-AOV-log(wbc) p-values for the wbc model are tiny; the pmin value is

0.074. We think that the wbc model could be improved to provide a better fit for the survival time of this

dataset.

Besides the log transformation, we have also fit models with three more transformations of the wbc

variable, including squaring, taking the square root, and the cubic root of wbc, for finding a better model.

The residual diagnostic results with Z-residuals and AIC values for the three non-linear models are shown

in the appended Table 3.3. The overall GOF and non-homogeneity tests with Z-residuals, including the

CZ-CSF test, give p-values or pmin values that are greater than 0.05. Therefore, they do not identify serious

inadequacies in these three models. However, the pmin of the non-homogeneity test with Z-residuals for the

cbrt(wbc) model is as small as 0.091, suggesting that the cubic root transformation is not ideal for modelling

the survival time of acute myeloid leukemia patients. In addition, the AIC values of all the models are all

moderately larger than the AIC value of the wbc model. In summary, these transformations may not have

caused serious model inadequacies as shown by Z-residual diagnostic results but do not provide a significantly

better model fit.
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Figure 3.5: Diagnostics results for the wbc (left panels) and lwbc (right panels) models fitted to the
survival data of acute myeloid leukemia patients.
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Figure 3.6: The histograms of 1000 replicated Z-SW, Z-SF, Z-AOV-LP and Z-AOV-log(wbc) p-values
for the wbc model (left panels) and the lwbc model (right panels) fitted with the survival times of
acute myeloid leukemia patients. The vertical red lines indicate pmin for 1000 replicated p-values. Note
that the upper limit of the x-axis for Z-AOV-log(wbc) p-values for the lwbc model is 0.005, not 1 for
others.
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Table 3.2: AIC, p-values or pmin values for the CZ-CSF test, pmin for Z-SW, Z-SF, Z-AOV-LP and
Z-AOV-log(wbc) test for the wbc and lwbc models, respectively, for the acute myeloid leukemia data.

Model AIC CZ-CSF Z-SW Z-SF Z-AOV-LP Z-AOV-log(wbc)
p−value pmin pmin pmin pmin

wbc model 3111.669 0.255 0.495 0.693 0.703 0.074
lwbc model 3132.105 0.305 0.579 0.781 0.978 <0.00001

3.7 Discussions and Conclusions

In this paper, we extended the idea of randomized survival probability [19] to develop a residual diagnostic

tool that can provide both graphical and numerical results for checking the covariate functional form in

semi-parametric shared frailty models. We proposed a non-homogeneity test for testing whether there is

a trend in Z-residuals for checking the covariate functional form. Our extensive simulation studies showed

that the overall GOF tests (including CS-CSF, Z-SW, and Z-SF) may not be powerful enough for detecting

the misspecification in covariate functional form and that the proposed non-homogeneity tests based on

the Z-residuals are significantly more powerful than the aforementioned overall GOF tests. Applied to a

real dataset, the Z-residual diagnostics discovers that a model with log-transformation is inappropriate for

modelling the survival time of acute myeloid leukemia patients, which is not captured by other diagnostics

methods.

The Z-residuals-based diagnostics methods can be extended in several directions. When the full dataset

is used to estimate the model parameters and used to calculate residuals for model checking, there might be

a conservatism problem (bias) due to the double use of the dataset. The double use of the data may reduce

the power of detecting model misspecification, especially in the case of a small sample size or high censoring

rate. Cross-validation could be a good method to solve this problem. The cross-validatory Z-residual may

be a more powerful tool for identifying the model inadequacy in the survival data.

In this paper, we considered semiparametric shared frailty models assuming proportional hazards. How-

ever, if the model includes time-varying coefficients or time-dependent explanatory variables, the proportional

hazards assumption is violated. A number of residuals have been proposed for evaluating the assumption

of proportional hazards. Traditionally, the Schoenfeld [11, 16] and Scaled Schoenfeld [17] residuals are often

used in testing the assumption of proportional hazard. Lin et al. [57] proposed the cumulative sums of mar-

tingale residuals to check the validity of the PH assumption. Extending the Z-residual for diagnosing the

proportional hazard assumption and comparing it with existing residual diagnostics tools warrants a research

topic in the future.
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Additional Figures and Tables

Supplementary Figures for Section 3.5

Figure 3.7: Model rejection rate of the KS test applied to Z-residuals (Z-KS) and the SW test applied
to deviance residuals (Dev-SW) for the simulation study in Sec. 3.5. A model is rejected when the
test p-value is smaller than 5%. The model rejection rates of Dev-SW tests are nearly 1 under the
true and wrong models when the censoring rate is 50% and 80%, hence, they are almost overlapped
in the plots.

Supplementary Tables for Section 3.6

50



Table 3.3: AIC, p-values or pmin values for the CZ-CSF test, pmin for Z-SW, Z-SF, Z-AOV-LP and
Z-AOV-wbc test for the square(wbc), square root(wbc) and cubic root(wbc) models, respectively, for
the acute myeloid leukemia data.

Model AIC CZ-CSF Z-SW Z-SF Z-AOV-LP Z-AOV-wbc
p−value pmin pmin pmin pmin

sq(wbc) model 3118.478 0.210 0.498 0.696 0.732 0.686
sqrt(wbc) model 3114.666 0.271 0.327 0.318 0.918 0.809
cbrt(wbc) model 3118.848 0.370 0.627 0.811 0.996 0.091
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4 Cross-validatory Z-Residual for Diagnosing Shared

Frailty Models1

Abstract: Residual diagnostic methods play a critical role in assessing model assumptions and detecting

outliers in statistical modelling. In the context of survival models with censored observations, The paper

[19] introduced the Z-residual, which follows an approximately normal distribution under the true model.

This property makes it possible to use Z-residuals for diagnosing survival models in a way similar to how

Pearson residuals are used in normal linear regression. However, computing residuals based on the full

dataset can result in a conservative bias that reduces the power of detecting model misspecification, as the

same dataset is used for both model fitting and validation. Although cross-validation is a potential solution

to this problem, it has not been commonly used in residual diagnostics due to computational challenges.

In this paper, we propose a cross-validation approach for computing Z-residuals in the context of shared

frailty models. Specifically, we develop a general function that calculates cross-validatory Z-residuals using

the output from the coxph function in the survival package in R. Our simulation studies demonstrate that,

for goodness-of-fit tests and outlier detection, cross-validatory Z-residuals are significantly more powerful

and more discriminative than Z-residuals without cross-validation. We also compare the performance of

Z-residuals with and without cross-validation in identifying outliers in a real application that models the

recurrence time of kidney infection patients. Our findings suggest that cross-validatory Z-residuals can

identify outliers that are missed by Z-residuals without cross-validation.

4.1 Introduction

Residual diagnosis is a critical step in statistical modelling for checking the validity of model assumptions.

Several residual diagnostic tools have been commonly used for checking the survival models [11], including

Cox-Snell (CS) [12], martingale [13], deviance [14, 15], Schoenfeld [11, 16] and scaled Schoenfeld [17] residuals.

For example, the plot based on Cox-Snell (CS) residuals can be used as a graphical assessment tool for checking

the overall goodness-of-fit (GOF) of a fitted model. The functional form of covariate is often examined

using the plots of the martingale and deviance residuals against the covariates. The Schoenfeld and scaled

Schoenfeld residuals are often used in testing the assumption of proportional hazards in the Cox proportional

hazard model. Other residuals have also been proposed for diagnosing survival models [53–60]. However,

there is a lack of residuals with a characterized reference distribution for censored regression. The paper [19]

recently proposed the Z-residual diagnosis tool for diagnosing survival models with censored observations.

The Z-residual is approximately normally distributed under the true model and has greater statistical power

and is more informative than some traditional residual diagnostic tools for diagnosing model misspecifications,

such as incorrect choice of distribution family and/or functional form of covariates of survival models.

1This chapter has been deposited as an arXiv paper:2303.09616
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The residuals considered in practical survival analysis are typically calculated based on the full dataset.

When the same dataset is used to estimate the model parameters and calculate residuals for checking the

fitted model, the power of detecting model misspecification may be reduced (bias) due to the double use

of the dataset. The bias of the double use of the dataset has received much attention in the context of

checking and comparing Bayesian models; see [65–73] and the references therein. For example, The paper

[72] introduced integrated importance sampling methods for approximating leave-one-out cross-validatory

predictive evaluations for models with unit-specific and possibly correlated latent variables. Cross-validatory

predictive p-values can also be used to identify outliers by examining the tail probability of the predictive

distribution [65, 66]. However, cross-validation is not commonly used in practical residual diagnosis in the

frequentist paradigm. This is probably due to the computational challenges in cross-validation and the lack

of awareness of the severity of the bias caused by the double use of the dataset.

In this paper, we consider developing cross-validation methods for calculating the Z-residual for diagnosing

survival models and comparing them to the Z-residual without cross-validation. We will focus on investigating

the performance of cross-validatory Z-residuals in diagnosing shared frailty models. A shared frailty model

is a survival model by incorporating random effects (frailties) to account for unobserved heterogeneity [24],

where the frailties are shared among individuals within a cluster or group [1–4]. We develop a general R

function for calculating the cross-validatory Z-residuals based on the outputs from fitting a survival model

using the coxph function in survival package. We build an R function for splitting data into K-fold to ensure

adequate representations of groups and other covariates in each fold. In our study design, the Z-residuals are

calculated using three methods: the full dataset (No-CV), 10-fold cross-validation (10-fold) and leave-one-out

cross-validation (LOOCV). We conduct simulation studies to investigate the performances of the three types

of Z-residuals in detecting nonlinear covariate effects and identifying outliers through graphical visualization

and SW tests. Our simulation results show that the SW tests based on 10-fold Z-residual and LOOCV

Z-residual are significantly more powerful and more discriminative for detecting non-linear covariate effects.

Moreover, cross-validatory Z-residuals are more powerful and more discriminative for identifying outliers

than No-CV Z-residuals. In spite of these improved performances, our simulation studies also show that the

cross-validation results in elevated type-I error rates when cross-validatory Z-residuals are used in conducting

GOF tests. Future research can be conducted to remedy this problem for cross-validatory Z-residuals. We

also compared the performance of the No-CV Z-residual and LOOCV Z-residual in identifying outliers for a

kidney infection dataset [74]. The results show that the methods with LOOCV Z-residuals can identify some

outliers that are missed by the No-CV method.

The rest of this paper is organized as follows. Section 4.2 gives a brief review of shared frailty models. In

Section 4.3 we present the definition of the cross-validatory Z residual with a discussion of the algorithm for

computing cross-validatory Z residuals. Section 4.4 presents the results of simulation studies for investigating

the performances of 10-fold and LOOCV Z residuals. In section 4.5, we present the results of applying the

LOOCV Z residual to identify outliers for a kidney infection dataset. The article is concluded in Section 4.6.

4.2 Shared frailty models

A shared frailty model is a frailty model where the frailties are common or shared among individuals within

groups. The formulation of a frailty model for clustered failure survival data is defined as follows. Suppose

there are g groups of individuals with ni individuals in the ith group, i = 1, 2, . . . , g. If the number of

subjects ni is 1 for all groups, then the univariate frailty model is obtained [3]. Otherwise, the model is called
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the shared frailty model [2, 20, 21] because all subjects in the same cluster share the same frailty value zi.

Suppose tij is the true failure time for the jth individual of the ith group, which we assume to be a continuous

random variable in this article, where j = 1, 2, . . . , ni. Let t∗ij denote the realization of tij . In many

practical problems, we may not be able to observe t∗ij exactly, but we can observe that tij is greater than a

value cij , where cij be the corresponding censoring time. The observed failure times are denoted by the pair

(yij , δij), where yij = min(tij , cij), δij = I(tij < cij). The observed data can be written as y = (y11, . . . , ygng )

and δ = (δ11, . . . , δgng ). This is called right censoring. Since we will consider only the right censoring in this

article, we will use ”censoring” as a short for ”right censoring”. Suppose the survival function of tij based on

a postulated model is defined as Sij(t
∗
ij) = P (tij > t∗ij), where the subscript ij indicates that the probability

depends covariate xij for the jth individual of the ith group.

For a shared frailty model, the hazard of an event at time t for the jth individual, j = 1, 2, . . . , ni, in

the ith group, is then

hij(t) = zi exp(xijβ)h0(t); (4.1)

and the survival function for the jth individual of the ith group at time t follows:

Sij(t) = exp

{
−
∫ t

0

hij(t) dt

}
= exp

{
− zi exp(xijβ)H0(t)

}
, (4.2)

where xij is a row vector of values of p explanatory variables for the jth individual in the ith group, i.e.,

x = (x11, . . . , xgng
); β is the column vector of regression coefficients; h0(t) is the baseline hazard function,

H0(t) is the baseline cumulative hazard function, and zi is the frailty term that is common for all ni individuals

within the ith group. Let z = (z1, . . . , zg). The hazard and survival functions with frailty effect can also be

written as,

hij(t) = exp(xijβ + ui)h0(t), (4.3)

and

Sij(t) = exp

{
− exp(xijβ + ui)H0(t)

}
, (4.4)

where ui= log(zi) is a random effect in the linear component of the proportional hazards model. Note that

zi cannot be negative, but ui can be any value. If ui is zero, correspondingly zi being one, which means the

model does not have frailty. The form of the baseline hazard function may be assumed to be unspecified as

a semi-parametric model or fully specified to follow a parametric distribution.

