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Chapter 0

Introduction

Although the existence of (infinitely many) intermediate propositional logics
was already discovered by Gödel [66] in 1932, it was only in 1955, with the
works of Umezawa [155, 156], that the investigation on intermediate logics was
undertaken in a systematic way. Since then, the research on intermediate logics
has flourished and followed two distinct, but complementary, approaches: the
first deals with single intermediate propositional logics, while the second with
the system of intermediate logics as a whole by investigating properties enjoyed
by large classes of logics and developing a general theory for them1.

As it is common in science in general, after having analyzed a number of
single particular objects of the same nature, one tries to abstract from them in
order to study the nature itself: by making various generalizations and classi-
fications of different kind, a new knowledge of phenomena is acquired. It thus
appears evident that this approach is more interesting and that is why, by the
middle of the sixties, the second approach became central and led the research
on intermediate propositional logics to its acme around the eighties with the
introduction, made by Zakharyaschev [171], of the apparatus of canonical for-
mulas. However, the centrality which has been given to this approach must
not make us forget the importance of the former, which, not only allowed the
development of a more general investigation on the matter, but was also driven
by a more philosophical oriented attitude which tends to lack in the second2.

Over the past three decades, research on intermediate propositional logics
has gone through a period of stagnation: most of the questions concerning the
main properties of the system of intermediate propositional logics (such as (fi-
nite) axiomatizability, finite approximability, tabularity and decidability, only
to number a few of them) were answered, reaching, in many cases, a level of

1Examples of works following the first approach include those of Kreisel and Putnam [94]
on KP, Dummett [34] on LC and Jankov [87] on KC, to name only a few; while Jankov [85]
and Maksimova [105], respectively showing that the cardinality of all intermediate logics is
2ℵ0 and that there are only 8 intermediate logics with the Craig’s interpolation property, are
amongst the works following the second approach.

2The philosophical attitude was particularly evident when, immediately after Heyting’s
formalization of intuitionistic propositional logic [72] in 1928, logicians sought a semantic
interpretation which, not only was mathematically adequate, but also “intuitionistically” sat-
isfactory: Kleene’s realizability logic [90] and Medvedev’s logic of finite problems [114] are
two different attempts that go in this direction and turn out to be, still nowadays, the most
interesting and mysterious known intermediate propositional logics.
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6 CHAPTER 0. INTRODUCTION

technical sophistication so high as to make it difficult for a beginner to even
approach the subject, and the few open problems seem to be far from being
solved with the current status of knowledge. Still, a few interesting contribu-
tions have appeared, in particular in connection with the investigation on the
admissibility of inference rules ([78, 79]) and in the field related to unification
theory ([62, 64]). With this thesis, we want to give our humble contribution to
the study of intermediate propositional logics mostly along these two new lines
of research3.

Main results
The present work follows the tradition of the second approach both by investi-
gating specific issues related to various subclasses of intermediate propositional
logics and by using mainly semantical tools such as the existing (dual) equiv-
alence between Heyting algebras and a particular class of ordered-topological
spaces now known as Esakia spaces [41, 43].

Esakia duality has become a common theme in the research of the last pe-
riods: the possibility of translating algebraic or logical properties in the more
intuitive form of topology (and viceversa) and the employment of geometrical
techniques in order to understand and to solve both new and old problems has
made such a duality an essential tool for the study of intermediate propositional
logics. The intimate connection between intermediate propositional logics and
modal logic touches also this topic and the proofs of Esakia duality are usually
obtained as a byproduct of a duality established in the modal framework. For
this reason, we give a full direct proof of the Esakia duality and unify in a co-
herent exposition all the correspondences of the duality between algebraic and
order-topological notions scattered in the literature. Furthermore, we introduce
the notion of partial Esakia equivalence and show that there exists a one-to-one
correspondence between the partial Esakia equivalence on a given Esakia space
X and the partial Esakia morphism from X .

As we mentioned above, one of the most recent line of investigation in in-
termediate propositional logics deals with unification issues. Unification theory
([4, 113]) is the abstract theory of unification, a fundamental process upon
which many methods for Automated Deduction are based. Generally speak-
ing, unification can be described as the attempt to identify two given symbolic
expressions by replacing certain sub-expressions in them by other expressions
and it is thus concerned with equation solving (in the context of free algebras).
An important contribution of unification theory to the research on intermediate
propositional logics (and, in general, on equational theories) is the classification
of logics according to the their unification type: every intermediate proposi-
tional logic can be characterized as having “bad unification properties” or “nice
unification properties”.

In order to determine the unification type of a given intermediate propo-
sitional logic the finitely presented Heyting algebras and the regular projective
Heyting algebras play an essential rôle. Both notions have been extensively
studied: already in 1970 Balbes and Horn [5] gave a complete description of

3Some historical notes are scattered through the thesis, but in particular in Chapter 1. The
reader interested in the history of both propositional and predicative intermediate logics is
referred to [121], in which an historical outline of intermediate logics and a guided bibliography
of the results published until 1983 are presented.
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the finite projective Heyting algebras, whereas for finitely presented Heyting
algebras there exists even a categorical dual representation in terms of sheaves
[65] which turned out to be more suitable than the usual order-topological one
to address some specific problems on such algebras. However, here we stick to
the Esakia duality and, following [21], we give a dual representation of finitely
presented Heyting algebras as those Esakia spaces obtained as the categorical
limit of some particular finite Esakia spaces. Furthermore, we present a useful
characterization of the finitely generated regular projective Heyting algebras for
any finitely approximable subvariety of Heyting algebras.

The characterization of the finitely generated regular projective Heyting al-
gebras we obtained allows us to generalize a result of Ghilardi [64] from the
locally finite to the finitely approximable context. As a consequence, we show
that many interesting intermediate propositional logics do not have finitary
unification type. These negative results also mean that we can not expect to
acquire any information connected with the problem of the admissibility of in-
ference rules for such logics within the unification framework. Indeed, only if the
unification type of a given intermediate propositional logic is at least finitary, we
can expect to obtain a decision procedure for the problem of the admissibility
of inference rules based on unification (cfr. [62]).

The location in the lattice of intermediate propositional logics of most of
the logics having good unification properties is well known. In particular, any
intermediate propositional logic having unitary unification type must be an ex-
tension of the Jankov’s logic KC. If, furthermore, an intermediate propositional
logic L is an extension of the Gödel-Dummet logic LC, then L enjoys a stronger
form of unitary unification, called projective unification. As well as providing
new semantic proofs of the two previous facts, we give an abstract characteriza-
tion of projective unification: an equational theory E has projective unification
if and only if E has transparent unification and its corresponding variety VE is
actively structurally complete.

Structural completeness is not only a remarkable property that a logic can
possess but also a significant philosophical concept. Very roughly, we can say
that an inference rule ρ is admissible in a given logical calculus L if it can
be used in a consistent and conservative way in any derivation in L. Now,
if ρ is not derivable in L, then there is no way to provide a justification for
its use within the calculus L itself: the phenomenon of admissible but not
derivable inference rules in a given logical calculus L thus represents a form of
incompleteness of L. That is why we say that a logic is structurally complete
whenever every admissible inference rule is also derivable. The importance of
structurally complete logical calculi lies in the fact that they are in a certain
sense contained within themselves: the system itself makes it possible to derive
all the rules of inference that are consistent with it and it is therefore completely
transparent.

Investigations on structural completeness in intermediate propositional log-
ics have focused, on the one hand, on proving structural completeness for single
intermediate propositional logics ([39, 137]) or for appropriate fragment thereof
([135, 141]) and, on the other hand, on formulating adequate conditions for an
intermediate propositional logic to be structurally complete ([139, 27, 30, 28]).
In particular, a nice characterization of structurally complete finitely approx-
imable intermediate propositional logics has been obtained by Rybakov [142]. In
this work, we study structural completeness within the framework of canonical
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formulas.
Together with the disjunction property, structural completeness is also the

other essential feature involved in the 41st problem posed by Harvey Friedman
in [53] and characterizing those intermediate propositional logics that we called
Friedman logics. Such logics, not only are interesting per se, but are also rel-
evant from a philosophical point of view. Indeed, on the basis of Miglioli and
Usberti’s account of knowledge [120] and on further considerations on structural
completeness, it turns out that the logic of knowledge might be a Friedman logic.
After locating Friedman logics within the lattice of intermediate propositional
logics, we investigate the part at finite depth of the n-canonical frames for such
logics and, in particular, we give a complete characterization of the points at
depth ≤ 3 of the 2-canonical frame FL(2) for any Friedman logic L. Further-
more, since the only known example of Friedman logic is the Medvedev’s logic of
finite problem ML, we study some of its frames and we prove that the 2-letter
fragment of ML is decidable.

Contents and new contributions
The present thesis is organized as follows.

Chapter 1 is a chapter of preliminaries: we give the basic definitions and
tools of intermediate propositional logics. In particular, we discuss both the
Kripke and the algebraic semantics as well as the relationship between the two.

Chapter 2 is entirely devoted to Esakia duality. After introducing the cate-
gory of Esakia spaces, we shall prove the categorical dual equivalence between
such a category and the category of Heyting algebras and list most of the dual
correspondences between algebraic and order-topological notions. Furthemore,
we introduce the equivalent notion of descriptive frame. Giving a full direct
proof of the Esakia duality and unifying in a coherent exposition most of the
correspondences of the duality between algebraic and order-topological notions
scattered in the literature is surely a novelty aspect of this overviewing chapter.

In Chapter 3 we take into considerations three fundamental classes of Esakia
spaces, namely the finitely generated Esakia spaces, the finitely copresented
Esakia spaces and the regular injective Esakia spaces. In particular, in Theorem
3.37 we describe the finitely generated regular injective Esakia spaces for any
finitely approximable intermediate propositional logic.

In Chapter 4 we study structural completeness and some of its related no-
tions both from a logical and an algebraic point of view. We introduce Za-
kharyaschev’s apparatus of canonical formulas and study structural complete
intermediate propositional logics within this framework. More in detail, in The-
orem 4.21 we give a new simple proof of Jankov’s theorem stating that any
extension of KC has the same positive fragment of intuitionistic logic using
canonical formulas; in §4.3.1 we define the notion of partial Esakia equivalence
and show in Proposition 4.25 that there exists a one-to-one correspondence be-
tween the partial Esakia equivalence on a given Esakia space X and the partial
Esakia morphism from X .

Chaper 5 deals with unification theory. After giving in Lemma 5.9 an ab-
stract characterization of projective unification, we discuss unification issues in
intermediate propositional logics. In particular, in Proposition 5.14 and 5.15 we
give new semantic proofs respectively that any intermediate logic with unitary
unification must be an extension of Jankov’s logic KC and that the extensions
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of the Gödel-Dummet logic LC are exactly the intermediate logics with pro-
jective unification. Furthermore, in §5.3.2, we shall use the characterization of
the finitely generated regular projective Heyting algebras obtained in Chapter
3 in order to to generalize a result of Ghilardi [64] from the locally finite to the
finitely approximable context thus proving in Corollary 5.27 that a wide class
of intermediate propositional logics does not enjoy finitary unification.

In Chapter 6 we take into considerations Friedman logics. After introducing
negatively stable logics, in §6.1.1 we define a strictly increasing sequence of neg-
atively stable logics that are characterized by frames which arise as a variation
on the construction of the frames for the logic of rhombuses RH, introduced by
Maksimova in [106]. In §6.3 we investigate Medvedev’s logic of finite problem
ML by means of its frames: we show in Lemma 6.21 that, for every n < ω, the
Medvedev frame Pn is dlog2 ne-generated and we discuss some p-morphic im-
ages of such frames. In §6.4 we investigate the structure of the upper part of the
canonical frames for Friedman logics and we shall give complete characterization
of the points at depth ≤ 3 of the 2-canonical frame FL(2) for any Friedman logic
L (cfr. Figure 6.10). Finally, in §6.5 we take advantage of the results obtained
so far in order to prove in Corollary 6.50 that the 2-letter fragment of Medvedev
logic is decidable.

We conclude this thesis with Appendix A in which we introduce Miglioli and
Usberti’s analysis of knowledge and we argue in §A.3 that the logic of knowledge
has to be a Friedman logic.





Chapter 1

Syntax and Semantics

In this chapter we review the basic facts about intermediate propositional log-
ics. In particular, we recall their relational (Kripke) semantics, their algebraic
semantics as well as the relationship between the two.

Most of the material of this chapter can be found in any good book in
which the author deals with intermediate propositional logics and wants to
give the reader a (as much as possible) complete and self-contained overview
of the subject. The best references of such a kind are certainly [14], [142] and,
especially, [23], from which we have drawn ample inspiration.

1.1 Intuitionistic and classical logic
The propositional language L consists of the following alphabet:

• the propositional variables p0, p1, p2, . . .;

• the propositional constant ⊥;

• the propositional connectives: ∧,∨,→;

• the punctuation symbols: ( and ).

We denote the set of all variables of L by VarL and we assume VarL to be count-
able. We will denote propositional variables by small Roman letters p, q, r, . . .,
possibly with subscripts or superscripts.

Definition 1.1. The set of formulas of L (or L-formulas), denoted by ForL, is
inductively defined as follows:

• all the variables of L and the propositional constant are L-formulas, called
the atomic L-formulas;

• if ϕ and ψ are L-formulas, then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ → ψ) are L-
formulas;

• nothing else is a L-formula.

11



12 CHAPTER 1. SYNTAX AND SEMANTICS

We will denote formulas by small Greek letters ϕ,ψ, ξ, . . . and we reserve
capital Greek letters Γ,∆,Σ, . . . for denoting sets of L-formulas.
We call all the L-formulas used in the construction of a given L-formula ϕ,
including ϕ itself, the subformulas of ϕ and we denote the set of the subformulas
of ϕ by Subϕ; we denote of all the variables in Subϕ by Varϕ. Moreover, we
will use the notation ϕ(p1, . . . , pn) to indicate that {p1, . . . , pn} ⊇ Varϕ.

We will make use of the following abbreviations: for any L-formula ϕ,

(¬ϕ) = (ϕ→ ⊥)
(ϕ↔ ψ) = (ϕ→ ψ) ∧ (ψ → ϕ)

> = (⊥ → ⊥),

and for any finite set Γ = {ψ1, . . . , ψn} of L-formulas,

∧
Γ =

n∧
i=1

ψi = ψ1 ∧ . . . ∧ ψn (
∧

Γ = >, if n = 0)

∨
Γ =

n∨
i=1

ψi = ψ1 ∨ . . . ∨ ψn (
∨

Γ = ⊥, if n = 0).

Each ψi in a L-formula of the form
∧n
i=1 ψi or

∨n
i=1 ψi is called respectively a

conjunct or a disjunct of the L-formula.

Definition 1.2. An (structural) inference rule is a pair 〈Γ, ϕ〉 given by a finite
set Γ = {ψ1, . . . , ψn} of L-formulas, called the premises of the rule, and a L-
formula ϕ, called the conclusion of the rule. We will denote inference rules by
Γ/ϕ and sometimes we will express them in the following form: ψ1, . . . , ψn

ϕ
.

Standard examples of inference rules are the following congruence rules:

p↔ q
p� r ↔ q � r

p↔ q
r � p↔ r � q

where � ∈ {∧,∨,→}.

Definition 1.3. A substitution σ is a function σ : VarL → ForL that can be
extended in a unique way to a map σ : ForL → ForL in the following way:

σ(p) = σ(p) for every p ∈ VarL
σ(ψ � ξ) = σ(ψ)� σ(ξ) for � ∈ {∧,∨,→}

σ(⊥) = ⊥.

For a substitution σ such that σ(pi) = ψi for each i ∈ {1, . . . , n} and σ(r) = r
for all r ∈ VarL\{p1, . . . , pn}, we will also use the notation {ψ1/p1, . . . , ψn/pn}
and, given a L-formula ϕ(p1, . . . , pn), the result of applying the substitution σ to
ϕ is called an istance of ϕ and will also be denoted by ϕ(ψ1, . . . , ψn). Moreover,
substitutions compose in the standard way, that is, given two substitution σ
and τ , their composition is simply the composition σ ◦ τ .
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1.1.1 The intuitionistic and classical propositional calculi
We are now ready to give a representation of intuitionistic logic. For our pur-
poses, we will consider only its Hilbert-style calculus formulation.

Definition 1.4. The intuitionistic propositional calculus Int in the language L
consists of the following axioms and inference rules

Axioms:
(A1) p0 → (p1 → p0);
(A2) (p0 → (p1 → p2))→ ((p0 → p1)→ (p0 → p2));
(A3) p0 ∧ p1 → p0;
(A4) p0 ∧ p1 → p1;
(A5) p0 → (p1 → p0 ∧ p1);
(A6) p0 → p0 ∨ p1;
(A7) p1 → p0 ∨ p1;
(A8) (p0 → p2)→ ((p1 → p2)→ (p0 ∨ p1 → p2));
(A9) ⊥ → p0;

Inference rules:

Modus Ponens (MP): ϕ ϕ→ ψ

ψ
;

Substitution (Subst):
ϕ

σ(ϕ) for any substitution σ.

A derivation of a L-formula ϕ in Int is a sequence ϕ1, . . . , ϕn of L-formulas
such that ϕn = ϕ and, for every i ∈ {1, . . . , n}, ϕi is either an axiom or is
obtained from some of the preceding L-formulas in the sequence by means of
one of the inference rules. The number n is said to be the length of the derivation.
Furthermore, we say that a L-formula ϕ is derivable in Int if there is a derivation
of ϕ in Int and we write `Int ϕ, or simply ` ϕ if no confusion arises.

Given a set of L-formulas Γ, a derivation of ϕ from the set of assumption
Γ is a sequence ϕ1, . . . , ϕn of L-formulas such that ϕn = ϕ and, for every
i ∈ {1, . . . , n}, ϕi is either an axiom or an assumption in Γ or is obtained
from some of the preceding L-formulas in the sequence by means of one of
the inference rules, with (Subst) being applied only to axioms. If there is a
derivation of ϕ from Γ, we say that ϕ is derivable from Γ and write Γ `Int ϕ, or
simply Γ ` ϕ if it is clear from the context. We will abbreviate the expression
Γ∪ {ψ1, . . . , ψn} ` ϕ by Γ, ψ1, . . . , ψn ` ϕ and we will write Γ,∆ ` ϕ instead of
Γ ∪∆ ` ϕ.

It follows directly from the previous definition that

1. if ϕ ∈ Γ, then Γ ` ϕ;

2. if Γ ` ϕ and Γ ⊆ ∆, then ∆ ` ϕ;

3. if Γ ` ϕ and ∆ ` ψ for all ψ ∈ Γ, then ∆ ` ϕ;

4. if Γ ` ϕ, then σ(Γ) ` σ(ϕ) for every substitution σ;
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5. Γ ` ϕ iff ∃∆ ⊆ Γ, ∆ finite, such that ∆ ` ϕ.

The properties just stated are not just merely peculiar features of the in-
tuitionistic propositional calculus, but they are indeed characteristic of any
propositional calculus based on some set of axioms and inference rules (that
includes Subst), that is, of any axiomatic system on a given propositional lan-
guage L. By defining the relation of derivation from assumption as in the case
of the calculs Int, we can associate with every axiomatic system AS a relation
`AS⊆ P(ForL)× ForL1.

Definition 1.5. A binary relation ` ⊆ P(ForL) × ForL is said to be a con-
sequence relation on ForL if ` satisfies properties (1)-(4), called respectively
Identity, Monotonicity, Transitivity and Structurality. If, moreover, ` satisfies
(5), then ` is said to be a finitary consequence relation2.

Theorem 1.1 (Łoś-Suzko, [101]). A relation ` is a finitary consequence relation
on ForL iff there exists an axiomatic system AS on L such that

` = `AS .

Thus for any axiomatic system AS, `AS is a finitary consequence relation
on ForL. We say that a L-formula ϕ is a theorem of AS if ∅ `AS ϕ (we will
write simply `AS ϕ) and we call a set of L-formulas Γ ⊆ ForL a theory of AS
if Γ is closed under `AS , that is, if Γ satisfies the following property:

Γ `AS ϕ =⇒ ϕ ∈ Γ.

It is easy to see that the set of theorems is the smallest theory of AS, i.e.
the smallest set of formulas containing the axioms of AS and closed under the
inference rules of AS. This last property gives us the grounds for the following

Definition 1.6. Let AS be an axiomatic system and let `AS be its finitary
consequence relation. The logic of AS, denote by AS, is the set of theorems of
AS, that is

AS = {ϕ ∈ ForL | `AS ϕ}.

Hence intuitionistic logic Int is identified with the set of theorems of the
intuitionistic propositional calculus Int.

Definition 1.7. The classical propositional calculus Cl in the language L is
obtained from Int by adding the following L-formula to the axioms:

(A10) p0 ∨ (p0 → ⊥).

If we had followed a historical perspective, we should have introduced first
the classical propositional calculus Cl and only then the intuitionistic one, by
descarding (A10) from the axioms. Indeed, the formula (A10), called the law
of excluded middle, was strongly criticised by the Dutch mathematician and
philosopher L. E. J. Brouwer ([17, 18]), who proposed, at the beginning of the

1Cfr. also §4.1 for some other considerations on axiomatic systems.
2The origin of this notion traces back to Tarski and its study on logical consequence in

[150]. He identified conditions (1)-(3) and (5), while (4) was introduced later by Łoś and Suzko
in [101]. Both Tarski and Łoś and Suzko, however, equivalently expressed these conditions by
using the formalism of closure operators.
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20th century, a new philosophy of mathematics, called intuitionism, that moves
away from the classical conception of mathematics based on classical logic and
from which intuitionistic logic was born3.

The notions of derivations and derivation from a set of assumptions are
defined exactly in the same way as for Int. We denote the fact that a L-formula
ϕ is derivable in Cl by `Cl ϕ, while by Γ `Cl ϕ we will express the fact that ϕ
is derivable from the set of assumption Γ in Cl.

The law of excluded middle (A10) is equivalent in Cl with the following
L-formula, commonly called the law of double negation

(A10∗) ¬¬p0 → p0,

and it is well known that intuitionistic logic is properly contained in classical
logic, that is Int ( Cl, since it is the case that both (A10) and (A10∗) belong
to Cl but not to Int. Nevertheless, it is exactly the double negation law that
gives a way of connecting intuitionistic to classical logic: it is indeed possible to
embed Cl in Int through what is called the double-negation translation which
associates to any given L-formula ϕ its double-negated form ¬¬ϕ.
The possibility of such an embedding stems from the following theorem of the
Soviet logician Valery Glivenko:

Theorem 1.2 (Glivenko, 1929). For every ϕ ∈ ForL,

ϕ ∈ Cl⇐⇒ ¬¬ϕ ∈ Int.

Thus, even though Int ( Cl, in view of the previous theorem it is sometimes
suggested that Int should be thought of as “stronger” than Cl: inside Int one
can see everything that one can see within Cl and, furthermore, one can also
make many distinctions that classical logic overlooks.

Corollary 1.3. For every L-formula ϕ,

¬ϕ ∈ Int⇐⇒ ¬ϕ ∈ Cl.

Proof. Since ¬γ ↔ ¬¬¬γ ∈ Int, for every L-formula γ, the result follows from
Glivenko’s theorem.

1.2 Kripke Semantics for Int
In this section we are going to present the well-known Kripke semantics for
intuitionistic logic, for which the respective calculus is sound and complete.
This kind of semantics takes into account an epistemic feature of the notion
of truth that classical reasoning neglects. By accepting that each proposition
must be either true or false, classical reasoning adheres to a platonic view of the
reality that completely abstracts from the fact that it may be actually a priori
unknown whether a given proposition is true or false. Given a proposition whose

3A good compendium of Brouwer’s intuitionism can be found in [73]. For the connection be-
tween Brouwer’s intuitionism and intuitionistic logic in the broader context of constructivism
in 20th century mathematics, cfr. [154], while for the early history of intuitonistic logic, its
formalization and the genesis of the so-called Brouwer-Heyting-Kolmogorov interpretation,
cfr. [153].
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truth-value is not yet known, there is however the possibility that we can settle
the question about the truth or falsity of this proposition in the future, by
acquiring new information on the world around us. It is indeed the process
of gaining information that Kripke semantics for intuitionistic logic takes into
account.

1.2.1 Kripke frames and models
Definition 1.8. An intuitionistic Kripke frame is a pair F = 〈W,R〉 where
W 6= ∅ and R is a partial order on W , i.e. R ⊆ W ×W is a relation on W
satisfying the following three conditions for all x, y, z ∈W :

xRx (reflexivity)
xRy ∧ yRz =⇒ xRz (transitivity)
xRy ∧ yRx =⇒ x = y (anti-symmetry)

Therefore, F is just a partially ordered set. Elements of W are called points in
F and we read xRy as “y is R-accessible from x” or “x sees y”.

Definition 1.9. A valuation of L in a Kripke frame F = 〈W,R〉 is a map V
associating to each p ∈ VarL some (possibly empty) subsetV(p) ⊆W satisfying
the following condition: for any u,w ∈W ,

u ∈ V(p) ∧ uRw =⇒ w ∈ V(p)

Subsets of W satisfying the previous condition are called upward closed sub-
set of W (or, briefly, upsets). Dually, we say that X is a downward closed
subset of W (or a downset) if we have v ∈ X and wRv imply w ∈ X, for every
v, w ∈ W . We denote the set of all upward closed subsets of W by Up(W ).
Thus a valuation in F is just a function V : VarL → Up(W ).

Definition 1.10. An intuitionistic Kripke model of the language L is a pair
M = 〈F,V〉 where F is an intuitionistic Kripke frame and V a valuation in F.

Since we are dealing only with intuitionistic Kripke frames and models,
we will often forget the adjective “intuitionistic” in the phrases “intuitionistic
Kripke frame” and “intuitionistic Kripke model”.

