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Abstract

An intersection graph is a graph that represents some geometric objects as vertices, and joins edges

between the nodes corresponding to the items that intersect. The maximum clique in a geometric intersec-

tion graph is the largest mutually intersecting set of objects. In this thesis, the primary focus is to study

the maximum clique in various geometric intersection graphs. We develop three results motivated by the

maximum clique problem in the intersection graph of disks in the Euclidean plane. First, we improve the

time complexity of calculating the maximum clique in unit disk graphs from O(n3 log n) to O(n2.5 log n).

Second, we introduce a new technique called pair-oriented labelling. This method is used to show the NP-

hardness of finding a maximum clique in various geometric intersection graphs, acting as a way to augment

the commonly used co-2-subdivision approach. Finally, finding maximum clique in two classes of geometric

intersection graphs are proven to be NP-hard. These are the intersection graph of disks and axis-aligned

rectangles, and the outer triangle graph. The former is previously known to be NP-hard, and so this proof

represents the use of pair-oriented labelling in a problem that was otherwise considered difficult to prove

NP-hard using a co-2-subdivision approach. The outer triangle graph is a novel intersection graph, which

therefore provides new NP-hardness results for finding a maximum clique in geometric intersection graphs.
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1 Introduction

The maximum clique problem is one of the most prolific and well-studied problems in computer science ([6],

[12], [36], [39], etc). Much like a close-knit group of friends, the clique in graph theory represents the vertices

which are all “close” to one another. The maximum clique is a structure observed and studied in graphs. A

graph consists of a set of points or vertices V , and a set of connections or edges E which occur between vertices.

Often we use the vertices to represent some items, and the edges to represent some type of relationship among

these items. Given a graph G = (V,E), a clique is a set c of vertices such that any vertex in c has an edge

to every other vertex in c. More specifically, one is usually interested in the maximum clique of G, which is

the clique in G with the most (or tied for the most) vertices.

The notion of finding maximum cliques in graphs has led to applications in multiple topics such as

identifying communities in social networks [1], or predicting the loop of a protein structure [38, 8]. The

problem however is proven to be NP-complete in general graphs [31]. As a result, researchers are more often

interested in specific graph classes for which maximum clique may not be NP-hard, or graph classes in which

knowing the time complexity of calculating the maximum clique is of great interest. One such class of graphs

is intersection graphs.

An intersection graph is a class of graphs that are characterised by defining intersection over some set of

elements. Given a set S with n elements, we represent each element with a vertex. For any two elements a

and b, if they intersect, then we define the edge e = (a, b). Common examples of intersection graphs include

interval graphs, disk graphs, or segment graphs (Figure 1.1).

Figure 1.1: Three examples of a geometric graph, and their respective intersection graph. From left
to right we have an interval graph, disk graph, and segment graph.
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1.1 Motivation

In this paper, the primary focus is on the problem of finding the maximum clique in three different types of

intersection graphs. One class of particular interest is the disk graph, that is, the intersection graph of disks

(filled circles) in the plane. These disk graphs can be used to model specific wireless networks [28], among

other applicable problems such as radio networks, sensor networks, and map labelling [21].

The time complexity for finding a max clique of a general disk graph has been an open question for

over 20 years [3, 21]. This alone merits a high interest on the topic from a purely curious perspective.

Furthermore, this problem remains open even when significant restrictions are placed on the disk graph, such

as allowing exactly two types of disks [11], or when the disk radii are restricted to an interval [1, 1 + ϵ] for

some ϵ > 0 [4]. It is worth noting however that there exist some PTAS and subexponential-time algorithms

for computing the maximum clique in general disk graphs [4, 5]. A PTAS, or polynomial-time approximation

scheme, represents an algorithm which runs in polynomial time by approximating the solution by a factor

of (1 + ϵ), for any given ϵ > 0. Such algorithms may still run slowly, and so variations such as an efficient

PTAS (EPTAS), or deterministic PTAS (QPTAS), have also been explored. Bonamy et al. [4] provide a

randomized EPTAS, and Bonnet et al. [5] give a 2O(log5 n)-time QPTAS. A subexponential-time algorithm

represents an exponential-time algorithm whose exponent grows more slowly. Here, Bonnet et al. [5] develop

a 2O(n
2
3 )-time algorithm. These results represent the continuing fascination and difficulty of correctly solving

the long-standing open problem.

Generally speaking, these algorithms represent one of two ways in solving a difficult problem. As seen,

one method is to develop algorithms which aim to solve maximum clique in general disk graphs, at the cost of

efficient/exact algorithms. The alternative method then is to reduce the complexity of the general disk graph

by providing various restrictions, and then developing exact, polynomial-time solutions for these situations.

The most common such variation of study is the unit disk graph, where all disk radii are of unit length.

For calculating a maximum clique in a unit disk graph, the breakthrough result first came in [14], where

Clark et al. showed that a maximum clique can be found in O(n4.5)-time. The basic idea is to, for each disk

pair, use a structure knows as a lens, defined as the region of intersection between two disks, to calculate the

max clique assuming that the said disk pair is farthest apart in the clique. Later, Eppstein [16] showed how

the algorithm could be implemented in O(n3 log n)-time by leveraging the algorithm found in [2] to maintain

a maximum clique throughout the search for each instance of a disk. Beyond this, faster algorithms exist for

more constrained setups, such as when the centers of all disks are within a thin horizontal strip [9].

It is worth noting that the use of lenses to calculate the maximum clique does not depend on how the

disks are selected, or how the lenses are constructed. For example, the algorithm in [14] takes the simplest

approach of selecting all pairs of all disks. It may instead be possible to use the geometry of disk graphs to

develop a more efficient way to find or construct the lenses that are used. This line of reasoning acts as the

springboard to our first research question:
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Research Question 1 (RQ1): Does there exist an algorithm faster than O(n3 log n) for calculating the

maximum clique for a unit disk graph?

The unit disk graph is one of many intersection graph classes for which polynomial-time algorithms for

computing a max clique exist. Some various other results include trapezoid and circle trapezoid graphs [20],

intersection graphs of axis-parallel rectangles [29], the complement of outerstring graphs [7], and interval

graphs (provided it is an interval representation) [25]. There are similarly various graph classes for which

calculating the maximum clique is proven to be NP-hard. Some examples include opposite-angle string

graphs [36], ray intersection graphs [12], multiple interval graphs [23], and grounded string graphs [32].

A class of intersection graph are often shown to be NP-hard for computing a maximum clique by utilizing

a co-2k-subdivision of a graph. Let I be an intersection graph class. A 2k-subdivision, where k is a positive

integer, of a graph G is obtained by replacing each edge (u, v) of G with a path (u, d1, . . . , d2k, v) of 2k division

vertices. A co-2k-subdivision approach takes a graph class for which finding a maximum independent set is

NP-hard, and shows that the complement graph of its 2k-subdivision can be represented by some intersection

graph class I (Figure 1.2).

Figure 1.2: An input graph (Left), its 2-subdivision (Middle), and its final co-2-subdivision (Right).

As shown by Chleb́ık and Chleb́ıková [13], since the NP-hardness of computing a maximum independent

set is preserved by the even subdivision, and since a maximum independent set in a graph corresponds to a

maximum clique in the complement graph, this establishes the NP-hardness result for computing a maximum

clique in I. Some of the intersection graph classes for which the maximum clique problem has been proven

to be NP-hard using the co-2k-subdivision approach are: intersection graphs of ellipses and/or triangles [3],

filled ellipses and filled triangles [5], opposite-angle string graphs [36], ray intersection graphs [12], multiple

interval graphs [23] grounded string graphs [32], and so on.

Despite the widespread usage of a co-2k-subdivision approach, there is strong evidence that this method

may not be sufficient to prove the NP-hardness of computing maximum clique in a disk graph [5]. This turns

our attention to the work of Bonnet et al. [6], in which they attempted to explore intersection graphs of two

types of geometric shapes.

Specifically, they examined the problem of calculating the maximum clique of an intersection graph which

contains both unit disks and axis-aligned rectangles, or disk-axis graph. Bonnet et al. [6] showed that this

problem cannot be approximated within a factor of 7633010347/7633010348 in polynomial time, unless P=NP.

That is to say, calculating the maximum clique in a disk-axis graph is NP-hard, and even APX-hard. This
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result yields two points of interest. The first and most striking of these is that while the unit disk graph and

the axis-aligned rectangle graph are individually polynomial-time solvable [14, 29], their combination results

in a computationally hard problem. Second, their proof did not use a reduction from co-2k-subdivision, but

a new problem called Max Interval Permutation Avoidance, or MIPA for short. The basic idea of MIPA is

you are given as input a permutation σ on a set of n points represented by a perfect matching between the

points (1, 0), (2, 0), . . . , (n, 0) and (σ(1), 1), (σ(2), 1), . . . , (σ(n), 1) respectively. You are then given a set of

horizontal intervals with integer endpoints. The goal is to place each interval on the line y = 0 or y = 1

so as to maximize the total number of edges in the permutation with no endpoint in one of the positioned

intervals. We refer the reader to the original paper [6] for additional details.

Clearly, this does not resemble the commonly used co-2k-subdivision approach. This is further com-

pounded by the fact that, as the authors state, the disk-axis graph is “a class for which the co-2-subdivision

approach does not seem to work”.

The generally prolific and successful nature of co-2k-Subdivision lends itself a desire to standardize various

hardness proofs. Therefore it is interesting that there exists a hardness proof which not only uses a reduction

from a unique problem, but that the standard way of implementing co-2k-subdivision seems to be insufficient.