In our study, we focus mainly on the shared gamma frailty model, since gamma distribution is the most

common distribution for modelling the frailty effect [11]. It is easy to obtain a closed-form representation

of the observable survival, cumulative density, and hazard functions due to the simplicity of the Laplace

transform [49]. The gamma distribution is a two-parameter distribution with a shape parameter k and scale

parameter θ. It takes a variety of shapes as k varies: when k = 1, it is identical to the well-known exponential

distribution; when k is large, it takes a bell-shaped form reminiscent of a normal distribution; when k is less

than one, it takes exponentially shaped and asymptotic to both the vertical and horizontal axes. Under

the assumption k = 1
θ , the two-parameter gamma distribution turns into a one-parameter distribution. The

expected value is one and the variance is equal to θ.
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4.3 Cross-validatory Z-residual

The Z-residual is transformed from the randomized survival probability (RSP) introduced in [19]. The key

idea of RSP is to replace the survival probability (SP) of a censored failure time with a uniform random

number between 0 and the SP of the censored time. RSPs were proved to have a uniform distribution on (0,

1) under the true model with the true generating parameters. The RSP for yij in a shared frailty model can

be then defined as:

SR
ij(yij , δij , Uij) =

{
Sij(yij), if yij is uncensored, i.e., δij = 1,

Uij Sij(yij), if yij is censored, i.e., δij = 0,
(4.5)

where Uij is a uniform random number on (0, 1), and Sij(·) is the postulated survival function for yij given

xij . S
R
ij(yij , δij , Uij) is a random number between 0 and Sij(yij) when yij is censored. Li et al.[19] illustrated

and proved that the RSP is uniformly distributed on (0, 1) given xij under the true model. Therefore, they

can be transformed into residuals with any desired distribution. It is preferred to transform them with the

normal quantile:

rZij(yij , δij , Uij) = −Φ−1(SR
ij(yij , δij , Uij)), (4.6)

where Φ() is the cumulative distribution function (CDF) of a standard normal distribution. We refer to the

residuals as defined in (5.11) as Z-residuals.

Cross-validation (CV) is a re-sampling method for assessing the predictive value. Leave-one-out cross-

validation (LOOCV) method is the simplest approach in which each observation is left out as a test case. The

outcome from the test data is predicted from a model fitted to the remaining data by using the remaining

observations. Since LOOCV is time-consuming, k-fold cross-validation (k-fold CV) is widely used. The

observations are randomly divided into k folds of approximately equal size, and observations in one fold are

predicted from a model fitted with the observations in the other folds (called training data). In our study,

LOOCV and 10-fold CV methods will be used to calculate the cross-validatory Z-residuals.

More specifically, for the LOOCV Z-residual, each observation ttestij is left out from the full dataset with n

observations. This dataset with each case is considered as test data and the datasets with the remaining cases

are considered as the training dataset, which is used for estimating the parameters. Once the shared frailty

model has been fitted to the training dataset, a row vector of the estimated regression coefficients, β̂′, and the

estimated frailty effects, ẑi, can be obtained. In addition, the Breslow (1972) estimator [37] is employed for

estimating the cumulative baseline hazard to get Ĥ0 based on the training dataset. The predictive survival

function Sij(yij) for the observation ytestij of the test case is given by:

Ŝij(y
test
ij ) = exp{−ẑi exp

(
xij β̂′

)
Ĥ0(y

test
ij )}. (4.7)

Then, the RSP for the actually observed tij of the test case is defined as:

ŜR
ij(t

test
ij , δij , Uij) =

{
Ŝij(t

test
ij ), if ttestij is uncensored, i.e., δij = 1,

Uij Ŝij(t
test
ij ), if ttestij is censored, i.e., δij = 0.

(4.8)

The Z-residual for ttestij is given by:

ẑij(t
test
ij , δij , Uij) = −Φ−1(ŜR

ij(t
test
ij , δij , Uij)). (4.9)
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Repeating these steps n times for each observation, we have n different pairs of training and test datasets

and a LOOCV predictive Z-residual is computed for each observation.

For implementing cross-validation, each cluster and each value of a categorical covariate should appear at

least once in both the training and test datasets. If a cluster has only one observation and it is left out as a test

case, the cluster cannot appear in the training dataset. We do not calculate the cross-validatory Z-residual for

such observations. This is because the information of ẑi for such a cluster with only one observation cannot

be obtained from the training dataset. Similar requirements are enforced for all categorical covariates. The

cross-validatory Z-residuals for such observations are set to be NA in our implementation.

The k-fold CV method splits the full dataset into k groups of observations and the groups are of approx-

imately equal size. One group is left out to form the test dataset, and the dataset of the remaining k − 1

groups is used as the training dataset for fitting the shared gamma frailty model. The estimates, β̂′, ẑi, and

Ĥ0, can be obtained from the fitted model, and the predictive Z-residuals are calculated for the observations

in the test dataset. These steps are the same as the LOOCV method described above. In splitting the dataset

into k groups, we try to make each group contain a similar number of observations of each cluster and of each

category of categorical covariates. In creating the cross-validation folds, we ensure that the set of cluster

identities and the values of each categorical covariate in the test dataset is a subset of the corresponding

values in the training dataset. In addition, we also avoid the situation that there is no event (observed)

failure time for a certain cluster or a certain category of categorical covariates, which is not allowed in fitting

non-parametric Cox proportional hazard models with the survival package.

4.4 Simulation Studies and results

4.4.1 Detection of Non-linear Covariate Effect

In this section, we compare the performance of Z-residuals with and without cross-validation in detecting

non-linear covariate effects via simulation studies. We generate failure times tij from a Weibull regression

model with shape parameter α=3 and scale parameter λ=0.007, as follows:

tij =

(
− log(vij)

λzi exp
(
x
(1)
ij + β2 log

(
x
(2)
ij

)
+ 0.5x

(3)
ij

))1/α

, (4.10)

where i = {1,. . ., 10} and j = {1, . . ., m } and vij is simulated from Uniform(0, 1). The censoring times Ci is

simulated from an exponential distribution, exp(θ), where θ is set to have censoring rates (c) approximately

equal to 50%. The three covariates are generated as follows: x
(1)
ij from Uniform(0, 1), x

(2)
ij from positive-

Normal(0, 1), and x
(3)
ij from Bern(0.25). The frailty term is generated from the gamma distribution with a

mean of 1 and a variance of 0.5.

We consider fitting a shared frailty gamma model assuming hij(t) = zi exp
(
β1x

(1)
ij + β2x

(2)
ij + β3x

(3)
ij

)
h0(t)

as a wrong model, and fitting a shared frailty gamma model assuming hij(t) = zi exp
(
β1x

(1)
ij + β2 log

(
x
(2)
ij

)
+ β3x

(3)
ij

)
h0(t)

as the true model. We first visualize the difference of the Z-residuals with and without cross-validation on a

single dataset generated with a strong non-linearity covariate effect (β2 = −2). The dataset has 10 clusters

of 50 observations (the total sample size n = 500). The scatterplots of Z-residuals against the covariate x
(2)
ij

are shown in Fig. 4.1, in which the two rows show the true and the wrong models and the three columns

show three different methods for computing Z-residuals — the No-CV, 10-fold and LOOCV methods re-

spectively. Under the true model, the scatterplots of the three types of Z-residuals are randomly scattered
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without exhibiting any pattern and they are mostly within the interval (-3, 3). Note that most Z-residuals

are concentrated on the left side of the x-axis because x
(2)
ij was simulated from the positive Normal(0, 1).

Under the wrong model, all the scatterplots of the three types of Z-residuals show a non-linear pattern.

However, we see that, for one observation, the Z-residuals computed by cross-validation methods are near

the value 6, but the corresponding No-CV Z-residual is near 3. In addition, there are more cross-validatory

Z-residuals greater than 3 than No-CV Z-residuals. This is an indicator of the conservatism of the No-CV

method. The QQ plot of the three types of Z-residuals under the true model aligns nearly perfectly with the

45◦ straight line in the appended Fig. 4.9. Under the wrong model, the QQ plot of the No-CV Z-residuals

aligns with the diagonal line; however, the 10-fold and LOOCV Z-residuals show more severe deviations from

the 45◦ straight line in the upper tail, demonstrating the increased power of the cross-validatory Z-residuals

in detecting non-linear covariate effects compared to the No-CV Z-residuals.
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Figure 4.1: The scatterplots of the No-CV, 10-fold and LOOCV Z-residuals for a simulated dataset
with non-linear covariate effect, described in Section 4.4.1. The sample size is 500 (10 clusters of 50
observations), the censoring percentage is 50%, and the β2 for log

(
x(2)

)
is set to -2. The gray horizontal

lines indicate the values 3 and -3. The green points are event times and the blue points are censored
times.

We used multiple simulated datasets to investigate the difference between Z-residuals with and without

cross-validation when they are used in GOF tests. We apply the Shapiro–Wilk (SW) test to check the

normality of the three types of Z-residuals for checking the overall GOF of fitted models. For this investigation,

we generated 1000 datasets with 10 clusters of equal size, each having m observations, with m varying in

the set of {10, 20, . . . , 100}. We also set two different values for β2 (-2 and -1) for representing strong and

moderate non-linear covariate effects. The model rejection rate is estimated by the proportion of SW test

p-values less than 0.05 in the 1000 datasets. We also calculated the mean of the SW p-values in the 1000
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datasets for comparing the difference with and without cross-validation. Fig. 4.2 presents the results for the

scenario with a strong non-linearity effect (β2 = −2), where the three columns correspond to the No-CV,

10-fold, and LOOCV Z-residuals respectively. The first row of Fig. 4.2 displays the model rejection rates

of the SW test under the true (blue lines) and the wrong (red lines) models. Under the true model, the

model rejection rates of the No-CV Z-residuals are close to but slightly lower than the nominal level of 0.05

for all scenarios. By contrast, the SW tests with the 10-fold and LOOCV Z-residuals under the true model

have slightly higher type-I error rates than the nominal level of 0.05 (explained below) when the sample

size is smaller than 400, but the type-I error rates are close to 0.05 as the sample size increases. More

importantly, the powers of the SW tests with the No-CV Z-residuals are very low and significantly lower

than the corresponding powers of the SW tests with the 10-fold and LOOCV Z-residuals in all scenarios.

Figure 4.2 also shows that the performances of the SW tests with the 10-fold and LOOCV Z-residuals are

very similar. This finding is practically important because the computation of LOOCV Z-residuals is much

more time-consuming. The panels in the second row of Figure 4.2 present the means of SW test p-values.

We see that the means of SW p-values of the 10-fold and LOOCV Z-residuals under the wrong models are

remarkably smaller than those of the No-CV Z-residuals. We also observe that the gap between the means

of SW p-values under the true and wrong models is significantly larger for cross-validatory Z-residuals than

No-CV Z-residuals. In summary, these results suggest that the SW tests with cross-validatory Z-residuals

are more powerful in detecting the nonlinear covariate effects than those with No-CV Z-residuals.

We have seen that the SW tests with cross-validatory Z-residuals have slightly larger type-I error rates

than the nominal level when the sample size is small (Figure 4.2). We postulate that the elevation is due

to the finite-sample error in estimating the model parameters. In particular, there might be large errors in

the estimation of frailties, which can receive information only from the observation within each cluster. In

theory, the exact normal distribution for Z-residuals holds when they are calculated with the true model with

the true parameters. Given a dataset with a finite sample size, there are still sampling errors in estimating

the model parameters, even though the fitted model has the correctly specified form. As a result, the fitted

model is not exactly the true model for the dataset. To illustrate the difference between the fitted and the

true models, we calculated the R2 value between the survival probabilities calculated with the parameters

estimated with the three different methods (No-CV, 10-fold, LOOCV) and the true survival probabilities

calculated with the true generating parameters. The panels in the third row of Figure 4.2 show the average

of the R2 values in the 1000 datasets and also in different cross-validation folds for each simulation setting.

We see that the R2 for the cases with small sample sizes is substantially smaller than the cases with large

sample sizes. Therefore, it is reasonable that the type-I error rates of the SW tests with cross-validatory

Z-residuals are larger than the nominal level of 0.05. Figure 4.10 in the appendix provides the results based

on the scenario with a moderate non-linear covariate effect (β2 = −1). The results are generally consistent

with the scenario with a strong non-linear covariate effect, but the model rejection rates and means of the

SW p-values are slightly lower when the wrong model is fitted to the datasets.

We also use the area under the ROC curve (AUC) to summarize the discriminative powers of SW test

p-values and use them to compare the three types of Z-residuals. The AUC measures the difference between

two groups of 1000 SW test p-values, one from fitting the true model and the other from fitting the wrong

model. When the AUC is high, the SW p-values are well separated between the two groups, indicating that

they are discriminative for discerning adequate and inadequate models. Figure 4.3 shows the AUC values for

the scenarios with strong and moderate non-linear covariate effects in the left and right plots respectively.

The AUC of all three methods increases as the sample size increases, and the AUC values of the 10-fold and
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Figure 4.2: Comparison of model rejection rates (proportions of SW test p-values ≤ 0.05) and
the means of SW p-values with Z-residuals based on the No-CV, 10-fold and LOOCV methods for
detecting the non-linear covariate effect. The percentage of censoring is 50% and the true regression
coefficient for the nonlinear covariate, log(x2), is -2. The plots in the third row show the values of R2

for measuring the agreement between the survival probabilities calculated with the fitted models and
the survival probabilities calculated with the true generating models.
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Figure 4.3: Comparison of the AUC values of SW test p-values based on Z-residuals computed with
the No-CV, 10-fold and LOOCV methods for simulation datasets with non-linearity effects.