Let M = 〈F,V〉 be a Kripke model and x a point in the frame F = 〈W,R〉.
We define, by induction on the complexity of a formula ϕ ∈ ForL, the relation
(M, x) |= ϕ of a formula ϕ being true at x in M:

(M, x) |= p ⇐⇒ x ∈ V(p)
(M, x) |= ψ ∧ η ⇐⇒ (M, x) |= ψ and (M, x) |= η

(M, x) |= ψ ∨ η ⇐⇒ (M, x) |= ψ or (M, x) |= η

(M, x) |= ψ → η ⇐⇒ for all y ∈W such that xRy,
(M, x) |= ψ implies (M, y) |= η

(M, x) 6|= ⊥
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Since ¬ϕ is defined as ϕ→ ⊥, it follows from the above definition that

(M, x) |= ¬ψ ⇐⇒ for all y ∈W such that xRy, (M, y) 6|= ψ

(M, x) |= ¬¬ψ ⇐⇒ for all y ∈W such that xRy,
there exists z such that yRz and (M, z) |= ψ

If the model M is clear from the context we will write x |= ϕ instead of
(M, x) |= ϕ and we will also say that “x satisfies the formula ϕ in M”. The
truth set of a formula ϕ in M is the set V(ϕ) := {x ∈ W | x |= ϕ}. It can
be proved, by an easy induction on the complexity of ϕ, that V(ϕ) is upward
closed and, dually, that the set of point in which a formula ϕ is not true, i.e.
{x ∈W | x 6|= ϕ}, is downward closed.

Definition 1.11. Two Kripke frames F = 〈W,R〉 and G = 〈U, S〉 are said to
be isomorphic if there exists a surjective map f : W → U such that, for every
v, w ∈W ,

vRw ⇐⇒ f(v)Sf(w).

Such a map f is called an isomorphism of F onto G. Moreover, two Kripke
models M = 〈F,V〉 and N = 〈G,U〉 are said to be isomorphic if there exists an
isomorphism f of F onto G such that, for every p ∈ VarL,

U(p) = f(V(p)).

In this case, we say that f is an isomorphism f of M onto N.

The next proposition allows us not to distinguish between isomorphic models
and isomorphic frames.

Proposition 1.4. Let f be an isomorphism of M onto N. Then, for every
point x ∈M and every ϕ ∈ ForL,

(M, x) |= ϕ ⇐⇒ (N, f(x)) |= ϕ.

Definition 1.12. Let ϕ ∈ ForL, F = 〈W,R〉 be a Kripke frame, M = 〈F,V〉
be a Kripke model on F and K be a class of Kripke frame.

1. We say that ϕ is satisfied in M if x |= ϕ for some x ∈W .

2. We say that ϕ is true in M and we write M |= ϕ if x |= ϕ for all x ∈ W .
If ϕ is not true in M, then we say that ϕ is refuted in M or M is a
countermodel for ϕ and we write M 6|= ϕ.

3. We say that ϕ is satisfied in F if ϕ is satisfied in some model based on F.

4. We say that ϕ is true at a point x in F, and we write (F, x) |= ϕ, if ϕ is
true at x in every model based on F.

5. We say that ϕ is valid in F and we write F |= ϕ if ϕ is true in all models
based on F. If ϕ is not true in F, then we say that ϕ is refuted in F and
we write F 6|= ϕ.

6. We say that ϕ is valid in K and we write K |= ϕ if F |= ϕ for all F ∈ K.
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The following theorem shows the adequacy of the intuitionistic propositional
calculus Int to the intuitionistic Kripke semantics. Its proof is quite standard
and uses what is commonly called the canonical model argument4.

Theorem 1.5 (Soundness and completeness of Int). For all ϕ ∈ ForL,

`Int ϕ ⇐⇒ F |= ϕ for every frame F.

Corollary 1.6. Int = {ϕ ∈ ForL | F |= ϕ for all frames F}.

We also have the the following strengthening of the completeness theorem.

Theorem 1.7 (Strong completeness of Int). For every Γ ∪ {ϕ} ⊆ ForL,

Γ `Int ϕ ⇐⇒ (M, x) |= Γ =⇒ (M, x) |= ϕ,

for every Kripke model M and point x ∈M.

Remark 1. Note that classical validity is nothing but validity in the single
point frame 1 = 〈{ }, 〈 , 〉〉 and thus we also obtain the inclusion Int ⊆ Cl by
semantic means.

1.2.2 Truth-preserving operations
We recall in this section the three main operations on Kripke frames and models
which preserve truth and validity. For the proofs of the theorems, cfr. [23].

Generated subframes and generated submodels

A frame G = 〈U, S〉 is called a subframe of F = 〈W,R〉 (we write G ⊆ F) if
U ⊆W and S is the restriction of R to U , i.e. S = R∩U2. Moreover, if U is an
upset of W , we call G a generated subframe of F (notation: G ⊆

I
F ). Finally, if

U is the minimal upset containing a subset V ⊆ W , we say that U and G are
generated by the set V .

We now introduce a special notation for the operation of downward and
upward closure. If F = 〈W,R〉 is a Kripke frame and X ⊆W , then we let

X↑R := {x ∈W | ∃y ∈ X yRx}
X↓R := {x ∈W | ∃y ∈ X xRy}

In the case the frame F is understood from the context, we drop R and write
simply X↑ and X↓; if X is a singleton {q}, we use q↑ and q↓ instead of {q}↑
and {q}↓, respectively5. The elements of the set q↑ (q↓) are called successors
(predecessors) of q; a successor (predecessor) s of q is proper if s 6= q and a proper
successor (predecessor) s of q is said to be an immediate successor (immediate
predecessor) if qRzRs (sRzRq) implies z = s or z = q, for every z ∈ W , i.e.
there is no element stricly between s and q with respect to the order R. In such
a case, we will also write ql s. An element x ∈W is maximal in F if x↑ = {x};
instead, x is said to be the greatest point of F if x↓ = W . For every v ∈W , we
denote by max(v) the set of all maximal elements y such that vRy.

4Cfr., for instance, [23, Theorem 1.16, 2.43 and 5.12].
5In the literature, the set q↑ is usually called the cone over q.
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A model N = 〈G,U〉 is a submodel of a M = 〈F,V〉 (and we write N ⊆M)
if G = 〈U, S〉 is a subframe of F = 〈W,R〉 and, for every p ∈ VarL,

U(p) = V(p) ∩ U

If, moreover, G ⊆
I
F, then we say that N is a generated submodel of M and we

write N ⊆
I
M.

Let F = 〈W,R〉 be a Kripke frame and let w ∈ W . The subframe of F
generated by w is the frame Fw := 〈w↑, S〉 where S is the restriction of R to
w↑. Kripke frames of this kind, that is, generated by a singleton {w}, are called
rooted and w is called the root of the frame. Moreover, given a Kripke model
M = 〈F,V〉, we denote by Mw := 〈Fw,U〉, where U(p) = V(p) ∩ w↑ for each
p ∈ VarL, the submodel of M generated by w.

All the previously defined submodels satisfy the following

Theorem 1.8 (Generation). Let N = 〈G,U〉 be a generated submodel of a model
M = 〈F,V〉. Then, for every ϕ ∈ ForL and every x ∈ G,

(N, x) |= ϕ⇐⇒ (M, x) |= ϕ

Corollary 1.9. If G ⊆
I
F, then, for every ϕ ∈ ForL, the following hold:

(i) (G, x) |= ϕ⇐⇒ (F, x) |= ϕ, for all x ∈ G;

(ii) F |= ϕ =⇒ G |= ϕ.

p-morphisms

Let F = 〈W,R〉 and G = 〈U, S〉 be Kripke frames. A map f : W → U is said
to be order-preserving, or monotone, if the following condition holds: for every
v, w ∈W

vRw =⇒ f(v)Sf(w)

Definition 1.13. A map f : W → U is said to be a p-morphism between F and
G if it is order-preserving and, moreover, it satisfies the following condition:
for every w ∈W,u ∈ U ,

f(w)Su =⇒ ∃v ∈W (wRv ∧ f(v) = u)

Furthermore, if f is a surjective p-morphism from F onto G, then we say that
G is a p-morphic image of F6.

Let M = 〈F,V〉 and N = 〈G,U〉 be Kripke models. A p-morphism f between
F and G is called a p-morphism between M = 〈F,V〉 and N = 〈G,U〉 if, for every
p ∈ VarL,

V(p) = f−1(U(p))

that is, if for every point x ∈ F, (M, x) |= p iff (N, f(x)) |= p. Futhermore, if f
is surjective, then N is said to be a p-morphic image of M.

Theorem 1.10 (p-morphic image). Let N = 〈G,U〉 be a p-morphic image of the
model M = 〈F,V〉 via the map f . Then, for every x ∈ F and every ϕ ∈ ForL,

(M, x) |= ϕ⇐⇒ (N, f(x)) |= ϕ
6Some authors, cfr. for example [23], call such onto maps reductions.
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Corollary 1.11. If G is a p-morphic image of F then, for every ϕ ∈ ForL,

F |= ϕ =⇒ G |= ϕ

Now consider a Kripke frame F = 〈W,R〉 and let q ∈ W . We denote by q>
the set of all immediate successors of q. We say that a subset X ⊆ W covers
w ∈ W (notation: w � X) if X ⊆ w↑ and w> ⊆ X↑ and we say that X ⊆ W
totally covers w ∈W (notation: w ≺ X) if X = w>.

Notice that both � and ≺ are relations relating points and sets and that
w � X iff w↑ = X↑ ∪ {w}. As above, we will write w � v and w ≺ v as
shorthands for, respectively, w � {v} and w ≺ {v}. Therefore, w � v is
equivalent to w = v ∨ v ∈ w> and w ≺ v means that v is the only immediate
successor of w. Notice furthermore the two following special cases with respect
to the covering relation: for any w ∈ W , w � ∅ ⇐⇒ w is maximal; {w} and
w>↑ always cover w.

The next result is a slight generalization of a characterization of p-morphisms
in terms of the covering relation given by Ghilardi [64] for finite frames. Say
that a Kripke frame F = 〈W,R〉 is Noetherian if there are no infinite strictly
ascending chain x0Rx1R . . . of elements in W , or, equivalently, if the relation R
is converse well-founded7.

Lemma 1.12. Let F = 〈W,R〉 and G = 〈V, S〉 be Kripke frames and f : W → V
be an order-preserving map. If f is a p-morphism, then, for all w ∈W , X ⊆W ,

w � X =⇒ f(w) � f(X).

Furthermore, if F is Noetherian, than the converse also holds.

We conclude this section with the following useful remark on p-morphisms
and generated subframes. Let F = 〈W,R〉 be a Kripke frame, D = 〈V,R �V 〉 ⊆I F
a generated subframe of F and let the function h : D→ G = 〈Q,S〉 be an onto
p-morphism. Denote by F[D/G] = 〈W [V/Q], R′〉 the Kripke frame defined as
follows:

W [V/Q] = W \ V ]Q

and the partial ordering R′ is defined by letting

xR′y ⇐⇒ x = y, or
x, y ∈W \ V and xRy, or
x, y ∈ Q and xSy, or
x ∈W \ V, y ∈ Q and ∃s ∈ h−1(y)(xRs).

It is immediately seen that F[D/G] is a well defined Kripke frame. Now, consider
the map f : W →W [V/Q] defined by letting

f(x) =
{
x if x ∈W \ V ,
h(x) if x ∈ V .

Lemma 1.13. The map f : W → W [V/Q] is a p-morphism from F onto
F[D/G].

7Actually, the two stated conditions are equivalent modulo the axiom of dependent choice.
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Proof. Let x, y ∈W be such that xRy. We have the following possibilities:

(a) x ∈ V : therefore also y ∈ V since V ⊆
I
W and consequently we have

f(x) = h(x)R′h(y) = f(y);

(b) x, y ∈W \ V : thus f(x) = xR′y = f(y);

(c) x ∈ W \ V , y ∈ V : hence f(x) = x and f(y) = h(y) ∈ Q. Since
y ∈ h−1(h(y)), we have f(x)R′f(y).

Hence f is monotone. So let w ∈ W , u ∈ W [V/Q] and suppose that f(w)R′u.
Then, according to the definition of R′, we have the following cases:

(a) both f(w), u ∈ W \ V and f(w)Ru. Consequently w /∈ V , so f(w) = w
and thus u ∈ w↑ is such that f(u) = u.

(b) both f(w), u ∈ Q and f(w)Su. Therefore it must be the case that w ∈ V .
Hence f(w) = h(w) and since h is a p-morphism there exists v ∈ w↑ such
that h(v) = u. But then f(v) = h(v) = u.

(c) f(w) ∈ W \ V , u ∈ Q and there exists s ∈ h−1(u) such that f(w)Rs.
Thus w /∈ W and f(w) = w. Then s ∈ V is such that s ∈ w↑ and
f(s) = h(s) = u.

We can thus conclude that f is indeed a p-morphism.

Disjoint unions

Let {Fi = 〈Wi, Ri〉 | i ∈ I} be a family of Kripke frames. The disjoint union of
the family {Fi}i∈I is the frame

⊎
i∈I Fi := 〈

⊎
i∈IWi,

⋃
i∈I Ri〉, where

⊎
i∈IWi

is the disjoint union of the Wi’s. If the set I is finite, let’s say I = {1, . . . , n},
then we will also write F1 + . . .+ Fn.

Let {Mi = 〈Fi,Vi〉 | i ∈ I} be a family of Kripke models. The disjoint
union of the family {Mi}i∈I is the model

⊎
i∈I Mi := 〈

⊎
i∈I Fi,

⋃
i∈I Vi〉, where

(
⋃
i∈I Vi)(p) =

⋃
i∈I Vi(p), for each p ∈ VarL.

It is clear that each Fi is a generated subframe of
⊎
i∈I Fi and each Mi is a

generated submodel of
⊎
i∈I Mi. Moreover, we have the following

Theorem 1.14 (Disjoint union). Let
⊎
i∈I Mi be the disjoint union of the family

of models {Mi = 〈Fi,Vi〉 | i ∈ I}. Then, for each i ∈ I, every x ∈ Fi and every
formula ϕ ∈ ForL,

(
⊎
i∈I

Mi, x) |= ϕ⇐⇒ (Mi, x) |= ϕ

Corollary 1.15. Let
⊎
i∈I Fi be the disjoint union of a family of frames {Fi}i∈I .

Then, for each i ∈ I and every formula ϕ ∈ ForL,⊎
i∈I

Fi |= ϕ⇐⇒ Fi |= ϕ
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1.3 Superintuitionistic and intermediate logics
Definition 1.14. A superintuitionistic logic (si-logic, for short) in the language
L is any set L of L-formulas satisfying the following conditions:

• Int ⊆ L;

• L is closed under modus ponens (MP);

• L is closed under uniform substitution (Subst).

We say that a si-logic L is consistent if ⊥ /∈ L, and inconsistent otherwise.
Notice that by (A9) and (MP) a si-logic L is inconsistent iff L = ForL. There-
fore, according to the previous definition, the set of all L-formulas ForL is a
si-logic and we call it the incosistent si-logic.

It is clear that Int and ForL are respectively the smallest and the greatest
si-logics with respect to inclusion. For any si-logics L1 and L2, we say that L2
is an extension of L1, or L1 is a sublogic of L2, if L1 ⊆ L2 and, moreover, if
L1 6= L2 then we say that L2 is a proper extension of L1, or L1 is a proper
sublogic of L2.

Theorem 1.16. For every consistent si-logic L, Int ⊆ L ⊆ Cl.

For this reason consistent si-logics are often call intermediate logics, since
they are “intermediate” between intuitionistic and classical propositional logics8.

We now see some methods for constructing si-logics.

Theorem 1.17. Let C be a class of intuitionistic frames. Then the set of L-
formulas valid in all frames C is a si-logic.

We will call the si-logic defined in the previous theorem the logic of the class
C and denote it by Log C. Moreover, if C = {F}, then we will write LogF instead
of Log C and call it the logic of F. Notice that

Log C =
⋂
F∈C

LogF.

Another way of constructing a si-logic is given by the following

Theorem 1.18. Let {Li | i ∈ I} be a family of si-logics. Then the intersection⋂
i∈I Li is also a si-logic.

Finally, another method of constructing si-logics follows directly from the
definition: given any set Γ of L-formulas, it suffices to add this set to Int and
close the resulting set under MP and Subst. The obtained si-logic L is then
denoted by Int + Γ and L-formulas in Γ are called the additional axiom of L
over Int, while L itself is called the extension of Int with Γ. If Γ = {ϕ1, . . . , ϕk},

8The adjective “intermediate”, used to characterize logics between the intuitionistic and
classical, was introduced by Umewaza in [155] and [156]. Moreover, it is useful to say that
in the context of first-order logic, not every extension of intuitionistic logic is contained in
classical logic. Indeed, it is known that classical first-order logic has continuum many proper
extensions and intuitionistic first-order logic is a sublogic of each of these extensions. There-
fore, the notions of consistent si-logic and intermediate logic do not coincide in the first-order
framework, contrary to the propositional case.
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then we will also denote Int + Γ by Int + ϕ1 + . . . + ϕk. So, for instance, we
have Cl = Int + p ∨ ¬p = Int + ¬¬p→ p.

Given si-logics L1 = Int+Γ1 and L2 = Int+Γ2, the logic L = Int+Γ1∪Γ2
is called the sum of L1 and L2 and denoted by L1 + L2. If {Li | i ∈ I} is a
family of si-logics, their sum is the closure under MP and Subst of

⋃
i∈I Li and

is denoted by
∑
i∈I Li.

Derivations and derivation from a set of assumption in a si-logic Int + Γ
are defined as in the case of Int with the only difference that in this case one
can also use the extra axiom of L together with the axiom of Int. If a formula
ϕ is derivable in L or derivable from a set of assumption ∆, we write `L ϕ
and ∆ `L ϕ respectively. The deduction theorem, as well as the replacement
theorem, hold for si-logics:

Theorem 1.19. Let L be a si-logic, Γ a set of L-formulas and η, ψ, ϕ ∈ ForL.

(i) Γ, ψ `L ϕ⇐⇒ Γ `L ψ → ϕ;

(ii) η ↔ ψ ∈ L =⇒ ϕ(η)↔ ϕ(ψ) ∈ L.

The operation of sum between si-logics behaves similarly to the union be-
tween two sets. Indeed, we have the following

Theorem 1.20. The sum of si-logics is idempotent, commutative, associative
and distributes over the intersection. Moreover, the intersection of si-logics
distributes over the (infinite) sum, that is

L ∩
∑
i∈I

Li =
∑
i∈I

(L ∩ Li).

The content of the previous theorem can be restated by saying that the class
of si-logics, together with the operations ∩ and + of intersection and sum of
si-logics, forms a complete bounded lattice with Int and ForL as bottom and
top elements9. This structure is called the lattice of si-logics and denoted by
ExtInt10.

1.3.1 Basic properties of intermediate logics
Finite Axiomatizability. An intermediate logic L is said to be finitely

axiomatizable if it can be represented as L = Int + Γ where Γ is a finite set of
L-formulas.

Notice that, by (A3)-(A5), we have

Int + ϕ1 + . . .+ ϕk = Int + ϕ1 ∧ . . . ∧ ϕk

Therefore, an intermediate logic L is finitely axiomatizable iff it is axiomatizable
by a single additional formula.

9For the definition of complete bounded lattice see Definition 1.18 and 1.19 of §1.4. More-
over, as a consequence of Lemma 1.45, such a class actually carries a Heyting algebra structure.

10Notice that, in the language of finitary consequence relations, si-logics are nothing but
the theories of Int. Therefore, the lattice of si-logics can also be thought as the lattice of the
theories of Int.
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(Strong) Kripke Completeness. We say that an intermediate logic L is
Kripke complete if there exists a class K of Kripke frames such that L = LogK.
If this is the case, we say that L is characterized by K.

We have already seen two examples of Kripke complete logics, namely Int
and Cl, respectively complete with respect to the class of all Kripke frames and
the one point frame. Moreover, we have also seen that these two logics satisfy a
stronger version of completeness, i.e. completeness with respect to the relation
of derivability from assumption. Let us isolate this property.

We say that an intermediate logic is strongly Kripke complete if there exists
a class K of Kripke frames such that, for any set Γ∪ {ϕ} of L-formulas, Γ `L ϕ
iff, for every F ∈ K and point x ∈ F, (F, x) |= Γ implies (F, x) |= ϕ. In this case,
we say that L is strongly characterized by K.

It is worth pointing out that not all intermediate logics are strongly Kripke
complete and, more importantly, that not all intermediate logics are Kripke
complete11.

As a consequence of Theorem 1.8, we have the following

Corollary 1.21. Let L be a Kripke complete intermediate logic. Then L is
Kripke complete with respect to the class of its rooted frames.

Tabularity. An intermediate logic L is called tabular if there is a finite
frame F such that L = LogF.

Therefore, Cl is tabular. However, this is not the case for Int, as the following
theorem, originally proved by Gödel [66] by algebraic methods, shows.

Theorem 1.22. Int is not tabular.

Proof. Suppose, for reduction, that Int = {ϕ ∈ ForL | F |= ϕ} for some finite
frame F, that, say, contains n points. Consider the following inductively defined
sequence of formulas bdn:

bdn = p1 ∨ (p1 → ⊥),
bdn+1 = pn+1 ∨ (pn+1 → bdn).

It can be shown that F 6|= bdn only if there is a chain of n + 1 points in F.
Therefore, F |= bdn, contrary to the fact that bdn /∈ Int.

Finite Approximability. An intermediate logic L is said to be finitely
approximable (or to have the finite frame property) if there exists a class K of
finite frames such that L = LogK12.

Theorem 1.23. Int is finitely approximable, in particular Int is complete with
respect to the class of finite rooted frames13.

11The first example of a Kripke incomplete (finitely axiomatizable) intermediate logic was
discovered in 1977 by Shehtman [145].

12The finite frame property is equivalent, for intermediate logics, to the much more common
finite model property of model theory and universal algebra, whose definition is the following:
L has the finite model property if there exists a class M of finite models (structures) such
that, for every formula ϕ, ϕ ∈ L iff N |= ϕ for every N ∈ M. Hence, we will mostly use the
phrase “finite model property” for expressing finite approximability. For the equivalence of
the two properties in the case of intermediate logics, cfr. [23, Theorem 8.47].

13One can strengthen the result by showing, with the use of Theorem 1.10, that Int is
complete with respect to the class of finite trees, where a frame F = 〈W,R〉 is a tree if it is
rooted and, for every x ∈W , x↓ is finite and linearly ordered by R.
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The finite model property is a very important notion that, as we shall see,
plays a very important rôle in the study of non-classical logics. The standard
technique in order to prove the finite approximability of an intermediate logic
is the filtration method (cfr. [23, Chapter 5]).

Decidability. A logic L is called decidable if, for every given L-formula ϕ,
there exists an algorithm deciding whether ϕ ∈ L or not.

It is well known that both Cl and Int are decidable. For instance, the
decidability of Cl can be easily acknowledged by noting that the truth-value
of a formula ϕ(p1, . . . , pn) depends only on the truth-values of the variables
p1, . . . , pn. Hence, by writing down all the 2n possible assignment of the truth-
values T and F to the variables, in order to check whether ϕ ∈ Cl one has only
to verify that the truth-value of ϕ is always T . Of course, such a verification
can always be done. Moreover, the decidability of Cl and Int follows from the
following result, due to Harrop:

Theorem 1.24 (Harrop). Let L be a finitely axiomatizable and finitely approx-
imable intermediate logic. Then L is decidable.

It is known that there are continuum many intermediate logics14 and since
there can be only countably many of them that are decidable, there exist also
undecidable intermediate logics. A concrete example of a finitely axiomatizable
undecidable intermediate logic was first given by Shehtman in [146].

Local Tabularity. Two L-formulas ϕ and ψ are said to be equivalent in
an intermediate logic L (or L-equivalent) if ϕ ↔ ψ ∈ L. An intermediate logic
L is called locally tabular if, for every n < ω, L contains only a finite number
of pairwise non-equivalent L-formulas built from the variables q1, . . . , qn.

Every tabular intermediate logic is locally tabular and therefore Cl is locally
tabular. Moreover, every locally tabular intermediate logic is finitely approx-
imable. However, these three notions are not equivalent since there are locally
tabular intermediate logics that are not tabular and finitely approximable inter-
mediate logics that are not locally tabular. A classical example of a logic with
the finite model property which is not locally tabular is, as we shall see later,
Int itself.

Structural Completeness. Consider an inference rule r: ψ1, . . . , ψn
ϕ

We say that the rule r is admissible in an intermediate logic L if, for every
substitution σ, σ(ϕ) ∈ L whenever σ(ψ1), . . . , σ(ψn) ∈ L. Moreover, we say
that the rule r is derivable in L if {ψ1, . . . , ψn} `L ϕ. An intermediate logic L
is said to be structurally complete if every admissible rule in L is derivable in L.

For any intermediate logic L and for every finite set of L-formuals Γ, it can
be proved that Γ `L ϕ iff

∧
Γ → ϕ ∈ L, therefore, the rule r is derivable in L

iff ψ1 ∧ . . . ∧ ψn → ϕ ∈ L. Moreover, it is also clear that if a rule r is derivable
in L, then it is also admissible in L.

14Already in 1932, Kurt Gödel [66] proved that there exist at least countably many different
intermediate logics, but it was only in 1968 that Jankov [85] showed that there are uncountably
many of them.
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Theorem 1.25. Cl is structurally complete.

It is clear that, for any intermediate logic L, if L is decidable and struc-
turally complete, then the problem of checking whether a given inference rule
is admissible in L, called the admissibility problem for L, is decidable as well.
Therefore, we have

Corollary 1.26. The admissibility problem for Cl is decidable.