This produces our second research question:

Research Question 2 (RQ2): Can we leverage the co-2-subdivision technique to prove the NP-hardness

of finding the maximum clique for simpler intersection graph classes?

1.2 Contribution

The results of this thesis can be identified by three primary contributions to the computer science community:

Unit Disk Graph (RQ1): We give an algorithm to compute the maximum clique in a unit disk

graph (Fig. 1.3 (Left)) in O(n2.5 log n)-time, which improves the previously best known running time of

O(n3 log n) [16]. The algorithm is based on a divide-and-conquer approach that, unlike the previous algo-

rithms [14] that search for a clique over all possible lenses, shows how to efficiently merge solutions to the

sub-problems to achieve a faster time complexity. Such techniques have previously been used to accelerate

computation for other computational geometry problems, for example when finding the closest pair in a point

set [37]. This approach however appeared to be highly non-trivial while adapting it for the unit disk graph

setting.

Disk-Axis Graph (RQ2): We extend the co-2-subdivision approach to prove NP-hardness for com-

puting a maximum clique in an intersection graph that contains both unit disks and axis-parallel rectangles

(Fig. 1.3 (Middle)). This applies the co-2-subdivision approach in a situation which was previously thought

to be unlikely [6]. The key idea behind our NP-hardness reduction is to show that every Hamiltonian cubic

graph admits a well-behaved edge orientation and edge labeling. That is, its vertices can be labeled and

the edges can be oriented such that every vertex has two outgoing or two incoming edges where the labels
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of these corresponding neighbors are consecutive. While such orientation and labeling are of independent

interest, they allow us to represent the complement of the 2-subdivision of a Hamiltonian cubic graph using

a combination of unit disks and axis-parallel rectangles.

Outer Triangle Graph (RQ2): The outer triangle graph (Fig. 1.3 (Right)) is the intersection graph

of a set of triangles such that all triangles lie between two parallel lines, and exactly one side of each triangle

lies on one of the lines. This graph class shares a heavy similarity to the triangle graph and simple-triangle

graph. The triangle graph enforces that one vertex of the triangle lies on one line (the point), and the other

two vertices lie on the other line (the interval). The simple-triangle graph adds further restriction, as all

intervals must lie on one line, and all vertices must lie on the other line. This lends to their alternate names,

PI* and PI graphs respectively, referring to the point-interval structure between the two parallel lines. PI*

graphs are known to be NP-complete to recognize [34], whereas PI graphs can be recognized in polynomial

time [35]. The outer triangle graph then relaxes the idea that the third vertex of each triangle must line on

one of the parallel lines. In this paper, we prove that calculating the maximum clique in this variation is

NP-hard by employing the same approach used in the disk-axis graph.

Figure 1.3: An example of each of the three graphs for which results are created. (Left) A unit disk
graph. (Middle) A disk-axis graph. (Right) An outer triangle graph.

We present these results through the following sections organized as follows. Section 2 will detail the

preliminaries. Section 3 will conduct a literature review on the core ideas for each research question. Sections

4, 5, and 6 each represent the primary contributions to the unit disk graph, disk-axis graph, and outer triangle

graph respectively. Lastly, Section 7 will contain the conclusion.

1.3 Declaration

Throughout this document, the term “we” refers to the author and the reader following the theoretical

computer science norm for scientific writing. Part of these results have been published in proceedings of The

39th International Symposium on Computational Geometry (SoCG 2023) [17]. The Arxiv revision of the

paper can be found here [18].
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2 Preliminaries

Here we will introduce some definitions and terms which will be used throughout this thesis. All geometry

in this thesis is described in two-dimensional Euclidean space.

Let G be a graph. In this thesis all graphs are assumed to be undirected graphs. The only exception

to this is in Section 5 when orientations are applied to edges, forming a directed graph. Unless otherwise

stated, we will assume G = (V,E), where V is the vertex set of G, and E is the edge set of G. We will use

the notation n and m to denote |V | and |E|, respectively. An edge e of G is an unordered pair of vertices

in G. That is, if there exists an edge e between vertices a and b, then e may be described as (a, b). We

define G as the complement of G where G has the vertex set V = V . The edge set of G, is defined as

E = {(a, b)|(a, b) /∈ E, a, b ∈ V }. Additionally, for two points a and b we denote the line segment of a and b

as ab. The straight-line distance of ab is denoted as |ab|.

In this paper, all graphs we deal with are simple graphs. These are graphs which do not contain loops or

multiple edges. In another way, the edge (a, a) cannot exist, and the edges (a, b), (b, a) cannot both exist in

G. Additionally, Sections 5 and 6 perform constructions in the Cartesian plane, and its associated quadrants

1, 2, 3, and 4 will be referenced accordingly.

The subdivision of an edge e = (a, b) is an operation which inserts a new vertex on e between the vertices

a and b. If we subdivide e by inserting a new vertex c, the single edge (a, b) will be transformed into the

two edges (a, c) and (c, b). A k-subdivision of an edge performs the subdivision operation k times on it. We

similarly define the k-subdivision of G, meaning each edge of G is subdivided k times. We denote Subk(G)

as the graph which results from a k-subdivision of G. In a Subk(G) graph, the vertices introduced by the

subdivision are called division vertices, and those which are also in G are called original vertices. In this

thesis, we are interested in 2-subdivisions. Combining this with the complement, Sub2(G) is the complement

of the 2-subdivision of G. This transformation will be relevant in various sections.

We define Dr
q to be the disk D with radius r and center q. For the simplicity of the presentation, the

radius will be removed in certain contexts and will instead show Dq to denote a disk with center q. The terms

point, circle center, and center will often be used interchangeably depending on the context— particularly in

Section 4. Let Dp and Dq be a pair of disks. We define the lens of Dp and Dq, written as L(Dp, Dq), to be

the region of intersection between the two disks. The width of a lens refers to the intersection of line pq and

L(Dp, Dq).

The representation of a graph G details how the information of the graph is described. For example,

we can describe a unit disk graph by its geometric positions- each circle is defined in space with distinct
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coordinates. Alternatively, we could describe the same graph G only by its adjacency (say in an adjacency

matrix). However, given an adjacency matrix, it may not be obvious if it represents a unit disk graph or

not. In this way, the representation of G is important. For the majority of this thesis, we will assume that

any graph G is provided in a geometric representation unless otherwise stated. Note that deciding whether

a provided graph is a unit disk graph is an NP-hard problem [10], but if the geometric representation of a

unit disk graph is given, then its graph representation can be constructed in polynomial-time.

We will now list some relevant graph structures. The independent set is a set of vertices such that no

vertices in the set are connected by an edge. A matching is a set of edges which do not share any vertices.

It can be commonly seen as the independent set for edges. A vertex cover is a set of vertices such that each

edge has an endpoint in this set. The Hamiltonian cycle, of a graph is a cycle which visits each vertex exactly

once. Similarly, a Hamiltonian path is a path which visits each vertex exactly once.

There are some graph classes which are to be defined for the reader. A bipartite graph is a graph which

can be partitioned into two disjoint sets of vertices such that no two vertices within the same set are adjacent.

A co-bipartite graph is a graph whose complement is a bipartite graph. A string graph is the intersection

graph of a set of curves in the plane. A ray graph is the intersection graph of a set of rays (half-lines).

Similarly there is the segment graph, which is the intersection graph of line segments.
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3 Literature Review

In this literature review we will take a closer examination on the research questions. There will be two

main investigations. First, we will look at previous algorithms which calculate the maximum clique in unit

disk graphs. Then, we will look at results which implemented co-2-subdivision as a part of their NP-hardness

results for finding maximum clique.

3.1 Unit Disk Graph

Clark et al. [14] gave an O(n4.5)-time algorithm to compute the maximum clique in a unit disk graph G given

a geometric representation. The idea of the algorithm is as follows. Let r be the radius of a unit disk. For

each edge (x, y) of the graph, place two disks, D
|xy|
x and D

|xy|
y . That is, D

|xy|
x is a disk, not necessarily of

unit length, which has the same center as Dr
x. The same is true for D

|xy|
x . Then, D

|xy|
x and D

|xy|
y are placed

such that their boundaries pass through y and x, respectively. Let S be the set of unit disks with centers

in L(D
|xy|
x , D

|xy|
y ). Figure 3.1 illustrates an example. Clark et al. showed that the subgraph of G induced

by the vertices corresponding to S is a co-bipartite graph G(S). This is because, by the constricting size of

the lens, the upper and lower halves of L(D
|xy|
x , D

|xy|
y ) each form a clique. Therefore in the complement, the

upper and lower halves create two disjoint sets.

Dx

Dy

L(D|xy|
x , D|xy|

y )

Dy

Dx

x y yx

D|xy|
yD|xy|

x

Figure 3.1: (Left) A unit dish graph. Here, disks Dx and Dy are selected to create a lens. (Right)
The set S, represented by red dots.

One can thus find a maximum clique in G(S) by computing a maximum independent set in the bipartite

graph G(S). If (x, y) is a longest edge of a maximum clique M in G, then S must include all the centers of
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the disks in M , and G(S) will contain the largest clique in G. This is because any unit disk which is in M

but not in S would contradict our assumption that (x, y) have the longest edge in M . Therefore, one can try

the above strategy over all edges and find a maximum clique in G. Since G contains at most O(n2) edges

and since a maximum independent set in a bipartite graph can be computed in O(n2.5) time by leveraging a

maximum matching [27], the running time becomes O(n4.5).