LOOCV Z-residuals are very close to each other. More importantly, the AUC values of 10-fold and LOOCV

Z-residuals are consistently much higher than the corresponding values of No-CV Z-residuals. Furthermore,

we notice that the superiority of cross-validatory Z-residuals does not diminish when the sample size increase,

at least up to 1000. This finding is fairly remarkable as we might think that the bias due to the double use of

the dataset may disappear when the sample size is sufficiently large. In summary, the SW p-values calculated

with cross-validatory Z-residuals are much more discriminative in separating the proper and improper models

than those calculated with No-CV Z-residuals.

4.4.2 Detecting Outliers

In this section, we compare the performance of the Z-residuals with and without cross-validation in identifying

outliers via simulation studies. We generate a clean dataset from a Weibull model and then add jitters to

create a corresponding contaminated dataset, for which we know the identities of outliers. For the clean

datasets, we generate the true failure times from a Weibull regression model with shape parameter α=3 and

scale parameter λ=0.007 as follows:

tij =

(
− log(vij)

λzi exp
(
x
(1)
ij − 2x

(2)
ij + 0.5x

(3)
ij

))1/α

, (4.11)

where i = {1,. . ., 10} and j = {1, . . ., m } and vij is simulated from Uniform (0, 1). The censoring times Cij is

simulated from an exponential distribution, exp(θ), with θ being set to obtain censoring rates approximately

equal to 50%. The three covariates are generated as follows: x
(1)
ij from Uniform(0, 1), x

(2)
ij from Normal(0,

1), and x
(3)
ij from Bern(0.25). The frailties are generated from the gamma distribution with a mean of 1 and

a variance of 0.5. The jitters added to outliers are generated from max(w, e), where e is a random number

from exp(1) and the value w is set to 2 or 4 for indicating moderate and strong jitters respectively. The value
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w is introduced to ensure that the jitters are at least greater than w. We also consider two different schemes

of adding jitters to clean datasets. One is adding to randomly selected 10% event times, and the other is

adding to a random selection of 10 event times. Note that the contaminated failure times may not always

appear excessively large if the failure time before contamination is small enough. We repeatedly simulate

1000 datasets with 10 clusters of m observations, where the cluster size m is varied in the set of {10, 20, . . . ,
100} for investigating how the performance of Z-residuals depends on the cluster size. To these simulated

datasets, we fit the shared frailty gamma model assuming hij(t) = zi exp
(
β1x

(1)
ij + β2x

(2)
ij + β3x

(3)
ij

)
h0(t),

which is the true model generating clean datasets.
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Figure 4.4: Comparison of the performance of the No-CV, 10-fold, and LOOCV Z-residuals in
detecting outliers on a pair of clean and contaminated datasets. The datasets have 10 clusters with 20
observations in each.

We first visualize the difference of Z-residuals with and without cross-validation on a pair of clean and

contaminated datasets with the cluster size m = 20. Strong jitters are added to 10 randomly selected failure

times for generating the corresponding contaminated dataset. Fig. 4.4 displays the residual plots for the

clean and contaminated datasets in the first and second rows respectively. The red points indicate the outliers

with their failure times being added with jitters. The Z-residuals for the clean dataset are mostly bounded

between -3 and 3 as standard normal variates without any unusual patterns. For the contaminated dataset,

all the No-CV Z-residuals are bounded between -3 and 3, which means that they fail to detect the outliers

if we declare outliers when the Z-residual is out of (−3, 3); by contrast, the cross-validatory Z-residuals of

three outliers (red points) fall out of the interval (-3, 3). This comparison suggests that the cross-validatory

Z-residuals have increased powers in detecting outliers even though not all the outliers could be detected

because their failure times are still not excessive to the model after being added with jitters.

We use multiple simulated datasets to investigate the performance of the SW tests based on the three
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Figure 4.5: Comparison of model rejection rates based on the SW test p-values ≤ 0.05, the mean of
SW p-values, and the tail probability of the No-CV, 10-fold, and LOOCV Z-residuals for the datasets
with 10 outliers. The horizontal lines for the model rejection rate show the nominal type-I error rate of
SW tests under the true model, ie, 0.05. The horizontal lines for the tail probability show the expected
value for clean datasets, ie, P (|Z|> 3) = 0.0027 where Z ∼ N(0, 1).
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types of Z-residuals in identifying model inadequacy for contaminated datasets. We fit the true model for

clean datasets to both clean and contaminated datasets. This model is adequate for clean datasets but

is inadequate for contaminated datasets, which require a more sophisticated model. Therefore, we expect

that the SW test should have a high chance (power) of rejecting this model for contaminated datasets. As

in Section 4.4.1, we use 1000 simulated datasets for each simulation setting to calculate the proportion of

the SW test p-values less than 0.05 and calculate the mean of SW p-values. Figure 4.5 shows the results

for the scenario with 10 strong outliers. As displayed in Figure 4.5, the model rejection rates of No-CV

Z-residuals for clean datasets (green line) remain at the nominal level of 0.05 for all scenarios. However, for

contaminated datasets, the model rejection rates (powers) of No-CV Z-residuals are much lower than the

corresponding powers of 10-fold and LOOCV Z-residuals; the reduction in powers is substantial when the

sample size is less than 300, for example from about 0.8 to about 0.2 when m = 10. We also notice that

the type-I error rates (for the clean datasets) of the SW tests with cross-validatory Z-residuals are slightly

higher than the nominal level of 0.05 when the sample size is small; nevertheless, they approach 0.05 as the

sample size increases. From the second row of Figure 4.5, we also observe that the means of the SW p-values

of the No-CV Z-residual are much higher than those of cross-validatory Z-residuals. For investigating the

performance in outlier detection, we also calculate a tail probability about Z-residuals, which is the proportion

of Z-residuals with absolute values greater than 3, which is often used to identify outliers in practice. The

plots in the third row of Figure 4.5 show the means of the tail probabilities in 1000 simulated datasets under

different simulation scenarios. The tail probabilities of No-CV Z-residuals for clean datasets are all below

the expected value of 0.0027, which is P (|Z|> 3) where Z ∼ N(0, 1). More importantly, we see that the tail

probabilities of 10-fold and LOOCV Z-residuals for the contaminated datasets are much higher than those of

No-CV Z-residuals, and the tail probabilities of 10-fold and LOOCV Z-residuals for clean datasets converge

to the expected tail probability — 0.0027. Figure 4.11 in the Appendix displays the results for the scenarios

in which contaminated datasets have 10% outliers, and the results are consistent with the scenarios with 10

outliers.

In order to evaluate the discriminative abilities of SW test p-values, we use the AUC to measure the

difference of the SW test p-values between two groups - one from clean datasets and the other from contam-

inated datasets. The results are presented in the four plots (Fig. 4.6) that correspond to four simulation

scenarios (combinations of two different levels of jitters and two different schemes for adding jitters). Across

all scenarios, we observe that the AUC values of 10-fold and LOOCV Z-residuals are significantly higher than

those of No-CV Z-residuals. When the sample size is around 100, the AUC values of No-CV Z-residuals are

near 0.5, indicating no discriminative power, whereas the corresponding AUC values of 10-fold and LOOCV

Z-residuals are approximately 0.8. Additionally, we notice that the difference in AUC values between Z-

residuals with and without cross-validation diminishes to 0 as the sample size increases for three of the four

scenarios. However, in the scenario where the number of moderate outliers is fixed at 10, the gap remains

visible even when the sample size is 1000.

Finally, we compare the sensitivity and false positive rate (FPR) in detecting outliers using Z-residuals

with and without cross-validation. Our rule for identifying an outlier is that the absolute value of its Z-

residual is greater than 3. Given this rule, the sensitivity is the proportion of the true outliers that are

correctly identified as outliers, and the FPR is the proportion of non-outliers that are falsely identified as

outliers. Figure 4.7 shows the sensitivities and FPRs for the four simulation scenarios as we consider for Figure

4.6. Clearly, we see that 10-fold and LOOCV Z-residuals have much higher sensitivities and almost the same

FPRs when they are used to detect true outliers compared to the No-CV Z-residuals, for all the considered
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Figure 4.6: Comparison of the AUC values of SW test p-values based on Z-residuals computed with
the No-CV, 10-fold and LOOCV methods for simulation datasets with outliers.
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four scenarios. This comparison demonstrates clearly the advantage of using cross-validatory Z-residuals for

the purpose of identifying outliers, although we previously see that the SW tests based on cross-validatory

Z-residuals have a slight elevation of type-I error rates. Interestingly, we see that the sensitivity of 10-fold

and LOOCV Z-residuals increases as the sample size increase when the number of outliers is fixed at 10, but

it decreases and converges to a value of about 0.1 when the percentage of outliers is fixed at 10%.
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Figure 4.7: Comparison of the sensitivities (points with ◦) and the false positive rates (points with
×) in detecting outliers using No-CV, 10-fold, and LOOCV Z-residuals.

4.5 A Real Data Example

In this section, we will demonstrate the effectiveness of the cross-validatory Z-residuals in identifying outliers

in a real data application studying kidney infection [74]. The dataset consists of 38 kidney patients using

a portable dialysis machine, and the times of the first and second recurrences of the kidney infection are

recorded for these patients. Each survival time is defined as the time until infection since the insertion of

the catheter. The same patient is considered as a cluster because of shared frailty describing the common

patient’s effect. If a catheter is removed for reasons other than infection, the observation is considered

censored. The censoring percentage is 24%. The dataset contains 38 patients (cluster), and each patient has
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exactly two observations, with a total sample size of 76. This data has often been used to illustrate a shared

frailty model. More details on this dataset can be found from [74].

This study was deemed exempt from ethics approval since the data utilized were publicly available in the

paper [74], and no personally identifiable information was collected or used. This research adhered to the

principles outlined in TCPS 2-2nd Edition of Tri-Council Policy Statement: Ethical Conduct for Research

Involving Humans [64].

We fit a linear shared gamma frailty model with three covariates — age in year, sex of male or female, and

four different disease types (0=GN, 1=AN, 2=PKD, 3=Other) to the recurrence failure times, with details

given in Table 4.2 in the Appendix. The fitting is done with the coxph function in the survival package.

Table 4.1a shows the estimated regression coefficients, the corresponding standard errors, and p-values for

the covariate effects from fitting the shared gamma frailty model with the full dataset. The results shown in

Table 4.1a indicate that the two covariates, sex and disease type of PKD, are significantly associated with

the hazard of recurrence of kidney infection.

Table 4.1: Parameter estimates of three shared gamma frailty models fitted with the kidney infection
dataset. The tables (4.1b) and (4.1c) show the estimates for two subsets of the original datasets with
two and three cases removed as they are identified as outliers with LOOCV Z-residuals.

(a) The original dataset

Covariate β̂ SE p-value
Age 0.003 0.011 0.775
Sex:Male 1.480 0.358 0.000
D:GN 0.088 0.406 0.829
D:AN 0.351 0.400 0.380
D:PKD -1.430 0.631 0.023
Frailty 0.933

(b) Exclusing two outliers

Covariate β̂ SE p-value
Age 0.007 0.011 0.530
Sex:Male 2.117 0.400 0.000
D:GN 0.359 0.406 0.380
D:AN 0.349 0.407 0.390
D:PKD -0.797 0.638 0.210
Frailty 0.940

(c) Excluding three outliers

Covariate β̂ SE p-value
Age 0.012 0.011 0.280
Sex:Male 2.120 0.402 0.000
D:GN 0.727 0.415 0.080
D:AN 0.319 0.404 0.430
D:PKD -0.802 0.636 0.210
Frailty 0.940

We calculated Z-residuals and CS residuals using the No-CV and LOOCV methods for this dataset. We

only considered the LOOCV method since the 10-fold CV and LOOCV Z-residual methods perform very

similarly as shown in the simulation studies and the computational burden to implement LOOCV is not

a concern due to the small sample size. Figure 4.8 shows the residual diagnosis results for the original

kidney infection dataset without removing outliers. The first and second columns of Figure 4.8 present the

scatterplots versus the index and the QQ plots of the Z-residuals computed with the No-CV and LOOCV

methods. The No-CV Z-residuals are mostly between -3 and 3 and the QQ plot of NO-CV Z-residuals aligns

well with the 45◦ straight line. The SW p-value of No-CV Z-residuals is about 0.70 as shown in the QQ

plot. Such a large p-value indicates a good fit of the model to the dataset. In summary, the diagnosis results

with No-CV Z-residuals suggest that the shared frailty model appears appropriate for the dataset and no

outlier is identified. However, the scatterplot of LOOCV Z-residuals shows that the Z-residuals of the two

cases labelled with numbers 20 and 42 are greater than 3. We can consider these two cases as outliers for the

shared frailty model. The QQ plot of LOOCV Z-residuals shows a large deviation from the 45◦ straight line,

which is clearly caused by the large Z-residuals of the two outliers. The SW p-value of LOOCV Z-residuals is

also very small — less than 0.01, as shown in the QQ plot. In summary, the diagnosis results with LOOCV

Z-residuals suggest that the fitted shared frailty model is inadequate for this dataset and there are two cases

with excessive Z-residuals, which are identified as outliers for this model.