In contrast to Cl, Int is not structurally complete. For instance, the two fol-
lowing inference rule, called respectively the Scott rule and the Kreisel-Putnam
rule,

(¬¬p→ p)→ p ∨ ¬p
¬p ∨ ¬¬p

¬p→ (q ∨ r)
(¬p→ q) ∨ (¬p→ r)

are admissible but not derivable in Int.
The admissibility problem for Int is much more complicated with respect to

that of Cl. However, it can still be shown that

Theorem 1.27 (Rybakov15). The admissibility problem for Int is decidable.

Disjunction Property. An intermediate logic L is said to have the dis-
junction property if, for every L-formulas ϕ and ψ,

ϕ ∨ ψ ∈ L⇐⇒ ϕ ∈ L or ψ ∈ L.

Logics with the disjunction property are also known in the literature as con-
structive logics. It is cleat that Cl does not have the disjunction property, since
the law of excluded middle p ∨ ¬p is a theorem of Cl. A semantic analogue of
the disjunction property for Kripke complete intermediate logic is the following

Theorem 1.28. Let L be an intermediate logic such that L = Log C for some
class C of (rooted) Kripke frame. Then L has the disjunction property iff, for
every F1,F2 ∈ C, F1 + F2 is a generated subframe of a (rooted) frame F ∈ C.

From the previous theorem, we immediately get the following

Corollary 1.29. Int has the disjunction property.

1.3.2 Some examples of intermediate logics
We now introduce some of the most known intermediate logics in the literature
and state a few properties about them. In particular, we will say when these
logics are elementary.

We say that a class of Kripke frames C is elementary if there is a set Φ of
first-order sentences in the language 〈R,=〉 such that, for every Kripke frame
F, F ∈ C iff F is a (classical) model for Φ. A si-logic L is elementary if the class
of all Kripke frames for L is elementary16.

15For a proof of the theorem, cfr. [142, Chapter 3] or [23, Section 16.7].
16An important theorem of Kit Fine (cfr. [48]) says that if an intermediate logic L is

characterized by an elementary class of Kripke frames, then it is canonical, i.e. the canonical
frame FL is a frame for L; since strong Kripke completeness is in turn implied by canonicity,
by showing that a Kripke complete intermediate logic L is not strongly Kripke complete, one
would prove that L is not elementary.
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The Gödel-Dummett logic

The Dummett formula da is the following L-formula:

da = (p→ q) ∨ (q → p).

The Gödel-Dummett logic (or the logic of chains) is the following intermediate
logic:

LC = Int + da.
This logic has been deeply investigated in the literature and bears its name from
the works of Gödel [66] and, especially, of Dummett [34], who first introduced
the logic LC proving also its decidability.

We say that a Kripke frame F = 〈W,R〉 is strongly connected if it satisfies
the following condition:

∀x, y, z(xRy ∧ xRz ⇒ yRz ∨ zRy).

It is not hard to prove that the frames for LC can be described as follows

Proposition 1.30. A frame F = 〈W,R〉 validates da iff F is strongly connected.

Notice that every rooted strongly connected Kripke frame F is a chain. More-
over, it is possible to show that the logic LC is complete with respect to the
class of chains and thus is elementary.

The Jankov logic

Consider the L-formula
wem = ¬p ∨ ¬¬p,

which is known as the law of the weak excluded middle. The Jankov logic, so
called after the Soviet logician V. A. Jankov - who first introduced and studied
it extensively in [82] and [87] -, is the following intermediate logic:

KC = Int +wem.

Jankov logic is also known in the literature with the name of De Morgan
logic, since, over Int, the following unprovable instance of the De Morgan law

¬(p ∧ q)→ (¬p ∨ ¬q)

is equivalent to wem. Therefore, we have

KC = Int + ¬p ∨ ¬¬p = Int + ¬(p ∧ q)→ (¬p ∨ ¬q).

AKripke frame F = 〈W,R〉 is called strongly directed or convergent if satisfies
the following condition:

∀x, y, z(xRy ∧ xRz ⇒ ∃u(yRu ∧ zRu).

Proposition 1.31. A frame F = 〈W,R〉 validates wem iff F is strongly di-
rected.

Also in the case of Jankov logic, it is possible to show, by a canonical model
argument, that the class of strongly directed frames characterizes KC and thus
that it is elementary.
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The Kreisel-Putnam logic

The Kreisel-Putnam formula is the following L-formula

kp = ¬p→ (q ∨ r)→ (¬p→ q) ∨ (¬p→ r),

which is nothing but the Krieisel-Putnam rule, introduced in the previous sec-
tion, considered as an implicational formula. We define the Kreisel-Putnam
logic to be the intermediate logic obtained from intuitionistic logic by adding
the formula kp, i.e.

KP = Int + kp.

This logic has been introduced by Kreisel and Putnam in [94] as a counterexam-
ple to a conjecture of the Polish logician Jan Łukasiewicz, who, in 1952 ([102]),
asserted that Int was the greatest propositional system closed under Subst and
MP and enjoying the disjunction property17.

With respect to the Kreisel-Putnam rule, Prucnal in [138] proved the follow-
ing

Theorem 1.32 (Prucnal). The Kreisel-Putnam rule is admissible in every in-
termediate logic.

As an immediate corollary, we obtain

Corollary 1.33. Let L be a structurally complete intermediate logic. Then

KP ⊆ L.

It can be shown, by a filtration argument, that KP is finitely approximable
and thus, by Theorem 1.24, decidable. Moreover, the Kreisel-Putnam logic is
elementary and we conclude this brief description of this logic with the following
soundness result:

Proposition 1.34. A frame F = 〈W,R〉 validates kp iff F satisfies the following
condition:

∀x, y, z(xRy ∧ xRz ∧ ¬yRz ∧ ¬zRy → ∃u(xRu ∧ uRy ∧ uRz∧
∀v(uRv → ∃w(vRw ∧ (yRw ∨ zRw))))).

The Scott logic

In analogy with the Kreisel-Putnam logic, we define the Scott logic SL to be
the following intermediate logic

SL = Int + sa,

where sa is the L-formula, obtained from the Scott rule and known as the Scott
formula,

sa = ((¬¬p→ p)→ p ∨ ¬p)→ ¬p ∨ ¬¬p.

The Scott logic was mentioned in the paper [94] as another counterexample to
Łukasiewicz’s conjecture. In contrast to KP, SL is not elementary, since it can

17To be precise, Łukasiewicz stated a conjecture concerning the set of the unprovable for-
mulas of Int that is equivalent to the above stated assertion. Cfr. [102, pp. 208-209].
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be shown that sa is not first-order definable over partial orders18. However,
if we restrict ourselves to the class of Kripke frames of finite depth, then the
following characterization of the SL-frames is possible19.

Let F = 〈W,R〉 be a Kripke frame and let x, y, z ∈ W be such that y and
z are both maximal in F while x is not. We say that x is prefinal if, for every
proper successor w of x, w is maximal in F and we say that y and z are prefinally
connected in F if y = z or there is a sequence v1, . . . , vn (n > 1) of maximal
elements in F such that

(i) y = v1 and z = vn;

(ii) for every 1 ≤ i < n, there exists k ∈ W such that k is prefinal and
{vi, vi+1} ⊆ max(k).

Proposition 1.35. Let F = 〈W,R〉 be a Kripke frame of finite depth. Then F
validates sa iff, for every w ∈ W and x, y ∈ max(w), x and y are prefinally
connected in Fw.

Another way of charactering SL is as follows:

Proposition 1.36. A Kripke frame F = 〈W,R〉 validates sa iff the Kripke
frame S is not a p-morphic image of every generated subframe of F, where S
is the following frame20

Figure 1.1: The Kripke frame S.

Medvedev’s logic

The logics considered so far were introduced axiomatically by providing a (fi-
nite) axiomatization for them. We will instead present the following interme-
diate logic through its semantical characterization. The Medvedev’s logic ML,

18This fact was first proved by Van Benthem in [159] by the use of the downward Löwenheim-
Skolem Theorem of first-order logic, cfr. [159, Theorem 86]. For a sketch of a proof which use
the compactness theorem of fisrt-order logic, cfr. [23, p. 187].

19For the following characterization of SL-frames of finite depth, cfr. [49]. Cfr. also [46],
where the same characterization is used to prove the Kripke completeness and the finite
approximability of the Scott logic with respect to the so characterized class of finite frames,
thus disproving a conjecture of Minari [123]. Finally, over trees, it can be proved that sa
defines the following first-order condition:

∀x¬∃yzv(xRy ∧ xRz ∧ zRv ∧ z 6= v ∧ ¬∃w(yRw ∧ zRw)).

20The class of frames S = {F | ∀G ⊆
I
F(S is not a p-morphic image of G)} characterizes

SL too. Moreover, it can be shown that if we restrict S to those frames F such that, for
each x ∈ F, there exists y maximal in F such that xRy, then S contains exactly those frames
satisfying the sufficient condition validating sa of Proposition 1.35.
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also known in the literature as the logic of finite problems, was first introduced
in 1962 by the Soviet logician Y. Medvedev ([114, 116]) as an attempt to prop-
erly formalize the informal interpretation of intuitionistic logic as a calculus of
problem proposed by Kolmogorov in 1932 ([91]).

For every n > 0 considered as a set n = {0, 1, . . . , n − 1}, let the Medvedev
frame based on n be the following Kripke frame

Pn = 〈P(n) \ {∅},⊇〉

For instance, the Medvedev frames P2 and P3 are respectively as follows:

Figure 1.2: The Medvedev frames P2 and P3.

Therefore, these frames are nothing but n-ary Boolean cubes without the
top element. Medvedev’s logic ML is then defined as

ML =
⋂
0<n

LogPn

From this semantic characterization, ML is finitely approximable and one
can easily show that both SL and KP are included in ML. Furthermore, by
Theorem 1.28, it follows that ML has the disjunction property. But more than
this is known: actually, Medvedev’s logic is a maximal intermediate logic with
the disjunction property21.

Thus Medvedev’s logic is a very interesting and rich intermediate logic. In-
deed, in [137], it is also proved that
Theorem 1.37 (Prucnal). Medvedev’s logic ML is structurally complete.

Finally, it is no coincidence that this logic has been introduced by providing
only a Kripke semantics for it, since no axiomatization is known. As to the topic
of ML’s axiomatizability, it is only known that it is not finitely axiomatizable
([110]) and therefore the problem of the decidability of ML is still an open issue.

The logics of bounded depth

Consider the sequence of formulas bdn defined in the previous section in the
proof of Theorem 1.22. For each n > 0, the logic of bounded depth BDn (also
known as logic of the nth slice, [76]) is the following intermediate logic

BDn = Int + bdn.
21The interest on maximal constructive intermediate logic was aroused by [89], where it is

shown that there is no greatest intermediate logic with the disjunction property. The existence
of maximal constructive intermediate logics follows easily from Zorn’s lemma, but ML was
the first concrete example of an intermediate logic of that kind and this result was first proved
by Levin [98] (cfr. also [106]). In [45], it is shown that the set of all maximal intermediate
logics with the disjunction property has the power of continuum.
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Notice that BD1 = Int + p1 ∨ ¬p1 = Cl.

Definition 1.15. Let F = 〈W,R〉 be a Kripke frame.

1. The frame F is of depth n < ω, and we write d(F) = n, if there exists
a chain of n points in F and every other chain in F contains at most n
points; moreover, we say that the frame F is of finite depth if d(F) < ω.

2. The frame F is of infinite depth, and we write d(F) = ω, if, for every n < ω,
F contains a chain of n points.

3. For w ∈W , the depth of w is the depth of Fw and we denote it by d(w).

Proposition 1.38. A frame F = 〈W,R〉 validates bdn iff d(F) ≤ n, that is iff
F satisfies the following condition:

∀x0, . . . , xn(
n−1∧
i=0

xiRxi+1 ⇒
∨
i 6=j

xi = xj).

Therefore, for each n > 0, the logic BDn is elementary.

The logics of bounded width

Let us consider the following sequence of L-formulas bwn:

bwn =
n∨
i=0

(pi →
∨
j 6=i

pj), n ≥ 1.

For each n > 0, the logic of bounded width BWn is the following intermediate
logic

BWn = Int + bwn.

Given a Kripke frame F = 〈W,R〉, a subset X ⊆W is said to be an antichain
in F if, for every x, y ∈ X, xRy =⇒ x = y, that is, distinct point in X do not
see each other.

Definition 1.16. Let F = 〈W,R〉 be a Kripke frame.

1. The frame F is of width n < ω, and we write w(F) = n, if there exists an
antichain of n points in F and every other antichain in F contains at most
n points; moreover, we say that the frame F is of finite width if w(F) < ω.

2. The frame F is of infinite width, and we write w(F) = ω, if, for every
n < ω, F contains an antichain of n points.

Proposition 1.39. A frame F = 〈W,R〉 validates bwn iff, for every rooted
subframe G ⊆

I
F, w(G) ≤ n, that is iff G satisfies the following condition:

∀x, x0, . . . , xn(
n−1∧
i=0

xRxi ⇒
∨
i 6=j

xiRxj).
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Thus the L-formulas bwn bound the width of rooted frames. However, we
can not find an intuitionistic formula which bounds the width of an arbitrary
frame, since, for instance, the frame 〈{0, 1, 2, . . .},=〉, being the disjoint union
of ω single-point frames, validates all formulas in Cl. In particular, the logics
BWn are not elementary. However, a classical theorem of Fine shows that these
logics are Kripke complete.

We say that an intermediate logic L is of width n if bwn ∈ L but bwn+1 /∈ L.

Theorem 1.40 (Fine22). Any intermediate logic of width n is characterized by
a class of Noetherian Kripke frames of width ≤ n. In particular, for each n ≥ 1,
BWn is Kripke complete.

The logics of bounded branching

Consider the following family of L-formulas:

bbn =
n∧
i=0

((pi →
∨
j 6=i

pj)→
∨
j 6=i

pj)→
n∨
i=0

pi, n ≥ 1.

The logics of bounded branching Tn (also known as the Gabbay - De Jongh
logics, cfr. [56]), for n ≥ 1, are defined as follows:

Tn = Int + bbn.

A finite Kripke frame F = 〈W,R〉 is said to be of branching ≤ n if every
point in F has at most n distinct immediate successors.

Proposition 1.41. A finite Kripke frame F = 〈W,R〉 validates bbn iff F is of
branching ≤ n.

The restriction to finite frames is actually necessary, since, analogously to
the Scott formula, the arbitrary validating frames for the formulas bbn can not
be characterized by any first-order condition on the accessibility relation R and
thus the logics Tn (n ≥ 2) are not elementary.

In [56], Gabbay and de Jongh proved that the logics Tn are decidable and
have the disjunction property. Moreover, they also showed that these logics
are complete with respect to the class of finite frames of branching ≤ n. As a
consequence, one can show, for every n > 1, that the class Tn of n-ary trees, that
is, trees whose non maximal points have exactly n distinct immediate successors,
also characterizes Tn.

1.4 Lattices and Heyting Algebras
Definition 1.17. Let P = 〈P,≤〉 be a partially ordered set and let A ⊆ P . An
element p ∈ P is an upper bound for A if a ≤ p for every a ∈ A, while p ∈ P is
said to be the least upper bound of A (or supremum of A), and we write supA,
if p is an upper bound for A and if a ≤ b for every a ∈ A, then p ≤ b, that is,
p is the smallest among the upper bounds of A. Dually, an element p ∈ P is a
lower bound for A if p is an upper bound in the order dual poset Pop = 〈P,≥〉
and p is the greatest lower bound of A (or infimum of A), and we write infA, if
p is the supremum of A in Pop.

22For a proof of this theorem, cfr. [23, Section 10.4] or [142, Section 2.10].
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Definition 1.18. A partially ordered set 〈L,≤〉 is called a lattice if, for every
a, b ∈ L, both sup{a, b} and inf{a, b} exist (in L). Moreover, L is said to be
bounded if L has a least and a greatest element denoted by 0 and 1 respectively.

Now, given a lattice 〈L,≤〉, one can define two binary operations ∧ and ∨
on L by setting, for every a, b ∈ L,

a ∧ b = inf{a, b}
a ∨ b = sup{a, b}

and show that lattices can also be defined axiomatically as algebraic structures.
Indeed, the following holds (cfr. [20, p. 8])

Proposition 1.42. An algebraic structure 〈L,∧,∨, 0, 1〉, with the following sim-
ilarity type 〈2, 2, 0, 0〉, is a bounded lattice iff L satisfies the following identities:

x ∧ y ≈ y ∧ x x ∨ y ≈ y ∨ x
x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z

x ∧ x ≈ x x ∨ x ≈ x
x ∧ 1 ≈ x x ∨ 0 ≈ x

x ∧ (y ∨ x) ≈ x x ∨ (y ∧ x) ≈ x

Therefore a bounded lattice can be viewed as a structure 〈L,∧,∨, 0, 1〉 where
〈L,∧, 1〉 and 〈L,∨, 0〉 are both commutative monoids and ∧ and ∨ are connected
by the absorption law : x ∧ (y ∨ x) ≈ x ≈ x ∨ (y ∧ x).

Definition 1.19. A lattice 〈L,∧,∨〉 is said to be complete if, for every subset
A ⊆ L, there exist

∨
A = supA and

∧
A = infA.

Obviously, every finite lattice is a bounded complete lattice.

Definition 1.20. A distributive lattice is a lattice 〈L,∧,∨〉 which satisfies the
following distributive laws23,

x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z)

We are now finally ready to define the main notion of this section.

Definition 1.21. A bounded distributive lattice H = 〈H,∧,∨, 0, 1〉 is a Heyt-
ing algebra or a pseudo-Boolean algebra if, for every a, b ∈ H, there exists an
element, denoted by a→ b, such that, for every c ∈ H,

c ≤ a→ b⇔ a ∧ c ≤ b

We call the binary operation→ the operation of implication and for every a ∈ H
we define ¬a := a→ 0 and call it the pseudo-complement of a.

23More precisely, for a lattice to be distributive it is only requested that it satisfies at least
one of the two distributive laws, since it can be shown that each of these two identities implies
the other.
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Given a lattice L = 〈L,∧,∨〉 and a, b, c ∈ L, the element c is said to be the
relative pseudo-complement of a with respect to b if c is the greatest element
among elements x ∈ L such that a ∧ x ≤ b, that is,

c =
∨
{x ∈ L | a ∧ x ≤ b}.

Moreover, it is not hard to show that, for any Heyting algebra H = 〈H,∧,∨, 0, 1〉
and elements a, b ∈ H, the element a→ b is the relative pseudo-complement of
a with respect to b. The relative pseudo-complement of a to a, that is, a → a
is the greatest element of H, hence we can present any Heyting algebra with
the following similarity type: 〈∧,∨,→, 0〉. Thus from now on, we will denote a
Heyting algebra as H = 〈H,∧,∨,→, 0〉.

In complete analogy with the case of lattices, Heyting algebras too can be
given an algebraic axiomatic characterization.

Proposition 1.43. A bounded lattice L = 〈L,∧,∨, 0, 1〉 is a Heyting algebra iff
there is a binary operation → on L that satisfies the following identities:

x→ x ≈ 1
x ∧ (x→ y) ≈ x ∧ y
y ∧ (x→ y) ≈ y
x→ (y ∧ z) ≈ (x→ y) ∧ (x→ z)

LetHA denote the class of all Heyting algebras. Then, by Birkohoff theorem,
we have the following

Corollary 1.44. HA is a variety.

We now give an alternative characterization of complete Heyting algebras,
i.e. Heyting Algebras which are complete as a lattice.

Lemma 1.45. A complete bounded lattice L = 〈L,∧,∨, 0, 1〉 is a Heyting alge-
bra iff it satisfies the following infinite distributive law

x ∧
∨
i∈I

yi ≈
∨
i∈I

(x ∧ yi)

for every index set I.

We conclude this section with some examples of Heyting algebras.
Example 1. Let L = 〈L,∧,∨〉 be a finite distributive lattice. Since L is finite,
L is bounded and complete. Moreover, since L is distributive, it satisfies the
infinite distributive law. Therefore, by Lemma 1.45, every finite distributive
lattice is a Heyting algebra.
Example 2. A chain is a poset 〈P,≤〉 where the relation ≤ is a total order, that
is, for every a, b ∈ P , either a ≤ b or b ≤ a. Let C = 〈C,≤〉 be a chain with
least and greatest element. Define, for a, b ∈ C,

a→ b =
{

1 if a ≤ b
b if a > b.

Then it is easy to show that C with the implication → is a Heyting algebra.
Hence, every chain with a least and greatest element is a Heyting algebra.
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Example 3. By Theorem 1.20 and 1.45, it follows that the lattice of si-logics
ExtInt is a Heyting algebra.
Example 4. A bounded lattice L = 〈L,∧,∨, 0, 1〉 is called complemented if every
element a ∈ L has a complement, that is, an element b ∈ L such that

a ∨ b = 1 and a ∧ b = 0.

A Boolean algebra or Boolean lattice is a bounded complemented distributive
lattice. It can be shown that in distributive lattices complements are unique
and in a Boolean algebra B the complement of an element a is usually denoted
by ¬a.
Now, let a Boolean algebra B = 〈B,∧,∨,¬, 0, 1〉 be given. By setting

a→ b := ¬a ∨ b

we turn B into a Heyting algebra 〈B,∧,∨,→, 0〉. Therefore, every Boolean
algebra is a Heyting algebra.
Example 5. Let 〈X, τ〉 be a topological space. Then the structure 〈τ,∩,∪,A, ∅〉
provides an example of a complete Heyting algebra, where the implication is
defined as follows:

A A B := (X \A ∪B)◦

Indeed, (X \A ∪B)◦ =
⋃
{Z ∈ τ | Z ⊆ X \A ∪B} =

⋃
{Z ∈ τ | A ∩ Z ⊆ B}.

Example 6. Consider the propositional intuitionistic logic Int with his language
L. For every ϕ,ψ ∈ ForL, define the relation ∼Int⊆ ForL × ForL as follows

ϕ ∼Int ψ ⇐⇒ ϕ↔ ψ ∈ Int.

It is easily seen that ∼Int is an equivalence relation on the set of L-formulas.
Denote by [ϕ] the equivalence class {ψ | ψ ∼Int ϕ} of ϕ by the equivalence
relation ∼Int and let ForL/∼Int = {[ϕ] | ϕ ∈ L} be the quotient set of L-
formulas by ∼Int. Now, the logical connectives in L naturally induce operations
on ForL/∼Int as follows24:

[ϕ] ◦ [ψ] := [ϕ ◦ ψ] for ◦ ∈ {∧,∨,→}

The structure LInt = 〈ForL/∼Int ,∧,∨,→, [⊥]〉 is called the Lindenbaum-Tarksi
algebra of Int and this algebra constitutes an example of Heyting algebra. In
particular, the Lindenbaum algebra of Int is the HA-free algebra over ω gener-
ators.

1.4.1 Filters and congruences in Heyting algebras
We now consider an algebraic analog of a set of formulas closed under modus
ponens, that is, the notion of filter.

Definition 1.22. Let H = 〈H,∧,∨,→, 0〉 be a Heyting algebra. A subset
∇ ⊆ H is called a filter in H if, for every a, b ∈ H,

• 1 ∈ ∇;
24The operations are indeed well defined since the Equivalent Replacement Theorem 1.19

holds for Int.
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• a ∈ ∇ and a→ b ∈ ∇ =⇒ b ∈ ∇.

Thus we trivially have that {1} and H are filters. A filter different from H is
called proper. The previous definition is clearly equivalent to the more common
formulation of a filter in a lattice.

Lemma 1.46. Let H = 〈H,∧,∨,→, 0〉 be a Heyting algebra. A subset ∇ ⊆ H
is filter in H iff, for every a, b ∈ H

1. ∇ 6= ∅;

2. a, b ∈ ∇ =⇒ a ∧ b ∈ ∇;

3. a ∈ ∇ and a ≤ b =⇒ b ∈ ∇.

Consider a lattice L = 〈L,∧,∨〉 and let X ⊆ L. Since the intersection of
an arbitrary family of filters containing X is again a filter containing X and, in
particular, is the smallest filter containing X, the notion of the filter generated
by X makes sense and we denote such a filter by [X). The next lemma gives a
constructive characterization of [X).

Lemma 1.47. Let L = 〈L,∧,∨〉 be a lattice and let X be a non-empty subset
of L. Then the filter generated by X is the following set:

[X) = {b ∈ L | a1 ∧ . . . ∧ an ≤ b, for some a1, . . . , an ∈ X}.

If the set X is a singleton, i.e. X = {a} for some a ∈ L, then we denote
the filter generated by X with [a). Filters of this form are called principal
filters. Note that in a finite lattice, every filter is a principal filter, because it is
generated by the (finite) conjunction of its elements.

The dual notion of filter is the notion of ideal. Indeed, an ideal ∇ in a lattice
L is a filter in Lop.

Proposition 1.48. Let H = 〈H,∧,∨,→, 0〉 be a Heyting algebra and let ∇ ⊆ H
be a filter in H. The set of filters in H containing ∇ forms a complete distributive
lattice with the infimum and supremum defined respectively by∧

{∇i | i ∈ I} =
⋂
i∈I
∇i and

∨
{∇i | i ∈ I} = [

⋃
i∈I
∇i).

The previous proposition allows us to give the following

Definition 1.23. The lattice of filters in H containing ∇ = {1} is called the
lattice of filters in H and we denote it by Fi(H).

We now show a close correspondence between the lattice of congruence rela-
tion Con(H) and the lattice of filters Fi(H) of a given Heyting algebra H. For a
full proof of the following lemmas, the reader is referred to [142, pp. 117-119].

Lemma 1.49. Let H = 〈H,∧,∨,→, 0〉 be a Heyting algebra and ∇ be a filter
on H. Then the relation ∼∇⊆ H ×H defined by

a ∼∇ b⇔ (a→ b) ∧ (b→ a) ∈ ∇

is a congruence relation on H. Moreover, for every a ∈ H, a ∈ ∇ iff a ∼∇ 1.
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Lemma 1.50. Let H = 〈H,∧,∨,→, 0〉 be a Heyting algebra and ∼ be a con-
gruence on H. Then ∇∼ := {a ∈ H | a ∼ 1} is a filter on H. Moreover,
∼=∼∇∼ .