Breu [9] observed that Clark et al.’s approach [14] to find a maximum clique can be implemented in

O(n3.5 log n) time using a result of Aggarwal et al. [2]. Specifically, Aggarwal et al. [2] showed how to

compute a maximum independent set in G(S) in O(n1.5 log n) time using a data structure of [26, 30]. Hence,

over O(n2) lenses the running time becomes O(n3.5 log n).

Eppstein [16] observed that while searching through the lenses, instead of computing the maximum

independent set from scratch, one can exploit geometric properties to efficiently update and maintain a

maximum independent set as follows. For a unit disk center p, let q be a point on the plane such that

|pq| = 2. Consider two disks Dp and Dq such that their boundaries pass through q and p, respectively. One

can now rotate the lens L(D
|pq|
p , D

|pq|
q ) around p and update the maximum independent set in the graph

corresponding to L(D
|pq|
p , D

|pq|
q ) each time a point (center of a unit disk) enters or exists from the lens. An

update can be processed by an alternating path search in O(n log n) time [2]. Since the number of changes

to L(D
|pq|
p , D

|pq|
q ) is bounded by O(n), the time spent for p is O(n2 log n). Hence the overall running time is

O(n3 log n).

3.2 Co-2k-subdivision

The co-2-subdivision approach has been used multiple times when it comes to proving that the maximum

clique in a specific intersection graph class is NP-hard [36, 12, 5]. As there are many graph classes for which

maximum independent set is NP-hard, there is a high level of selection when it comes to choosing a graph

class which can be reduced to the relevant problem for which a researcher wants to prove is NP-hard. Such a

reduction usually involves constructing an instance of the intersection graph class in question. We briefly view

some intersection graph classes for which co-2-subdivision was used to prove maximum clique is NP-hard.

Middendorf and Pfeiffer [36] were able to prove that finding maximum clique on opposite-angle string

graphs, and by extension string graphs, is NP-hard by a reduction on any graph G. The opposite-angle string

graph are string graphs in which each string is a line segment with exactly one of two types of bends in it.

Since maximum independent set is NP-hard in general [24], this construction follows quickly. The basic idea

is to layer strings with the same bend, creating two sets of layered strings, and then intersect the two sets

of strings as necessary. Although straightforward, this proof shows the benefit in layering objects so as to

permute their accessibility. Similar approaches may be observed in Sections 5 with the disks.

Finding maximum clique in the intersection graph of rays, and by extension segment graphs, was proven

to be NP-hard by [12]. The reduction comes from any planar graph G, which themselves are known to
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be NP-hard for calculating maximum independent set [24]. The basic construction of the proof involves

showing that if the planar graph contains a tree, among some additional conditions, then the graph can be

represented as a ray intersection graph by extending the representation of the tree to a new representation. If

the planar graph does not have a tree, then the authors prove any planar graph has an even subdivision which

decomposes into a tree. Interestingly, the work done by Cabello et al. [12] had settled a 21-year-old open

problem posed first by Kratochv́ıl and Nešetřil [33]. This is a notable result for closing the open problem,

but also identifying cases where a more strict graph class is required to use co-2-subdivision.

Bonnet et al. [5] prove that the intersection graph of filled ellipses, and the intersection graph of filled

triangles, contains all co-2-subdivisions. That is to say, the co-2-subdivision of any graph can be represented

by the intersection graph of filled ellipses, or the intersection graph of filled triangles. This result shows

that finding the maximum clique these intersection graphs is NP-hard. The distinction of a filled shape can

yield slightly different intersection graphs from that of its non-filled counterpart. The authors highlight this

difference by correcting a claim made by Ambühl and Wagner in [3], showing the filled and empty version for

ellipses can yield different representations. Still, both the filled and non-filled version of ellipses and triangle

intersection graphs all yield NP-hardness.
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4 The Disk Graph

In this section we present a O(n2.5 log n) polynomial-time algorithm which calculates the maximum clique

of a unit disk graph from its geometric representation. This algorithm uses a divide-and-conquer method,

recursively breaking down the problem until reaching a base case. The base case involves generating a

valid lens for each candidate disk by leveraging the assurances provided by the recursion. Once the lens is

generated, the maximum clique within the lens is calculated as in [14].

4.1 Idea of Algorithm

Here, we present an overview of the algorithm. Let G be a disk graph with n vertices, where each disk is of

radius r. Let P be the set of centers of the disks corresponding to the vertices of G. To find a maximum

clique we take a divide-and-conquer approach as follows.

We rotate the plane so that no two points are in the same vertical or horizontal line. It is straightforward

to perform such a rotation in O(n2)-time [15]. We sort the points in P with respect to their x-coordinates

and find a vertical line Z through a median x-coordinate such that at most ⌈n/2⌉ points of P are on each

half-plane of Z. Let Pl and Pr be the points on the closed left half-plane and closed right half-plane of Z,

respectively. We will find a maximum clique in Pl and Pr recursively.

Let M be a maximum clique in G. If the set of disk centers corresponding to M is a subset of either Pl

or Pr, then such a clique must be returned as a solution to one of these two sub-problems. Otherwise, M

contains points in both Pl and Pr. To tackle such a case, it suffices to find a maximum clique in the vertical

slab between the vertical lines Zl and Zr, where Zl and Zr are 2r units apart from Z on the left half-plane

and right half-plane, respectively. Let Q ⊆ P be the set of points in the vertical slab. Then the maximum

clique of G is the maximum clique found over the disks corresponding to the sets Pl, Pr and Q.

Let T (n) be the time to compute a maximum clique in G. Let F (n) be the time to compute a maximum

clique in the vertical slab. Then T (n) is defined as follows:

T (n) = 2T
(n
2

)
+ F (n). (4.1)

We now sort the points of Q with respect to their y-coordinates and find a horizontal line H through

the median y-coordinate such that at most ⌈|Q|/2⌉ points of Q are on each half-plane of H. Let Qt and Qb

be the points on the closed top half-plane and closed bottom half-plane of H, respectively. We now find a

maximum clique in Qt and Qb recursively. If the set of disk centers corresponding to M is a subset of either
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Qt or Qb, then such a clique must be returned as a solution to one of these two sub-problems. Otherwise,

each of Qt and Qb contains some points of M .

To tackle such a case, it now suffices to find a maximum clique in the square S of side length 4r with its

center located at the intersection point of Z and H with regions R1, R2, R3, and R4 (Figure 4.1). Let B(n)

be the time to compute the maximum clique in S. Then F (n) is defined as follows:

F (n) = 2F
(n
2

)
+B(n). (4.2)

Z

Zl Zr

Pl Pr

Q

Z

Zl Zr

Q

H

Qt

Qb

Pl Pr
Z

H

Zl Zr

4r

4r

R1R2

R3 R4

o

Figure 4.1: Here we detail an instance of the divide and conquer algorithm on P . (Left) The sets Pl

(left of Z), Pr (right of Z), and Q.

(Middle) Splitting the plane into 4 quadrants with the introduction of Qt and Qb, with Q cutting down the

middle. (Right) The calculated square S resulting from the previous steps.

In the following, we will show that a maximum clique in S can be computed in O(n2.5 log n) time.

Consequently, B(n) ∈ O(n2.5 log n). By extension, using Equation 4.2 and the master theorem, F (n) ∈

O(n2.5 log n). Therefore, the time complexity determined by Equation 4.1 is O(n2.5 log n). Note that com-

puting a maximum clique in the square S of side length 4r appears to be the bottleneck of our algorithm.

4.2 Square Base Case

The generated square S represents the base case of the algorithm. S is centered at V ∩H and is characterized

by four regions: R1, R2, R3, and R4, each of which are a 2r × 2r square. Observe that the maximum clique

of S must include a disk from diagonal regions R1 and R3, or from R2 and R4. Additionally, let o = H ∩ V .

That is, o represents the centre of S. Please refer to Figure 4.1 (Right) for an illustration. Here we go more

in depth as to how the maximum clique M is calculated for a given square S.

The algorithm considers two cases depending on whether all disk centers in S are within a distance of 2r

from o or not. It processes each case in O(n2.5 log n) time, and then returns the maximum clique found over

the whole process.

For the first case, we process disk centers which are within a distance of 2r from o. For each such disk

center q, the algorithm assumes it is the farthest disk center in M from o, and uses this assumption to
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generate a lens which includes M if the algorithm’s guess is correct. For the second case, we assume that at

least one disk center in M has a distance of more than 2r from o. For each such disk center p, the algorithm

guesses it is the farthest disk center in M from a unique disk D2r
a with center a. We use D2r

a to order the

points by moving its center a along a diagonal path towards o. The stopping position of D2r
a for each p helps

generate the lens which includes M if the algorithm’s guess is correct. The guesses are verified to be correct

by returning the largest max clique found over all guesses.

Each such lens can be generated in O(1) time, shown in more detail in Algorithm Square . Since the

corresponding intersection graph is a co-bipartite graph [14], a maximum clique in this graph can be com-

puted in O(n1.5 log n) time [2]. As we are guessing each disk center in S, the overall running time becomes

O(n2.5 log n).

This yields the following algorithm, with an associated walk-through in Fig. 4.2:

Algorithm Square

1. Assume a square S is given with centre o, a set of disks C, and a maximum clique M with M ⊆ C

(Fig. 4.2(a))

2. For each disk centre q which is within or equal to a distance 2r from o (Fig. 4.2(b)):

(a) Define two disks D2r
q , and D2r

a with center a. Then, position D2r
a such that the line segment qa is

of length 2r and passes through o

(b) Calculate the maximum clique in the lens L(D2r
q , D2r

a ) (Fig. 4.2(c))

3. Else there exists one disk center at distance greater than 2r from o. Then for each region Ri:

(a) Define a disk D2r
a . Consider the diagonal d of the region which has o as an endpoint. We place

a upon d such that |ao| = 2r(
√
2 − 1). That is, the border of D2r

a touches the end of the other

diagonal (Fig. 4.2(d))

(b) Move D2r
a along the diagonal until a coincides with o.