Compared to all the raw infection times as shown in the appended Figure 4.12, the infection time of

case 42 is the highest value among all but does not appear very outstanding; the infection time of case 20

is near the median of all infection times, hence, does not appear outlying at all. This observation illustrates

the difference between the concepts of outliers relative to raw observations and relative to a fitted model.
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Figure 4.8: Scatterplots and QQ plots of No-CV and LOOCV Z-residuals of the fitted shared frailty
models based on the original kidney infection dataset. The third column presents the histograms of
1000 replicated SW p-values of Z-residuals The fourth column shows the CS residuals computed with
the No-CV and LOOCV methods.

Z-residual is a monotone transformation of the tail (or survival) probabilities of the conditional distribution of

failure time given covariates (see equation (4.6)). Therefore, the identification of outliers based on Z-residuals

has considered covariate effects. However, the identification of outliers by examining only raw failure times

does not consider covariate effects; in other words, it is based on a model with only the intercept term.

There is randomness in the Z-residuals of the censored observations. For the same dataset, we can

produce different sets of Z-residuals with different random numbers. Therefore, we would like to replicate a

large number of realizations of Z-residuals to see the robustness of the above diagnosis. The third column

of Figure 4.8 displays the histograms of 1000 SW test p-values, each given by a set of No-CV or LOOCV

Z-residuals. The histograms show that more than 95% of the SW p-values of No-CV Z-residuals are larger

than 0.05; however, 100% of the SW p-values of LOOCV Z-residuals are smaller than 0.05. Therefore, the

judgment of the misspecification of the shared frailty model for the dataset is not incidental based on a

particular set of LOOCV Z-residuals but a consistent conclusion under large-scale replications of Z-residuals.

To further verify the above diagnosis results and illustrate the effect of cross-validation in residual diag-

nostics, we also compute CS residuals with both No-CV and LOOCV methods and plot their cumulative

hazard functions (CHFs) in the fourth column of Figure 4.8. The CHF of No-CV CS residuals aligns well

with the 45◦ straight line, indicating a good model fit for the dataset. However, the CHF of the LOOCV CS

residuals deviates from the 45◦ straight line in the upper tail, suggesting the inadequacy of the fitted model

to the dataset. The conclusion for checking the model adequacy with CS residuals is consistent with the

diagnosis results with Z-residuals. Nevertheless, we notice that the diagnosis with Z-residuals provides more

information regarding the nature of the discrepancy of the inadequate model — the existence of outliers, as

well as a quantitative measure of the statistical significance of the model departure.

Finally, we consider deleting the two outliers (cases 42 and 20) from the original kidney infection dataset
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and then re-fit the linear shared gamma frailty model. Table 4.1b shows the covariate DiseasePKD is no

longer statistically significant at the level of 5%, and the effect size for the covariate sex becomes larger. The

differences in Table 4.1a and 4.1b indicate that parameter estimation and inference may be greatly affected

by including outliers, which highlights the importance of model diagnosis and outlier detection in practical

data analysis. The appended Figure 4.13 presents the results of residual diagnosis after excluding these two

outliers. The LOOCV Z-residual diagnosis results indicate that the refitted model is a fairly good model for

the dataset without cases 42 and 20. Nevertheless, we notice that case 15 has a Z-residual marginally greater

than 3. Although case 15 may not be of great concern, as most of the SW p-values of LOOCV Z-residuals

show are greater than 0.05, we refit the model after further removing case 15. Table 4.1c shows the parameter

estimates based on the kidney infection dataset after excluding the three cases, which are similar to those

in Table 4.1b. The Z-residual diagnosis, as shown in appended Figure 4.14, neither suggests evidence that

the model fitted with the three cases removed is inadequate for the dataset nor identifies an outlier for the

model.

4.6 Discussions and Conclusions

Residual diagnosis plays a critical role in the model-building process for validating the correctness of a fitted

model. However, residuals are typically calculated based on the model fitted to the full dataset, without

using a strategy to split the dataset into different subsets for model fitting and validation. The double use

of the dataset for model fitting and validation might lead to conservatism in model diagnosis, leading to

the reduced power of detecting inadequate model fit and identifying outliers for the model. To the best of

our knowledge, cross-validation is rarely used in residual diagnosis for survival analysis. In this paper, we

developed cross-validation methods to compute Z-residuals for detecting model inadequacy and identifying

outliers in the context of shared frailty models. We compare the performance of cross-validatory (10-fold and

LOOCV) Z-residuals and No-CV Z-residuals for the purpose of the overall GOF test and outlier detection.

Our simulation studies and the application to a real dataset demonstrate that the residual diagnosis without

cross-validation tends to be conservative for detecting model misspecification due to the double use of the

data, and the cross-validation methods can improve the power of the SW-test with Z-residuals in detecting

model inadequacy and improve the power of Z-residuals in identifying outliers.

Our simulation studies also reveal that the cross-validation may cause a slight elevation of type-I error

rates in SW tests with Z-residuals. As we explained with the R2 between the survival probabilities calculated

with the fitted models and the survival probabilities calculated with the true generating models, the elevation

might be caused by inaccuracy in estimating the parameter, in particular, the estimation of the frailties in

small cluster size situations. For such situations, the model fitting algorithms for shared frailty models could

improve on estimating the frailties, for example, with a stronger penalization for the frailties. Alternatively,

another direction is to work on improving the methods for computing the cross-validatory Z-residuals or

the methods for conducting SW tests with Z-residuals, with the goal of obtaining Z-residuals that are less

aggressive in rejecting models. Marginalizing the frailties when we calculate the randomized survival prob-

ability may be a solution. If we marginalize the frailties, the cluster size may have a smaller impact on the

computation of Z-residuals; moreover, the restriction that the size of each cluster must be greater than 1

could be resolved. A comparison of the methods for computing Z-residuals with or without marginalizing

the frailties is an interesting topic for future work. Lastly, in the present study, we focused on investigating

the performance of cross-validatory Z-residuals in diagnosing shared frailty models; however, the proposed
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cross-validatory residuals could be more broadly applied in diagnosing other types of regression models.

4.7 Additional Figures and Tables

4.7.1 Supplementary Figures for Section 4.4.1
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Figure 4.9: The QQ plot of the No-CV, 10-fold and LOOCV Z-residuals as a graphical tool for
detecting non-linear effect in covariate with the strong non-linear association. The sample size is 500
(10 clusters of 50 observations), and the censoring percentage is 50%.
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Figure 4.10: Comparison of model rejections based on SW test, the mean of SW p-values and R2 of
the No-CV, 10-fold and LOOCV Z-residuals for detecting the moderate non-linear covariate effect.
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4.7.2 Supplementary Figures for Section 4.4.2
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Figure 4.11: Comparison of model rejections rate based on the SW test, the mean of SW p-values
and tail probability of the No-CV, 10-fold and LOOCV Z-residuals when the data are contaminated
by adding 10% outliers with moderate and strong deviation from the clean data, respectively.
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4.7.3 Supplementary Figures and Tables for Section 4.5

Table 4.2: Variable definitions for the kidney infection dataset.

Variable Definition
ID Patient number
Time Recurrence time (days)
Status Event indicator (1 = infection occurs; 0 = censored)
Age Patient age (years)
Sex Sex status (1 = male; 2 = female)
Disease Disease Type (0 = GN; 1 = AN; 2 = PKD; 3 = other)
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Figure 4.12: The scattered plot of infection times for the kidney infection dataset.
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Figure 4.13: Scatterplots and QQ plots of No-CV and LOOCV Z-residuals of the fitted shared frailty
models based on the kidney infection dataset with the cases 42 and 20 removed. The third column
presents the histograms of 1000 replicated SW p-values of Z-residuals The fourth column shows the
CS residuals computed with the No-CV and LOOCV methods.
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Figure 4.14: Scatterplots and QQ plots of No-CV and LOOCV Z-residuals of the fitted shared frailty
models based on the kidney infection dataset with the cases 42, 20, and 15 removed. The third column
presents the histograms of 1000 replicated SW p-values of Z-residuals The fourth column shows the
CS residuals computed with the No-CV and LOOCV methods.
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5 Z-Residual Diagnostics for Detecting

Non-Proportional Hazards for Survival Models

Abstract: In Cox proportional hazard (PH) regression models, proportional hazard (PH) is a fundamental

assumption, which assumes that the hazard ratio remains constant over time. Schoenfeld residuals and the

related tests are the most commonly used diagnostic tools for checking the PH assumption. However, the

Schoenfeld residuals based diagnostics only consider a specific case of violations of PH assumption due to the

time-varying covariate effect. Therefore, the power to detect violation of PH assumption due to other reasons,

such as accelerated failure time, may be low. In this paper, we propose using the Z-residual diagnostics for

detecting Non-PH in a survival model. Our simulation studies show that, compared to the score tests

related to Schoenfeld residuals, the tests based on Z-residuals have similar powers and type I error rates in

time-varying covariate effect scenarios but they have significantly higher powers in accelerated failure time

scenarios. In a real data application on identifying prognostic factors associated with time to blindness in a

diabetic retinopathy study, the Z-residual diagnostic tools capture a severe violation of the PH assumption

for the dataset, which is, however, not detected by Schoenfeld residuals and the related tests.

5.1 Introduction

The Cox proportional hazard regression models, developed by Cox [22], are commonly used in epidemiological

and clinical research to analyze time-to-event data. The models rely on the assumption of proportional

hazards (PH), which posits that the ratios of hazards remain constant or independent of time across the

entire follow-up time with different predictors or covariate levels. However, in real-world applications, the

PH assumption may not hold, and the hazard ratio may be time-dependent. For instance, in studies of

coronary atherosclerosis [75], the hazard ratio for treatment vs. placebo is close to one in the first six

months, followed by a downward trend. In another study on the Norwegian colorectal cancer prevention trial

[76], the hazard ratio for flexible sigmoidoscopy screening vs. no screening is greater than one in the early

stages and less than one thereafter.

These examples illustrate that the PH assumption may not always be valid, and it is crucial to examine

whether it holds in a particular application. Failure to assess the PH assumption can lead to biased parameter

estimates, incorrect inference, and incorrect conclusions. Therefore, it is essential to evaluate the validity

of the PH assumption and consider alternative models when necessary. The most commonly used graphical

diagnostic methods to evaluate the PH assumption of a Cox PH model are Schoenfeld residuals [11, 16] and

scaled Schoenfeld residuals [11, 17]. Schoenfeld residuals represent the difference between the observed and

expected values of the covariate(s) given the risk set at that time. The PH assumption holds if the scatterplot

of Schoenfeld residuals versus survival time is flat and centred around zero without any pattern. Scaled

Schoenfeld residuals [11, 17] are Schoenfeld residuals adjusted by the inverse of the covariance matrix of the

Schoenfeld residuals. This scaling makes the residuals more sensitive to departures from the PH assumption,
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especially in cases where the variance of the covariate changes over time or is very small. By scaling, the

residuals are put on a similar scale, making it easier to compare and identify patterns of deviation from the

PH assumption. The graphical diagnostics based on scaled Schoenfeld residuals commonly compare the plot

of the Scaled Schoenfeld residuals versus the observed survival time. In principle, the Schoenfeld residuals

are independent of time if the PH assumption holds. Therefore, a scatterplot of scaled Schoenfeld residuals

that shows a random pattern around a horizontal line indicates the plausibility of the PH assumption. A

numerical test, known as the Grambsch and Therneau (GT) test, has therefore been developed to assess the

PH assumption by testing the null hypothesis that the regression coefficient between the scaled Schoenfeld

residuals and a function of time is equal to zero. The GT test can evaluate the PH assumption for each

covariate individually and/or for all covariates included in the Cox regression model [11, 16]. The GT test

can be regarded as an approximation of the general score test [77]. From version 3.0, the survival package

[5] began to use the score test for testing the PH assumption. Checking the PH assumption using the score

test involves performing a goodness-of-fit (GOF) test that compares the observed values of the score function

to their expected values under the null hypothesis of the PH assumption. A more recent version of the

survival package in R computes the score test [5].

Although the above-mentioned statistical methods for checking the PH assumption are widely used, they

are most appropriate for detecting violations of the PH assumption due to time-varying covariate effects [78–

81]. The Cox models with time-varying effects are assumed to be the true models in these tests. However,

the time-varying covariate effect in the Cox regression model is only one specific cause of violation of the PH

assumption. The survival time may not necessarily be adequately modelled by a Cox regression model even

with time-varying covariate effects. The accelerated failure time (AFT) model [23] incorporates a wide variety

of survival time distributions, which is used in many fields as an alternative to the Cox PH model if the PH

assumption is not tenable [82, 83]. However, little research has been conducted to evaluate the performance

of score tests for testing PH when the survival time does not fall under a Cox regression modelling framework.

We demonstrated that in the situation when the survival time does not follow the form of a Cox model but

rather an AFT model, these traditional residual diagnostic tools may fail to detect Non-PH. An analogy in

medical diagnostics is the diagnostic tool that can detect only breast cancer may have low power for detecting

other kinds of cancers. To this end, we develop a residual diagnostic tool with a numerical test to detect

Non-PH not only in the situation with time-varying covariate effects in a Cox regression model but also more

broadly, under alternative modelling methods other than Cox regression model, such as AFT models.