From the two above lemmas, we thus obtain the following

Lemma 1.51. Let H = 〈H,∧,∨,→, 0〉 be a Heyting algebra, ∇ be a filter on H
and ∼ be a congruence on H. Then ∼∇∼=∼ and ∇∼∇ = ∇.

We are now ready for the main theorem of this section.

Theorem 1.52. Let H = 〈H,∧,∨,→, 0〉 be a Heyting algebra. The function
∇ : Con(H) → Fi(H) given by ∼ 7→ ∇∼ is a lattice isomorphism. Hence, for
every Heyting algebra H, Con(H) ∼= Fi(H).

Due to this correspondence between congruences and filters, given any filter
∇ of a Heyting algebra H, we will also write H/∇ to denote the quotient algebra
of A by the congruence ∼∇ associated to ∇. Moreover, as a direct consequence
of the previous theorem, we have

Corollary 1.53. The variety HA of Heyting algebras is congruence-distributive
and has the Congruence Extension Property (CEP).

The existing isomorphism between the lattice of congruence relation and
the lattice of filters of a given Heyting algebra allows us also to give a simple
proof of the following useful characterization of subdirectly irriducibles Heyting
algebras, first established by Jankov in [83].

Theorem 1.54. A Heyting algebra H = 〈H,∧,∨,→, 0〉 is subdirectly irriducible
iff H has a second greatest element, i.e. an element ω which is the greatest
element in the set {a ∈ H | a < 1}.

Proof. (=⇒) Let H be subdirectly irriducible. Therefore there is a minimum
congruence in Con(H) \ {∆}, where ∆ is the diagonal relation on H. By Theo-
rem 1.52, H has a minimum filter in Fi(H) \ {{1}}, denote it by ∇. Then there
is an element ω ∈ ∇ such that ω 6= 1. We claim that ∇ = [ω). Suppose not,
then since [ω) ⊆ ∇, there is b ∈ ∇ such that ω � b. But then [b) ⊂ ∇, which
is not possible. Moreover, if there exists b ∈ [ω) such that b 6= ω and b 6= 1,
then [b) again would be a proper subset of ∇. Hence ∇ = [ω) = {ω, 1}. Now,
for every 1 6= b ∈ H, [ω) ⊆ [b), that is b ≤ ω. Hence ω is the second greatest
element of H.
(⇐) If H has a second greatest element ω, then [ω) would be the minimum filter
in Fi(H) \ {{1}}. By Theorem 1.52, there would be a minimum congruence in
Con(H) \ {∆}, i.e. H would be subdirectly irriducible.

1.5 Algebraic Completeness of Int and its ex-
tensions

First notice that there is no real difference between the propositional language
L and the similarity type Ω = 〈∧,∨,→, 0〉 of Heyting algebras with a countable
set of variables X. Therefore, we can identify the set of formulas ForL with the
set of terms Tm(X) of type Ω over X and a valuation h : Tm(X) → A into a
given Heyting algebra A as a function h : ForL → A.
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Definition 1.24. Let A be a Heyting algebra. We say that a L-formula ϕ
is valid in A if A satisfies the identity ϕ ≈ >, that is, if h(ϕ) = 1 for every
valuation h : ForL → A.
Moreover, we say that an inference rule r : {ψ1, . . . , ψn}/ϕ is valid in A if A
satisfies the quasi-identity q(r) : ψ1 ≈ 1 & . . .& ψn ≈ 1⇒ ϕ ≈ 1.

Theorem 1.55 (Algebraic completeness of Int). Let ϕ ∈ ForL. Then

ϕ ∈ Int⇐⇒ ϕ is valid in A, for every Heyting algebra A.

Proof. (=⇒) Let A be a Heyting algebra. We have to show that all the axiom
(A1)-(A9) and all inference rule of Int are valid in A. As an example, let us
show that (A1) is valid in A. Consider a valuation h : ForL → A, then

h(p0 → (p1 → p0)) = h(p0)→ (h(p1)→ h(p0))

=
∨
{z ∈ A | z ∧ h(p0) ≤ h(p1)→ h(p0)}

=
∨
{z ∈ A | z ∧ h(p0) ∧ h(p1) ≤ h(p0)} = 1.

Now consider the rule MP. Suppose that ϕ and ϕ → ψ are valid in A and let
h : ForL → A be a valuation. Then, from our hypothesis, we have

1 = h(ϕ)→ h(ψ)⇐⇒ 1 ∧ h(ϕ) = h(ψ)
⇐⇒ 1 ∧ 1 = h(ψ)
⇐⇒ 1 = h(ψ).

(⇐=) Let ϕ /∈ Int and consider the Lindenbaum-Tarski algebra of Int LInt (cfr.
Example 6). Suppose, towards a contradiction, that ϕ is valid in LInt. Then,
consider the natural projection π : ForL → LInt associating to each L-formula
ψ its equivalence class [ψ]. Since π is a valuation, π(ϕ) = 1, that is, [ϕ] = [>],
and thus ϕ ∼Int >. But by definition of ∼Int, we then have ϕ ↔ > ∈ Int,
whence ϕ ∈ Int, contrary to our hypothesis.

Now consider a si-logic L. We can associate with L the class of Heyting
algebra VL validating all the formulas from L, that is, such that VL |= ϕ ≈ 1, for
all ϕ ∈ L. Clearly VL forms a variety. Moreover, since the Lindenbaum-Tarski
construction goes through for every si-logic L (just substitute every occurrence
of Int with L in Example 6) and thus delivers a Heyting algebra LL ∈ VL, we
can easily generalize Theorem 1.55 to every si-logic L and thus get the following

Theorem 1.56 (Algebraic completeness of ExtInt). For every si-logic L and
every ϕ ∈ ForL,

ϕ ∈ L⇐⇒ ϕ is valid in A, for every Heyting algebra A ∈ VL.

Conversely, with every non-empty class of Heyting algebra C, let Log C be
the set of L-formulas validated by every algebra in C, that is,

Log C = {ϕ ∈ ForL | A |= ϕ ≈ 1, for every A ∈ C}.

Theorem 1.57. Let C be a non-empty class of Heyting algebra. Then Log C is
a si-logic.
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As a consequence of the algebraic completeness theorem for si-logic, we get

Theorem 1.58. Let V be a variety of Heyting algebras and L be a si-logic.
Then

VLogV = V LogVL = L

The variety of Heyting algebras VL is called the characteristic variety for
the si-logic L, while LogV is called the logic of the variety V. Then the previous
theorem tells us that there is a one-to-one correspondence between the class of
all si-logics and the class of subvarieties of the variety HA of Heyting algebras.
But there is something more.

First, let us define on the class of of subvarieties of Heyting algebras the two
following lattice operations: for any subvariety V1 and V2,

V1 ∧ V2 := V1 ∩ V2 V1 ∨ V2 := HSP(V1 ∪ V2).

Then the class of all subvarieties of HA forms a complete bounded lattice with
respect to the operations ∧ and ∨ with greatest element HA and smallest ele-
ment the variety containing the trivial algebra. We call this structure the lattice
of subvarieties of Heyting algebras and denote it by SubHA.

Definition 1.25. Two lattice A = 〈A,∧,∨〉 and B = 〈B,∧,∨〉 are said to be
dually isomorphic if there exists a isomorphism f : A→ B that dually preserves
the operations, that is, for every x, y ∈ A,

f(x ∧ y) = f(x) ∨ f(y) f(x ∨ y) = f(x) ∧ f(y).

Such an f is then called a dual isomorphism of A onto B.

Theorem 1.59. The lattice of si-logic ExtInt and the lattice of subvarieties of
Heyting algebras SubHA are dually isomorphic, with the map L 7→ VL being a
dual isomorphism.

1.6 Heyting algebras and Kripke frames
Let F = 〈W,R〉 be a Kripke frame and consider the set of upsets Up(W ) of W .
If we endow Up(W ) with the operation of set-theoretic intersection and union,
then 〈Up(W ),∩,∪〉 forms a bounded lattice with ∅ and W as bottom and top
element respectively. Can we define an operation of implication on Up(W ) in
order to turn 〈Up(W ),∩,∪〉 into a Heyting algebra? The answer is positive.
Indeed, define ⊃ : Up(W )2 → Up(W ) as follows: for every X,Y ∈ Up(W ),

X ⊃ Y := {x ∈W | ∀y(xRy ∧ y ∈ X → y ∈ Y )}.

It is easily seen that ⊃ is a Heyting implication, therefore the algebra

F+ = 〈Up(W ),∩,∪,⊃, ∅〉

is a Heyting algebra and we call it the dual of F. Moreover, notice that every
valuation V in F is at the same time a valuation in F+ and, in particular, for
every formula ϕ, we have F |= ϕ iff F+ |= ϕ.

The following Figure 1.3 shows the intuitionistic frames S (on the left) and
its dual S+ (on the right):
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Figure 1.3: The frame S and its dual S+.

Thus, for every Kripke frame F, we get a Heyting algebra F+. We now
show that the converse is also true, that is, we show how to associate with
every Heyting algebra a Kripke frame. But before doing that, we need some
preliminary definitions.

Definition 1.26. Let H = 〈H,∧,∨,→, 0〉 be a Heyting algebra. A proper filter
∇ ( H of H is said to be

• prime if x ∨ y ∈ ∇ implies x ∈ ∇ or y ∈ ∇;

• maximal if ∇ is not contained in a proper filter in H different from ∇;

• an ultrafilter if, for every element a ∈ H, either a ∈ ∇ or ¬a ∈ ∇.

Definition 1.27. Let H = 〈H,∧,∨,→, 0〉 be a Heyting algebra. An element
a ∈ H is said to be

• prime if a 6= 0 and, for every b, c ∈ H, a = b ∨ c implies a = b or a = c25;

• an atom if a 6= 0 and, for every b ∈ H, b ≤ a implies b = 0 or b = a.

For Heyting algebras, ultrafilters and maximal filters coincide, while in
Boolean algebras all the three previous notions of filters extensionally deter-
mine the same class.

Proposition 1.60. Let H = 〈H,∧,∨,→, 0〉 be a Heyting algebra Then

(i) a principal filter in H is prime iff it is generated by a prime element;

(ii) a principal filter H is an ultrafilter iff it is generated by an atom.

We are going now to prove a theorem that will be useful in what follows.

Theorem 1.61. Every filter ∇ in an Heyting algebra H such that a /∈ ∇, for
some a ∈ H, can be extended to a prime filter ∇′ such that a /∈ ∇′.

25More precisely, in any lattice L = 〈L,∧,∨〉, an element a ∈ L satisfying the previous
condition would be called join-irreducible, while if we replace the equality relation with the
lattice partial ordering ≤, we then get the notion of a join-prime element. When the lattice
L is distributive, as in the case of the lattice reduct of an Heyting algebra, the two notion
collapse.
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Proof. Consider the set F of filters ∆ in H such that ∇ ⊆ ∆ and a /∈ ∆ ordered
by ⊆ and let Q ⊆ F be a chain. Then

⋃
Q ∈ F . Therefore, by Zorn’s lemma26,

there exists a maximal filter ∇′ in H such that ∇ ⊆ ∇′ and a /∈ ∇′. We now
show that ∇′ is prime.

Suppose otherwise. Then there are b, c ∈ H such that b ∨ c ∈ ∇′ but b /∈ ∇′
and c /∈ ∇′. Let ∇b = [∇′ ∪ {b}) and ∇c = [∇′ ∪ {c}). By maximality of ∇, we
have a ∈ ∇b ∩∇c and so there are elements b1, c1 ∈ ∇′ such that b1 ∧ b ≤ a and
c1 ∧ c ≤ a. Therefore, b1 ∧ c1 ∧ b ≤ a and b1 ∧ c1 ∧ c ≤ a and thus

(b1 ∧ c1 ∧ b) ∨ (b1 ∧ c1 ∧ c) = (b1 ∧ c1) ∧ (b ∨ c) ≤ a.

But then, since both b1 ∧ c1 and b ∨ c belong to ∇′, by definition of filter it
follows that a ∈ ∇′, which is a contradiction.

Corollary 1.62. Let H be an Heyting algebra and let a, b ∈ A such that a � b.
Then there exist a prime filter ∇ such that a ∈ ∇ and b /∈ ∇.

Proof. Just consider the principal filter ∆ = [b) and apply Theorem 1.61.

Notice that the proof of Theorem 1.61 can be easily modified in order to
show the following

Lemma 1.63 (Stone). Let ∇ be a filter and ∆ an ideal in an Heyting algebra
H such that ∇∩∆ = ∅. Then ∇ can be extended to a prime filter ∇′ such that
∇′ ∩∆ = ∅.

Now consider a Heyting algebra H = 〈H,∧,∨,→, 0〉. We define the dual
frame of H to be the Kripke frame H+ = 〈WH, RH〉, where

WH = {∇ ∈ 2H | ∇ prime filter of H},
∇RH∇′ ⇐⇒ ∇ ⊆ ∇′.

Notice that if H is finite, then H+ is finite as well; moreover, since in a finite
Heyting algebra every filter is principal, by Proposition 1.60 (i), every element
∇ ∈WH is of the form [a) for some prime element a ∈ H and [a) ⊆ [b) iff b ≤ a.
Therefore, the frame H+ is isomorphic to the frame 〈W,≥〉 where W is the set
of all prime elements of H and ≤ is the lattice order of H.

The previous comment gives us the right insights in order to prove the fol-
lowing

Theorem 1.64. Every finite Heyting algebras is isomorphic to the dual of some
finite Kripke frame. In particular, A ∼= F+ ∼= (A+)+, where F = 〈W,≥〉 is the
frame of the prime elements of A ordered by the opposite lattice order of A.

Proof. Let A be a finite Heyting algebra and F = 〈W,≥〉 be the frame of the
prime elements of A. Since every a ∈ A can be represented as

∨
{b ∈W | b ≤ a},

the map f : A→ Up(W ) defined by f(a) = {b ∈W | b ≤ a} turns out to be an
isomorphism of A onto F+27.

26Zorn’s lemma states that, given any partially ordered set 〈P,≤〉, if every chain in P has
an upper bound, then there exist a ≤-maximal element in P . It is a well known fact that
Zorn’s lemma is equivalent to the Axiom of Choice.

27For a full proof of the theorem, cfr. [23, Theorem 7.30] or [128, §1].
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Actually, something even stronger is true. The previous theorem can indeed
be strengthened to the following duality.

Theorem 1.65. The category HA<ω of finite Heyting algebras and related
morphism is dually equivalent to the category KF<ω having finite Kripke frames
as objects and p-morphisms as arrows.

Proof. Here we will only give a sketch of the proof. For more details, cfr. the
proof of Theorem 2.14 and, more generally, §2.
We have to define two contravariant functors which are pseudo-inverses. So let
Ψ: HA<ω → KF<ω be defined as follows:

Ψ(A) = A+,

Ψ(f) : Ψ(B)→ Ψ(A) given by Ψ(f) = f−1,

for every finite Heyting algebra A and for every morphism f : A→ B ofHA<ω.
Then Ψ(f) is shown to be a p-morphism and thus Ψ is a well defined contravari-
ant functor.
Now let Φ: KF<ω →HA<ω be the functor defined as follows:

Φ(F) = A+,

Ψ(h) : Ψ(G)→ Ψ(F) given by Ψ(h) = h−1,

for every finite Kripke frame F and for every p-morphism h : F → G. It is
possible to show that Φ(h) is indeed a Heyting morphism and therefore Φ is
well defined.
In order to establish the dual equivalence of HA<ω and KF<ω, the natural
transformations we need are the following: for every finite Heyting algebra A,

α : 1HA<ω

∼−→ Φ ◦Ψ defined by αA : A→ Φ ◦Ψ(A)
αA(a) = {∇ ∈WA | a ∈ ∇}

and, for every finite Kripke frame F = 〈W,R〉,

β : 1KF<ω

∼−→ Ψ ◦ Φ defined by βF : F→ Ψ ◦ Φ(F)
βF(w) = {U ∈ Up(W ) | w ∈ U}.

One could wonder whether the previous duality can be extended to the
categories of Heyting algebras HA and Kripke frames KF. The answer is
negative: in the previous section we have seen that every intermediate logic L
has a sound and complete algebraic semantics, given by the variety of Heyting
algebras VL; now if there was such a duality, every intermediate logic L would
be characterized by the class of frames {A+ | A ∈ VL}, and thus every logic
would be Kripke complete. However, as we mentioned in §1.3.1 (cfr. footnote
n.11), there are intermediate logics that are not Kripke complete.

Furthermore, as dealing with the infinite is much more complex that dealing
with the finite, the methodology and the proof techniques often have to be
changed. Indeed, a simple example shows that the category KF is not suitable
anymore for establishing a duality: for every Kripke frame F = 〈W,R〉, F+ is a
complete Heyting algebra, since 〈Up(W ),∩,∪〉 is complete as a lattice. Hence,
every Heyting algebra that is not complete can not be obtained from any Kripke
frame.



Chapter 2

Esakia duality

Esakia duality is the dual equivalence between the category of Heyting algebras
and the category of Esakia spaces, which was first established in 1974 by the
Georgian logician Leo Esakia in the greatly influential paper [43]. A monograph
on the subject was then published in 1985 by the Georgian publishing house
Metsniereba and became very popular among Soviet logicians. Due to the fact
that it was written in Russian, the book was not easily available to the Western
logicians, who had to wait the recent publication of [41] to see Esakia’s original
presentation finally translated in English.

As we had already mentioned, proofs of Esakia duality are usually obtained
as a byproduct of a duality established in a more encompassing modal framework
and the proof contained in [41] makes no difference. So, even if most of the
material of this chapter can be found in [41], we will give here a full direct proof
of the Esakia duality. Furthermore, we will unify in a coherent exposition most
of the correspondences of the duality between algebraic and order-topological
notions which are scattered in the literature and collect them in Table 2.1 in a
way which is similar to the duality dictionary for Heyting algebras of [10].

2.1 Priestley and Esakia spaces
Definition 2.1. A topological space X = 〈X, τ〉 is said to be a Stone space if
X is compact, Hausdorff and zero-dimensional.

A triple X = 〈X, τ,R〉, where 〈X, τ〉 is a topological space and 〈X,R〉 is
a poset, is called an ordered topological space. Given two ordered topological
spaces X = 〈X, τ,R〉 and Y = 〈Y, τ ′, S〉, we say that X is order-homeomorphic
to Y if there exists a map f : X → Y such that f is a homeomorphism and f is
an order-isomorphism.
Furthermore, we say that the partial order R on X satisfies the Priestley sepa-
ration axiom if the following condition holds: for every x, y ∈ X,

¬(xRy) =⇒ ∃U ⊆ X such that U is a clopen upset, x ∈ U and y /∈ U, (P)

and we say that R is point-closed if x↑ is closed for every x ∈ X.
Definition 2.2. Let X = 〈X, τ,R〉 be an ordered topological space. Then
X is called a Priestley space if 〈X, τ〉 is compact and R satisfies the Priestley
separation axiom.

43
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It is not difficult to show that, for any Priestley space X = 〈X, τ,R〉, the
topological space 〈X, τ〉 is a Stone space. Furthermore, we have the following

Lemma 2.1. Let X = 〈X, τ,R〉 be a Priestley space. Then, for each closed
subset F ⊆ X, both F↑ and F↓ are closed. In particular, R is point-closed.

Now, let X = 〈X, τ,R〉 be an ordered topological space. We say that R is
clopen if, for every clopen set U , U↓ is also clopen. Now we will introduce the
central notion of this chapter.

Definition 2.3. An Esakia space is a a Priestley space X = 〈X, τ,R〉 such that
R is clopen relation.

It is worth mentioning that Esakia spaces can be characterized without any
reference to Priestley spaces. Indeed, in [43] Esakia spaces have been defined
as particular ordered topological spaces X = 〈X, τ,R〉 such that 〈X, τ〉 is a
Stone space, R is point-closed and the map ρ : X → C(X) determined by R
and given by x 7→ x↑ is a continuous map between 〈X, τ〉 and the topological
space 〈C(X), τV 〉 given by the non-empty closed subset of X with the Vietoris
topology. For more information on the original definition of Esakia spaces, cfr.
[43, 41].

2.2 Towards a complete duality for Heyting al-
gebras

We are now ready to lay the foundations for a full duality for Heyting algebras.
Recall that, given a Heyting algebra H = 〈H,∧,∨,→, 0〉, we denote by 〈WH, RH〉
the poset given by the set of prime filters of H ordered by inclusion, that is

WH = {∇ ∈ 2H | ∇ prime filter of H},
∇RH∇′ ⇐⇒ ∇ ⊆ ∇′.

Furthermore, we denote by ·̂ : H → 2WH the map given by

â = {∇ ∈WH | a ∈ ∇}

and by PH the range of ·̂, that is,

PH = {â | a ∈ H}.

Now, for a ∈ H, let −â denote the complement of â in WH, i.e. −â = WH \ â
and let −PH be the set {−â| a ∈ H}. We can now define on WH a topology τH
by letting S = PH ∪ −PH be a subbasis and consider the ordered topological
space WH = 〈WH, τH, RH〉. We will prove that WH is an Esakia space, but first,
let us analyze the topology τH.

Lemma 2.2. For every a, b ∈ H,

(i) â ∧ b = â ∩ b̂;

(ii) â ∨ b = â ∪ b̂.
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Proof. Let us prove (ii). Let ∇ ∈ â ∨ b. Then a ∨ b ∈ ∇. Since ∇ is a prime
filter, either a ∈ ∇ or b ∈ ∇. Therefore, either ∇ ∈ â or ∇ ∈ b̂, that is, ∇ ∈ â∪ b̂.
Conversely, if ∇ ∈ â ∪ b̂, then either a ∈ ∇ or b ∈ ∇ and since a, b ≤ a ∨ b, we
have a ∨ b ∈ ∇ by definition of filter. Thus ∇ ∈ â ∨ b.

Notice, moreover that 0̂ = ∅ and 1̂ = WH. Since, by the previous lemma,
any open set O ∈ τH, given by a finite intersection of member of S, is of the
form â ∩ −b̂, we have that B = {â ∩ −b̂ | a, b ∈ H} is a basis for the topology
τH. Furthermore, notice that, by construction, B is a basis consisting of clopen
set of WH, that is, 〈WH, τH〉 is a zero-dimensional topological space, and every
element of the form â is clopen, since â = â ∩ −0̂ ∈ B.

Lemma 2.3. 〈WH, τH〉 is a compact topological space.

Proof. By Alexander’s Subbase Theorem we need to show that every cover of
WH by elements from S has a finite subcover. So let {âi | i ∈ I} ∪ {−b̂j | j ∈ J}
be a cover of WH, that is, ⋃

i∈I
âi ∪

⋃
j∈J
−b̂j = WH.

Now consider the smallest filter ∇ containing {bi | j ∈ J} and the smallest ideal
∆ containing {ai | i ∈ I}. If ∇ ∩ ∆ = ∅, then by Lemma 1.63, there exist
∇′ ∈ WH such that ∇ ⊆ ∇′ and ∇′ ∩∆ = ∅. Therefore, ∇′ ∈ b̂j for each j ∈ J
and ∇′ /∈ âj for each i ∈ I and, consequently, ∇′ /∈

⋃
i∈I âi∪

⋃
j∈J −b̂j , contrary

to the fact that
⋃
i∈I âi ∪

⋃
j∈J −b̂j is a cover of WH. Thus, there exists some

element c ∈ ∇ ∩∆ and, by definition, we have

bj1 ∧ . . . ∧ bjn
≤ c for some finite {j1, . . . , jn} ⊆ J,

c ≤ ai1 ∨ . . . ∨ aik for some finite {i1, . . . , ik} ⊆ I.

But then, by Lemma 2.2, we have

b̂j1 ∩ . . . ∩ b̂jn
⊆ ĉ and ĉ ⊆ âi1 ∪ . . . ∪ âik

and thus b̂j1 ∩ . . . ∩ b̂jn
⊆ âi1 ∪ . . . ∪ âik . Therefore, it follows that

k⋃
s=1

âis ∪
n⋃
d=1
−b̂jd

= WH,

which is a finite subcover of {âi | i ∈ I} ∪ {−b̂j | j ∈ J} for WH.

Proposition 2.4. The triple WH = 〈WH, τH, RH〉 is a Priestley space.

Proof. Thanks to the previous lemma, we only need to prove that RH satisfies
the Priestley separation axiom. So, let ∇,∇′ ∈ WH be such that ¬(∇RH∇′),
that is ∇ * ∇′. Then there exists an element a ∈ ∇ such that a /∈ ∇′. Thus
∇ ∈ â and ∇′ /∈ â. Since â is clopen, we only need to show that it is an upset.
So, let Σ ∈ â and Σ ⊆ Σ′. Since we have a ∈ Σ, a ∈ Σ′ and therefore Σ′ ∈ â.

Thus, in order to show that WH = 〈WH, τH, RH〉 is an Esakia space, we only
need to show that RH is a clopen relation. Before to do so, we need another
preliminary lemma.
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Lemma 2.5. For every a, b ∈ H,

â→ b = WH \ (â ∩ −b̂)↓.