(c) For each disk centre p which intersects the border of D2r
q along its sweep in Ri (Fig. 4.2(e)):

i. Define a disk D2r
p

ii. Calculate the maximum clique in the lens L(D2r
p , D2r

a ) (Fig. 4.2(f))

4. Return the maximum clique M found in S

4.3 Proof of Correctness

Here we will prove the validity of Algorithm Square , as well as construct the complete algorithm to find the

maximum clique in a unit disk graph in O(n2.5 log n) time.

Let G be a unit disk graph. Consider a disk Dr
c with radius r and centre point c which is contained in
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o

R1R2

R3 R4

V

H

(a) (b)

2r

(c)

(e)(d) (f)

L(D2r
q , D2r

a )

D2r
q

D2r
a

D2r
a D2r

a

D2r
a

D2r
p

L(D2r
p , D2r

a )

Figure 4.2: (a) The input square and disk centers. For simplicity, we only consider disks in R2.(b)
The set of disk centers which the first process finds. (c) An example of the generated lens from one
of the disks. (d) The starting position of D2r

a for the second process in region R2. (e) The set of disk
centers the second process finds. (f) An example of the generated lens from one of the disks.

the max clique M . The strategy of this proof is to show that the solution set F , that is, a region generated

by Dr
c which contains the points of M , is a subset of the lens generated through Algorithm Square . To do

this, we will show that in both cases the disks which form the lens, namely one disk which is formed from

Dr
c , and one disk which is artificially added, D2r

a , are both safe choices for finding M . We begin this proof

as follows.

Lemma 4.3.1. Let S be the square generated by Algorithm Square and Dr
c be a disk with radius r and

centre c. If Dr
c ∈ M , then the lens generated by Dr

c ∈ S in Algorithm Square contains M .

Proof. Recall that the maximum clique of S must include a disk from diagonal regions R1 and R3, or from

R2 and R4. If our max clique exclusively involved two regions which are adjacent, then that clique would

have already been recursively solved from points contained in one of the sets Pl, Pr, Qt, or Qb. Next, we

consider two cases, depending on whether c is greater than a distance of 2r from o or not.

Case 1: c is within or equal to a distance of 2r from o: Observe that if c is in R1, then a must be

in R3. This is similarly true for R2 and R4. Recall that c is assumed to be the farthest point in M from o.

Any disk whose centre is in D2r
c is adjacent to c, and so our choice of D2rc is sufficient. It remains to show

the choice of D2r
a is sufficient.
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Without loss of generality, assume c is in R2. Let J be the circular region centered at o with radius |co|

(Figure 4.3 (Left)). Since Dr
c is assumed to be the disk farthest from o in the solution, it must be that our

solution set F is a subset of D2r
c ∩ J . We will now show F ⊆ L(D2r

c , D2r
a ), justifying the choice of D2r

a .

Assume for contradiction that there exists a disk Dr
k which is in F but not in L(D2r

c , D2r
a ). If k /∈ D2r

c ,

then by definition Dr
k cannot be adjacent to Dr

c . Instead, consider Dr
k ∈ (F ∩D2r

c ) \D2r
a . Since |co| ≤ 2r,

D2r
a will always at least be as big as J . Furthermore, since J and D2r

a are defined by Dr
c and lie on the same

line segment ca, it must be that D2r
a contains J , and by extension, F .

Since Dr
k cannot exist, we arrive at a contradiction and thus F ⊆ L(D2r

c , D2r
a ). This proves D2r

a is a safe

choice, and by extension, L(D2r
c , D2r

a ) contains M .

F

D2r
c

D2r
a

J

D2r
c

F

D2r
a

D2r
g

D2r
b

Figure 4.3: (Left) An illustration of Case 1. Here, the dashed circle represents J . (Right) An
illustration of Case 2. Observe in this example there exists a portion of the lens in R3 which lies
outside F . Without D2r

g , this portion would be incorrectly included in F .

Case 2: c is greater than a distance of 2r from o:

Without loss of generality, assume Dr
c resides in R2. Here, we will identify our solution set F by first

constructing two additional disks. Let D2r
g be the disk whose center is positioned at V ∩D2r

c . If there are two

choices for the position of g, choose the one closer to o. We similarly define D2r
b with its center at H ∩D2r

c .

Again, if there are two choices, we choose the one closer to o. For now, we assume that the solution set

corresponds to F = D2r
c ∩D2r

g ∩D2r
b (Figure 4.3 (Right)). It is obvious that the choice of D2r

c is safe as one

of the disks to generate our lens. It then remains to show that the choice of D2r
a is safe.

Because a, g and b lie on the boundary of D2r
c and their disks all have the same radius, their intersection

will be the two disks farthest apart. As D2r
a lies between the other two, it must be that F ⊆ D2r

a , and as an

extension F ⊆ L(D2r
c , D2r

a ). It must now be proven that our assumption of F = D2r
c ∩D2r

g ∩D2r
b is correct.
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Clearly, all disks apart of our maximum clique must intersect Dr
c , and so all disk centers must be contained

in D2r
c . Observe that D2r

c does not intersect R4. By our previous observation, it must be then that there is

at least one disk in R1, and at least one disk in R3, both of which intersect Dr
c . Furthermore, these disks

from R1 and R3 must intersect each other. This imposes a restriction as to how far apart disks from these

regions can be while still being apart of the maximum clique with Dr
c . For R1, the closest a disk can be to

R3 is represented by D2r
g . Similarly, D2r

b represents the closest a disk can be positioned in R3 to R1 while

still intersecting Dr
c . Therefore, any disk centre which does not intersect one of D2r

g or D2r
b cannot intersect

any disk in their associated region, and thus cannot be apart of the clique we are trying to determine. So,

the solution set must include the disks which intersect exactly D2r
g , D2r

b , and D2r
c .

Since the solution set is correct, and the choice of D2r
a is correct given the solution set, we can safely

conclude that L(D2r
c , D2r

a ) contains M . As all disks in S are handed by either of the above cases, for any

guess of Dr
c , we can correctly generate the lens which would contain its maximum clique M .

This proof culminates in the following algorithm and theorem.

Theorem 4.3.2. The maximum clique M of a unit disk graph G with a representation of n disks on the

Euclidean plane can be calculated in O(n2.5 log n) time.

Proof. Assume each disk is of radius r. Let P be the set of centers of the disks corresponding to the vertices

of G. Then, we can construct the maximum clique of G by the following algorithm:

Algorithm Unit Clique

1. Rotate the plane so that no two points are on the same vertical or horizontal line.

2. Sort P by their x-coordinate and partition P into two disjoint sets, Pl and Pr, by a vertical line Z

positioned at the median of P . Recursively find the max clique of Pl and Pr respectively.

3. Since M may contain disks from Pl and Pr, we merge Pl and Pr and keep the largest clique found by

the following subroutine:

(a) Create two additional vertical lines Zl and Zr at a distance −2r and +2r from Z and define a new

set Q, the set of disks between Zl and Zr

(b) Sort Q by their y-coordinate and partition Q into two disjoint sets, Qt and Qb, by a horizontal

line H positioned at the median of Q. Recursively find the maxi clique of Qt and Qb respectively.

(c) Since the max clique may contain parts of Qt and Qb, we merge Qt and Qb and keep the largest

clique found by the following subroutine:

i. Define a square S of size 4r centered at V ∩H

ii. Return the maximum clique found in S by running Algorithm Square

4. Return the maximum clique M found over steps (a)–(c)
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By the time analysis in Section 4.1, and the proof of correctness for Algorithm Square , it must be that the

time complexity of Algorithm Unit Clique is dominated by the subroutine in Algorithm Square . Therefore

Algorithm Unit Clique can calculate the maximum clique of a disk graph in O(n2.5 log n) time.

4.4 Summary

The primary bottleneck in the algorithm by [14] is the need to compare each disk against each other disk

to identify which disk pair is the farthest apart in the maximum clique. Instead, using a divide-and-conquer

algorithm, we inspect each element of the unit disk graph once. This was accomplished in two major ways.

Firstly, the restrictive geometry found within the square provided the resources to develop a lens using only

one assumed disk. This is because the lines Z and H are defined around medians of the unit disk graph and

allow us to predict where the “best” lens involving a unit disk must be. Put another way, a lens generated from

a disk Dr
c which does not follow the constructive methods found in Algorithm Square would be positioned

in such a way so as to exclude a better maximum clique with Dr
c being the farthest disk from it. This ties in

closely to the second major reason, which is the use of divide-and-conquer. By recursively partitioning at the

median, the square restricts a given area to the largest possible space a clique could occupy around V ∩H.

These ideas combine to provide a technique which need only guess one disk Dr
c at a time, as the guessing of

a second disk is avoided by already determining what a good lens formed with Dr
c would look like.