In this chapter, we present evidence that the Z-residual diagnostic tool is highly effective in detecting Non-

PH due to both time-varying covariate effects and accelerated failure times. Firstly, we conducted simulation

studies to investigate the performance of the Z-residual in detecting Non-PH due to time-varying covariate

effects in the Cox PH model with frailty, and compared it with score tests based on Schoenfeld residuals.

Our results showed that the overall GOF tests based on Z-residuals and the non-homogeneity test to assess

the group variances of Z-residuals had similar powers and type I error rates to those of the score tests. In

the scenario where the survival times are simulated from AFT models, we found that the overall GOF test

based on Z-residuals had a much higher power in detecting Non-PH than the score test. We also demonstrate

the use of Z-residuals in testing the PH assumption in a real data application. The results based on the

Z-residuals revealed that the PH assumption was violated, which was however not identified using the score

test.

The rest of this chapter is organized as follows. In Section 5.2, we review the existing residuals and test

methods for testing the PH assumption. In Section 5.3, we present the PH assumption diagnostics based
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on Z-residuals. In Section 5.4, we conduct simulation studies to investigate the performances of Z-residuals.

Section 5.5 presents the results of applying the Z-residual for detecting the Non-PH in a real data application.

The conclusion is provided in Section 5.6.

5.2 Review of Existing Methods for Checking PH Assumption

5.2.1 Graphical Strategy

A common approach to evaluating the validity of the PH assumption in a Cox PH model is to plot the

log-cumulative hazard functions against the logarithm of the survival time [11]. This involves grouping the

survival data into levels of factors. In the case of a categorical covariate, the Kaplan-Meier estimate of the

survivor function of the time S(t) is calculated for each group, and the log-cumulative hazard functions

log(H(t)) is obtained by transforming the survivor function of the time S(t) to log(− log(S(t))). If the

hazards are proportional across the different groups, the plot of the log-cumulative hazard functions against

the logarithm of the survival time will exhibit constant differences and display parallel curves. The continuous

covariate can be transformed into a categorical variable by cutting it into groups. Then, the plot of the log-

cumulative hazard functions against the logarithm of the survival time should show approximately parallel

lines across different groups if the PH assumption holds.

Although the visual inspection of the plot of log-cumulative hazard functions is simple to use, it has some

drawbacks. When there are multiple groups in a categorical covariate, the plot becomes cluttered, making

it challenging to detect non-proportionality [84]. Additionally, it is challenging to determine the best way

to group continuous covariates as categorical variables, and the visual inspection of PH is subjective and

difficult to quantify [85].

5.2.2 Schoenfeld Residuals

In this section, we review the most commonly used residual for checking the PH assumption in survival

analysis. Suppose there are g groups of individuals with ni individuals in the ith group, i = 1, 2, . . . , g.

All subjects in the ith group share the same frailty value zi. Suppose tij is the true failure time for the jth

individual from the ith group, which we assume to be a continuous random variable in this article, where

j = 1, 2, · · · , ni. We can observe that tij is greater than a value cij , where cij is the corresponding censoring

time. The observed failure times are denoted by the pair (yij , δij), where yij = min(tij , cij), δij = I(tij < cij).

The observed data can be written as y = (y11, · · · , ygng ) and δ = (δ11, · · · , δgng ). The Cox PH model with

shared frailty assumes a hazard function at time t, for the jth individual, j = 1, 2, · · ·, ni, in the ith group,

is then

hij(t) = zi exp(xijβ)h0(t); (5.1)

where xij is a row vector of values of p explanatory variables for the jth individual in the ith group, i.e.,

x = (x11, · · · , xgng ); β is a column vector of regression coefficients; h0(t) is the baseline hazard function, and

zi is the frailty term that is common for all ni individuals within the ith group. This model implies that the

hazards of the two groups remain proportional over time and the regression coefficient (β) does not change

over time. To test the PH assumption in equation (5.1), we can consider the following time-varying covariate
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effects models with a hazard function given by

hij(t) = zi exp

(
P∑

p=1

xijpβp(t)

)
h0(t); (5.2)

where βp(t) = βp + gp(t) is a function of time. When gp(t) differs from a constant function, the hazard ratio

for the covariate changes over time, that is, the PH assumption is violated.

Schoenfeld residuals [11, 16] were originally termed partial residuals. It can overcome two disadvantages

of the Cox Snell (CS) residuals [12], which depend heavily on the observed survival time and require an

estimate of the cumulative hazard function. In [16], Schoenfeld residual is perceived as the difference between

the observed and expected values of the xijp given the risk set at the time yij , one for each covariate in the

fitted Cox regression model, defined as

rSijp
= δij(xijp − âijp), (5.3)

where xijp is the value of the pth covariate, p = 1, 2, · · · , P , for the jth individual of the ith group in the

study,

âijp =

∑
lh∈R(yij)

xlhpzl exp
(
xlhβ̂

)
∑

lh∈R(yij)
zl exp

(
xlhβ̂

) , (5.4)

and R(tij) is the set of all individuals at risk at time yij . If the PH assumption is met, the scatter plot of

Schoenfeld residuals versus survival time should be flat, centred around zero without exhibiting any pattern.

The primary drawback of Schoenfeld residuals is that it only considers a non-proportional departure in one

covariate, and there is no numeric test to measure the practical and statistical significance of the degree of

PH assumption violation.

Scaled Schoenfeld residuals, proposed by Grambsch and Therneau (1994) [17], are a variation of Schoenfeld

residuals that are scaled by the variance of the parameter estimates [11, 17]. The purpose of scaling is to make

the residuals more sensitive to departures from the PH assumption, especially in cases where the variance of

the parameter estimates changes over time or is very small. By scaling, the residuals are put on a similar

scale, which makes it easier to compare them and identify patterns of deviation from the PH assumption.

The widely used scaled Schoenfeld residuals are defined as

r⋆Sij
= dvar(β̂)rSij

, (5.5)

where d is the number of events among all observed failure times, and var(β̂) is the variance-covariance matrix

of the parameter estimates in the fitted Cox regression model. The method by [17] is widely used and adopted

in the survival package of R software before version 3.0. It is shown [17] that the expected value of the ijth

scaled Schoenfeld residual for the pth covariate is given by E(r⋆Sijp
) ≈ βp(tij)−β̂p, where βp(tij) = βp+gp(tij)

is the value of a time-vary coefficient for xp at the survival time of the ijth individual, and β̂p is the estimated

coefficient in the fitted Cox regression model. Diagnostics based on scaled Schoenfeld residuals commonly

use a plot of the scaled Schoenfeld residuals against the observed survival time. A plot that shows a random

pattern around a horizontal line without showing a trend indicates the plausibility of the PH assumption.

A numerical test, called the GT test, was developed to assess the PH assumption by testing whether the

E(r⋆Sijp
) is time-dependent against the event times. More specifically, the time-varying coefficient for xp at

the survival time t of the ijth individual can be expressed by taking βp(tij) = βp + gp(t) = βp + νp(tij − t̄),
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where νp is an unknown slope and t̄ is the average of all event time. With this particular choice of βp(·),
the expected value of the ijth scaled Schoenfeld residual can be expressed as E(r⋆Sijp

) = νp(tij − t̄). If νp is

non-zero, the coefficient of xp is time-dependent and the PH assumption is violated. Letting t11, t12, · · · , tmn

be the time of all observed event times d in the data set, the GT test for xp is given by

[
∑mn

ij=11(tij − t̄)r⋆Sijp
]2

dvar(β̂p)
∑mn

ij=11(tij − t̄)2
. (5.6)

The null hypothesis is set as H0 : νp = 0. This leads to an asymptotic χ2 distribution with degree freedom 1

for xp, and significantly large values mean the PH assumption can be rejected. For an overall test of the PH

assumption in the model, each xp in expression (5.6) can be aggregated. The overall test statistic follows

(t− t̄)
′
rSvar(β̂)r

′

S(t− t̄)∑mn
ij=11(tij − t̄)2/d

, (5.7)

where t is the column vector of all observed event times, and rS is a matrix of Schoenfeld residuals for all

covariates with rows representing different times in t and columns representing different covariates. The

test statistic in the expression (5.7) has a χ2 distribution with degree freedom P when the assumption of

proportional hazards across all P explanatory variables is true. The function gp(t) in expressions (5.6) and

(5.7) can be replaced by others, for example, by the logarithms of the event times, by the rank order of the

event times, or by the survival function at each event time based on the Kaplan-Meier estimation.

5.2.3 Score Tests

The GT test can be regarded as an approximation of the general score test [77]. From version 3.0, the

survival package began to use the score test for testing the PH assumption. The score test [77] is a general

test for testing whether an encompassing model, often called a full model, can provide a significantly better fit

than a reduced model, which is a special model of the full model, based on the score function and information

matrix of the full model. The score function is the gradient of the log-likelihood function with respect to the

parameters, and the information matrix is the Hessian matrix of the negative log-likelihood function, both

evaluated at the maximum likelihood estimate of the model parameters under the null hypothesis. Under

certain conditions, the score test statistic asymptotically follows a chi-squared distribution with the degrees

of freedom equal to the difference in the number of parameters of the two nested models. For testing the PH

assumption, the full model is the time-varying effect model as given in Equation (5.2) and the reduced model

is the Cox PH model. In the actual implementation, the full model is treated as a Cox model by including

xijpgp(tijp) as an additional linear predictor term in the Cox PH model. If gp(tijp) = νp(tij − t̄) is chosen,

the score test is applied to test the null hypothesis expressed as νp = 0.

Suppose we expand the Cox PH model by including xijpgp(tijp) for p = 1, . . . , P as additional linear

predictor terms and the form of the time-varying effect for covariate xp is a linear function βp(tij) =

βp + νp(tij − t̄), where νp is an unknown slope, t̄ is the average of all event times. Since there are

P covariates in the Cox PH model, the expanded model has P covariates. The new parameter vec-

tor is denoted by θ = (β, ν) = (β1, β2, · · · , βP , ν1, ν2, · · · , νP )′. The partial likelihood function of the

expanded model is denoted by L1(θ). The score test evaluates the score function and information ma-

trix at the estimate of θ under the null hypothesis (ie, ν1 = 0, . . . , νP = 0), which is given by θ̂0 =

(β̂1, β̂2, · · · , β̂P , ν̂1 = 0, ν̂2 = 0, · · · , ν̂P = 0)′, where the β̂ = (β̂1, β̂2, · · · , β̂P )′ is indeed the estimate of β
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in the reduced Cox PH model (under the null hypothesis). The score function evaluated at θ̂0 is given by

U1(θ̂0) =
∂ logL1(θ)

∂θ |θ̂0= (∂ logL1(θ0)
∂β1

, · · · , ∂ logL1(θ)
∂βP

, ∂ logL1(θ)
∂ν1

, · · · , ∂ logL1(θ)
∂νP

) |θ̂0 . The θ̂0 = (β̂, ν = 0) can be

regarded the maximizer of log(L1(θ)) under the restriction ν1 = 0, . . . , νP = 0. Following the argument with

the Lagrange multiplier optimization [86], we can see that the score vector U1(θ̂0) has the following form:

U1(θ̂0) = (0, 0, · · · , 0, u1, u2, · · · , uP ). (5.8)

Similarly, we also need to evaluate the information matrix at θ̂0, which is denoted by I1(θ̂0). The score test

statistic for testing the PH assumptions for all the covariates is given by

U′
1(θ̂0)I

−1
1 (θ̂0)U1(θ̂0). (5.9)

The above score statistic asymptotically follows a chi-square distribution with P degrees of freedom when

the PH assumption holds.

The score test for a single covariate can also be defined similarly by expanding the Cox PH model with

only a single xijpgp(tijp) term. The score test statistic for a single covariate follows a chi-square distribution

with 1 degree of freedom when the PH assumption holds.

5.3 Z-residuals

5.3.1 Definition of Z-residual and censored Z-residual

In this paper, we use Z-residual [19, 87] for detecting Non-PH in survival analysis. The key idea of Z-residual

is to replace the survival probability of a censored failure time with a uniform random number between 0

and the survival probability of the censored time. For fitting the Cox PH or AFT models with the shared

frailty, the normalized randomized survival probabilities (RSPs) for yij are defined as:

SR
ij(yij , δij , Uij) =

{
Sij(yij), if yij is uncensored, i.e., δij = 1,

Uij Sij(yij), if yij is censored, i.e., δij = 0,
(5.10)

where Uij is a uniform random number on (0, 1), and Sij(·) is the postulated survival function for tij given

xij . SR
ij(yij , δij , Uij) is a random number between 0 and Sij(yij) when yij is censored. It is proved that

the RSPs are uniformly distributed on (0, 1) given xi under the true model [19]. Therefore, the RSPs can

be transformed into residuals with any desired distribution. We prefer to transform them with the normal

quantile:

rZij(yij , δij , Uij) = −Φ−1(SR
ij(yij , δij , Uij)), (5.11)

which is normally distributed under the true model, so we can conduct model diagnostics with Z-residuals for

censored data in the same way as conducting model diagnostics for a normal linear regression model. There

are a few advantages of transforming RSPs into Z-residuals. First, the diagnostics methods for checking

normal linear regression are rich in the literature. Second, transforming RSPs into normal deviates facilitates

the identification of extremely small and large RSPs. The frequency of such small RSPs may be too small to

be highlighted by the plots of RSPs. However, the presence of such extreme SPs, even very few, is indicative

of model misspecification. Normal transformation can highlight such extreme RSPs.