Proof. Let ∇ ∈ â→ b. Then a → b ∈ ∇. Now if ∇ ∈ (â ∩ −b̂)↓, there exists
∇′ ∈ â ∩ −b̂ such that ∇ ⊆ ∇′. Thus, a, a → b ∈ ∇′ and, since ∇′ is a filter,
b ∈ ∇′, contrary to the fact that ∇′ ∈ −b̂. So, â→ b ⊆ WH \ (â ∩ −b̂)↓. For
the converse inclusion, let ∇ /∈ â→ b. So, a → b /∈ ∇. We have to prove that
∇ /∈ WH \ (â ∩ −b̂)↓, that is, we have to find a prime filter ∆ such that a ∈ ∆,
b /∈ ∆ and ∇ ⊆ ∆. Consider the filter Σ generated by ∇ ∪ {a}. If a → b ∈ Σ,
then there are c1, . . . , cn ∈ ∇ such that c1 ∧ . . . ∧ cn ∧ a ≤ a → b. By letting
c =

∧n
i=1 ci, by definition of →, we then have c ∧ a ≤ b and so c ≤ a→ b. But

then we have a → b ∈ ∇, contrary to our assumption. Therefore, a → b /∈ Σ
and, by Theorem 1.61, there exists a prime filter Σ′ such that Σ ⊆ Σ′ and
a→ b /∈ Σ′. Hence b /∈ Σ′ and thus WH \ (â ∩ −b̂)↓ ⊆ â→ b.

Proposition 2.6. The triple WH = 〈WH, τH, RH〉 is an Esakia space.

Proof. Let U ⊆ WH be a clopen set. Thus U =
⋃n
i=1 âi ∩ −b̂i for some

a1, . . . , an, b1, . . . , bn ∈ H. Then

U↓ = (
n⋃
i=1

âi ∩ −b̂i)↓ =
n⋃
i=1

(âi ∩ −b̂i)↓.

But, by the previous lemma, (âi ∩ −b̂i)↓ = −âi → bi for all i ∈ {1, . . . , n} and
thus

U↓ =
n⋃
i=1
−âi → bi,

which, as a finite union of clopen, is clopen.

Thus we have just shown that, for every Heyting algebra H = 〈H,∧,∨,→, 0〉,
the ordered topological space WH = 〈WH, τH, RH〉 is an Esakia space. We call
the space WH the dual topological space of H and we denote it by H+.

We are now going to show that the converse is also true: given an Esakia
space X = 〈X, τ,R〉, we can find an Heyting algebra related to the space X .

Proposition 2.7. Let X = 〈X, τ,R〉 be an Esakia space and denote by XCU

the set of clopen upsets of X. Then 〈XCU ,∩,∪,⊃, ∅〉, where the operation ⊃ is
defined as

U ⊃ V := X \ (U \ V )↓,

is an Heyting algebra.

Proof. It is clear that the intersection and the union of two clopen upsets is again
a clopen upset. Furthermore, since the operations of union and intersections
distributes over each other, we have that the reduct 〈XCU ,∩,∪, ∅〉 forms a
distributive lattice. Moreover, since the relation R of X is clopen, for every
U, V ∈ XCU , the set U ⊃ V is again clopen and, being the complement of
a downset, also an upset. So, in order to prove that 〈XCU ,∩,∪,⊃, ∅〉 is an
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Heyting algebra, we only have to show that, for any W ∈ XCU , the following
equivalence holds:

W ∩ U ⊆ V ⇐⇒W ⊆ U ⊃ V.
(⇐=): suppose W ⊆ U ⊃ V and let x ∈W ∩U . Thus x ∈ U ⊃ V which implies
x /∈ U \ V . But since x ∈ U , then x ∈ V .
(=⇒): let W ∩ U ⊆ V and x ∈ W . If x /∈ U ⊃ V , then x ∈ (U \ V )↓ and so
there exists y ∈ U \ V such that xRy. Since W is an upset, y ∈ U and thus
y ∈ V contrary to the fact that y /∈ V .

We call the Heyting algebra X+ = 〈XCU ,∩,∪,⊃, ∅〉 the dual of the Esakia
space X . We now show that the relation between an Heyting algebra H and its
double dual (H+)+ is a very close one. Indeed we have the following:
Proposition 2.8. Let H = 〈H,∧,∨,→, 0〉 be an Heyting algebra. Then H is
isomorphic to (H+)+ = 〈WCU

H ,∪,∩,⊃, ∅〉 and the map αH : H → WCU
H given

by αH(a) = â is the witnessing isomorphism.
Proof. By Lemma 2.2 and Lemma 2.5, it is clear that αH is a homomorphism.
Furthermore, if a, b ∈ H are such that a 6= b, then either a � b or b � a.
Suppose for the sake of definiteness that a � b and consider the filter [a). Since
b /∈ [a), by Theorem 1.61, we can extend [a) to a prime filter ∇ such that b /∈ ∇.
Then ∇ ∈ â and ∇ /∈ b̂ and thus αH(a) 6= αH(b). Therefore, the map αH is an
embedding. Let us show that it is also surjective.
Consider an arbitrary clopen upset U ∈WCU

H and let ∇ ∈ U . For every ∆ /∈ U ,
we have ∇ * ∆, since U = U↑. So, there exists a∆ ∈ ∇ such that a∆ /∈ ∆.
Thus ∇ ∈ â∆ and ∆ /∈ â∆ or, equivalently, ∇ /∈ −â∆ and ∆ ∈ −â∆. This
means that the set {−â∆ |∆ /∈ U} is a cover of WH \ U . Since U is clopen by
assumption, WH \ U is also clopen and therefore compact. Hence there exists
a finite subcover {−â∆i

| i ∈ {1, . . . , n}}, where ∆i ∈ WH \ U for each i, and
therefore

WH \ U ⊆
n⋃
i=1
−â∆i

.

This implies

∇ ∈
n⋂
i=1

â∆i
⊆ U

and thus, by letting a∇ =
∧n
i=1 a∆i

, we have ∇ ∈ â∇ ⊆ U . Therefore, we have
that {â∇ | â∇ ⊆ U} is an open cover of U . But since U is clopen and thus
compact, there exists a finite subcover {â∇j | j ∈ J}, with J finite and â∇j ⊆ U
for each j, that is

U =
⋃
j∈J

â∇j
.

Finally, by letting aU =
∨
j∈J a∇j , we have U = âU and αH is onto.

One could wonder whether an analogous result holds for an Esakia space X
and its double dual (X+)+. The answer is positive, as shown in the next
Proposition 2.9. Let X = 〈X, τ,R〉 be an Esakia space. Then X is order-
homeomorphic to (X+)+ = 〈WX+ , τX+ , RX+〉 and the order-homeomorphism is
given by the map βX : X →WX+ defined as

βX (x) = {U ∈ XCU |x ∈ U}.
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Proof. First let us show that the map βX is well defined, that is, βX (x) is a
prime filter of X+, for every x ∈ X. So, consider an arbitrary x ∈ X. Clearly,
βX (x) 6= ∅, since x ∈ X ∈ XCU . Now, let U, V ∈ βX (x). Then x ∈ U and
x ∈ V . Hence x ∈ U ∩ V and U ∩ V ∈ βX (x). Moreover, if U ∈ βX (x) and
U ⊆ V , then x ∈ U ⊆ V and thus V ∈ βX (x). So βX (x) is a filter. Now,
suppose that U ∪ V ∈ βX (x). Then x ∈ U ∪ V and so either x ∈ U or x ∈ V .
This means that either U ∈ βX (x) or V ∈ βX (x), i.e. βX (x) is a prime filter.
Now suppose xRy. If U ∈ βX (x), then x ∈ U and, since U is an upset, y ∈
U . Hence U ∈ βX (y). Therefore, βX (x) ⊆ βX (y) and the map βX is order-
preserving. Conversely, if ¬(xRy), then by (P), there exists a clopen upset U
such that x ∈ U and y /∈ U . This means that U ∈ βX (x) and U /∈ βX (y), that
is, βX (x) * βX (y) and the map βX is order-reversing.
Let us show that βX is continuous. Since the topology τWX+ is given by the
basis B = {Û ∩−V̂ |U, V ∈ XCU}, we just have to show that β−1

X (Û ∩−V̂ ) ∈ τ .
Thus, if we show that, for every clopen upset U ∈ XCU , β−1

X (Û) is clopen, then
we are done. So, we have

β−1
X (Û) = {x ∈ X |βX (x) ∈ Û}

= {x ∈ X |U ∈ βX (x)}
= {x ∈ X |x ∈ U}
= U

and so β−1
X (Û) is clopen.

Finally, let us show that βX is a bijection. By the above reasoning on
(P), one can show that βX is an injection. Now, suppose that βX is not sur-
jective. Then there exists a prime filter ∇ ∈ X+ such that, for all x ∈ X,
βX (x) 6= ∇. This means that ∇ /∈ βX (X). Notice that, since βX is a continuous
map between Hausdorff spaces, βX is closed. Moreover, since X is a closed set,
βX (X) is closed too. Hence, ∇ belongs to the open set WX+ \ βX (X), that is,
WX+ \ βX (X) is a neighbourhood of ∇. Hence, there exists a clopen V of WX+

such that ∇ ∈ V ⊆ WX+ \ βX (X). Since V is clopen, V is a finite union of
element of B and thus we may assume that it is of the form Û1 ∩−Û2 for some
U1, U2 ∈ XCU . So, ∅ = β−1

X (V ) = β−1
X (Û1) ∩ β−1

X (−Û2). Since β−1
X (Û) = U for

every U ∈ XCU , we have U1 ∩X \ U2 = ∅ and therefore U1 ⊆ U2. But then we
have V = Û1 ∩ −Û2 = ∅, contrary to the fact that ∇ ∈ V .
Therefore, βX is a bijection and, in particular, it is an order-isomorphism
between 〈X,R〉 and 〈WX+ , RX+〉 and a homeomorphism between 〈X, τ〉 and
〈WX+ , τX+〉.

2.3 The categories HA and ES
We have just shown that given an Heyting algebra H = 〈H,∧,∨,→, 0〉 and an
Esakia space X = 〈X, τ,R〉,

H ∼= (H+)+ and X = (X+)+.

We now show that we can extend the previous duality to a full categorical
duality. Let HA be the algebraic category of Heyting algebras and related
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homomorphisms and denote by ES the category having Esakia spaces as objects
and continuous p-morphism as arrows.

In order to establish a duality between these two categories, we have to define
two contravariant functors which are pseudo-inverses. So let Ψ: HA→ ES be
defined as follows:

Ψ(A) = A+,

Ψ(f) : Ψ(B)→ Ψ(A) given by Ψ(f) = f−1,

for every Heyting algebra A and for every homomorphism f : A → B of HA.
Moreover, let Φ: ES →HA be the functor defined as follows:

Φ(X ) = X+,

Φ(h) : Φ(Y)→ Φ(X ) given by Φ(h) = h−1,

for every Esakia space X and for every continuous p-morphism h : X → Y.
We first need to show that the maps Ψ and Φ are indeed functors. Notice

that by Propositions 2.6 and 2.7 we have that Ψ and Φ are indeed well defined
on objects. So we only need to show that the maps Ψ and Φ are also well defined
on morphisms. To achieve this, we need some preliminary lemmas.

Lemma 2.10. Let f : W → V be a monotone map between the two posets
〈W,R〉 and 〈V, S〉. The following are equivalent:

(i) f is a p-morphism;

(ii) f−1(A↓) = f−1(A)↓, for every A ⊆ V ;

(iii) f−1(v↓) = f−1(v)↓, for every v ∈ V .

Now consider an Heyting algebra A = 〈A,∧,∨,→, 0〉 and its dual Esakia
space A+. Let us fix a prime filter ∇ ∈ WA and consider the family C of all
clopen set Ui in WA such that ∇ ∈ Ui. Notice that if Ui, Uj ∈ C, then Ui ∩ Uj
is again a clopen containing ∇ and thus Ui ∩ Uj ∈ C.

More generally, we say that a family C of non-empty subsets of an Esakia
space X is downward directed if, for every U, V ∈ C, there exists Z ∈ C such
that Z ⊆ U ∩ V . Notice moreover that every downward directed family has the
finite intersection property.

Lemma 2.11 (Esakia’s lemma). Let X = 〈X, τ,R〉 be an Esakia space. Then,
for every downward directed family C of non-empty closed sets of X ,

(
⋂
U∈C

U)↓ =
⋂
U∈C

(U↓).

Proof. The left-to-right inclusion ⊆ is immediate. For the converse inclusion,
let x ∈

⋂
U∈C(U↓). Then x ∈ U↓ and so x↑ ∩ U 6= ∅ for every U ∈ C. Since C

is downward directed and R is point-closed, it follows that {x↑ ∩ U |U ∈ C} is
a family of non-empty closed sets with the finite intersection property. Since X
is compact, it follows that

⋂
U∈C(x↑ ∩ U) 6= ∅. Hence x↑ ∩

⋂
U∈C U 6= ∅, which

implies x ∈ (
⋂
U∈C U)↓.

We are now ready to prove the following
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Lemma 2.12. Let f : A → B be a morphism between Heyting algebras. Then
Ψ(f) is a morphism between Esakia spaces.

Proof. For notational issues, let us denote Ψ(f) by g : B+ → A+. First notice
that g is indeed a well defined function, since, for every prime filter ∇ of B,
g(∇) = f−1(∇) is a prime filter of A. Furthermore, g is monotone: indeed
suppose∇ ⊆ ∇′, then if a ∈ g(∇), f(a) ∈ ∇ and so f(a) ∈ ∇′ by our hypothesis.
Hence a ∈ f−1(∇′) = g(∇′).
In order to show that g is continuous, we just have to show that g−1(â) is clopen,
for every clopen set in WA of the form â, for a ∈ A. But

g−1(â) = {∇ ∈WB | g(∇) ∈ â}
= {∇ ∈WB | a ∈ g(∇)}
= {∇ ∈WB | a ∈ f−1(∇)}
= {∇ ∈WB | f(a) ∈ ∇}

= f̂(a)

and thus g−1(â) is clopen.
Finally, let us show that g is a p-morphism. By Lemma 2.10, it is enough to
show that g−1(∇↓) = g−1(∇)↓ for every ∇ ∈ WA. First notice that, for every
a, b ∈ A, we have

g−1((â ∩ −b̂)↓) = g−1(−(â→ b)) by Lemma 2.5

= WB \ g−1(â→ b)

= WB \ ̂f(a→ b)

= −( ̂f(a)→ f(b)) since f is a homomorphism

= (f̂(a) ∩ −f̂(b))↓ by Lemma 2.5

which is clopen since RB is a clopen relation. Furthermore, we have

g−1(â ∩ −b̂) = {∇ ∈WB | g(∇) ∈ â ∩ −b̂}

= {∇ ∈WB | g(∇) ∈ â} ∩ {∇ ∈WB | g(∇) /∈ b̂}
= {∇ ∈WB | a ∈ g(∇)} ∩ {∇ ∈WB | b /∈ g(∇)}
= {∇ ∈WB | a ∈ f−1(∇)} ∩ {∇ ∈WB | b /∈ f−1(∇)}
= {∇ ∈WB | f(a) ∈ ∇} ∩ {∇ ∈WB | f(b) /∈ ∇}

= f̂(a) ∩ −f̂(b)

and therefore, for all a, b ∈ A,

g−1((â ∩ −b̂)↓) = g−1(â ∩ −b̂)↓. (?)

Now consider an arbitrary prime filter ∇ of A. Then the singleton {∇} is a
closed set in WA and it is the intersection of all the basis elements â ∩ −b̂ in
B such that ∇ ∈ â ∩ −b̂. Let us denote by C such a family and by D the
family {g−1(â ∩ −b̂) | ∇ ∈ â ∩ −b̂}. It can be easily shown that both C and
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D are downward directed families of non-empty closed sets and we can thus
apply Esakia’s Lemma 2.11 to them. Then, since preimages commute with the
set-theoretic operations, we have

g−1(∇↓) = g−1({∇}↓)

= g−1((
⋂

∇∈â∩−̂b

â ∩ −b̂)↓)

= g−1(
⋂

∇∈â∩−̂b

(â ∩ −b̂)↓) by Esakia’s lemma

=
⋂

∇∈â∩−̂b

g−1((â ∩ −b̂)↓)

=
⋂

∇∈â∩−̂b

g−1(â ∩ −b̂)↓ by (?)

= (
⋂

∇∈â∩−̂b

g−1(â ∩ −b̂))↓ by Esakia’s lemma

= g−1(
⋂

∇∈â∩−̂b

(â ∩ −b̂))↓

= g−1({∇})↓
= g−1(∇)↓

which finally shows that g is indeed a p-morphism.

Lemma 2.13. Let h : X → Y be a morphism between Esakia spaces. Then
Φ(h) is a morphism between Heyting algebras.

Proof. For notational issues, let us denote Φ(h) by g : Y+ → X+. Notice that
g is indeed a well defined function. Indeed, since h is continuous, its inverse
image g = h−1 maps clopen sets to clopen sets and, since h is also monotone,
the inverse image of an upset is again an upset. Furthermore, g is a lattice
homomorphism, since inverse images commutes with the set-theoretic opera-
tions. So, in order to show that g is a homomorphism between the Heyting
algebras Y+ and X+, we only have to check that g preserves the operation ⊃ of
implication. Let U, V be clopen upset of Y and suppose x ∈ g(U ⊃ V ). Thus
h(x) ∈ U ⊃ V = Y \(U \V )↓. If x ∈ (g(U)\g(V ))↓, there exists z ∈ g(U)\g(V )
and x ∈ z↓. Thus h(z) ∈ U and h(z) /∈ V which impliesh(z) ∈ (U \ V )↓. But
since h is monotone, h(z) ∈ U ⊃ V , contradiction. Thus x /∈ (g(U) \ g(V ))↓,
that is, x ∈ g(U) ⊃ g(V ). Conversely, if x /∈ g(U ⊃ V ), then h(x) ∈ (U \ V )↓
and so there exist z ∈ U \ V such that h(x) ∈ z↓. Since h is a p-morphism,
there is x′ ∈ x↑ such that h(x′) = z. Therefore, x′ ∈ g(U \ V ) = g(U) \ g(V )
and x ∈ (g(U) \ g(V ))↓. Hence, x /∈ g(U) ⊃ g(V ).

We have just proved that Ψ: HA→ ES and Φ: ES →HA are well defined
contravariant functors. We are now ready to show that they establish a duality
between the above categories.

Theorem 2.14 (Esakia’s Duality Theorem). The categories HA of Heyting
algebras and ES of Esakia spaces are dually equivalent.
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Proof. Consider the contravariant functors Ψ: HA → ES and Φ: ES → HA
defined as above. In order to establish the dual equivalence ofHA and ES, the
natural transformations we need are the following:
for every Heyting algebra A, let

α : 1HA
∼−→ Φ ◦Ψ be defined by αA : A→ Φ ◦Ψ(A),

αA(a) = {∇ ∈WA | a ∈ ∇},

and, for every Esakia space X , let

β : 1ES
∼−→ Ψ ◦ Φ be defined by βX : X → Ψ ◦ Φ(X ),

βX (x) = {U ∈ XCU |x ∈ U}.

Notice that, for every Heyting algebra A and every Esakia space X , we defined
the components αA and βX of α and β as in Proposition 2.8 and Proposition 2.9
respectively and therefore αA and βX are isomorphisms. Thus, if we can show
that α and β are indeed natural transformations, then what we have actually
defined are two natural isomorphisms and the required duality will thus be
established.
Let f : A→ B be a morphism inHA. In order to see that the following diagram

A Φ ◦Ψ(A)

B Φ ◦Ψ(B)

f

αA

Φ◦Ψ(f)

αB

commutes, consider a ∈ A. Then,

((Φ ◦Ψ(f)) ◦ αA)(a) = Φ ◦Ψ(f)(αA(a))
= (Ψ(f))−1(â)

= f̂(a) by Lemma 2.12
= αB(f(a))
= (αB ◦ f)(a).

Now, let h : X → Y be a morphism in ES. In order to see that the following
diagram

X Ψ ◦ Φ(X )

Y Ψ ◦ Φ(Y)

h

βX

Ψ◦Φ(h)

βY
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commutes, consider x ∈ X . Then,

((Ψ ◦ Φ(h)) ◦ βX )(x) = Ψ ◦ Φ(h)(βX (x))
= (Φ(h))−1(βX (x))
= {V ∈ Y CU |h−1(V ) ∈ βX (x))
= {V ∈ Y CU |x ∈ h−1(V )}
= {V ∈ Y CU |h(x) ∈ V }
= βY(h(x))
= (βY ◦ h)(x)

Therefore, α and β are natural isomorphisms, which, together with the functors
Ψ and Φ, yield a co-equivalence between HA and ES.

Consider the full subcategory BA of HA given by Boolean algebras and
related morphisms. It is well known that, in any Boolean algebra B, prime
filters and ultrafilters coincide and therefore the poset of prime filters 〈WB, RB〉
of B turns out to be discrete, that is, RB is the identity relation =. Therefore
the Esakia space B+ = 〈WB, τB, RB〉 reduces to the Stone space 〈WB, τB〉.
Conversely, every Stone space 〈X, τ〉 can be considered as the Esakia space
〈X, τ,R〉 with R the discrete order and thus the Heyting algebra X+ is simply
the lattice of clopen sets of X, which is a Boolean algebra, since it is clearly
closed under set-theoretic complementation.

These considerations allows us to recover from Esakia’s duality as a particu-
lar case the celebrated Stone’s representation theorem for Boolean algebras and
the following Stone’s duality for Boolean algebra:

Corollary 2.15. Let Stone be the category of Stone spaces and continuous
maps. Then the categories BA and Stone are dually equivalent.

Remark 2. In giving a proof of Esakia’s duality in the previous paragraphs,
we actually proved something more general. In fact, we proved a categorical
duality between the category DL of bounded distributive lattices with related
homomorphisms and the categoryPS of Priestley spaces with continuous order-
preserving maps as arrows:

Theorem 2.16 (Priestley’s Duality). The categories DL of bounded distribu-
tive lattices and PS of Priestley spaces are dually equivalent.

2.4 Some basic properties of Esakia spaces
In this section, following §3.2 of [41], we will state, mostly without proof, a
few important properties of Esakia spaces which show the usefullness of the
topological approach to Heyting algebras.

Theorem 2.17. Let X = 〈X, τ,R〉 be an Esakia space and F ⊆ X a closed
subset of X. The following hold:

(1) for every x ∈ F , there exists a maximal point y ∈ F such that xRy;

(2) for every x ∈ F , there exists a minimal point y ∈ F such that yRx.
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Proof. (1) Let x ∈ F and consider the poset x↑ ∩ F . Now, let C be a chain
contained in x↑ ∩ F and consider the family A = {y↑ | y ∈ C}. Since C is a
chain and R is point-closed, we have that A is a family of closed sets with the
finite intersection property. Therefore, by compactness,

⋂
A 6= ∅ and so there

exists a point a which is greater that every element of C. Hence, every chain in
x↑∩F has an upper-bound and by Zorn’s lemma, the set x↑∩F has a maximal
element y.
(2) The proof is similar to (1) and uses Lemma 2.1.

As immediate consequences of the previous theorem, we then get

Corollary 2.18. Let X = 〈X, τ,R〉 be an Esakia space and F ⊆ X a non-empty
closed subset of X. Then max(F ) 6= ∅ and min(F ) 6= ∅.

Corollary 2.19. Let X = 〈X, τ,R〉 be an Esakia space and F ⊆ X a non-empty
closed upset of X. Then F = min(F )↑.

Notice moreover that by choosing X for F in Theorem 2.17, the set of
maximal elements max(X) of every Esakia space X = 〈X, τ,R〉 is non-empty.
Furthermore, the following holds

Theorem 2.20. Let X = 〈X, τ,R〉 be an Esakia space. Then the set max(X)
is closed in X.

Now, for every Esakia space X = 〈X, τ,R〉 and Y ⊆ X, we consider the
ordered topological space Y = 〈Y, τY , RY 〉 where 〈Y, τY 〉 is the subspace of the
Stone space 〈X, τ〉 given by the subspace topology τY and 〈Y,RY 〉 is the poset
obtained by restricting the ordering relation R to Y , that is, y↑Y = y↑X ∩Y for
all y ∈ Y .

Theorem 2.21. Let X = 〈X, τ,R〉 be an Esakia space and U ⊆ X be a closed
upset of X. Then U = 〈U, τU , RU 〉 is an Esakia space.

Proof. First, let us show that U is a Priestley space. Since 〈U, τU 〉 is a closed
subspace of the compact space 〈X, τ〉, 〈U, τU 〉 is compact as well. Then suppose
that ¬(u1RUu2). Then ¬(u1Ru2) and by the Priestley separation axiom, there
exists a clopen set Q of X such that u1 ∈ Q and u2 /∈ Q. But then Q ∩ U is a
clopen upset in U separating u1 and u2. Hence U is a Priestley space.
Now, let S be a clopen of U . Then S = Q ∩ U for some clopen Q in X. Then

S↓U = (Q ∩ U)↓U
=
⋃
{u↓U |u ∈ Q ∩ U}

=
⋃
{u↓X ∩ U |u ∈ Q ∩ U}

= U ∩
⋃
{u↓X |u ∈ Q ∩ U}

= U ∩ (Q ∩ U)↓X .

Clearly U ∩ (Q ∩ U)↓X ⊆ U ∩ Q↓X . Now, let v ∈ U ∩ Q↓X . Then v ∈ U and
there exists q ∈ Q such that vRq. But since U is an upset, q ∈ U and therefore
q ∈ Q ∩ U and v ∈ (Q ∩ U)↓X . Hence U ∩ (Q ∩ U)↓X = U ∩Q↓X and

S↓U = U ∩Q↓X .
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But since Q is clopen and R is a clopen relation, Q↓X is clopen in X and
therefore S↓U is clopen in U . Therefore RU is a clopen relation and U is an
Esakia space.

The previous theorem gives us the justification for the following

Definition 2.4. Let X = 〈X, τ,R〉 be an Esakia space and U ⊆ X a closed
upset of X. We call the Esakia subspace U = 〈U, τU , RU 〉 the generated subspace
of X induced by U .

Theorem 2.22. Let X = 〈X, τ,R〉 be an Esakia space and U ⊆ X be a clopen
set of X. Then U = 〈U, τU , RU 〉 is an Esakia space.