The opportunity to improve upon the running time of maximum clique in a unit disk graph is a strong

result in itself. More importantly, this algorithm provides more unique methods to solving disk graphs

in general. This result additionally opens the potential of applying similar methods to more general disk

graphs, or other variants of it. Hopefully, techniques such as divide-and-conquer, or more precise geometric

utilization, will continue to provide advances to solving the long standing open problem posed by Ambühl

and Wagner [3].
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5 Hardness for Disk-Axis Graph

In this section we will introduce a way to orient and label any Hamiltonian cubic graph in what we call a

pair-oriented labelling. This process employs additional restrictions to the typical co-2-subdivision technique.

In this section, we will define and provide an algorithm to construct a pair-oriented labelling. Furthermore,

we provide an application for this labelling via a reduction to Disk-Axis Clique. This is a known NP-hard

problem, however NP-hardness was previously thought difficult to be proved using co-2-subdivision. Using

pair-oriented labelling, we show that a careful ordering of the vertices allows for this problem to be solved

effectively with co-2-subdivision.

5.1 Pair-Oriented Labelling

Let G = (V,E) be a Hamiltonian cubic graph. For each edge e ∈ E, we assign e a label and an orientation.

We denote the label of e as L(e), where L(e) ∈ N. Note that no two edges may share the same label.

Furthermore, we denote the orientation of e as O(e), where O(e) is either an incoming or outgoing edge

relative to some vertex. A vertex is defined as satisfied if the following is true: there are two edges, e and u,

incident to v such that O(e) = O(u) relative to v, and that |L(e)− L(u)| = 1. We say G has a pair-oriented

labelling if there exists an orientation and labelling for each edge e ∈ G such that each vertex v ∈ G is

satisfied. We denote P (G) as a pair-oriented labelling for G, if it exists. Informally, P (G) has the property

that every vertex has two edges which have the same orientation and are consecutively labelled. Please refer

to the illustration in Figure 5.1 (Left)-(Middle).
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Figure 5.1: (Left) A Hamiltonian cubic graph. A Hamiltonian cycle h is highlighted by a dashed
line. (Middle) The resulting pair-oriented labelling. (Right) An updated drawing of the graph.

We now show that for any Hamiltonian cubic graph G, there existing a pair-oriented labelling of G.

Theorem 5.1.1. If G is a Hamiltonian cubic graph with, then a pair-oriented labelling, P (G), exists and
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can be calculated in polynomial time.

Proof. This proof will follow the format of a proof by construction, showing that there is a set of steps for G

which can always be taken satisfy to each vertex, and consequently, obtain P (G).

Let G = (V,E) be a Hamiltonian cubic graph with n vertices. Let h = v1e1v2e2 . . . vnen be a Hamiltonian

cycle in G with vi ∈ V , ei ∈ E, and 1 ≤ i ≤ n. If an edge e ∈ h, then we say e is a Hamiltonian edge.

Otherwise, e is a non-Hamiltonian edge.

We first orient the edges of h so that they form a directed cycle. That is, after forming the directed

cycle, each vertex of G has one incoming edge, one outgoing edge (both of which are Hamiltonian edges),

and one unoriented, non-Hamiltonian edge. For each unoriented edge, e = (vi, vj) with i < j, we orient e

as an outgoing edge relative to vi. Informally, this represents “combing” the non-Hamiltonian edges in one

direction. To help visualize this, the graph is represented with its vertices placed along the horizontal axis

(Figure 5.1 (Right)).

Observe that orienting the edges in this manner allows each vertex to have at least two edges of the same

orientation. This meets one of the conditions of a satisfied vertex. Then it remains to prove that the edges

can be labelled correctly provided this orientation. To do this, we will label the edges of G by an iterative

construction. This process is described below.

Let vk be the vertex with the smallest index k which has an unlabelled outgoing non-Hamiltonian edge.

We define the maximal bridge sequence of vk, denoted Sk, as the sequence of edges e1e2 . . . eq. Note that

in the maximal bridge sequence, edges do not need to follow their given orientation. Sk has the following

properties:

• Sk represents a path in G which starts at e1 and ends at eq. Here, q is an odd integer.

• The vertex which joins e1 and e2 is vk

• For all ei ∈ Sk, if i is odd, then ei is a Hamiltonian edge. If i is even, then ei is a non-Hamiltonian

edge.

• Let eiei+1ei+2 be a sub-sequence of Sk where i is odd with 1 ≤ i ≤ q − 2. Let v be the vertex which

joins ei and ei+1, and u be the vertex which joins ei+1 and ei+2. Then we have O(ei) = O(ei+1) relative

to v, and O(ei+1) = O(ei+2) relative to u. Figure 5.2 (Left) illustrates a of a sub-sequence of Sk.

Once the edge sequence for Sk has been found, we can label each edge in Sk, and then repeat this process

for the next vk until there are no more valid choices for vk.

We now turn to labelling the edges of Sk. Let a ∈ N be the largest label given so far in G. If no label is

given yet, a = 0. By labelling the edges of Sk = e1e2 . . . eq as a + 1, a + 2, . . . a + q, each vertex which has

two edges that appear in Sk will be satisfied. It remains to show that the iterative construction of maximal

bridge sequences will satisfy all vertices in G.
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Figure 5.2: (Left) An example sub-sequence found in some maximal bridge sequence. (Right) The
labelling for a sequences of edges found by the alternative labelling process A. (Bottom) The maximal
bridge sequence from u. Observe that u, w, v, p are all satisfied.

To accomplish this, consider an alternative labelling process A, described as follows. Let e be a non-

Hamiltonian edge with endpoints w and p. Since each vertex has at least one incoming and outgoing edge

due to the directed cycle formed with h, it must be that O(e) is one of the following. Either e is the second

income edge for w and the second outgoing edge for p, or e is the second outgoing edge for w and the second

incoming edge for p. Let e1 be the Hamiltonian edge with endpoint w such that O(e) = O(e1) relative to

w. Similarly, let e2 be the Hamiltonian edge with endpoint p such that O(e) = O(e2) relative to p. Then

labelling the sequence e1, e, e2 as a+ 1, a+ 2, a+ 3 satisfies both w and p. Figure 5.2 (Right) illustrates an

instance of A.

Recall that because G is a cubic graph, it has the relationship |E| = 3
2 |V |. Then there are |h| = |V | =

|E| − |V |
2 edges in h, and thus 1

2 |V | edges not in h. If we allow edges to have more than one label, then

the labelling scheme e1, e, e2 as a + 1, a + 2, a + 3 can be independently replicated 1
2 |V | times, once for

each non-Hamiltonian edge e. Therefore, the process A can satisfy all vertices in G if edges are allowed to

have multiple labels. We will now take A and adjust it so as to preserve its correctness, while removing

the assumption that edges can have two different labels. This adjustment will result in iterative finding and

labelling of maximal bridge sequences.

Assume we use A to label all edges in G accordingly. Observe that any edge in G which is labelled twice

this way would be an interior edge for some maximal bridge sequence Sk. Then, the number of sequences

created using A will never be greater then the number of maximal bridge sequences in G. Then for two

labelled sequences created by A, if both sequences share an edge, then the union of the sequences may be

relabelled as a+ 1, a+ 2, a+ 3, a+ 4, a+ 5. For example, in Figure 5.2, the orange edge acts as the source

to merge the blue sequence (Left) with the red sequence (Right) to form the purple sequence (Bottom).
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Additionally, the choice of vk means each maximal bridge sequence starts with a non-interior edge.

What this means is one can merge and relabel sequences from A so that no edge has two labels and that

each vertex which appears in these sequences remains satisfied. By repeatedly merging sequences from A

which share an edge until no edge is labelled twice, the resulting structure can be equivalently described by

some number of maximal bridge sequences. Therefore, with at most 1
2 |V | maximal bridge sequences, it is

possible to label all edges in G by an iterative construction of maximal bridge sequences. Since all vertices

are satisfied after finding all maximal bridge sequences, it is trivial to label the remaining edges.

This proof gives rise to an algorithm which can be used to find P (G). Assuming the Hamiltonian cycle

of G is given, we can construct P (G) in polynomial time. Please refer to Fig. 5.3 for an illustration.

Algorithm Pair Orient

1. Take as input a cubic graph G with a Hamiltonian cycle h and order the vertices appropriately

(Fig. 5.3(a))

2. Form a directed cycle from the edges in h (Fig. 5.3(b))

3. For each non-Hamiltonian edge e = (vi, vk) with i < k, let O(e) = outgoing relative to vi (Fig. 5.3(c))

4. While there is a vertex with an unlabelled, outgoing non-Hamiltonian edge: (Fig. 5.3(d)-(g))

(a) Identify the vertex with the smallest such index vk

(b) Calculate its maximal bridge sequence

(c) Label the edges in the sequence starting with the next available label

5. Label the remaining unlabelled edges arbitrarily (Fig. 5.3(h))

5.2 Relationship to Co-2-Subdivision

The purpose of pair-oriented labelling is to use the labelling and orientation calculated for the edges, and

transform that into a co-2-subdivision graph with additional information.

We will first describe the steps of transformation. Let G be a Hamiltonian cubic graph and P (G) be

the pair-oriented labelling of G. For each edge e = (u, v) with orientation O(e) and label L(e), define two

additional vertices, xL(e) and yL(e). Assume O(e) is an outgoing edge relative to one of its endpoints u. We

then perform a 2-subdivision on e by replacing the edge (u, v) with the path u, yL(e), xL(e), v. Recall Subk(G)

is the k-subdivision of G. By repeating this process for all edges, we transform an instance of P (G) into a

special instance of Sub2(G), called PairSub(G). The vertices added through subdivision encode additional

information by their labelling. This allows us to find PairSub(G), the special co-2-subdivision of P (G).