For checking the PH assumption, the censored Z-residual [19, 87] can be applied. Transforming survival
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probabilities using the quantile of standard normal distribution [50] defined as rnij(yij) = −Φ−1(Sij(yij)),

where yij is the observed failure time or censoring time. The diagnosis of the GOF of survival probabilities

can be converted to the diagnosis of the normality of the censored Z-residuals.

5.3.2 Checking PH assumption Based on Z-residuals

To detect Non-PH across all terms included in a survival model, we can assess the model’s overall goodness-

of-fit (GOF). A QQ plot of Z-residuals can be used to graphically evaluate the overall GOF. The Shapiro-

Wilk (SW) normality test, applied to Z-residuals, can be used to numerically test the overall GOF of the

model. Additionally, censored Z-residuals can be used to detect Non-PH in the survival model by assessing

the overall GOF of the model. The function gofTestCensored in R package EnvStats [51, 52] provides a

Shapiro-Franciards (SF) test for testing the normality of multiply censored data. Hence, gofTestCensored

can be applied to check the normality of censored Z-residuals (denoted by CZ) for checking the overall GOF

of survival models. The overall GOF test methods used for detecting Non-PH across all terms are denoted

as “R-T” with ”R” denoting residual name and ”T” denoting test method. For example, Z-SW is the test

method in which the normality of Z-residuals is tested using the SW test. The CZ-CSF method tests the

normality of censored Z-residuals using an extended SF method for censored observations.

The conditional distribution of Z-residual given xi is approximately a standard normal and is homogeneous

at varying levels of covariates when a model is correctly specified. The plot of Z-residuals against linear

predictors can be considered another graphical diagnostic method to assess the model’s overall GOF for

detecting Non-PH. When the PH assumption is tenable, we expect that there is no trend in these scatterplots.

Moreover, the plot of Z-residuals against covariates can be used for checking the individuals’ covariate effect

of the PH assumption. Only such a graphical examination is difficult to determine whether the observed trend

in Z-residuals is caused by chance or by the violation of the PH assumption. Therefore, we desire a formal

test to quantify the statistical and practical significance of the difference between the observed trend and the

expected horizontal line at 0. To this end, we propose the following diagnostic procedure. The Z-residuals can

be divided into k groups by cutting the covariates or linear predictors into equally-spaced intervals. We can

check whether the Z-residuals of the k groups are homogeneously distributed using the scatterplot to detect

Non-PH. The homogeneity will be expected that the Z-residuals are randomly scattered without showing

differential means or variances in groups. Numerical methods to assess the homogeneity of such grouped

Z-residuals are to test the equality of group means and the equality of group variances of the Z-residuals.

We apply the F-test in ANOVA to test the equality of means of grouped Z-residuals and Bartlett’s test

to test the equality of variances of grouped Z-residuals. These proposed quantitative methods for checking

the PH assumption are also given a short nomenclature for ease of reference. Z-AOV-LP and Z-BL-LP are

the methods of applying ANOVA and Bartlett to examine the equality of the means of Z-residuals against

the groups formed with the linear predictor (LP). For a specific covariate, Z-AOV-x1, Z-AOV-x2, Z-BL-x1

and Z-BL-x2 are the methods of testing the equality of the means and variances of Z-residuals against the

covariates x1 and x2, respectively.

5.3.3 A P-value Upper Bound for Assessing Replicated Z-residuals GOF Test

p-values

A difficulty in conducting statistical tests with Z-residuals is the randomness in the test p-values. Given a

fitted model, we can generate many sets of Z-residuals and obtain replicated test p-values. According to the
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distribution of order statistics of correlated random variables [61, 62], we can obtain the following inequality

for the rth order statistics p(r):

P (p(r) < t) ≤ min

(
1, t

J

r

)
. (5.12)

Based on (5.12), a p-value upper bound for observed (simulated) rth statistics pobs(r) is given by min
(
1, pobs(r)

J
r

)
.

To avoid the selection of r, we report the minimal upper bound for r = 1, . . . , J , denoted by pmin:

pmin = min
r=1,...,J

min

(
1, pobs(r)

J

r

)
. (5.13)

The pmin is rather conservative for assessing model fit because of its generality. When a model has a small

pmin, it is highly suspected that the model can be improved to better fit the dataset. Considering the

conservatism of pmin, a rule of thumb for declaring model failure in practice should be much larger, say 0.25

as suggested by Yuan and Johns [63], than the conventional 0.05 for exact p-values.

5.4 Simulation Studies

5.4.1 Detection of Non-PH Due to Time-varying Covariate Effects

In this section, we present simulation studies to demonstrate the effectiveness of Z-residual in detecting Non-

PH due to time-varying covariate effects. The Cox PH model can be extended by incorporating random

effects (frailties) [11], where the frailties are common or shared among individuals within a cluster or group

[1–4]. We generate the failure times from a Cox PH model with shared frailty with the following hazard:

hij(t) = zi exp
(
β1x

(1)
ij + β2(t)x

(2)
ij

)
h0(t). (5.14)

Two covariates are generated including x
(1)
ij and x

(2)
ij from a normal with mean 0 and standard deviation 2,

where β1 = 0.3, β2(t) = βa for t < π/2 and β2(t) = βb for t ≥ π/2. We generate the true failure times

from a Weibull regression model with shape parameter (α=3) and scale parameter (λ=0.007); then the data

generator is given by

tij =



{
− log(vij)

λzi exp
(
β1x

(1)
ij +βax

(2)
ij

)}(1/α)

,

if − log(vij) < ziλ exp
(
β1x

(1)
ij + βax

(2)
ij

)
(π/2)α,{

− log(vij)−ziλ exp
(
β1x

(1)
ij +βax

(2)
ij

)
((π/2)α)+ziλ exp

(
β1x

(1)
ij +βbx

(2)
ij

)
((π/2)α)

ziλ exp
(
β1x

(1)
ij +βbx

(2)
ij

) }(1/α)

,

if − log(vij) ≥ ziλ exp
(
β1x

(1)
ij + βax

(2)
ij

)
(π/2)α,

(5.15)

where i = {1,· · ·, g} and j = {1,· · ·, ni} and a random number vij is simulated from Uniform[0, 1]; the

frailty term zi is generated from a gamma distribution with a variance of 0.5. The censoring times cij is

simulated from an exponential distribution, exp(7.5), so that the censoring rate is about c ≈ 50%. Then, the

observed survival time is equal to min(tij , cij). We have two simulation settings. The first simulation setup

is that the data with time-varying effects (βa ̸= βb). We generate datasets with varying degrees of Non-PH

by setting the covariate effects (βa, βb) ∈ {(0.35,−0.35), (0.65,−0.65), (1,−1), (1.35,−1.35)}, to investigate if

the performance of Z-residual depends on the degree of Non-PH. We name this dataset as time-varying data.
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For the second simulation setting, we set βa = βb to obtain the datasets with time-constant covariate effect,

by setting the covariate effects (βa, βb) ∈ {(0.35, 0.35), (0.65, 0.65), (1, 1), (1.35, 1.35)}. The dataset is named

time-constant data. We consider fitting the Cox PH model with shared frailty with the time-varying data

and time-constant data to investigate the power of Z-residuals compared to conventional diagnostic tools for

detecting Non-PH. For each pair of (βa, βb) in two simulation settings, the data size is fixed as 10 clusters

of 50 observations with the censoring rates c ≈ 50%, we then generated 1000 datasets for estimating model

rejection rates using different residual diagnostic methods.

We first present the results of graphical methods for checking the PH assumption across all covariates in

two simulated datasets, one with time-constant effect βa = βb = 1.35, and the other with time-varying effect

βa = 1.35 and βb = -1.35. As shown in the panels of the first row of Figure 5.1, the QQ plot of the Z-residuals

for the time-constant data aligns well along the 45◦ straight line, but the QQ plot for the time-varying data

indicates the deviation of Z-residuals from the normal. The second and third rows of Figure 5.1 display the

scatterplots of Z-residuals against the linear predictor. Under the time-constant data, the Z-residuals are

mostly bounded between -3 and 3 as the standard normal deviates without any discernible pattern, with the

LOWESS curve roughly horizontal around 0. Under the time-varying data, a slight non-linear pattern in the

Z-residual scatterplot is observed, and the smoothed LOWESS curve in the residual plot deviates slightly

from a horizontal straight line. In the third row, Z-residuals was divided into k = 10 groups by cutting the

linear predictors into equally spaced intervals. The boxplots of the grouped Z-residuals indicate that the

Z-residuals are homogeneous across groups under the time-constant data, but exhibit varying group means

and variances under the time-varying data.

We further checked the scatterplots and boxplots of Z-residuals against x1 and x2 under the time-constant

and time-varying datasets, as shown in Figures 5.2 and 5.3. Under the time-constant data, the scatterplots

of Z-residuals against x1 and x2 are randomly scattered without exhibiting any pattern with the LOWESS

curves roughly a horizontal line at 0. Under the time-varying data, the scatterplots of Z-residuals against x1

are mostly bounded between -3 and 3 as standard normal deviates with a roughly straight LOWESS line.

However, the Z-residuals against x2 clearly exhibit a pattern with a downward trend in the LOWESS curve

as x2 increases. We further divided Z-residuals into k = 10 groups by cutting x1 and x2 into equally spaced

intervals, respectively. Under the time-constant data, the boxplots of Z-residuals against x1 and x2 across

all the groups are fairly homogeneous. For the time-varying data, the Z-residuals against x1 for each group

are homogeneous across groups, but the group means of Z-residuals decrease as the x2 increases. These plots

suggest that the PH assumption is violated for the covariate x2 in the time-varying data.

As a comparison, we also show the performance of scaled Schoenfeld residuals for checking the PH assump-

tion in the time-constant and time-varying datasets. If the PH assumption holds, we expect a horizontal line

in a plot of the scaled Schoenfeld residuals against the observed survival time. Figure 5.3 shows the scaled

Schoenfeld residuals for covariates x1 and x2 against observed survival time under the time-constant and

time-varying datasets, respectively. Under the time-constant data, the scaled Schoenfeld residuals against

the covariates x1 and x2 show that the smoothed LOWESS curves deviate little from horizontal lines, sug-

gesting the validity of the PH assumption. Under the time-varying data, the plot of the scaled Schoenfeld

residuals for the covariates x1 shows randomly scattered with a roughly straight smoothed LOWESS line;

however, the scaled Schoenfeld residuals for the covariates x2 clearly show a pattern with a curved smoothed

LOWESS line. These plots suggest a non-constant hazard ratio for the covariate x2 under the time-varying

data.

In addition to the graphical checking, we also examine the performances of numerical tests introduced in
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Figure 5.1: Performance of the Z-residuals as graphical tools for checking the violation of the global
PH assumption due to time-varying effect. The dataset was generated with 10 clusters of 50 observa-
tions in each cluster and a censoring rate c ≈ 50%.84
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Figure 5.2: Performance of the Z-residuals as graphical tools for checking the violation of the PH
assumption for covariate x1 due to time-varying effect. The dataset was generated with 10 clusters of
50 observations in each cluster and a censoring rate c ≈ 50%.
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Figure 5.3: Performance of the Z-residuals as graphical tools for checking the violation of the PH
assumption for covariate x2 due to time-varying effect. The dataset was generated with 10 clusters of
50 observations in each cluster and a censoring rate c ≈ 50%.

86



0 5 10 15 20 25

−
2

−
1

0
1

2
3

4

Time−constant Data

Event Time

B
et

a(
t)

 fo
r 

x1

Score Tests p−value = 0.58

0 5 10 15

−
2

−
1

0
1

2
3

4

Time−varying Data

Event Time

B
et

a(
t)

 fo
r 

x1

Score Tests p−value = 0.19

0 5 10 15 20 25

−
4

−
2

0
2

4

Time−constant Data

Event Time

B
et

a(
t)

 fo
r 

x2

Score Tests p−value = 0.96

0 5 10 15

−
4

−
2

0
2

4

Time−varying Data

Event Time

B
et

a(
t)

 fo
r 

x2

Score Tests p−value = 0.00

Figure 5.4: Scaled Schoenfeld residuals for the covariates x1 and x2 with 95% confidence interval.
The dataset was generated with 10 clusters of 50 observations in each cluster and a censoring rate
c ≈ 50%.
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Figure 5.5: Rejection rates of various statistical tests based on Z-residual and score test. A model is
rejected when the test p-value is smaller than 5%. Note that we use a random Z-residual test p-value
rather than the pmin.

Section 3.2 for detecting Non-PH based on Z-residuals. For demonstrating the performances of the numerical

tests using Z-residuals and score tests, we replicated the time-constant and time-varying datasets 1000 times.