Proof. As above, one can show that U is a Priestley space. Now, let S be a
clopen of U . Then S = Q ∩ U for some clopen Q in X and thus S is clopen in
X as well. Moreover, since R is a clopen relation, S↓X is also clopen in X. But

S↓U = (Q ∩ U)↓U
=
⋃
{u↓U |u ∈ Q ∩ U}

=
⋃
{u↓X ∩ U |u ∈ Q ∩ U}

= U ∩
⋃
{u↓X |u ∈ Q ∩ U}

= U ∩ S↓X ,

which implies that S↓U is clopen in U . Therefore RU is a clopen relation and
U is an Esakia space.

2.5 Duality’s correspondences
In this section we will use Esakia duality to translate the most basic algebraic
concepts about Heyting algebras in the language of Esakia’s spaces. All the
results of this section are scattered through the literature, however the main
references are certainly [70, 8, 41] and [13].

2.5.1 Filters, Ideals and Congruences
Let be A = 〈A,∧,∨,→, 0〉 a Heyting algebra and let A+ = 〈X, τ,R〉 be its
dual Esakia space. Consider the lattice of filters Fi(A) and the lattice of ideals
Id(A) of A. For ∇ ∈ Fi(A) and ∆ ∈ Id(A), define the maps

χ(∇) =
⋂
{â | a ∈ ∇}

ϑ(∆) =
⋃
{â | a ∈ ∆}.

It is clear that the range of χ is included in the set of closed sets of A+. Now let
us denote the lattice of closed upsets of A+, ordered by inclusion, by FU(A+).
Dually, it is immediately seen that the range of ϑ is included in the set of opens
of A+. The set of the open upsets of A+ ordered by the inclusion relation forms
again a lattice that we denote by OU(A+).
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Lemma 2.23. The map χ : Fi(A)→ FU(A+) is a dual isomorphism between
the (complete) lattice of filters of A and the (complete) lattice of closed upsets
of A+ ordered by inclusion, while the map ϑ : Id(A) → OU(A+) is a dual
isomorphism between the (complete) lattice of ideals of A and the (complete)
lattice of open upsets of A+ ordered by inclusion.

Proof. We prove the lemma only for the part regarding χ and we leave the rest
to the reader. Given a filter ∇ ⊆ A, we have

χ(∇) =
⋂
{â | a ∈ ∇}

= {∇′ ∈WA | ∀a ∈ ∇(∇′ ∈ â)}
= {∇′ ∈WA | ∀a ∈ ∇(a ∈ ∇′)}
= {∇′ ∈WA | ∇ ⊆ ∇′},

which shows that χ(∇) is indeed a closed upset. Conversely, given a closed upset
U , then U =

⋂
{â |U ⊆ â}. Indeed, if ∇ /∈ U , we have ∆ * ∇, for every ∆ ∈ U .

Thus, let a∆ be such that a∆ ∈ ∆ and a∆ /∈ ∇, for each ∆ ∈ U . Then, ∆ ∈ â∆
and∇ /∈ â∆ for every ∆ ∈ U . Thus the family C = {â∆ |∆ ∈ U} is an open cover
of U and since U is closed and the space is Hausdorff, by compactness, there
is a finite subcover {â∆i

| i = 1, . . . n} of U . Let aU =
∨n
i=1 a∆i

, then U ⊆ âU
and ∇ /∈ âU . Moreover, it can be easily shown that the set {a ∈ A |U ⊆ â}
is a filter and the image of such a set under χ is U . Finally, it is evident that
∇ ⊆ ∇′ =⇒ χ(∇′) ⊆ χ(∇). Now, if ∇ * ∇′, let a ∈ ∇ \ ∇′ and consider a
prime filter Σ that extend ∇′ and such that a /∈ Σ, which exists by Theorem
1.61. Then Σ ∈ χ(∇′) but Σ /∈ χ(∇). Therefore ∇ ⊆ ∇′ ⇐= χ(∇′) ⊆ χ(∇).

Notice that if∇ is a prime filter, then χ(∇) = ∇↑, that is, χ(∇) is a principal
upset in X. Every prime ideal ∆ is mapped to the open upset X \∇↓, where ∇
is the prime filter A\∆. Moreover, if ∇ = [a) is a principal filter, or ∆ = (a] is a
principal ideal, then χ(∇) = â = ϑ(∆), which is a clopen upset. Furthermore, if
∇ is an ultrafilter, then, since it is a prime filter, χ(∇) is the principal upset ∇↑;
however, since ∇ is not contained in any other proper filter different from ∇,
it follows that χ(∇) = ∇↑ = {∇} and ∇ is a R-maximal element in X. By an
analogous reasoning, it follows that, for every maximal ideal ∆, ϑ(∆) = WA\∇↓,
where ∇ is the maximal element in X corresponding to the maximal filter A\∆.

Finally, since by Theorem 1.52 we have that the lattice Fi(A) of filters of
A is isomorphic to the lattice Con(A) of congruences of A, we also have the
following immediate

Corollary 2.24. The (complete) lattice Con(A) of congruences of A and the
(complete) lattice FU(A+) of closed upsets of A+ are dually isomorphic.

2.5.2 Infima and suprema
Let X = 〈X, τ,R〉 be a Priestley space and let S ⊆ X. We define the operators
J : P(X)→ P(X) and D : P(X)→ P(X) as follows:

• J(S) is the largest open upset contained in S;

• D(S) is the smallest closed upset containing S.

For a proof of the following lemma, cfr. [70, Lemma 3.1]:
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Lemma 2.25. Let L be a bounded distributive lattice and let X = 〈X, τ,R〉 be
its Priestley space. Then, for any S ⊆ X, the following hold:

(i) J(S) =
⋃
{â | â ⊆ S} = X \ (X \ S◦)↓;

(ii) D(S) =
⋂
{â |S ⊆ â} = S↑.

Corollary 2.26. Let A be a Heyting algebra, X = 〈X, τ,R〉 its dual Esakia
space and let S ⊆ X be an upset. Then D(S) = S.

Proof. By definition of closure, we have S ⊆ D(S). For the converse inclusion,
if x /∈ S, then x ∈ X \ S and since X is zero-dimensional, there exists a clopen
set U such that x ∈ U ⊆ X \ S. Hence, U ∩ S = ∅. Moreover, since S is
an upset, we have U↓ ∩ S = ∅ and, since R is a clopen relation, U↓ is clopen.
Therefore, X \U↓ is a clopen upset and thus it is of the form â for some a ∈ A.
Consequently, we have S ⊆ â and x /∈ â. Therefore, by (ii) of the previous
Lemma, x /∈ D(S).

Theorem 2.27. Let A be a Heyting algebra, X = 〈X, τ,R〉 its dual Esakia
space and S ⊆ A. Then the following hold:

(i)
∨
S exists in A⇐⇒

⋃
s∈S ŝ is clopen in X;

(ii)
∧
S exists in A⇐⇒ J(

⋂
s∈S ŝ) is clopen in X.

Proof. Let us prove (i). Then (ii) can be proved by a dual argument.
(=⇒) Suppose q =

∨
S exists in A. Since, for all s ∈ S, s ≤ q, we have ŝ ⊆ q̂

and thus
⋃
s∈S ŝ ⊆ q̂. Since

⋃
s∈S ŝ is an upset and q̂ is a closed upset, we

have
⋃
s∈S ŝ = D(

⋃
s∈S ŝ ) ⊆ q̂ by Corollary 2.26. Now, if x /∈

⋃
s∈S ŝ, then by

Lemma 2.25 (ii) there exists c ∈ A such that x /∈ ĉ ⊇
⋃
s∈S ŝ. Therefore, by

Corollary 1.62, s ≤ c for all s ∈ S and so q ≤ c. Hence q̂ ⊆ ĉ and thus x /∈ q̂.
This means that

⋃
s∈S ŝ = q̂ and

⋃
s∈S ŝ is clopen.

(⇐=) Assume that
⋃
s∈S ŝ is clopen in X. Since

⋃
s∈S ŝ is an upset, we have,

by Corollary 2.26,
⋃
s∈S ŝ = D(

⋃
s∈S ŝ), which is again an upset. Therefore,⋃

s∈S ŝ = q̂ for some q ∈ A and, by Lemma 2.25 (ii),⋂
{â |

⋃
s∈S

ŝ ⊆ â} = q̂.

Therefore q is the least upper bound of S, that is,
∨
S = q ∈ A.

2.5.3 Completely join-prime elements
An element a in a bounded lattice L is said to be completely join-prime if a 6= 0
and, for every non-empty subset B of L such that

∨
B exists in L, a ≤

∨
B

implies that there exists b ∈ B such that a ≤ b. Furthermore, a is said to be
completely join-irreducible if a 6= 0 and, for every non-empty subset B of L such
that

∨
B exists in L, a =

∨
B implies that there exists b ∈ B such that a = b1.

For a bounded lattice L, we will use the following notation:

• J(L) is the set of join-prime elements of L;
1Cfr. also the footnote 25 of §1.6.
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• J∞(L) is the set of completely join-prime elements of L;

• JI(L) is the set of join-irreducible elements of L;

• JI∞(L) is the set of completely join-irreducible elements of L.

We know that J(L) ⊆ JI(L) and that J(L) = JI(L), if the lattice L is
distributive. Furthermore, it is clear that J∞(L) ⊆ JI∞(L). The converse
holds if L satisfies the infinite distributive law

x ∧
∨
i∈I

yi ≈
∨
i∈I

(x ∧ yi)

for every index set I. In particular, we have that J∞(L) = JI∞(L) if L is
a complete Heyting algebra by Lemma 1.45. Notice, moreover, that we have
J∞(L) ⊆ J(L) and if L is finite, then the converse inclusion J(L) ⊆ J∞(L) also
holds. Thus, for a finite distributive lattice (finite Heyting algebra), all the four
sets above coincide.

Now, recall that a point x in a topological space 〈X, τ〉 is isolated if {x} ∈ τ .
We denote the set of isoleted point of X by Xiso.

Theorem 2.28. Let A be a Heyting algebra and let X = 〈X, τ,R〉 be its dual
Esakia space. Then

(i) a ∈ J(A)⇐⇒ ∃x ∈ X such that x↑ = â;

(ii) a ∈ J∞(A)⇐⇒ ∃x ∈ Xiso such that x↑ = â.

Proof. (i) Suppose a ∈ J(A). Then, since J(A) = JI(A), the principal filter [a)
is a prime filter of A. Hence [a) = x ∈ X for some x ∈ X and â = x↑. Conversely,
suppose â = x↑ for some x ∈ X. Then, if a ≤ b∨ c we have x↑ ⊆ b̂∪ ĉ and thus
x ∈ b̂ or x ∈ ĉ. Therefore x↑ ⊆ b̂ or x↑ ⊆ ĉ and, consequently, a ≤ b or a ≤ c,
i.e. a ∈ J(A).
(ii) (=⇒) Suppose a ∈ J∞(A). Since J∞(A) ⊆ J(A), by (i) there exists x ∈ X
such that â = x↑. In order to show that x ∈ Xiso, suppose for reductio that
it is not. Let Q = â \ {x}. Then, since â \ {x} ⊆ â and â is closed, Q ⊆ â.
Moreover notice that, since â is open, x cannot be an isolated point of â and
thus it must be a limit point of â. Then we have x ∈ Q and Q = â. Now, since
X is Hausdorff, {x} is closed and thus Q = â \ {x} is an open upset. Then by
Lemma 2.25 (i), Q = J(Q) =

⋃
{b̂ | b̂ ⊆ Q} and thus

â =
⋃
b̂⊆Q

b̂.

By Theorem 2.27, we then have a =
∨
B where B = {b ∈ A | b̂ ⊆ Q}. But the

fact that x /∈ Q implies that x /∈ b̂ for all b ∈ B. Hence a � b for all b ∈ B and
thus a /∈ J∞(A).
(⇐=) Let x↑ = â for some x ∈ Xiso and suppose a ≤

∨
B for some non-empty

set B ⊆ A. Then, by Theorem 2.27, â ⊆
⋃
b∈B b̂ and

⋃
b∈B b̂ is clopen. Therefore

x ∈
⋃
b∈B b̂ and since x is also an isolated point of

⋃
b∈B b̂ we have x ∈

⋃
b∈B b̂.

Thus x ∈ b̂ for some b ∈ B, â = x↑ ⊆ b̂ and, consequently, a ≤ b. Hence
a ∈ J∞(A).
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2.5.4 Homomorphic images, subalgebras and direct prod-
ucts

Lemma 2.29. Let h : X → Y be a morphism between the Esakia spaces X =
〈X, τ,R〉 and Y = 〈Y, τ ′, S〉 and let g : Y+ → X+ be the morphism dual to h.

(i) h is injective ⇐⇒ g is surjective;

(ii) h is surjective ⇐⇒ g is injective.

Proof. (i) Let h be injective. Since h is a continuous function from a compact
space to a Hausdorff space, h is closed. Now let U ∈ XCU be a clopen upset of
X. Then X \ U is a clopen downset and h(X \ U) is a closed downset. Hence
h(X \ U) is the intersection of the family C of all the clopens of Y containing
it, that is,

h(X \ U) =
⋂
{Q ∈ Y C |h(X \ U) ⊆ Q}.

Since C is a downward directed family of non-empty closed sets, by Esakia’s
Lemma we get

h(X \ U) = (
⋂
Q∈C

Q)↓ =
⋂
Q∈C

Q↓,

which is again an intersection of clopens since S is a clopen relation. Conse-
quently, by injectivity of h,

X \ U = h−1(h(X \ U)) =
⋂
Q∈C

h−1(Q↓).

Hence,
U =

⋃
Q∈C

(X \ h−1(Q↓)) =
⋃
Q∈C

h−1(Y \Q↓).

Since h is continuous, all the h−1(Y \ Q↓)’s are clopen upsets in X and, since
U is closed, we can apply compactness and find a finite subcover D ⊆ C that
covers U . Therefore,

U =
⋃
Q∈D

h−1(Y \Q↓) = h−1(Z) = g(Z)

for some clopen upset Z in Y . So g is surjective.
Conversely, if g is surjective, let x, y be two different point of X. Then either
¬(xRy) or ¬(yRx). Suppose for the sake of definiteness that the former holds.
Then, by Priestley separation axiom, there exists a clopen upset U ⊆ X such
that x ∈ U and y /∈ U . Since g is surjective, U = g(V ) for some clopen upset
V ⊆ Y . Since g(V ) = h−1(V ), it follows that h(x) ∈ V and h(y) /∈ V which
implies that they are distinct.
(ii) Assume h is surjective and let U, V ∈ Y CU be two clopen upset of Y such
that U 6= V . So, there exists y ∈ U \ V and by surjectivity of h, y = h(x) for
some x ∈ X. But then x ∈ h−1(U) = g(U) and x /∈ h−1(V ) = g(V ), that is, g
is injective.
Conversely, suppose that g is injective and let y ∈ Y . Suppose that h−1(y↓) = ∅.
Then, for all x ∈ X, ¬(h(x)Sy) and by Priestley separation axiom there exists
a clopen upset Qx such that h(x) ∈ Qx and y /∈ Qx. Hence h(X) ⊆

⋃
x∈X Qx
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and, since h is closed, by compactness we can find a finite subset Z ⊆ X such
that h(X) ⊆

⋃
x∈Z Qx. By letting

⋃
x∈Z Qx = Q, we have that Q is a clopen

upset of Y such that h(X) ⊆ Q and y /∈ Q. Then h−1(Q) = X = h−1(Y )
and since g = h−1 is injective, we conclude Q = Y , contradiction. Therefore
h−1(y↓) 6= ∅ and there is z ∈ X such that h(z)Sy. But since h is a p-morphism,
there exists q ∈ z↑ such that h(q) = y. Thus h is surjective.

The previous lemma, together with the Esakia’s Duality Theorem 2.14, imply
the following

Lemma 2.30. Let f : A→ B be a morphism between Heyting algebras and let
g : B+ → A+ be the morphism dual to f .

(i) f is injective ⇐⇒ g is surjective;

(ii) f is surjective ⇐⇒ g is injective.

Let us now turn our focus to direct products of Heyting algebras. We will
show that an appropriate topological sum for Esakia spaces is the dual notion
of direct product of Heyting algebras. We start with the following

Lemma 2.31. Let {Xi = 〈Xi, τi, Ri〉 | i ∈ I}, |I| < ℵ0, be a finite family of
disjoint Esakia spaces. Then the topological sum

∑
i∈I Xi = 〈X, τ,R〉 of the

Xi’s, where R =
⋃
i∈I Ri, is an Esakia space.

Proof. It is well known that the topological sum
∑
i∈I Xi is compact. Then let

¬(xRy). Then x ∈ Xi and y ∈ Xj for some i, j ∈ I. If i 6= j, then clearly Xi

is a clopen upset of X separating x and y. If i = j, then since Xj is an Esakia
space, there exist a clopen upset U ⊆ Xj separating x and y. But, for all i ∈ I,
U ∩Xi is either U or ∅ and therefore U is also a clopen upset of X. Finally, if U
is a clopen of X, then U ∩Xi is a clopen subset of Xi for all i ∈ I. Hence, since
the Ri’s are clopen relations, (U ∩ Xi)↓i = U↓i are also clopen in each i ∈ I.
But then U↓ =

⋃
i∈I U↓i is clopen in X and R is a clopen relation. Therefore∑

i∈I Xi is an Esakia space.

Lemma 2.32. Let A1 and A2 be Heyting algebras and let X1 = 〈X1, τ1, R1〉
and X2 = 〈X2, τ2, R2〉 be two disjoint Esakia spaces.

1. The Esakia space A1+ + A2+, which is the topological sum of the Esakia
spaces A1+ and A2+, is order-homeomorphic to (A1 × A2)+, the Esakia
space dual to the direct product of A1 and A2.

2. The Heyting algebra (X1 + X2)+, dual to the topological sum of X1 and
X2, is isomorphic to the direct product X+

1 × X
+
2 of the Heyting algebras

X+
1 and X+

2 .

Proof. (1) Define a map f : WA1
∪WA2

→ WA1×A2 by letting, for every ∇1 ∈
WA1

and ∇2 ∈WA2
,

f(∇1) = {〈a1, a2〉 ∈ A1 ×A2 | a1 ∈ ∇1, a2 ∈ A2}

and

f(∇1) = {〈a1, a2〉 ∈ A1 ×A2 | a1 ∈ A1, a2 ∈ ∇2}.
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Then it can be shown that f is a both a homeomorphism between the topological
spaces 〈WA1

∪WA2
, τ〉 and 〈WA1×A2 , τA1×A2〉 and a order-isomorphism between

the posets 〈WA1
∪WA2

, RA1
∪RA2

〉 and 〈WA1×A2 , RA1×A2〉. For a proof of the
Lemma, cfr. [23, Theorem 8.76].
(2) Let f : (X1 +X2)+ → X+

1 ×X
+
2 be defined as follows: for every clopen upset

U ⊆ X,
f(U) = 〈U ∩X1, U ∩X2〉.

Notice that, since both U ∩ X1 and U ∩ X2 are clopen upset of X1 and X2
respectively, the function f is well defined. Clearly f is a bijection and since
the operations in X+

1 × X
+
2 are defined componentwise, it can be easily shown

that f is indeed a homomorphism. As an example, let us show that f preserves
intersections. Let U, V be clopen upset of X, then

f(U ∩ V ) = 〈U ∩ V ∩X1, U ∩ V ∩X2〉
= 〈U ∩X1, U ∩X2〉 ∩ 〈V ∩X1, V ∩X2〉
= f(U) ∩ f(V ).

Notice that Lemma 2.32 (1) can not be extend to arbitrary infinite families
of Heyting algebras. The reason why such an extension is not possible is the
fact that the topological sum of an infinite family of compact spaces is not
necessarily compact and therefore can not yield an Esakia space. However, we
still get the following

Lemma 2.33. Let {Xi = 〈Xi, τi, Ri〉 | i ∈ I} be a family of disjoint Esakia
spaces and let

∑
i∈I Xi = 〈X, τ,R〉 be the topological sum of the Xi’s. Then

(
∑
i∈I
Xi)+ ∼=

∏
i∈I
X+
i .

Proof. Define f : (
∑
i∈I Xi)+ →

∏
i∈I X

+
i by letting, for every clopen upset U

of X and each i ∈ I,
f(U)(i) = U ∩Xi.

Notice that f is well defined and bijective. Moreover it can be shown that f
is a Heyting morphism by using the fact that the operations in (

∑
i∈I Xi)+ are

computed componentwise.

Lemma 2.34. Let {Ai | i ∈ I} be a family of finite Heyting algebras. Then∏
i∈I

Ai ∼= (
∑
i∈I

(Ai)+)+.

Proof. Since, for each i ∈ I, Ai ∼= ((Ai)+)+, we have
∏
i∈I Ai

∼=
∏
i∈I((Ai)+)+

and, by the previous lemma,
∏
i∈I((Ai)+)+ ∼= (

∑
i∈I(Ai)+)+.

Now we can recollect the results obtained in Lemmas 2.29, 2.30 and 2.32 in
the following

Theorem 2.35. Let I be a finite index set and let {Ai | i ∈ I} be a finite family
of Heyting algebras. Moreover let {Xi | i ∈ I} be a finite family of Esakia space.

1. (i) Ai is a homomorphic image of Aj iff Ai+ is isomorphic to a generated
subspace of Aj+;
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(ii) Ai is a subalgebra of Aj iff Ai+ is order-homeomorphic to a contin-
uous p-morphic image of Aj+;

(iii) (
∏
i∈I Ai)+ is order-homeomorphic to the topological sum

∑
i∈I Ai+.

2. (i) Xi is isomorphic to a generated subspace of Xj iff X+
i is a homomor-

phic image of X+
j ;

(ii) Xi is a continuous p-morphic image of Xj iff X+
i is isomorphic to a

subalgebra of X+
j ;

(iii) (
∑
i∈I Xi)+ is isomorphic to

∏
i∈I X

+
i .

Subalgebras and Esakia equivalences

The previous theorem tells us that the subalgebras of a Heyting algebra A
correspond to the Esakia spaces which are continuous p-morphic images of the
dual spaceX = 〈X, τ,R〉 of A. However, there is another way to characterize the
subalgebras of a given Heyting algebras by means of their dual Esakia spaces.
Indeed, notice that given any onto Esakia morphism h : X → Q = 〈Q, τ ′, S〉,
since h is a continuous map between compact Hausdorff spaces, it is closed and
thus it is a quotient map. We can then recover an equivalence relation ∼ on X
by letting, for all x, y ∈ X,

x ∼h y ⇐⇒ h(x) = h(y).

Now, for any x ∈ X and any U ⊆ X, denote by [x] the ∼h-equivalence class of
x and by [U ] the set of the equivalence classes [u] for u ∈ U , that is,

[x] = {y ∈ X |x ∼h y} [U ] = {[u] |u ∈ U}.

We can then consider the quotient space [X ] = 〈[X], [τ ]〉 where [τ ] is the quotient
topology defined as

[τ ] = {[U ] ⊆ [X] |
⋃

[U ] ∈ τ}.

Notice that [τ ] is the finest topology with respect to which the projection map
π∼h

: X → [X], associating to each x ∈ X its equivalence class [x], is continuous.
Now, the topological analogue of the first isomorphism theorems tells us that
the topological space 〈Q, τ ′〉 is homeomorphic to the quotient space 〈[X], [τ ]〉.
Indeed, the following universal property for quotients holds:
for any topological spaces 〈X, τX〉, 〈Y, τY 〉, and any equivalence relation ∼ on
X, if h : X → Y is a continuous map such that, for all a, b ∈ X,

a ∼ b =⇒ h(a) = h(b),

then there exists a unique continuous map f : [X] → Y such that h = f ◦ π∼,
that is, the following diagram commutes:

[X] X

Y

f

π∼

h



2.5. DUALITY’S CORRESPONDENCES 63

Now, even if the quotient space of a compact space is always compact, the
quotient of a Hausdorff space (and thus of a Stone space) need not to be Haudorff
(or Stone). Therefore, in order to establish the duality between the subalgebras
of a Heyting algebra and the quotients of its dual space, we need to characterize
and further specify the equivalence relations on the dual space that actually
give an Esakia space.

Reconsider the equivalence relation ∼h obtained from the Esakia morphism
h : X → Q of the paragraphs above and call a subset Y ⊆ X ∼h-saturated if
Y =

⋃
[Y ]. Now, let u,w ∈ X be such that uRw. Then, if v ∈ [u], we have

h(v) = h(u). Since h is monotone, we then have h(v)Sh(w) and, since h is
a p-morphism, there exists z ∈ X such that vRz and h(z) = h(w). Hence
z ∈ [w] and v ∈ [w]↓. Furthermore, if w, v ∈ X are such that ¬(w ∼h v), then
h(w) 6= h(v). Therefore, either ¬(h(w)Sh(v)) or ¬(h(v)Sh(w)). Since Q is an
Esakia space, by the Priestley separation axiom there exists a clopen upset V
in Q such that either h(w) ∈ V and h(v) /∈ V or h(v) ∈ V and h(w) /∈ V .
Therefore, either w ∈ h−1(V ) and v /∈ h−1(V ) or v ∈ h−1(V ) and w /∈ h−1(V )
for h−1(V ) a clopen upset of X. Moreover, notice that, given any u ∈ h−1(V ), if
x ∈ [u], then h(x) = h(u) ∈ V so that x ∈ h−1(V ). Thus

⋃
[h−1(V )] = h−1(V ),

that is, h−1(V ) is ∼h-saturated.
Therefore the equivalence relation ∼h satisfies the two following properties:

1. For every w, v ∈ X, wRv implies [w] ⊆ [v]↓;

2. For every w, v ∈ X, if ¬(w ∼h v), then w and v are separated by an
∼h-saturated clopen upset of X, i.e. there is a clopen upset U ⊆ X such
that

⋃
[U ] = U and either w ∈ U and v /∈ U or w /∈ U and v ∈ U .