Figure 5.4 visualizes this process.
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Figure 5.3: (a) The input cubic graph. (b)-(c) Orienting the edges. (d)-(g) The creation of the
maximal bridge sequences and their labelling. (h)The computed P (G), with the last two labels added.

The Pair-Orient Max Clique problem is defined as follows. Given a Hamiltonian cubic graph G where

one of the Hamiltonian cycles is given, find a set of vertices that define the maximum clique of PairSub(G).

Note that the problem of finding the max independent set in a cubic graph is NP-complete even when the

Hamiltonian cycle is given as input [22]. Therefore, Pair-Orient Max Clique is NP-hard.

Given the graph PairSub(G), there are some useful properties about its structure that will be relevant

in using Pair-Orient Max Clique. Recall that for graphs involving subdivisions, we refer to the vertices

introduced in this process as division vertices. All other vertices are referred to as original vertices.

• P1: Each original vertex is adjacent to all but exactly three division vertices. These vertices will be

in one of two forms. Without loss of generality, these vertices will take the form xi, xi+1 and yj , with

i ̸= j and (i+ 1) ̸= j.

• P2: Each division vertex is adjacent to all but exactly one original vertex and one division vertex. The

division vertex it is not adjacent to will have the same subscript on its label. That is, if xi is a division

vertex, then it is not adjacent to yi.
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Figure 5.4: (Left) The input Hamiltonian cubic graph G. (Right) The calculated P (G). (Bottom)
The calculated PairSub(G).

These properties define the structure found in PairSub(G), and will be used in subsequent sections.

5.3 Application to Unit Disks and Axis Aligned Rectangles

In this section we will use pair-oriented labelling to show that the problem Disk-Axis Clique is NP-hard.

We define the problem Disk-Axis Clique as follows. Take as input a set of axis aligned rectangles R in the

plane, and a set of unit disks D in the plane. Let G be the intersection graph of the set {R∪D}. The goal is

to find a set of vertices in G which represent a maximum clique in G. We will show that Disk-Axis Clique

is NP-hard by performing a reduction from an instance of the Pair-Orient Max Clique problem.

It is already known that Disk-Axis Clique is NP-Hard, as shown in [6]. Therefore, this section aims

to accomplish two goals. First, to provide an NP-hardness proof using a reduction from Pair-Orient Max

Clique as a proof of concept for the technique. Second, to act as a response to the perceived difficulty

in showing Disk-Axis Clique is NP-hard using traditional co-2-subdivision methods. In particular, the

reduction from Bonnet et al. in [6] does not use a co-2-subdivision approach, as the authors believe it is

difficult to implement for this problem.

We will prove the following theorem:

Theorem 5.3.1. Finding the maximum clique in the intersection graph of unit disks and axis-aligned rect-

angles is NP-hard.

Proof. Let S be the intersection graph of unit disks and axis-aligned rectangles. Let g = (V,E) be a

Hamiltonian cubic graph and G = PairSub(g). We will employ a polynomial time transformation from an

instance of G to an instance of S. Note that this transformation holds similar structure to the one shown

in [6].

Let o be the origin of the Cartesian plane for which S exists in. Let d = |E|+1, where E is the edge set of

g. We define four rays, xd, x0, yd, and y0, which all start at o and pass through the positive x-axis, positive

y-axis, negative x-axis, and negative y-axis respectively. For each subdivision vertex in G with label xi, we

draw a line passing through the points (i, 0), and (0, d − i). Similarly, each subdivision vertex with label yi

passes through points (−i, 0) and (0, i− d). These arrangements of lines represent the set of division vertices
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from G. Observe that these sets of lines are arranged as a sail arrangement [19]. In this way, the set of lines

representing vertices with label xi are collectively referred to as X. We similarly define Y as the set of lines

representing the division vertices with label yi. Note that these lines will later be interpreted as half-planes,

and then eventually very large disks. Figure 5.5 displays the construction of X ∪ Y for an instance of S up

to this point.

o

x0

xd

y0

yd

x1

x2

x3

x4

x5

x6

y1

y2

y3
y4

y5

y6

Figure 5.5: Representation of the division vertices from G as lines in S. The set X contains the bold
lines, while the set Y contains the dashed lines. In this example, d = 7.

We now insert the axis-aligned rectangles into S, representative of the original vertices in G. For each

original vertex v, let vx and vy be points placed in quadrant 1 and quadrant 3 respectively. These two points

form opposing corners for the axis-aligned rectangle which represents v. The goal is to place vx and vy

carefully so that the resulting rectangle will preserve its adjacencies from G to S.

Consider the partition of quadrant 1 generated by X. Each of the resulting bounded regions can be

described by the lines which define it. For example, in Figure 5.5, the region closest to o can be identified as

the region bounded by x7, x0, x1 and x6. Each region can be uniquely identified this way. We can similarly
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define regions in quadrant 3 partitioned by Y . Then, without loss of generality, using property P1, for an

original vertex v, we will place vx in the region bounded by xi−1, xi, xi+1, xi+2, 1 ≤ i ≤ d − 2 and vy

in the region bounded by yj−1, yj , yj+1, 1 ≤ j ≤ d − 1. Observe that by the construction of v that vx is

bounded by a quadrilateral, and vy is bounded by a triangle. The placement of these vertices defines the

resulting axis-aligned rectangle associated with each original vertex from G. We may now consider the lines

representing division vertices as half-planes such that X ∩ o = ∅ and Y ∩ o = ∅. That is, the half-planes form

X and the half-planes form Y point away from the center. Finally, these half-planes can be approximated

by very large disks, completing the construction of S. A completed construction, and the associated graph

PairSub(G) can be seen in Figure 5.6.

It now remains to justify that this construction preserves the instance of G as an instance of S. To do so,

we will shows that properties P1 and P2 are preserved in the construction.

Preserving P1: First observe that because the placement of vx and vy are bounded by quadrant 1 and

3 respectively, the resulting axis-aligned rectangle must intersect o. Thus, all axis-aligned rectangles in S will

intersect o, and so the intersections of original vertices between one another are preserved.

Without loss of generality, it must be that the axis-aligned rectangle v intersects all but three division

vertices of the form xi, xi+1 and yj with i ̸= j and i + 1 ̸= j. Recall that by the construction of v that

vx is bounded by a quadrilateral, and vy is bounded by a triangle. Consider the arrangement of X and the

points which defined its initial construction. We have that the order in which these lines intersect the x-axis

(starting from closest to o) is x1, x2, . . ., x|E|. Therefore, the ray (vx, 270
◦) will intersect at least the lines

xa, xa+1, . . ., x|E| for some 1 ≤ a ≤ |E|. Similarly, the ray (vx, 180
◦) will intersect at least the lines xb, xb−1,

. . ., x1 for some 1 ≤ b ≤ a. These each represent a sequence of lines which v must intersect. It then remains

to show that xa and xb are xi+2 and xi−1 respectively (Fig. 5.7(Left)).

Notice b < i < i + 1 < a since if we instead assume that i < i+ 1 ≤ b < a or b < a ≤ i < i+ 1, then vx

would lie outside the quadrilateral defined by xi−1, xi, xi+1, xi+2. This contradicts the construction process.

Therefore, vx does not intersect xi or xi+1. Then by the position of vx, it must be that xa = xi+2 and

xb = xi−1. A similar deduction can be made for the arrangement of Y . Therefore v will intersect all lines

(disks) and rectangles except for exactly xi, xi+1 and yj (Fig. 5.7(Right)). This concludes the presence of

P1.

Preserving P2: For the line xi, its associated line yi is the only parallel line in S, and thus xi will

intersect all division vertices except for yi. When viewing these lines as very large disks, we may simply

choose sizes of disks which address all relevant intersections. For each line in S, it must intersect all but one

rectangle. This relationship is already implied through P1. This concludes the presence of P2.

By the above construction and justification, we have shown that finding the maximum clique in the

intersection graph of unit disks and axis-aligned rectangles is NP-hard by showing any instance of the Pair-

Orient Max Clique problem can be reduced in polynomial time into an instance of the Disk-Axis Clique

problem.
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Figure 5.6: (Top) The graph PairSub(G) with labelled vertices. (Bottom) The completed transfor-
mation to an instance of Disk-Axis Clique. Observe all four rectangles intersect the origin.
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Figure 5.7: (Left) A visualization of the two rays formed at vx. (Right) The highlighted intersections
and there respective order. In this example, a = 5 and b = 2.

5.4 Summary

The completion of this proof naturally extends itself to other variations of this problem being NP-hard. It is

easy to see how treating the disks as half-planes instead leads to an adjacent problem, which is also NP-hard.

Other straight-forward modifications which lend themselves to being NP-hard problems would be altering the

axis-aligned rectangles to triangles, where each axis-aligned rectangle is cut in half along the diagonal defined

by vx and vy so as to preserve the half of the triangle which intersects o. These modifications may also be

combined to show the graph of half-planes and triangles is also NP-hard. Other such adjacent problems may

exist. In each modification, the origin of the Cartesian plane is used as a kind of anchor point for a geometric

object, while the arrangement of lines, which bears similarity to mirrored sail arrangements [19], provides an

effective way to permute the various intersections.