Under each scenario, the rejection rate of each test method was estimated as the proportion of the test

p-values less than 0.05 for the tests based on the residuals from fitting a Cox PH regression model to the

simulated datasets. The rejection rates of the overall GOF tests for the global test of the PH assumption

methods are shown in the first plot of Figure 5.5. The global test of the PH assumption methods, including

Z-SW, CZ-CSF, Z-AOV-LP, Z-BL-LP and score tests, have false-positive rates (reject PH models when PH

models are true models) close to the nominal level of 5% for all scenarios and have increased power (reject

PH models when Non-PH models are true models) when the degree of Non-PH is moderate to strong. We

also note that the power of detecting Non-PH increases as the degree of Non-PH increases. Moreover, the

powers of the overall Z-SW, CZ-CSF and Z-BL-LP tests are significantly greater than the power of the global

score test and Z-AOV-LP test. The second plot of Figure 5.5 shows the rejection rate for the covariate x1

under the time-constant and time-varying datasets. The Z-AOV-x1, Z-BL-x1 and score tests methods for the

covariate x1 under the time-constant and time-varying datasets have low false-positive rates and powers; the

rejection rate of Z-BL-x1 method is slightly higher than the rejection rates of others under the time-varying

data. The third plot of Figure 5.5 shows the performances of the Z-AOV-x2, Z-BL-x2 and score test methods

for the covariate x2 under the time-constant and time-varying datasets. Under the time-constant data, the

false positive rates for all methods are close to the nominal level of 5%. Under the time-varying data, the

power of score tests, Z-BL-x2 and Z-AOV-x2 increase as the degree of Non-PH increases; but the powers of

the score test and Z-BL-x2 is higher than the power of Z-AOV-x2 method when the degree of Non-PH is

severe. Therefore, the PH assumption for the covariates x2 has been violated under the time-varying data.

5.4.2 Detection of Non-PH Due to Accelerated Failure

In this section, we investigate the performance of the Z-residuals for detecting Non-PH due to accelerated

failure time. The covariate xij is generated from a normal distribution with mean 0 and standard deviation 1.

The frailty term zi = exp(ui) is generated from a gamma distribution with a variance of 0.5. The accelerated

failure model (AFT) with shared frailty can be fitted if the baseline hazard function is fully specified [11]. We

generate the true failure times from the Lognormal AFT regression model with shared frailty with parameters
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mean µ=0 and standard deviation σ, then the data generator is given by:

tij =
1

exp(xij + ui)
exp
(
σϕ−1(vij) + µ

)
, (5.16)

where i = {1,· · ·, g} and j = {1,· · ·, ni} and a random number vij was simulated from Uniform[0, 1]. The

censoring times cij were generated from exp(3.8) to obtain the censoring rate c ≈ 50%. The Lognormal AFT

model with shared frailty of parameter σ was set to three different values 1, 1.5, and 2, to investigate if the

performance of Z-residual depends on the different parameter values. These datasets are named Lognormal

AFT data. We then generate another failure time from the Weibull Cox PH regression model with shared

frailty with a shape parameter of 0.48 and scale parameter of 1.67, then the data generator is given by:

tij = (
− log(1− vij)

λ exp(−(xij + ui))
)1/α (5.17)

where i = {1,· · ·, g} and j = {1,· · ·, ni}, and a random number vij is simulated from Uniform[0, 1]. The

censoring times cij were generated from exp(0.2), which can obtain the censoring rates c ≈ 50%. This

dataset has been named Weibull PH data to differentiate it from the previous dataset. We fixed the number

of clusters g=10 and cluster size ni to be 50 with the censoring rate c ≈ 50%. For each parameter setting,

we generated 1000 datasets for estimating the rejection rates of different diagnostic methods. We consider

fitting these datasets with a Cox PH model with shared frailty.

The performance of graphical methods based on Z-residuals for detecting Non-PH was first evaluated on

two single simulated datasets from Lognormal(0, 1) and Weibull(0.48, 1.67), respectively. The first row of

Figure 5.6 displays the QQ plot of Z-residuals under the Lognormal AFT and Weibull PH datasets. The QQ

plot of the Z-residuals for the Weibull data aligns well along the 45◦ straight line. By contrast, there are

observable deviations from the diagonal line in the lower tail of the QQ plot of Z-residuals for the Lognormal

dataset, indicating a clear violation of the global PH assumption. In the second and third rows of Figure 5.6,

scatterplots of Z-residuals and boxplots of Z-residuals by cutting the linear predictor into 10 equally spaced

intervals against the linear predictor are displayed. The residuals are mostly bounded between -3 and 3 and

without any discernible pattern for both the Weibull PH and Lognormal AFT datasets. The Z-residuals

are homogeneous across groups under both datasets, as indicated in the boxplots. Similar evaluations were

carried out for the scatterplots and boxplots of Z-residuals against the covariate x as displayed in Figure 5.7.

The results are mostly bounded between -3 and 3 with a roughly straight LOWESS line in the scatterplots,

and the boxplots show that the Z-residuals across all groups are homogeneous under both datasets. These

results suggest that the global Non-PH assumption is violated in the Lognormal AFT dataset.

We demonstrate the use of scaled Schoenfeld residuals for checking the PH assumption in the Lognormal

AFT and Weibull PH datasets. The plots of the scaled Schoenfeld residuals against the observed survival

time for covariates x under the Lognormal AFT and Weibull PH datasets are shown in Figure 5.8. The

points appear randomly dispersed without exhibiting any pattern and the smoothed LOWESS curves only

slightly deviate from horizontal lines. Therefore, the plots of scaled Schoenfeld residuals can not clearly

detect Non-PH under both datasets.

The estimation of the rejection rate was performed by generating 1000 datasets (n = 500 and censoring

percentage ≈ 50%) from different Lognormal AFT models, including {Lognormal1(0, 2), Lognormal2(0, 1.5),

Lognormal3(0, 1)}, and Weibull PH model with the parameter (0.48, 1.67). The results are presented in

Table 5.1. The performance of several tests for checking the overall PH assumption, including Z-residuals
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Figure 5.6: Performance of the Z-residuals as graphical tools for detecting global Non-PH due to
accelerated failure time. The dataset was generated with 10 clusters of 50 observations in each cluster
and a censoring rate c ≈ 50%. 90
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Figure 5.7: Performance of the Z-residuals as graphical tools for detecting Non-PH for covariate x
due to accelerated failure time. The dataset was generated with 10 clusters of 50 observations in each
cluster and a censoring rate c ≈ 50%.
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Figure 5.8: Scaled Schoenfeld residuals with 95% confidence interval for detecting Non-PH for the
covariates X.

and score test methods, was first evaluated. It was observed that the rejection rates for the Weibull PH data

were lower than the nominal level of 5% for all methods. For the Lognormal AFT datasets, the powers of

the Z-SW and CZ-CSF tests increased as the parameter decreased. The rejection rates with the Z-AOV-LP,

Z-BL-LP and score-G tests were very low under all Lognormal AFT datasets. Of all the methods considered

for checking overall PH assumption, Z-SW and CZ-CSF performed the best, achieving a high rejection rate

for the AFT Lognormal datasets and a low rejection rate for the Weibull PH dataset. Additionally, the

individual covariate effects on the PH assumption were investigated. For the Weibull PH data, the rejection

rates with the Z-AOV-X, Z-BL-X, and score-X tests remained at the nominal level of 5%. For all Lognormal

AFT datasets, the rejection rate with the score-X test method was higher than those with the Z-AOV-X, and

Z-BL-X tests, but only around 40%. Since the distribution shape of the model has changed due to accelerated

failure times, the PH assumption is not tenable for the overall model. The overall GOF tests, namely Z-SW

and CZ-CSF, demonstrate good power in detecting Non-PH under the Lognormal AFT datasets. Although

all models only contain one covariate x, the frailty terms could affect the results of the score test method. If

the score test method included the frailty term, the results of the overall PH check were lower than those of

the score test method for checking the individual covariate effect. However, this phenomenon did not occur

in the Z-residual method.

Table 5.1: Comparison of the percentages of model rejections based on Z-SW, score test for global
(Score-G), Z-AOV-X, Z-BL-X and score test for X (Score-X). The response variables are simulated
from varying models: AFT Weibull(0.48, 1.67), AFT Lognormal1(0, 2), AFT Lognormal2(0, 1.5), AFT
Lognormal3(0, 1), respectively.

Checking Overall GOF Checking Individual Covariate
Model Z-SW CZ-CSF Z-AOV-LP Z-BL-LP Score-G Z-AOV-X Z-BL-X Score-X

Weibull 0.8 0.3 3.4 4.3 0.1 3.8 4.5 5.0
Lognormal1 15.8 9.2 8.8 10.0 1.4 6.6 7.7 30.3
Lognormal2 44.5 46.1 10.7 14.0 1.1 7.0 12.2 38.0
Lognormal3 84.2 90.6 9.0 13.5 1.8 5.6 11.9 45.3
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5.5 Real Data Example

This section presents a real data application of detecting Non-PH using the proposed Z-residual diagnostics

tools. The dataset used for this illustration is from the diabetic retinopathy study [88] that followed 1742

patients with diabetic retinopathy in both eyes. One randomly selected eye in each patient was treated and

the other was untreated. The study was initiated in 1971 and followed over several years for the occurrence

of blindness in their two eyes. The study collected data on the time to blindness for diabetic retinopathy

and prognostic factors, including the treatment for which one randomly selected eye in each patient, how the

age at onset of diabetes affects the outcome, the type of laser used for treatment, and the type of diabetes.

More descriptions of these variables can be found in [88]. In our analysis, we selected 197 patients with 394

observations, which were previously analyzed by various authors [89–91]. Each patient is considered a cluster

due to the frailty shared between the two eyes. The censoring rate is 60.66% and is caused by death, dropout,

or end of the study. The outcome of interest is the time to blindness in months. The Cox PH model with

frailty and the AFT Lognormal model was fitted to this dataset.

This study was deemed exempt from ethics approval since the data utilized were publicly available in

Modelling Paired Survival Data with Covariates [88], and no personally identifiable information was collected

or used. This research adhered to the principles outlined in TCPS 2-2nd Edition of Tri-Council Policy

Statement: Ethical Conduct for Research Involving Humans [64].

The graphical of scaled Schoenfeld residuals and score test is demonstrated to provide adequate assess-

ments of the PH assumption in the Cox PH model with frailty when applied to the Diabetic Retinopathy

study dataset. It is important to note that these methods can only be applied to a Cox PH model. Figure

5.9 displays the scaled Schoenfeld residuals for each covariate against the event time, to detect a violation of

the PH assumption. The smoothed curves in the plots show little deviation from horizontal lines, indicating

that the PH assumption is not violated for each covariate. The score test gives p-values of 0.18, 0.24, 0.34

and 0.18, respectively, for each particular covariate. Moreover, the global score test produced a p-value of

1.00, as shown in Table 5.2. These results suggest the validity of the PH assumption in the Cox PH model

with frailty.

Using Z-residuals, we first present the results of graphical checking and the overall PH testing for the

Cox PH model with frailty and the Lognormal AFT model. The first row of Figure 5.10 displays the QQ

plot of the Z-residual for these two models. The QQ plot of Z-residual for the Cox PH model with frailty

deviates from the 45◦ straight line in the upper and lower tails, while the plot for the AFT Lognormal model

aligns well with the 45-degree line. The Z-SW tests give p-values of 0.00 and 0.78 for the Cox PH model with

frailty and the AFT log-normal model, respectively, supporting the results of the graphical checking. The

second and third rows of Figure 5.10 show the scatterplots and boxplots of the Z-residuals against the linear

predictor. Under the AFT Lognormal model, the LOWESS curve appears to be a horizontal line at 0, and the

grouped Z-residuals appear to have equal means and variances across groups. In contrast, the Cox PH model

with frailty displays a pattern with a curved LOWESS curve and grouped Z-residuals with different means

across groups. To assess the statistical significance of the observed trends, we apply Z-AVO-LP and Z-BL-LP

to test the equality of the means and variances of the grouped Z-residuals. The Z-AVO-LP method gives

p-values of 0.00 and 1.00 for the Cox PH model with frailty and the AFT Lognormal model, respectively.

On the other hand, the Z-BL-LP method provides p-values of 0.00 and 0.75 for the two models, respectively.

The very small p-value of the Z-SW and Z-AVO-LP tests for the Cox PH model with frailty strongly suggests

that the PH assumption does not hold in this real application.
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Figure 5.9: Scaled Schoenfeld residuals for all covariates in the Cox PH model with frailty fitted to
the diabetic retinopathy study dataset. The dashed lines represent the 95% confidence interval.
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Table 5.2: AIC, p−values for the CZ-CSF test, pmin values for Z-SW, Z-AOV-LP and Z-BL-LP test
for the Cox PH and AFT Lognormal models, respectively, for the diabetic retinopathy study data.

Model AIC Score tests CZ-CSF p−value Z-SW pmin Z-AOV-LP pmin Z-BL-LP pmin

Cox PH 1703.391 1.00 0.0005 0.011 <0.00001 0.021
AFT LN 1674.423 - 0.336 0.817 0.999 0.999

Table 5.3: pmin values for Z-AOV-Treat (Z-AOV-T), Z-BL-Treat (Z-BL-T), Z-AOV-Age (Z-AOV-
A), Z-BL-Age (Z-BL-A), Z-AOV-Laser (Z-AOV-L), Z-BL-Laser (Z-BL-L), Z-AOV-Diabete (Z-AOV-D)
and Z-BL-Diabete (Z-BL-D) test for the Cox PH and AFT Lognormal models, respectively, for the
diabetic retinopathy study data.

Model Z-AOV-T Z-BL-T Z-AOV-A Z-BL-A Z-AOV-L Z-BL-L Z-AOV-D Z-BL-D
Cox PH 0.995 0.066 0.998 0.995 0.998 0.995 0.990 0.259
AFT LN 1.000 0.935 1.000 0.993 1.000 0.993 1.000 0.426

We also verify the PH assumption for each covariate using Z-residuals. The scatterplots and boxplots of

Z-residuals against each covariate under these two models are shown in Figure 5.12 (in the supplementary

materials), and the results of statistical tests are displayed in the corresponding boxplots. The graphical

checking and statistical tests consistently demonstrate the validity of the PH assumption for each covariate.