We will show that an equivalence relation E on X that satisfies the two
above properties is exactly the equivalence relation we are looking for in order
to establish our duality.

Definition 2.5. Let X = 〈X, τ,R〉 be an Esakia space. An equivalence relation
E onX is called an Esakia equivalence or a correct partition on X if the following
conditions hold:

1. For every w, v ∈ X, wRv implies [w] ⊆ [v]↓;

2. For every w, v ∈ X, if ¬(wEv), then w and v are separated by an E-
saturated clopen upset of X2.

Now, let X = 〈X, τ,R〉 be an Esakia space and let E be an Esakia equivalence
on X. Consider the quotient space 〈[X], [τ ]〉 induced by E and define on [X] a
relation [R] as follows:

[R] = {〈[x], [y]〉 | ∃u, v ∈ X ([x] 3 uRv ∈ [y])}.

Clearly [R] is reflexive. Moreover, with the help of (2), it can be shown that
[R] is antisymmetric and finally one can show that [R] is transitive by using
property (1). Therefore [R] is a partial ordering on [X]. We can thus consider
the ordered topological space [X ] = 〈[X], [τ ], [R]〉 and we call such a space [X ]
the Esakia quotient space of X given by the Esakia equivalence E.

2If E satisfies only this second condition, then we say that E is a Priestley equivalence.
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Lemma 2.36. Let X = 〈X, τ,R〉 be an Esakia space and E an equivalence
relation on X. Then the Esakia quotient space [X ] = 〈[X], [τ ], [R]〉 is an Esakia
space iff the relation E is an Esakia equivalence on X .

Proof. (=⇒) Suppose that the Esakia quotient [X ] is an Esakia space. We show
that E satisfies the properties of Definition 2.5.
(1) Let w, v ∈ X be such that wRv. We have to show that [w] ⊆ [v]↓, that is,
if u ∈ [w], then uRq for some q ∈ [v]. By contraposition, this is equivalent to:

∀q ∈ X(q ∈ [v]→ ¬(uRq)) =⇒ u /∈ [w].

So let assume the antecedent holds and let q ∈ [v]. Then ¬(uRq) and there
exists a clopen upset Uq in X such that u ∈ Uq and q ∈ X \ Uq. Therefore we
have [v] ⊆

⋃
q∈[v]X \Uq. Since [X] is an Esakia space, {[v]} is closed in [X] and

this implies that [v] is a closed subset of X. Since X is compact, there exists
a finite subcover of {X \ Uq | q ∈ [v]}, say {X \ Uqi

| i = 1, . . . , k}, that covers
[v]. Hence [v] ⊆ X \U and u ∈ U for U =

⋂k
i=1 Uqi

, a clopen upset of X. Now,
since by our hypothesis w ∈ [v]↓ and X \U is a downset, w ∈ X \U . But then,
since [U ] ∩ [X \ U ] = ∅, [u] ∈ [U ] and [w] ∈ [X \ U ], necessarily [u] 6= [w], that
is, u /∈ [w].
(2) Suppose that ¬(wEv), that is, [w] 6= [v]. Hence either ¬([w][R][v]) or
¬([v][R][w]). Assume that the former holds. Then, by Priestley separation
axiom, there is a clopen upset [U ] ⊆ [X] such that [w] ∈ [U ] and [v] /∈ [U ]. By
definition of [τ ],

⋃
[U ] and

⋃
([X]\[U ]) = X\

⋃
[U ] are open inX, that is,

⋃
[U ] is

a E-saturated clopen subset of X such that w ∈
⋃

[U ] and v /∈
⋃

[U ]. Moreover,
if x ∈

⋃
[U ] and xRy, then x ∈ [u] for some u ∈ U . Therefore, [x][R][y] and

[x] ∈ [U ] and, since [U ] is an upset, we have [y] ∈ [U ]. Consequently y ∈
⋃

[U ],
that is,

⋃
[U ] is a E-saturated clopen upset of X separating w and v.

(⇐=) Suppose that E is an Esakia equivalence on X . In order to see that
[X ] is indeed an Esakia space, first notice that [X] is compact, being the image
of a compact space under the continuous function πE . Moreover, if ¬([x][R][y]),
then ¬(xEy). Since E is a correct partition, there exists a E-saturated clopen
upset U ⊆ X such that x ∈ U and y /∈ U . Therefore [U ] is a clopen set in [X]
such that [x] ∈ [U ] and [y] /∈ [U ]. Moreover, if [u] ∈ [U ] and [u][R][v], then xRv
for some x ∈ [u], y ∈ [v]. Since U is saturated, x ∈ [u] ⊆ U and therefore y ∈ U ,
since U is an upset. Consequently, [v] = [y] ∈ [U ], that is, [U ] is a clopen upset
of [X] separating [x] and [y]. Hence we have just shown that [X ] is a Priestley
space.
Finally, if [U ] is a clopen set in [X], then

⋃
[U ] is a clopen in X. Then (

⋃
[U ])↓

is also clopen in X, since R is clopen. But it can be shown that the following
equation holds:

(
⋃

[U ])↓ =
⋃

([U ][↓]).

Indeed, if x ∈ (
⋃

[U ])↓, then xRs for some q ∈ U such that s ∈ [q]. But then
[x][R][s] and [s] ∈ [U ], hence [x] ∈ [U ][↓] and x ∈

⋃
([U ][↓]). Conversely, if

x ∈
⋃

([U ][↓]), then there exist [p] ∈ [X] and [q] ∈ [V ] such that [p][R][q] and
x ∈ [p]. By property (1) of E, it follows that [p] ⊆ [q]↓. Therefore xRz for some
z ∈ [q] and so x ∈ (

⋃
[U ])↓. We then conclude that [U ][↓] is clopen in [X] by

definition of the quotient topology [τ ]. This means that [R] is a clopen relation
and that [X ] is an Esakia space.
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We can now prove the following

Proposition 2.37. Let X = 〈X, τ,R〉 be an Esakia space. There exists a one-
to-one correspondence between the Esakia equivalences on X and the onto Esakia
morphisms with X as domain3.

Proof. From the reasoning at the beginning of this section we have that if
h : X → Q is a surjective Esakia morphism, then the relation Eh defined by

xEhy ⇐⇒ h(x) = h(y),

for all x, y ∈ X, is an Esakia equivalence on X .
Conversely, let E be an Esakia equivalence on X and consider the Esakia
quotient space [X ] = 〈[X], [τ ], [R]〉. We show that the canonical projection
πE : X → [X] is a surjective Esakia morphism. By the previous lemma, πE is a
continuous map between Esakia spaces which is surjective. Thus we only need
to show that πE is a p-morphism. Clearly πE is monotone by definition of [R].
So, suppose that πE(x)[R][y]. Then [x][R][y], which implies, by (1), [x] ⊆ [y]↓.
Therefore, since x ∈ [x], we have that xRz for some z ∈ [y], that is, there exists
z ∈ X such that xRz and πE(z) = [y]. Thus πE : X → [X] is a p-morphism
and πE is a well defined onto Esakia morphism.
Finally, by considering the universal property for quotients, it is easy to show
that the mappings h 7→ Eh and E 7→ πE are inverse to each other.

Corollary 2.38. Let A be an Heyting algebra. Then there exists a one-to-one
correspondence between the subalgebras of A and the Esakia equivalence on A+

4.

2.5.5 Further examples of duality’s correspondence
We will now use the duality’s correspondences established in the previous section
to further extend our list of dual notions.

Definition 2.6. Let X = 〈X, τ,R〉 be a Priestley space. We say that X is
extremally order-disconnected if, for every open upset U ⊆ X, D(U) is clopen.

Notice that if X is an Esakia space, Corollary 2.26 tells us that X is ex-
tremally order-disconnected iff, for every open upset U ⊆ X, U is clopen.

Proposition 2.39. Let A be a Heyting algebra and X = 〈X, τ,R〉 its dual
Esakia space. Then A is complete iff X is extremally order-disconnected.

Proof. (=⇒) Assume that A is complete and let U ⊆ X be an open upset. Then
J(U) = U and thus U =

⋃
{â | â ⊆ S}, by Lemma 2.25. Let B = {a ∈ A | â ⊆

S} and, since A is complete,
∨
B exists in A. But then, by Theorem 2.27,⋃

b∈B b̂ = U is clopen in X. Hence X is extremally order-disconnected.
(⇐=) Suppose that X is extremally order-disconnected and let B ⊆ A. Since⋃
b∈B b̂ is an open upset of X, it follows that

⋃
b∈B b̂ is clopen and thus, by

Theorem 2.27,
∨
B exists in A. Since B was arbitrary, A is complete.

3The correspondence is modulo order-homeomorphic spaces in the codomain of h.
4Actually, such a one-to-one correspondence is a dual-isomorphism between the lattice of

subalgebras of A and the lattice of correct partitions on A+.
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Now, recall that a Heyting algebra A is called completely join-prime gener-
ated if J∞(A) is join-dense in A, that is, if every element a ∈ A is the least upper
bound of a (possibly empty) set of completely join-prime elements. Equivalently,
A is completely join-prime generated iff the following property holds:
for each a, b ∈ A,

a � b =⇒ ∃q ∈ J∞(A)(q ≤ a & q � b). (*)

Definition 2.7. Let X = 〈X, τ,R〉 be a Priestley space. We say that an element
x ∈ X is an order-isolated point if both x↑ and x↓ are clopen. We denote by
Xiso↑ the set of order-isolated point of X.

Clearly if x ∈ Xiso↑, then {x} = x↑ ∩ x↓ is clopen and thus x ∈ Xiso. The
converse, however, does not hold. Moreover, since for all x ∈ X, both x↑ and
x↓ are closed in a Priestley space, x is order-isolated if both x↑ and x↓ are
open. If, instead, X = 〈X, τ,R〉 is also an Esakia space and x ∈ Xiso, then x is
order-isolated iff x↑ is (cl)open, formally,

Xiso↑ = {x ∈ Xiso |x↑ ∈ τ}.

Proposition 2.40. Let A be a Heyting algebra and X = 〈X, τ,R〉 its dual
Esakia space. Then A is completely join-prime generated iff Xiso↑ is dense in
X.

Proof. (=⇒) If A is completely join-prime generated then condition (*) holds.
We know that B = {â ∩ −b̂ | a, b ∈ A} is a basis for X. So let Q ∈ B be a
non-empty basic element. Then Q = â ∩−b̂ 6= ∅ for some a, b ∈ A. Thus â * b̂,
that is, a � b. By (*), there exists q ∈ J∞(A) such that q ≤ a and q � b. Then
by Theorem 2.28 (ii), there exists x ∈ Xiso↑ such that x↑ = q̂ and consequently
x ∈ â and x /∈ b̂. Thus Xiso↑ ∩Q 6= ∅ which implies that Xiso↑ is dense in X.
(⇐=) Suppose thatXiso↑ is dense inX and let a, b ∈ A be such that a � b. Hence
â * b̂ and consequently â ∩ −b̂ 6= ∅. Since Xiso↑ is dense, Xiso↑ ∩ (â ∩ −b̂) 6= ∅.
Let x ∈ Xiso↑ ∩ (â∩−b̂). Since x↑ is a clopen upset, it is of the form q̂ for some
q ∈ A and thus, by Theorem 2.28 (ii), q ∈ J∞(A). Furthermore, since x ∈ â
and x /∈ b̂, q̂ ⊆ â and q̂ * b̂, that is, q ≤ a and q � b. Therefore (*) holds and
we conclude that A is completely join-prime generated.

Given a Heyting algebra A, we say that A is well-connected if, for every
a, b ∈ A, a ∨ b = 1 implies a = 1 or b = 1. Moreover, recall that by Theorem
1.54, A is subdirectly irreducible iff it has a second greatest element. Clearly
A is well-connected iff 1 is join-irreducible, which, in the context of distributive
lattice is equivalent to join-prime. Furthermore, we have the following

Lemma 2.41. Let A be a Heyting algebra. Then A is subdirectly irreducible iff
1 is completely join-prime.

Proof. If A is subdirectly irreducible, then there exists a second greatest element
ω ∈ A. Now, let B ⊆ A a non-empty subset such that

∨
B exists in A and

1 ≤
∨
B. If 1 /∈ B, then

∨
B ≤ ω < 1, contradiction. Hence 1 ∈ B and 1 ≤ 1.

Thus 1 is completely join-prime. Conversely, if A has not a second greatest
element, then

∨
A \ {1} = 1 but 1 � a for all a ∈ A \ {1}, that is, 1 is not

completely join-prime.
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Therefore, from Theorem 2.28, we immediately have

Proposition 2.42. Let A be a Heyting algebra and X = 〈X, τ,R〉 its dual
Esakia space.

(i) A is well-connected iff X = x↑ for some x ∈ X;

(ii) A is subdirectly irreducible iff X = x↑ for some x ∈ Xiso.

Remark 3. The previous proposition implies that the dual space A+ of a given
subdirectly irreducible Heyting algebra A is rooted and, moreover, if we remove
the root from the space, we still get a clopen upset.

The following example of duality correspondence is very instructive since
it employs many of the previous established dualities. Let an Esakia space
X = 〈X, τ,R〉 be given. Define the subset Xfin of X as follows:

Xfin = {x ∈ X |x↑ is finite},

that is, Xfin is the union of all the finite upsets of X. The following proposition,
as well as the previous one, have been first discovered by Esakia (cfr. [41,
Appendix A]).

Proposition 2.43. Let A be a Heyting algebra and X = 〈X, τ,R〉 its dual
Esakia space. Then A is finitely approximable iff Xfin is dense in X.

Proof. (=⇒) If A is finitely approximable, then, by a classical result of universal
algebra, we can assume that A is a subdirect product of its finite homomorphic
images. So, let {Ai}i∈I be the family of the finite homomorphic images of A
and let ι : A →

∏
i∈I Ai be the inclusion embedding such that πj ◦ ι : A → Aj

is onto. Now consider the family {Xi}i∈I of the dual Esakia spaces of the Ai’s.
Then, for each i ∈ I, by Theorem 2.35 1(i) we can assume, wlog, that Xi is a
finite generated subspace of X , that is, each Xi is a finite upset of X. Hence⋃
i∈I Xi ⊆ Xfin. Now, consider a non-empty basic element â \ b̂ of X, where

a, b ∈ A. Then â * b̂ and thus a � b. Since ι is the inclusion map, a � b in∏
i∈I Ai and therefore there exists j ∈ I such that πj(a) � πj(b). This means

that â ∩Xj * b̂ ∩Xj and thus there exists x ∈ (â \ b̂) ∩Xj ⊆ (â \ b̂) ∩
⋃
i∈I Xi.

Therefore the set
⋃
i∈I Xi is dense in X, since it intersects every basic element,

and consequently Xfin is also dense in X.
(⇐=) Assume that Xfin is dense in X and let {Xi}i∈I be the family of the finite
upsets of X. Clearly Xfin =

⋃
i∈I Xi. Notice moreover that, for each i ∈ I,

Xi =
⋃
x∈Xi

{x} is closed, being a finite union of closed sets, and thus we can
consider the generated subspaces Xi of X . Now, consider, for each i ∈ I, the
dual Heyting algebra X+

i of Xi and denote it by Ai. Then, by Theorem 2.35, it
follows that each X+

i is a finite homomorphic image of X+ ∼= A. Now define a
function h : XCU →

∏
i∈I X

CU
i by letting, for all clopen upset U ∈ XCU ,

h(U) = fU ⇐⇒ fU (i) = U ∩Xi.

Now, it can be easily seen that h is indeed a homomorphism. For instance,
h(∅) = f∅ is the least element of

∏
i∈I X

CU
i and, given two clopen upset U, V of
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X and i ∈ I, we have

h(U ∩ V )(i) = fU∩V (i)
= (U ∩ V ) ∩Xi

= (U ∩Xi) ∩ (V ∩Xi)
= fU (i) ∩ fV (i)
= h(U)(i) ∩ h(V )(i)
= (h(U) ∩ h(V ))(i).

Furthermore, for any j ∈ I, we have

(πj ◦ h)(XCU ) = {πj(fU ) |U ∈ XCU}
= {fU (j) |U ∈ XCU}
= {U ∩Xj |U ∈ XCU}
= XCU

j

that is, every induced projection πj ◦ h : XCU → XC
j is onto. We now show

that h is injective. So, let U, V be two distinct clopen upsets of X. Then
U ∩ (X \ V ) is a non-empty clopen of X and since

⋃
i∈I Xi is dense in X,

(U ∩ (X \ V )) ∩
⋃
i∈I Xi 6= ∅. Therefore (U ∩ (X \ V )) ∩Xj 6= ∅ for some j ∈ I

and consequently, h(U) = U ∩Xj 6= V ∩Xj = h(V ).
Therefore X+ ∼= A is a subdirect product of the family {Ai}i∈I of finite homo-
morphic images of X+, that is, A is finitely approximable.

Let us conclude this section with another easy correspondence.

Definition 2.8. Let A be a Heyting algebra. A filter ∇ of A is said to be of
finite index if the quotient algebra A/∇ is finite.

Thus, for a filter ∇ of finite index, it follows that the corresponding closed upset
χ(∇) in A+ is finite and, conversely, if U is a closed upset of A+, then χ−1(U)
is a filter of finite index.

Lemma 2.44. Let A be a Heyting algebra and X = 〈X, τ,R〉 its dual Esakia
space. Then the following are equivalent:

(i) Xfin ⊆ Xiso↑;

(ii) every filter ∇ of A of finite index is principal.

Proof. (i)=⇒(ii). Let ∇ be a filter of A of finite index. Then χ(∇) is a finite
closed upset in X. By Corollary 2.19, χ(∇) = min(χ(∇))↑ =

⋃
x∈min(χ(∇)) x↑

and since χ(∇) is finite, min(χ(∇)) is finite as well. Moreover, min(χ(∇)) ⊆
Xfin. By (i), it then follows that each x ∈ min(χ(∇)) is an isolated point such
that x↑ is clopen. Hence χ(∇) is a clopen upset of X and, consequently, ∇ is a
principal filter.
(ii)=⇒(i). Let x ∈ Xfin. Then x↑ is a finite closed upset of X. Then, the
corresponding filter χ−1(x↑) is of finite index and therefore principal by (ii).
Hence x↑ is a finite clopen upset of X. By finiteness of x↑, it follows that x is
an isolated point of X and thus x ∈ Xiso↑.
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Here is the final list of the dualities correspondences established so far.

HA ES
Heyting algebra Esakia space
homomorphism continuous p-morphism

filter closed upset
ideal open upset

principal filter / ideal clopen upset
prime filter ∇ principal upset ∇↑
ultrafilter ∇ {∇}, ∇ maximal element

finite index filter finite closed upset
congruence closed upset

homomorphic image generated subspace
subalgebra Esakia quotient

direct product topological sum
complete algebra e.o.d. Esakia space

completely join-prime generated algebra Xiso↑ dense
well-connected algebra rooted space

subdirectly irreducible algebra rooted space with isolated root
finitely approximable algebra Xfin dense

Table 2.1: Esakia Duality’s Correspondences

2.6 Descriptive frames and models
In this section we introduce the notion of descriptive frame, which is nothing but
a generalization of the notion of Kripke frame, and show the tight connection
existing between descriptive frame and Esakia space.

Definition 2.9. An intuitionistic general frame is a triple F = 〈W,R,P〉, where
〈W,R〉 is an intuitionistic Kripke frame and P, the set of admissible sets of F,
is a subset of Up(W ) such that

• ∅ ∈ P;

• W ∈ P;

• P is closed under ∩,∪ and the following operation ⊃:

U ⊃ V : = {x ∈W | ∀y ∈W (xRy ∧ y ∈ U ⇒ y ∈ V }
= W \ (U \ V )↓,

for every U, V ⊆W .

Therefore, every Kripke frame F = 〈W,R〉 can be seen as a general frame where
all the upsets are admissible, that is, with P equal to Up(W ).

Notice that, given a general frame F = 〈W,R,P〉, the set P can be seen as a
particular Alexandrov topology; furthermore, it should be noted that consider-
ing a Kripke frame F = 〈W,R〉 as a general frame is nothing more than endowing
W with the Alexandrov ’s topology. Hence, one could wonder whether there
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exists a connection between general frames and Esakia spaces. The answer is
clearly positive but in order to spell out such a connection we need the following

Definition 2.10. Let F = 〈W,R,P〉 be a general frame.

• F is said to be refined if, for every u, v ∈ W , ¬(uRv) implies that there
exists a U ∈ P such that u ∈ U and v /∈ U .

• F is said to be compact if, for every X ⊆ P and Y ⊆ −P = {W\U |U ∈ P},
if X ∪ Y has the finite intersection property, then

⋂
(X ∪ Y) 6= ∅.

• F is said to be descriptive if F is both refined and compact.

It should be evident that the refinedness condition on a given general frame
F = 〈W,R,P〉 is a sort of Priestley separation axiom with respect to the class P
of the admissible sets, while the compactness condition on F is the requirement
that the class P ∪ −P is compact in the topological sense. With this insights,
the reader should be able to follow easily the following correspondence between
descriptive general frame and Esakia spaces.

Let X = 〈X, τ,R〉 be an Esakia space. Then let PX be the set of clopen
upsets of X. It is clear that FX = 〈X,R,PX 〉 is a descriptive frame. Conversely,
given any descriptive frame F = 〈W,R,P〉, consider the set P ∪ −P. Then
defined a topology τP on W by declaring P ∪ −P as a subbasis. Then one can
show that XF = 〈W, τP , R〉 is an Esakia space and that every clopen of W is a
finite union of finite intersections of elements of P ∪ −P. This means that the
clopen upsets of W are exactly the elements of P5.

Clearly, this correspondence also holds for the Esakia spaces which are dual
to Heyting algebras. In particular, given a descriptive frame F = 〈W,R,P〉, the
dual F+ is the Heyting algebra 〈P,∪,∩,⊃, ∅〉, which we know is the Heyting alge-
bra of the clopen upset of the Esakia space corresponding to F. Conversely, given
a Heyting algebra A, its dual descriptive frame is the frame A+ = 〈WA, RA,PA〉,
where PA = {â | a ∈ A}, which, as we have seen, coincides with the set of clopen
upset of the Esakia space A+.

Therefore, the following duality holds:

Theorem 2.45. Let A be a Heyting algebra and let F be a descriptive frame.
Then

(A+)+ ∼= A and (F+)+ ∼= F.

It should be remarked that, for a general frame F, the equivalence (F+)+ ∼= F
does not hold unless the frame is descriptive. Therefore, since our main interest
lies in Heyting algebras and we want to take advantages of the established
dualities, we will mostly be concerned with descriptive frames. Hence in what
follows it may happen that we use the word “frame” as a synonym of “descriptive
frame”.

Definition 2.11. Let F = 〈W,R,P〉 be a descriptive frame. We call a map
V : VarL → P a descriptive valuation and the pair M = 〈F,V〉 a descriptive
model.

5Thus τP is the patch topology of the topology given by P.
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The notions of a L-formula ϕ “being true at a point x in a descriptive model
M” and all the related definitions concerning truth for a descriptive model
(and frame) (cfr. Definition 1.12) are defined exactly in the same way as for
Kripke models (and frame): just replace everywhere the word “Kripke model”
or “Kripke frame” with “descriptive model” or “descriptive frame”, respectively.

2.6.1 Truth-preserving operations on general frames
In the next subsections we generalize the truth preserving operations defined
on Kripke frames in order to be apt for descriptive frames. For a (descriptive)
frame F = 〈W,R,P〉, we denote by κF the Kripke frame 〈W,R〉.

Generated subframes, p-morphism and disjoint unions

Definition 2.12. Let F = 〈W,R,P〉 and G = 〈V, S,Q〉 be (descriptive) frames.
Let also {Fi = 〈Wi, Ri,Pi〉}i∈I , where I = {1, . . . , k}, be a finite family of
(descriptive) frames.

(i) G is said to be a generated subframe of F, and we write G ⊆
I
F, if κG ⊆

I
κF

and Q = {U ∩ V |U ∈ P}.

(ii) A function f : W → V is said to be a p-morphism between F and G if
f is a p-morphism between κF and κF and, moreover, for every U ∈ Q,
f−1(U) ∈ P.

(iii) The disjoint union of the family {Fi}i∈I is the (descriptive) frame defined
as follows:

⊎
i∈I Fi := 〈W ′, R′,P ′〉, where W ′ =

⊎
i∈IWi, R′ =

⋃
i∈I Ri

and P ′ = {
⋃
i∈I Ui |Ui ∈ Pi for all i ∈ I}.

The notions of generated submodels, p-morphisms between descriptive mod-
els as well as the notion of a finite disjoint union of (descriptive) models are de-
fined in the same way as in the case of Kripke models. Therefore the analogues
of Theorems 1.8, 1.10 and 1.14 hold for (descriptive) frame as well, that is, we
have the following

Theorem 2.46. Let M = 〈F,V〉 and N = 〈G,U〉 be (descriptive) models. Let
also {Mi = 〈Fi,Vi〉}i∈I , where I = {1, . . . , k}, be a finite family of (descriptive)
models.

1. If N ⊆
I
M, then, for every ϕ ∈ ForL and every x ∈ G,

(N, x) |= ϕ⇐⇒ (M, x) |= ϕ.

2. If N is a p-morphic image of the model M via the map f , then, for every
x ∈ F and every ϕ ∈ ForL,

(M, x) |= ϕ⇐⇒ (N, f(x)) |= ϕ.