Recall that Bonnet et al. showedDisk-Axis Clique to be NP-hard in [6] by a reduction from MIPA (Max

Interval Permutation Avoidance), a problem designed to solve Disk-Axis Clique. The authors state that

the co-2-subdivision approach is difficult in part because, traditionally, each rectangle will need to avoid three

arbitrary half-planes. What pair-oriented labelling enables is more control over where the third arbitrary

half-plane must be positioned, namely that it must be consecutive to one of the other half-plane which need

to be avoided. More generally, this displays that we can exploit the adjacency properties given in PairSub(G)

to simplify some maximum clique problems. In the case of Disk-Axis Clique, the sequential nature of two

of these half-planes needing to be avoided meant we could in a sense treat the pair as one larger, awkward

line segment to be avoided. These advantages show that encoding additional information into a traditional

co-2-subdivision approach allows for potentially more graphical intersection problems to be solved.
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6 Outer Triangle Graph Is NP-Hard

In this section, we will utilize pair-oriented labelling to demonstrate the hardness for calculating the

maximum clique in an outer triangle graph. As in Section 5, we will perform a reduction from Pair-Orient

Max Clique, this time to an instance of Outer Triangle Clique, to prove that such a problem is NP-

hard. Unlike Disk-Axis Clique, the outer triangle graph presents a novel intersection graph for which to

uniquely apply the advantages of pair-oriented labelling.

6.1 Max Clique in the Outer Triangle Graph is NP-Hard

Let H be a line and T be a set of triangles in the plane. Consider a triangle t = △abc. Without loss of

generality, if side b ∩ H = b, that is, b is some segment of H, then we say t is grounded. If T is a set of

grounded triangles such that all triangles lie on one side of H, then the intersection graph of T is known as

a grounded triangle graph. Consider instead two parallel lines H and J , and a set of triangles T . Assume

all triangles of T are grounded to either H or J . If all triangles in T lie in between H and J such that

they do not intersect the opposing horizontal line, then the resulting intersection graph is known as an outer

triangle graph (Fig. 6.1). It is worth noting that this arrangement is similar to the triangle graph [34] and

simple-triangle graph [35], and bears resemblance to the trapezoid representation of a trapezoid graph [20].

The primary difference of the outer triangle graph is that it does not intersect both horizontal lines.

Figure 6.1: (Left) A representation for a grounded triangle graph. (Right) A representation for an
outer triangle graph. The triangles are coloured according to the line they are attached to.

In this section we will use pair-oriented labelling to show that the problem Outer Triangle Clique

is NP-hard. We define the problem Outer Triangle Clique as follows. Take as input an outer triangle

graph G. The goal is to find a set of vertices in G which represent a maximum clique in G.

Theorem 6.1.1. Calculating the maximum clique of an outer triangle graph is NP-hard.
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Proof. In this proof we will perform a reduction from an instance of Pair-Orient Max Clique to an

instance S of Outer Triangle Clique. Let g = (V,E) be a Hamiltonian cubic graph with n original

vertices, k = |E|, and G = PairSub(g). The goal of this proof is to provide a constructive process of turning

G into an instance of S.

Let o be the origin of the Cartesian plane. We define a regular polygon P with 4k sides centered around o.

Since the number of sides of P is a multiple of 4, we rotate the polygon such that each quadrant of the plane has

exactly k sides. These sides are then labelled as sqp, where q denotes the quadrant, and p denotes its position

in a counterclockwise order. Then the sides of P are labelled as s11, s
1
2, . . . , s

1
k−1, s

1
k, s

2
1, s

2
2, . . . , s

4
k−1, s

4
k. Note

that P represents a structure (Fig. 6.2) which will be utilized throughout the construction of S, but will not

be present in the final graph– it is used as a reference tool for other parts of the construction.

o

X

Y

s31

s32

s33
s34

s35 s36

s11

s12

s13

s14

s15
s16

Figure 6.2: The placement of division vertices as lines, and the regular polygon which defines their
placement. In this example, g has four vertices and six edges. Only the relevant sides of P are labelled.

As in the construction of Disk-Axis Clique, we partition the division vertices of G into the sets X and

Y , for division vertices with label xi and yi, 1 ≤ i ≤ k, respectively. Observe that |X| = |Y | = k. For each
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division vertex xi ∈ X, we insert a line representative of xi that is determined by side s3i . Similarly, each

element yi of Y is represented as a line inserted over top of side s1i . Figure 6.2 details construction up until

this point. Note that these lines will eventually be converted into triangles.

We now turn to the inserting of original vertices into S. Here, each vertex will be represented initially as a

dual ray, that is, two rays (half-lines) which share the same source vertex. Similarly to the lines representing

division vertices, these dual rays will eventually be converted into triangles. All introduced rays will be

parallel to some existing line in S. In addition, each ray will be pointed in the direction towards o (Fig. 6.4

(Right)). That is, let r be a ray with endpoint e such that r is parallel to some line in S, and c be the

point on r which is closest to o. Then we have that |eo| > |co|. Given the restrictions of the rays in this

construction, we describe a dual ray as pab , with p being the shared endpoint, and a, b being the lines which

each ray is parallel to. Once the construction is complete, these dual rays, as well as the lines representing

division vertices, will be re-expressed as grounded triangles (Fig. 6.3), representing an outer triangle graph.

In principle, the size of these triangles can be any width and height so long as the transformation preserves

adjacencies.

Figure 6.3: (Top) A greatly simplified instance of Outer Triangle Clique. Here, we have one
dual ray (red) and four lines, representing an original vertex and four division vertices respectively.
The black lines which will ground all of the triangles are placed close for more visual clarity. (Bottom)
The conversion of each line and dual ray into grounded triangles.

Next, we define the placement for each dual ray. Without loss of generality, let v be an original vertex
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from G which must intersect all but the three division vertices xi, xi+1, and yj (property P1 from Section

5.2). Consider the intersection points of xi and yj , and xi+1 and yj , called I1 and I2 respectively. It must

be that one of I1 or I2 is closer to o. Assume that I1 is closer to o. As I1 is the intersection of a line from X

and Y , it must be that I1 is in quadrant 2 or quadrant 4. Assume that I1 is in quadrant 2 (Fig. 6.4 (Left)).

We define a new point I such that I lies on the line segment I1o, and that I is close to I1 so as to not cross

any line from X ∪ Y . We then form the dual ray I
xi+1
yj , which represents v. This process is repeated then for

each original vertex in G. Refer to Figure 6.4 for a visual reference in creating a dual ray.

o

x1
x2

y5

I2
I1

o

I1
I

Ix2
y5

= v

Figure 6.4: (Left) The relevant variables for creating the dual ray Ix2
y5
. Here, the original vertex

v which we want to represent in S has the three non-adjacent vertices x1, x2, and y5. (Right) The
construction of the dual ray for v (red). Observe that I lies on the dotted segment between I1 and o.

Once all vertices of G are properly represented, the polygon P is removed from the plane. We now finalize

the construction of S. First, define two horizontal lines T and B, such that T is placed arbitrarily above o so

that all intersections in S occur below T . We similarly place B so that all intersections in S occur above B.

All triangles will be grounded to one of these two lines. This placement of T and B allow all intersections

in S happen between them. Additionally, the addition of T and B will cut all lines and rays so that all

remaining elements of S are between T and B. This transforms the lines into line segments, and the dual

rays into dual line segments.

Finally, for each line segment in X ∪ Y , we may artificially treat them as very thin, grounded triangles

by trimming the length from one endpoint, and then grounding the triangle on the opposite horizontal line

(Fig. 6.3). It does not matter which line these thin triangle are grounded to. For each dual line segment

with segments s1 and s2, without loss of generality, we can then form the grounded triangle △s1s2b, where

b is the region on B between s1 and s2. An example of a completed construction, and the associated graph

PairSub(g) can be seen in Figure 6.5.

It now remains to justify that this construction preserves G as an instance of S. To do so, we will show

that properties P1 and P2 are preserved in the construction as stated in Section 5.2.

Preserving P1: Let v be a grounded triangle in S which represents some original vertex in G. Without
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Figure 6.5: (Top) The input graph, shown as PairSub(g). (Bottom) The resulting loos triangle
graph. Observe that v2, v3, v4 are all grounded to T , and v1 is grounded to B. Each thin grounded
triangle is represented by a thick line to reduce visual clutter.
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loss of generality, we will assume v must intersect all grounded triangles in S except for those labelled xi,

xi+1, yj with i ̸= j and i + 1 ̸= j. We will first show that v intersects all other original vertices by the

following:

Lemma 6.1.2. Let S be an instance of Outer Triangle Clique transformed from an instance of Pair-

Orient Max Clique. Then each grounded triangle in S which represents an original vertex intersects the

origin o.

Proof. Recall the polygon P during construction which forms the 4K thin grounded triangles, each of which

are placed overlapping a side of P . For this proof, we will consider the sides of P and the thin grounded

triangles in S as referring to the same line object. Let C be the inscribed circle of P . Therefore, P and C

have the same center, which is o. As P is a regular polygon, each line lies tangent to C. Therefore, for any

two lines x ∈ X and y ∈ Y , their bisector will pass through o.

Consider now the construction of a dual ray I
xi+1
yj . Let a be the angle between xi and the bisector of

xi and yj . As well, b is to be defined as the internal angle of I
xi+1
yj (Fig. 6.6 (Left)). If we define W as the

intersection point of xi yj , then clearly, ∠xi,W, yj = 2a. Since I
xi+1
yj lies on the bisector of xi and yj , if it

can be shown that b ≥ 2a, then it must be that the grounded triangle formed by I
xi+1
yj intersects o.

o

Ixi+1
yj

a b

W

xi+1

xi

yj

o

Ixi+1
yj

a b

W

m

Figure 6.6: (Left) Visualization of the angles a and b. (Right) Visualization of the angle m.

This can be shown as follows. Let m be the minimum angle formed between two intersecting lines.