The Z-residuals p-values are subject to randomness. Hence, to verify the robustness of the results, the

Z-residuals were randomly generated 1000 times to obtain 1000 replicated p-values for each test method.

The histograms of the 1000 replicated p-values for the overall PH check based on Z-residuals are shown in

Figure 5.11. The red vertical lines in these histograms indicate the upper bound of these replicated p-values,

pmin, which are presented in Table 5.2. As seen in the second column of the histograms, the p-values of

Z-SW, Z-AVO-LP and Z-BL-LP tests for the AFT Lognormal model are mostly greater than 0.05, resulting

in larger pmin values. Table 5.2 shows that the pmin values for each test method under the AFT Lognormal

model are close to 1. In contrast, the first column of the histograms displays that a large proportion of the

replicated Z-SW, Z-AVO-LP, and Z-BL-LP p-values under the Cox PH model with frailty are smaller than

0.05. Table 5.2 shows that the pmin values of the Z-SW, Z-AVO-LP, and Z-BL-LP tests for the Cox PH

model with frailty are significantly smaller than 0.05, further confirming that the PH assumption is invalid.

Figures 5.13 and 5.14 (in the supplementary materials) display the histograms of 1000 replicated Z-AOV-

Treat, Z-BL-Treat, Z-AOV-Age, Z-BL-Age, Z-AOV-Laser, Z-BL-Laser, Z-AOV-Diabete, Z-BL-Diabete tests

p-values, which show that a large proportion of p-values under these two models are greater than 0.05. Table

5.3 shows that all the pmin values for each covariate test method for diagnosing the two models(shown with

red lines in Figures 5.13 and 5.14) are larger than 0.05.

Furthermore, Table 5.2 also reports the non-random CZ-CSF test p-values for the two models and the

AIC values for comparing these two models. The p-value of the CZ-CSF test for the Cox PH model with

frailty is smaller than 0.05, while the p-value of the CZ-CSF test for the AFT Lognormal model is 0.336. The

AIC value of the AFT Lognormal model is 1674.423, and the AIC value of the Cox PH model with frailty

is 1703.391, indicating that the AFT Lognormal model provides a better fit to the data. This conclusion is

consistent with the results from the model diagnostics based on Z-residuals. Hence, all results provide strong

evidence that the Cox PH model with frailty does not fit the dataset well, but the AFT Lognormal model

performs better.
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Figure 5.10: The global PH assumption diagnostics results for the Cox PH model with frailty (left
panels) and the AFT Lognormal model (right panels) fitted to the diabetic retinopathy study dataset.
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Figure 5.11: Histograms of 1000 replicated Z-SW, Z-AOV-LP and Z-BL-LP p-values for the Cox PH
model with frailty (left panels) and the AFT lognormal model (right panels) fitted with the diabetic
retinopathy study dataset. The vertical red lines indicate pmin for 1000 replicated p-values. Note that
the upper limit of the x-axis for Z-AOV-LP p-values for the Cox PH model with frailty is 0.005, not
1 for others.
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5.6 Discussions and Conclusions

In many epidemiological and medical studies, diagnosis of the Cox regression model is simply through checking

the PH assumption. Schoenfeld residuals and score tests are commonly used graphical and quantitative

diagnostic tools for checking the PH assumption. However, those diagnostic tools for detecting Non-PH

were developed under the framework of the Cox regression model with time-varying covariate effects. In the

situation when the Cox regression model does not fit the data, those diagnostic methods may not adequately

detect Non-PH. In this paper, through extensive simulation studies, we showed that the power of the score

test is generally high when the Non-PH is due to time-varying covariate effects in a Cox regression model,

but it lacks power if the Non-PH is caused by other reasons, for instance, accelerated failure time.

To this end, we proposed the graphical and quantitative methods based on Z-residual to detect non-PH in

a survival model. We developed overall GOF tests based on Z-residual for detecting Non-PH across all terms

covariates included in a model, and also proposed non-homogeneity tests to test for trends in the Z-residuals

against each covariate in order to detect non-PH for an individual covariate. Our simulation studies show

that the overall GOF tests have high power and satisfactory type I error in detecting Non-PH due to both

time-varying covariate effects and accelerated failure times. Additionally, the non-homogeneity test for the

group variances of Z-residuals by the levels of the covariate values has high power in detecting Non-PH due

to time-varying effects for individual covariates. The real data analysis shows that the Z-residual diagnostics

successfully detected non-PH, which was not captured by the Schoenfeld residuals and score tests. Therefore,

we view the Z-residual diagnostic tool and these tools as complementary rather than competitive in checking

the PH assumption in the survival model.

For checking PH assumption, a number of diagnostics tools have been proposed in the literature as

well. Lin, et.al [92] proposed the cumulative sums of Martingale residuals to check the validity of the PH

assumption in the Cox Model. Lee, et. al [93] proposed model-checking tools based on the cumulative sums of

mean zero stochastic processes for testing the PH assumption graphically and analytically under the setting

of length-biased sampling. Scheike, et al [94] proposed new tests for testing the time-dependent effects of

the covariates in the proportional hazards model, in which the tests are a natural and integrated part of an

extended version of the Cox model. Comparing Z-residual for diagnosing the proportional hazard assumption

with these existing residual diagnostics tools warrants a research topic in the future.
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5.7 Additional Figures and Tables
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Figure 5.12: The PH assumption for each covariate diagnostics results for the Cox PH model with
frailty (left panels) and the AFT lognormal model (right panels) fitted to the Diabetic Retinopathy
study dataset. 100
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Figure 5.13: The histograms of 1000 replicated Z-AOV-Treat, Z-BL-Treat, Z-AOV-Age, and Z-BL-
Age p-values for the Cox PH model with frailty (left panels) and the AFT lognormal model (right
panels) fitted with the Diabetic Retinopathy study dataset. The vertical red lines indicate pmin for
1000 replicated p-values.
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Figure 5.14: The histograms of 1000 replicated Z-AOV-Laser, Z-BL-Laser, Z-AOV-Diabete and Z-
BL-Diabete p-values for the Cox PH model with frailty (left panels) and the AFT lognormal model
(right panels) fitted with the Diabetic Retinopathy study dataset. The vertical red lines indicate pmin

for 1000 replicated p-values.
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6 Discussions and Conclusions

6.1 Discussions

In this thesis, Chapter 2 investigated currently available R packages used for fitting shared frailty models.

The results showed that all packages provided similar and unbiased parameter estimates for fixed-effect

regression coefficients, regardless of cluster sizes and censoring rates. However, there were differences in the

estimation of the variance parameter for the frailty term, which was consistently underestimated for all R

packages. The bias was less pronounced as the censoring rate increased, but subject to more variability,

which leads to higher MSE. Increasing the number of clusters resulted in higher precision of the estimated

variance parameter of the frailty term. Convergence rates were over 97% in most packages, except for the

parfm and frailtyEM packages in the scenario with a small sample size and high censorship. Among all the

packages, the survival package was found to be the best choice for estimating frailty model parameters due

to its computational speed and high convergence rates in almost all simulation scenarios. However, it did not

provide an estimate of the standard error for the variance component of the frailty. The frailtyEM package

can be used instead of survival if the standard error of the frailty variance is required in a real application.

The study proposed a new approach to compute the confidence interval for the frailty variance using the

standard error of log
(
θ̂
)
, which was found to have a much higher coverage probability than the standard

error-based confidence interval. Most packages did not provide the standard error of log θ̂, and the proposed

approach provided a solution using the Fisher information approach. The study recommends adding this

approach to R packages to calculate a more reliable 95% confidence interval for the frailty variance in frailty

models. In summary, the survival package is the best choice for estimating frailty model parameters, and

the proposed approach can be used to compute a reliable confidence interval for the frailty variance. Other

packages, such as frailtyEM, parfm, frailtySurv, frailtyHL, and frailtypack, have their advantages and

disadvantages and can be used depending on the specific needs of the application.

After fitting a shared frailty model, residual diagnosis is crucial to verify the validity of the model assump-

tion. In Chapter 3, a diagnostic tool called Z-residual was developed to assess the covariate functional form in

semi-parametric shared frailty models, building on the concept of randomized survival probability. This diag-

nostic tool can provide both graphical and numerical tests for examining the covariate functional form in the

model. A general function was developed to calculate Z-residuals based on the output from the coxph func-

tion in the survival package in R. A non-homogeneity test was proposed to evaluate the trend in Z-residuals

for checking the covariate functional form. Our simulation studies showed that proposed non-homogeneity

tests based on Z-residuals were more effective in detecting misspecification in covariate functional form than

overall goodness-of-fit tests. In an analysis of a real dataset, Z-residual diagnostics revealed that a model

with log transformation was inappropriate for modelling the survival time of acute myeloid leukemia patients,

which was not detected by other diagnostic methods. The p-values obtained from Z-residual tests were found

to be random because of the randomization in generating Z-residuals, so a method for obtaining a p-value

upper bound pmin was described. Although pmin can be informative when the model departure is evident,
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it tends to be conservative, so the bootstrap method could be a more powerful alternative that warrants

future research. In addition, Lin et al. [57] proposed the cumulative sums of martingale residuals to check

the covariate functional form. Comparing the Z-residual with the cumulative sums of martingale residuals

tool warrants another research topic in the future.

Survival analysis typically calculates residuals based on the entire dataset. However, this approach can

lead to conservatism bias and hinder the ability to detect model fit inadequacy and outliers, particularly with

small sample sizes or high censoring rates. To address this issue, cross-validation methods can be used. In

Chapter 4, we developed cross-validation methods to compute Z-residuals for detecting model inadequacy

and identifying outliers in the context of shared frailty models. We created a general function that calculates

cross-validated Z-residuals using the output from the coxph function in the survival package in R. To

compare the performance of cross-validatory (10-fold and LOOCV) Z-residuals and No-CV Z-residuals for

the overall GOF test and outlier detection, we conducted simulation studies and applied the method to a

real dataset. The results showed that residual diagnosis without cross-validation tends to be conservative

for detecting model misspecification, while the CV method improves the power of the SW-test with Z-

residuals in detecting model inadequacy and identifying outliers. However, cross-validation may slightly

elevate the type-I error rates in SW tests with Z-residuals in shared frailty models. To address this issue,

we can explore methods for improving the computation of cross-validatory Z-residuals or conducting SW

tests with Z-residuals. Marginalizing the frailties when calculating the randomized survival probability could

potentially reduce the type-I error rates. Investigating the performance of methods for computing Z-residuals

with and without this marginalization could be a promising research topic for the future. Furthermore, since

the proposed cross-validatory residuals have the potential to diagnose various types of regression models, it

would be valuable to investigate their broader applicability in future research.

Previous studies on semiparametric shared frailty models have mostly assumed proportional hazards, but

when the model includes time-varying coefficients or time-dependent explanatory variables, the assumption

may not hold. Schoenfeld residuals and related tests are commonly used for diagnosing the proportional

hazards assumption, but these methods only consider a specific type of violation caused by time-varying

covariate effects. This limitation may affect the power of these methods to detect other types of violations,

such as accelerated failure time. In Chapter 5, we proposed graphical and quantitative methods based on Z-

residual to detect non-PH in survival models. We developed overall goodness-of-fit tests based on Z-residuals

to detect non-PH across all covariates terms included in a model and also proposed non-homogeneity tests

to test to identify trends in the Z-residuals against each covariate to detect non-PH for individual covariates.

Our simulation studies show that, compared to the score tests related to Schoenfeld residuals, the tests

based on Z-residuals have similar powers and type I error rates in the scenarios with time-varying covariate

effects, but significantly higher power in scenarios with accelerated failure time. Our analysis of real data

showed that the Z-residual diagnostics successfully detected non-PH, which was missed by the Schoenfeld

residuals and score tests. Therefore, we view the Z-residual diagnostic tools as complementary rather than

competitive in checking the PH assumption in survival models. Additionally, a number of diagnostic tools

have been proposed in the literature for checking PH assumption and comparing Z-residuals for diagnosing

proportional hazard assumption with other existing residual diagnostic tools warrants future research.
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6.2 Conclusions

This thesis extensively investigated currently available R statistical packages for fitting shared frailty models

and model diagnostic tools. The study found that the survival package is the best choice for estimating

shared frailty models due to its superior performance in terms of accuracy and efficiency. Additionally, the

thesis proposed a novel confidence interval for frailty variance estimates that can significantly enhance the

reliability of such estimates, and it is recommended that this interval be incorporated into future R packages

for frailty models. Furthermore, the study demonstrated the usefulness of the Z-residual as a diagnostic tool

for assessing model fit and model assumptions, such as detecting the functional form of covariates, outlier

detection, and proportional hazard assumption. The study also showed that the CV method can further

improve the power of Z-residuals in detecting model inadequacy and identifying outliers. Overall, this thesis

made significant contributions to the advancement of statistical methods for analyzing frailty models.
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Availability of R Code and Datasets

R functions for computing Z-residuals and cross-validatory Z-residuals for the coxph objects with demon-

stration examples and the datasets used in this thesis are available on github: https://github.com/tiw150/

Z-residual.git.
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