Though geometry, we can calculate that m = 360
4k . That is, m is the both the exterior angle of P , and the

minimum angle for any two lines of P (Fig. 6.6 (Right)). Therefore, since xi and xi+1 are consecutive lines,

it must be that 2a− b = m. We have that a ≥ m, and so a ≥ 2a− b, which simplifies to b ≥ 2a.

Therefore, all dual rays, when transformed into grounded triangles, intersect the point o.

By this lemma, it must be that v intersects all original vertices. Then it remains to show that v intersects

all subdivision vertices except for xi, xi+1, and yj .
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Consider the placement of a dual ray I
xi+1
yj . Without loss of generality, assume I

xi+1
yj , I1, and I2 are in

quadrant 2, and that I1 is closer to o then I2. Recall that the intersection points used in its formation I1 and

I2 formed by xi ∩ yj , and xi+1 ∩ yj respectively. By its definition, we have that I
xi+1
yj is merely a translation

of the same dual ray positioned at I2. Since I2 and I1 both lie on yj , and I lies on the bisector of xi and yj ,

we have that I
xi+1
yj cannot intersect xi+1 and yj . Furthermore, we can conclude I

xi+1
yj does not intersect xi

by its construction. It remains to show that each other thin grounded triangles must intersect v.

Assume for contradiction that there exists an additional line l which does not intersect I
xi+1
yj . The position

of l can be place in one of three ways: l is not tangent to C, l is tangent to C and appears between xi and

xi+1, or l is tangent to C and passes between I1 and I
xi+1
yj . Case 1 yields a contradiction as such a line is not

allowed in construction. Case 2 yields a construction as xi and xi+1 would not longer be consecutive. Case

3 yields a contradiction as for any choice of l, we can move I
xi+1
yj along the bisector I1o arbitrarily close to

I1 so that l intersects our dual ray. In this way P1 is proven.

Preserving P2: Clearly, each division vertex represented as a line will be adjacent to all other lines,

except for its parallel, which by construction will have the same subscript. Now we need only show each

thin grounded triangle intersects exactly all but one dual ray. By the algorithm, each dual ray is constructed

from three unique lines. That is, no subdivision vertex is used twice, or excluded entirely, when creating an

instance of S since the choices of vertices are defined directly from G. Therefore, as P1 was proven, it must

be that each line is used in exactly one dual ray.

6.2 Summary

Similar to Section 5, the proof of showing Outer Triangle Clique naturally extends itself to similar

constructions by making some small modifications to the end results. In this case, we may choose not to

convert the dual rays and lines from constructing S into grounded triangles. Alternatively, we can choose

to keep the division vertices (lines) as they are and transform the dual rays into grounded triangles. Lastly,

we may also treat the lines as half-planes, as all intersections can be properly maintained by having each

half-plane not intersect the side of its associated dual ray. With these multiple variations, it stands that

many adjacent maximum clique problems are also NP-hard.

For Outer Triangle Clique, it would not be sufficient to prove this using standard co-2-subdivision.

This is because as in Section 5, imposing an ordering to the subdivided vertices means we can exploit certain

geometric facts. In this case, the consecutive nature of two lines xi and xi+1 is what allows us to prove

property P1 in Lemma 6.1.2. Due to the success of pair-oriented labelling on the outer triangle graph, it

gives credit to the potential of this technique being used elsewhere.

34



7 Conclusion

In this section we wrap up the findings of this thesis by reviewing the major contributions. The research

questions are reviewed, and additional time is taken to discuss various open problems which arise from this

work.

7.1 Results

This thesis has presented a focus on geometric intersection graphs and the ease or difficulty in calculating

the maximum clique for various classes. The exploration into the hardness of maximum clique for existing

classes of intersection graphs laid a foundation seen in the literature review. The co-2-subdivision technique

traditionally used to show such problems are NP-hard was investigated to a depth of understanding why it is

so useful. This led to a collection of three primary results all centered around maximum clique in intersection

graphs.

In Section 4, a O(n2.5 log n) time algorithm was provided to improve the existing algorithm for unit

disk graphs. This represents the ever moving improvement on difficult classes of intersection graphs. The

implementation of a more recursive algorithm may also pave the way for potentially more sophisticated

divide-and-conquer algorithms in the field. In the context of research question RQ1, we responded to it

directly by successfully finding an algorithm which calculates the maximum clique for a unit disk graph

faster than O(n3 log n).

In Section 5 we introduced a structure and its associated technique, known as pair-oriented labelling,

which acts as the levering method discussed in research question RQ2. This concept allows the process of

co-2-subdivision to be applied for previously difficult problems, as shown in Disk-Axis Clique. Section 6

expands on this by showing the hardness for a novel problem in the outer triangle graph. In this way, we

displayed how pair-oriented labelling can be leveraged to prove the NP-hardness of finding maximum clique

in other intersection graph classes.

It is worth noting that Disk-Axis Clique is known to be APX-hard [6] following their reduction from

MIPA. Some of the other intersection graph classes for which the maximum clique problem has been proved to

be APX-hard using the co-2k-subdivision approach are intersection graphs of ellipses [3], triangles [3], string

graphs [36], grounded string graphs [32], and so on. Following this, similar reductions could be made to

show that Outer Triangle Clique and Disk-Axis Clique are APX-hard from the usage of pair-oriented

labelling.
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7.2 Future Work and Open Questions

The improvement of maximum clique on unit disk graphs is a strong result in its own right by increasing the

efficiency for a well-known algorithm. As is with all results in disk graphs, any progress is good progress.

Evidently continuing work on the main open question posed by Ambühl and Wagner [3] for the hardness of a

general disk graph is important work worth pursuing. There exist many adjacent problems however. One of

which is a disk graph with two sizes of disks. Generally speaking, we may consider disks of either size 1 unit,

or size 2 unit. At the time of writing this, no such solution is known despite the seemingly trivial addition.

Open Question 1: Let G be a disk graph where each disk has radius 1 unit or radius 2 unit. Does there

exist a polynomial time algorithm to calculate the maximum clique of G?

The pair-oriented labelling introduced in Section 5 holds the minor caveat that the input cubic graph

must be a Hamiltonian cubic graph. This distinction bears no extra cost to its use as a way of showing certain

intersections graphs are NP-hard, but it naturally begs the question of whether pair-oriented labelling can be

applied to non-Hamiltonian cubic graphs. Resolving this question may lead to a greater understanding of the

interaction between labelling and orienting edges. As it stands, pair-oriented labelling requires a Hamiltonian

cubic graph in its construction by means of ensuring each vertex has at least one incoming and one outgoing

edge. Strictly speaking, a vertex can have all incoming or outgoing edges and still be satisfied, and so it may

not be necessary to include the Hamiltonian cycle as a part of constructing a pair-oriented labelling.

Open Question 2: Let P (G) be the pair-oriented labelling for G. Does P (G) exist for every cubic graph

G?

Section 6 stands as primarily an example to the use of pair-oriented labelling on new problems. The

geometry present in the proof for showing Outer Triangle Clique is NP-hard holds some hope in im-

proving previous work, or adapting this result to prove new ones entirely. Specifically, the proof that ray (and

segment) intersection graphs are NP-hard for maximum clique [12] is a fairly dense proof. Given the nature

of using dual rays, and the flexibility in representing division vertices as lines, there is some speculation that

this proof may be adaptable to provide a more streamlined result for ray intersection graphs.

Open Question 3: Can the maximum clique problem be shown to be NP-hard for ray intersection graphs

using the co-2-subdivision approach?

More generally speaking, the constructive proof in sections 5 and 6 for Disk-Axis Clique and Outer

Triangle Clique follow a similar outline. By arranging lines in a conveniently permuted way, and then

intelligently introducing a specific shape (axis-aligned rectangle or grounded triangle), one can show these

intersection graphs to be hard. It stands to reason that this structure can be extended further to both

existing or new intersection graphs. A similar structure had been seen in [6]. However, with the introduction

of pair-oriented labelling, more flexibility may be available in construction than was previously thought. As

a result, applying this kind of constructive structure in other hardness proofs may provide useful results, and

it is one worth studying further. Perhaps some overlap may be discovered between this and disk graphs.
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[23] Mathew C. Francis, Daniel Gonçalves, and Pascal Ochem. The maximum clique problem in multiple
interval graphs. Algorithmica, 71(4):812–836, 2015.

[24] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[25] Udaiprakash I. Gupta, D. T. Lee, and Joseph Y.-T. Leung. Efficient algorithms for interval graphs and
circular-arc graphs. Networks, 12(4):459–467, 1982.

[26] John Hershberger and Subhash Suri. Finding tailored partitions. J. Algorithms, 12(3):431–463, 1991.

[27] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput., 2(4):225–231, 1973.

[28] Mark L. Huson and Arunabha Sen. Broadcast scheduling algorithms for radio networks. In Proceedings
of MILCOM’95, volume 2, pages 647–651. IEEE, 1995.

[29] Hiroshi Imai and Takao Asano. Finding the connected components and a maximum clique of an inter-
section graph of rectangles in the plane. J. Algorithms, 4(4):310–323, 1983.

[30] Hiroshi Imai and Takao Asano. Efficient algorithms for geometric graph search problems. SIAM J.
Comput., 15(2):478–494, 1986.

[31] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W.
Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations, The IBM
Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

[32] J. Mark Keil, Debajyoti Mondal, Ehsan Moradi, and Yakov Nekrich. Finding a maximum clique in a
grounded 1-bend string graph. Journal of Graph Algorithms and Applications, 26(4), 2022.
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