3. If
⊎
i∈I Mi is the disjoint union of the family of models {Mi | i ∈ I}, then,

for each i ∈ I, every x ∈ Fi and every formula ϕ ∈ ForL,

(
⊎
i∈I

Mi, x) |= ϕ⇐⇒ (Mi, x) |= ϕ.
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Finally, taking into account the correspondence established between descrip-
tive frames and Esakia spaces, we have the following analogous of Theorem 2.35:

Theorem 2.47. Let I be a finite index set and let {Ai | i ∈ I} be a finite family
of Heyting algebras. Moreover let {Fi | i ∈ I} be a finite family of descriptive
frames.

1. (i) Ai is a homomorphic image of Aj iff Ai+ is isomorphic to a generated
subframe of Aj+;

(ii) Ai is a subalgebra of Aj iff Ai+ is isomorphic to a p-morphic image
of Aj+;

(iii) (
∏
i∈I Ai)+ is isomorphic to the disjoint union

∑
i∈I Ai+.

2. (i) Fi is isomorphic to a generated subframe of Fj iff F+
i is a homomor-

phic image of F+
j ;

(ii) Fi is a p-morphic image of Fj iff F+
i is isomorphic to a subalgebra of

F+
j ;

(iii) (
∑
i∈I Fi)+ is isomorphic to

∏
i∈I F

+
i .

Descriptive congruences

Let F = 〈W,R,P〉 be a descriptive frame and ∼ an equivalence relation on W .
Denote by [x] the equivalence class generated by x under ∼ and let [X] be the
set {[x] | x ∈ X}.

Definition 2.13. Let F = 〈W,R,P〉 be a descriptive frame. An equivalence
relation ∼ on W is said to be a descriptive congruence on F if the following
hold:

1. xRy =⇒ [x] ⊆ [y]↓, for every x, y ∈W ;

2. for every w, v ∈ W , if ¬(w ∼ v), then w and v are separated by an E-
saturated admissible upset, i.e. there is U ∈ P such that

⋃
[U ] = U and

either w ∈ U and v /∈ U or w /∈ U and v ∈ U .

Given a congruence relation ∼ on a descriptive frame F, we define the frame
[F] = 〈[W ], [R], [P]〉, where

[R] = {〈[x], [y]〉 | ∃u, v ∈W ([x] 3 uRv ∈ [y])}

and
[P] = {[U ] |

⋃
[U ] = U ∈ P}.

The frame [F] is called the descriptive quotient frame of F under ∼6. Fur-
thermore, if M = 〈F,V〉 is a descriptive model, then [M] = 〈[F], [V]〉, where
[V](p) = [V(p)], for every variable p, is called the descriptive quotient model of
M under ∼.

Theorem 2.48. Let F = 〈W,R,P〉 and G = 〈V, S,Q〉 be descriptive frames.
6The fact that [F] is indeed a descriptive frame follows from the definition of ∼ and the

fact that [P ] is closed under the intuitionistic operation. In fact, one can easily show that the
following equalities hold: [U � V ] = [U ]� [V ] for � ∈ {∩,∪,⊃}.
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(i) If ∼ is a descriptive congruence on the frame F, then the canonical map
f∼ : W → [W ] defined by

f∼(w) = [w]

is a p-morphism from F onto [F] and of M onto [M].

(ii) If f is a surjective p-morphism from F onto G, then the relation ∼f on
W defined by

w ∼f v ⇔ f(w) = f(v)

is a descriptive congruence on F and [F] is isomorphic to G via the iso-
morphism [x] 7→ f(x).

Theorem 2.48 tells us that there exists a one-to-one correspondence between
descriptive congruences on a descriptive frame F and its descriptive p-morphic
images. This is clearly not a surprise, since it is evident that a descriptive
congruence on a descriptive frame F corresponds to an Esakia equivalence on
the corresponding Esakia space. Therefore, we have the following analogous of
Corollary 2.38

Corollary 2.49. Let A be an Heyting algebra. There exists a one-to-one cor-
respondence between the subalgebras of A and the descriptive congruences on
A+.

The notion of descriptive congruence is particularly fruitful because it en-
ables us to define the limit of an infinite chain of p-morphisms. For every i ∈ ω,
let fi be a p-morphism from Fi = 〈Wi, Ri,Pi〉 onto Fi+1 = 〈Wi+1, Ri+1,Pi+1〉.
Now, the composition gi = fi−1 ◦ fi−2 ◦ . . . ◦ f0 is a p-morphism from F0 onto
Fi and we can consider the descriptive congruence ∼i on F0 corresponding to
gi. Let Qi = {g−1

i (U) |U ∈ Pi}. Then we know that [P0]∼i
is equal to the set

[Qi]∼i = {[g−1
i (U)]∼i |U ∈ Pi} = {[U ]∼i |

⋃
[U ]∼i = U ∈ P0}.

Moreover, for every i ∈ ω, we have ∼i⊆∼i+1 and one can easily verify that
∼:=

⋃
i∈ω ∼i is again a descriptive congruence on F0. Then we define the limit

of the chain of p-morphism (fi)i∈ω as the p-morphism f∼ from the frame F0
onto the quotient frame [F0] under ∼ defined by f∼(x) = [x]. Furthermore, if
we let Q =

⋂
i∈ωQi, then it is possible to show that

[P0]∼ = [Q]∼ = {[U ] |U ∈ Q}.

Clearly, the definition extends naturally to chains of p-morphism between de-
scriptive models: in this case, f∼ is a p-morphism between M0 = 〈F0,V0〉 onto
the quotient model [M] = 〈[F0], [V0]〉.

2.6.2 Sums of Heyting algebras and descriptive frames
Let us briefly recall a useful operation on Heyting algebras as well as the cor-
responding dual operation on descriptive frames, that is, the vertical sum of
Heyting algebras and the linear sum of descriptive frames.



74 CHAPTER 2. ESAKIA DUALITY

Definition 2.14. Let F1 = 〈W1, R1,P1〉 and F2 = 〈W2, R2,P2〉 be descriptive
frames. The linear sum of F1 and F1 is the descriptive frame F1⊕F2 = 〈W,R,P〉
defined as follows:

W =W1 ]W2,

R =R1 ∪R2 ∪ (W2 ×W1),
P ={U |U ∈ P1 or U = W1 ∪Q, where Q ∈ P2.}

The visual representation of the operation ⊕ is very simple: indeed ⊕ just
puts κF1 on top of κF2. Furthermore, by considering the corresponding Esakia
spaces, we have that the topology τP of XF is given by the topological sums of
the topologies τP1 and τP2 of XF1 and XF2 respectively.

Now let us introduce the dual operation on Heyting algebras.

Definition 2.15. Let A1 and A2 be Heyting algebras. The vertical sum of A1
and A2 is the Heyting algebra A1⊕A2 given by the linear sum of A2 and A1,
considered as partially ordered sets, by identifying 1A1 with 0A2 .

The fact that A1⊕A2 is indeed a Heyting algebras was notice by Troelstra
in [152], where the operation ⊕ was first introduced7. Figuratively speaking,
notice that the operation ⊕ puts the Heyting algebra A2 on top of A1 identifying
the greatest element of A1 with the least element of A2.

The following theorem shows that the operations of vertical and linear sum
are dual to each other:

Theorem 2.50. Let A1 and A2 be Heyting algebras and let F1 = 〈W1, R1,P1〉
and F2 = 〈W2, R2,P2〉 be descriptive frames. Then the following hold:

(i) (F1 ⊕ F2)+ ∼= F+
1 ⊕F+

2 ;

(ii) (A1⊕A2)+ ∼= (A1)+ ⊕ (A2)+.

Proof. We limit ourselves to defining the corresponding isomorphisms, leaving
it to the reader to prove that the defined functions are really such.
(i) Define h : (F1 ⊕ F2)+ → F+

1 ⊕F+
2 by letting

h(u) =
{
U if U ⊆W1

U ∩W2 otherwise

for every admissible set U of F1 ⊕ F2.
(ii) Define f : (A1⊕A2)+ → (A1)+ ⊕ (A2)+ by letting

f(∇) =
{
∇ if ∇ ( A2

∇∩A1 otherwise

for every prime filter ∇ of (A1⊕A2)+.

7The operation ⊕ just introduced is a special case of another operation �, defined on the
class of lattices, introduced by Wroński in [166] and defined as follows: for lattices A = 〈A,≤A〉
and B = 〈B,≤B〉 such that A∩B is a filter in A and an ideal in B and such that the orderings
≤A and ≤B coincide on A ∩ B, let A � B = 〈A ∪ B,≤A ∪ ≤B ,≤A ◦ ≤B〉. An interesting
results of Kotas and Wojtylak [92] states that, for every finite distributive lattice D, there
exists a finite family {Bi}i∈I of Boolean algebras such that D = �i∈IBi.



Chapter 3

Fundamental Esakia spaces

In this chapter, we are going to take into consideration three fundamental classes
of Esakia spaces which are of the outmost importance for the present work. It
is worth mentioning that Section 3.1 is essentially based on Nick Bezhanishvili’s
Ph.D. thesis [14], in particular the 3rd chapter, Section 3.2 is based on the
technical report [21] of Carsten Butz and, finally, the main sources for Section
3.3 are certainly [62], [64] and [69].

3.1 Finitely generated Heyting algebras
We start this section recalling from [31] two lemmas which will prove to be very
useful in order to check whether there exists a p-morphism between two finite
rooted Kripke frames.
Lemma 3.1. Let F = 〈W,R,P〉 be a descriptive frame and w, v ∈W

1. Let R(w) \ {w} = R(v), i.e. v is the only immediate successor of w, and
let E be the smallest equivalence relation on F that identifies w and v:

E = {(u, u) | u ∈W} ∪ {(wEv), (vEw)}.

Then E is a descriptive congruence and we call the corresponding map
fE : W → [W ] an α-reduction.

2. Let R(w)\{w} = R(v)\{v}, i.e. the set of immediate successors of w and
v coincide, and let E be the smallest equivalence relation that identifies w
and v. The E is a descriptive congruence and we call the corresponding
map fE : W → [W ] a β-reduction.

Now, recall that a map f : W → V is said to be proper if there exist distinct
u, v ∈W such that f(u) = f(v). We have the following
Lemma 3.2. Let F = 〈W,R〉 and G = 〈V, S〉 be finite Kripke frames. Suppose
f : W → V is a proper p-morphism. Then there exists a sequence f1, . . . , fn of
α- or β-reductions such that f = f1 ◦ · · · ◦ fn.
Proof. Let f be a proper p-morphism from F onto G. Since f is proper, the set
Q = {v ∈ V | ∃w, u ∈ W (w 6= u ∧ f(w) = v = f(u))} is non-empty. Let v be
a maximal point in Q and let w, u ∈ max(f−1(v)). Since f is a p-morphism,
R(w) \ {w, u} = R(u) \ {w, u}. Then we have the two following possibilities:

75
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(α) w is the unique successor of u or u is the unique successor of w, i.e. R(u)\
{u} = R(w) or R(w) \ {w} = R(u). Let E be the smallest equivalence
relation identifying w and u. By Lemma 3.1, fE : W → [W ] is an α-
reduction from F onto [F] = 〈[W ], [R]〉. Now let h : [W ] → V be defined
as follows:

h([x]) = f(x)
for every [x] ∈ [W ]. Then it can be easily shown that h is a p-morphism
from [F] onto G and h ◦ fE = f .

(β) w and u are incomparable. Therefore R(w) \ {w} = R(u) \ {u} and, by
letting E be the smallest equivalence relation identifying w and u, Lemma
3.1 tells us that fE : W → [W ] is a β-reduction from F onto [F]. As above,
define h : [W ]→ V by

h([x]) = f(x)
for every [x] ∈ [W ]. Then h is a p-morphism from [F] onto G and moreover
h ◦ fE = f .

Now, if h is not proper, h is injective and thus the frames [F] and G are isomor-
phic and f itself is an α- or β-reduction. If h is proper, then repeat the above
proof for h. Since F and G are finite frames, the process will eventually end and
we get a sequence f1, . . . , fn of α- or β-reductions such that f = f1 ◦· · ·◦fn.

Definition 3.1. Let F be a descriptive frame. F is said to be κ-generated if
F+ is κ-generated. F is said to be finitely generated if F+ is finitely generated.
Moreover, the generators of F+ will be regarded as the generators of F as well.

Let A be a Heyting algebra and F its corresponding dual descriptive frame.
From the previous definition, it follows that F is κ-generated iff A is κ-generated.
Now, for each n ∈ ω, let VarLn be the set {p1, . . . , pn} of propositional variables.
Fix elements g1, . . . , gn of A and consider a valuation v : VarLn → A such
that v(pi) = gi for every i ∈ {1, . . . , n}. From now on we will not distinguish
between a Heyting algebra A with some fixed elements g1, . . . , gn and the pair
〈A, v〉 given by A with a valuation v defined as above. Since A ∼= F+, let
G1, . . . , Gn be the elements of F+ corresponding to the gi’s and let M = 〈F,V〉
be the descriptive model where V(pi) = Gi for all i ∈ {1, . . . , n}. We call
M the dual descriptive model corresponding to 〈A, v〉. Furthermore, if the set
{g1, . . . , gn} ⊆ A corresponds with the set of generators of A, then we call v the
standard valuation and the corresponding dual descriptive model M = 〈F,V〉
of 〈A, v〉 the standard model on F.

Definition 3.2. Let M = 〈F,V〉 be the dual descriptive model of 〈A, v〉. We
associate, to each w ∈ F, a sequence 〈cw1 , . . . , cwn 〉 such that, for j ∈ {1, . . . , n},

cwj =
{

0 if w /∈ V(pj)
1 if w ∈ V(pj)

The sequence 〈cw1 , . . . , cwn 〉 associated to w is called the colour of w and we
denote it with col(w).

Theorem 3.3 (Colouring Theorem, [42]). Let A be a Heyting algebra and let
g1, . . . , gn be fixed elements of A. Moreover, let M = 〈F,V〉 be its dual descrip-
tive model. Then the following are equivalent:
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1. A is generated by g1, . . . , gn;

2. for every proper p-morphism f from F onto F′, there exist points u and v
in F such that f(u) = f(v) and col(u) 6= col(v);

3. for every proper descriptive congruence ∼ on F, there exists a ∼-equivalence
class containing points of different colours.

Proof. The equivalence between (2) and (3) follows from Theorem 2.48, there-
fore it suffices to show the equivalence between (1) and (3).
(1)⇒(3) Let A be generated by g1, . . . , gn and let ∼ be a proper descriptive
congruence of F. Consider the Heyting algebra A∼ corresponding to ∼, that is,
A∼ is the Heyting algebra of all the ∼-saturated admissible subset of F. Since ∼
is proper, A∼ is a proper subalgebra of A and therefore there is i ≤ n such that
gi /∈ A∼. Hence, V(pi) is not ∼-saturated, that is

⋃
[V(pi)] * V(pi). Hence

there is u ∈
⋃

[V(pi)] such that u /∈ V(pi), i.e. there is v ∈ V(pi) such that
u ∼ v and u /∈ V(pi). Hence col(u) 6= col(v) and [u] is a ∼-equivalence class
containing points of different colours.
(3)⇒(1) Suppose A is not generated by g1, . . . , gn and let A′ be the subalgebra
generated by these elements. Clearly, A′ is a proper subalgebra of A. Let ∼A′

be the descriptive congruence corresponding to A′. Since, for all i ≤ n, gi ∈ A′,
every V(pi) is ∼A′ -saturated. Suppose [u] is a ∼A′ -equivalence class containing
points of different colours, say u and v. Then, for some j ∈ {1, . . . , n}, cuj 6= cvj
and we can assume u ∈ V(pj) and v /∈ V(pj). It follows that V(pj) is not
∼A′ -saturated and therefore gj /∈ A′, contradicting our assumption.

For every descriptive frame F = 〈W,R,P〉, denote by W=d, W≤d and W<d

the set of all point in F of depth d, ≤ d and < d, respectively. Define the sets
W≥d and W>d in an analogous way. Furthermore let F≤d be the descriptive
subframe of F generated by the set W≤d. It is evident that W<ω =

⋃
k∈ωW

=k,
W = W<ω∪W=ω andW<ω∩W=ω = ∅. Notice moreover thatW>d = W \W≤d
and that W≤1 = max(F).

Definition 3.3. Let F = 〈W,R,P〉 be a descriptive frame and let x ∈W . Then
x is said to be an atom of F if both W \ x↓ and {x} ∪W \ x↓ belongs to P.

Remark 4. Notice that a point x in a descriptive frame F = 〈W,R,P〉 is an
atom iff x is an isolated point in the corresponding Esakia space 〈W, τP , R〉.
Indeed, if x is an atom, then W \ x↓ and {x} ∪W \ x↓ are clopen upsets of W .
Hence x↓ is clopen and consequently x↓∩ ({x}∪W \x↓) = {x} is clopen. Hence
x is an isolated point. Conversely, if x ∈ Wiso, then, by definition, {x} ∈ τP .
Since the space is Hausdorff, {x} is closed and thus {x} is clopen. Since R is a
clopen relation, x↓ is clopen and therefore both W \ x↓ and {x} ∪W \ x↓ are
clopen upsets, i.e. they belongs to P. Thus x is an atom.

We will now prove that the structure of a finitely generated descriptive frame
has the following form: for each n such that 0 < n ≤ d(F), the n-layer W=n

is non-empty and finite; every point in W=n is an atom; and W=n↓ = W≥n.
Frames having the previously described structure are also called top heavy.

Theorem 3.4. Let F = 〈W,R,P〉 be a finitely generated descriptive frame.
Then the set max(F) of the maximal points of F is a finite admissible subset of
F of cardinality at most 2n, where n is the number of the generators of F.
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Proof. Assume that F is n-generated. Consider its dual Heyting algebra A and
let g1, . . . , gn be the generators of A. Let v : VarLn → A be the standard
valuation such that v(pi) = gi for every i ∈ {1, . . . , n} and consider the corre-
sponding standard dual coloured model 〈F,V〉. Now, suppose that there exist
u, v ∈ max(F) such col(u) = col(v). Then the assumption of Lemma 3.1 (ii)
apply and we can consider the descriptive congruence E that identifies u and v.
But then E is a proper descriptive congruence the equivalence classes of which
contain points of the same colours and this implies that A is not generated by
g1, . . . , gn by Theorem 3.3, contrary to our assumption. Thus different points of
max(F) are of different colours. Since there are 2n different colours, it follows
that |max(F)| ≤ 2n.
We now show that max(F) is an admissible subset of F or, equivalently, that
max(F) is clopen in the corresponding Esakia space. By Theorem 2.20, max(F)
is closed. Now, let x ∈ W \max(F). Then clearly ¬(vRx) for all v ∈ max(F)
and, by Priestley’s axiom, there exist clopen upsets Uv ⊆ W such that v ∈ Uv
and x /∈ Uv. Since max(F) is finite, Ux =

⋃
v∈max(F) Uv is a clopen upset of W

such that x /∈ Ux. Therefore, we have

W \max(F) ⊆
⋃

x∈W\max(F)

W \ Ux.

If we show that the converse inclusion holds, then we are done. So, consider
x ∈ W \max(F) such that z ∈ W \ Ux. Then, by definition of Ux, z /∈ Uv for
all v ∈ max(F) and therefore z can not be a maximal point of F. We conclude
that max(F) is a finite clopen upset of W , that is, max(F) is a finite admissible
subset of F of cardinality at most 2n.

Given a descriptive model M = 〈F,V〉 based on the frame F = 〈W,R,P〉,
call a subset U ⊆ W definable in M if there exists a L-formula ϕ such that
U = V(ϕ) and denote by DM the set of all definable subset of M. It is clear
that DM ⊆ P. Furthermore, if M = 〈F,V〉 is the dual model of the n-generated
Heyting algebra A with the valuation v of Theorem 3.4, then clearly

DM = P = {V(ϕ) |ϕ ∈ ForLn}.

Now, for every d ∈ ω, let F>d be the general frame defined as follows:

F>d = 〈W>d, R>d,P>d〉,

where R>d = R ∩W>d and P>d = {U ∩W>d |U ∈ P}.

Lemma 3.5. Let F = 〈W,R,P〉 be a finitely generated descriptive frame. Then
the general frame F>1 is a descriptive clopen subframe of F.

Proof. Let A be the dual Heyting algebra of F, g1, . . . , gn the generators of A and
v : VarLn → A the valuation associating to each pi the generator gi for every
i ∈ {1, . . . , n}. Now consider the dual coloured model 〈F,V〉. By Theorem 3.4,
max(F) is a finite admissible subset of F. This means that max(F) = W≤1 is a
clopen upset of the corresponding Esakia space of F and, sinceW>1 = W \W≤1,
we have that W>1 is clopen in W and therefore the subspace induced by it is
a clopen subspace of the Esaka space corresponding to F that is also an Esakia
space by Theorem 2.22.
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The following theorem has first been proved by Kuznetsov by algebraic
means; cfr. also [12, Lemma 2.2(3)] for an algebraic proof and [14, Claim 3.1.11]
for a semantic proof.

Theorem 3.6. Let F = 〈W,R,P〉 be a finitely generated descriptive frame.
Then the subframe F>1 is also finitely generated and the cardinality of the set
of generators is ≤ 22n + n, where n is the number of the generators of F.

Since the relation of being a subframe is transitive, by an easy induction we
immediately get from Lemma 3.5 and Theorem 3.6 the following

Corollary 3.7. Let F = 〈W,R,P〉 be a finitely generated infinite descriptive
frame. Then, for every k ∈ ω, F>k is a finitely generated clopen subframe of F.

We are now ready to give the characterization of the structure of a finitely
generated descriptive frame mentioned above.

Theorem 3.8. Let F = 〈W,R,P〉 be a finitely generated infinite descriptive
frame. Then the following hold:

(i) for every k ∈ ω, W=k is a finite set;

(ii) for every k ∈ ω, W≤k is an admissible set of F;

(iii) every point in W<ω is an atom;

(iv) for every u ∈W=ω and k ∈ ω, there exists v ∈W=k such that uRv.

Proof. We prove (i) and (ii) simultaneously. The base case k = 1 follows from
Theorem 3.4. So assume by induction hypothesis that (i) and (ii) holds for
k = n. Consider the subframe F>n. By Corollary 3.7, F>n is finitely generated
and max(F>n) = W=n+1 is a finite admissible set of F>n by Theorem 3.4. This
means that W=n+1 is a clopen upset of the Esakia space corresponding to F>n

and thus also a clopen of F by Corollary 3.7. Since by induction hypothesis
W≤n is a finite clopen upset of F, we have that W≤n ∪W=n+1 = W≤n+1 is
again a clopen upset of F, that is, a finite admissible set in F.
(iii) We show that each point in W<ω is an isolated point in the Esakia space
XF corresponding to F. Let u ∈ W<ω. Then we can assume that u ∈ W=k for
some 1 6= k ∈ ω, since if u is a maximal point, then Theorem 3.4 implies that u
is isolated. Since by (ii) W≤k−1 and W≤k are both finite clopen upsets of W ,
each upset contained in them is also clopen and thus in particular u↑ is clopen in
W . Furthermore, sinceW \W≤k−1 = W>k−1 is also clopen, W>k−1∩u↑ = {u}
is clopen as well and thus u is an isolated point of W .
(iv) Let u ∈W=ω and k ∈ ω. Since by (ii) W≤k−1 is admissible in F, W≤k−1 is
clopen in the Esakia space XF. Thus W>k−1 is a closed subset of W containing
u. But then, by Theorem 2.17 (i), there exists v ∈ max(W>k−1) = W=k such
that uRv.

Remark 5. Notice that we actually proved something more of what is merely
stated in (iii) of the previous theorem. Indeed, we showed that, for any given
finitely generated descriptive frame F = 〈W,R,P〉, every point of finite depth is
order-isolated in the corresponding Esakia space, that is, Wfin ⊆ Wiso↑. There-
fore, by Lemma 2.44, it follows that each filter of F+ of finite index is principal.
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Remark 6. For any given finitely generated descriptive frame F = 〈W,R,P〉
and n ∈ ω, the generated subframe F≤n is actually a finite Kripke frame since
all the upsets of W≤n are admissible in F. Notice moreover that F<ω is a
Noetherian frame and a Kripke frame as well: indeed, since all its points are
isolated in the corresponding Esakia space 〈W, τP , R〉, the subspace topology of
the ordered-topological space corresponding to F<ω is the discrete one and thus
all the upsets are indeed clopen in W<ω.

Remark 7. Notice that if∇ is a non-principal prime filter of a finitely generated
Heyting algebra A, then ∇ is a point at infinite depth in the dual descriptive
frame F = 〈W,R,P〉 of A. Indeed, if it were the case that ∇ ∈ W=d for some
d ∈ ω, then ∇↑ would be a finite upset. Since all point of W<ω are isolated,
∇↑ would be in particular a clopen upset of W and thus of the form q̂ for some
q ∈ A. Therefore, q ∈ ∇ and if c ∈ ∇, then ∇ ∈ ĉ, consequently q̂ = ∇↑ ⊆ ĉ
which in turn implies q ≤ c. Therefore ∇ = [q) would be principal, contrary to
our assumption. Thus ∇ ∈W=ω.

3.1.1 Finitely-generated free Heyting algebras
Let M = 〈F,V〉 be a (Kripke) model and VarLn a finite set of propositional
variables. Consider the colouring of M induced by V: each point w ∈ M is
associated with its colour, col(w) = 〈cw1 , . . . , cwn 〉, a finite binary sequence of
length n which gives us all the relevant informations on whether p ∈ VarLn is
true at w or not.

Now, consider the set Coln of colours of lenght n, that is, the set of all
binary sequence of lenght n. We can then tranform Coln into a Boolean algebra
by defining on it a partial ordering E by letting, for any two given elements
〈c1, . . . , cn〉 and 〈d1, . . . , dn〉 of Coln,

〈c1, . . . , cn〉 E 〈d1, . . . , dn〉 ⇐⇒ ci ≤ di for all i ∈ {1, . . . , n}.

Indeed it is easy to see that 〈Coln,E〉 forms a 2n-element Boolean algebra.
Moreover, we will write 〈c1, . . . , cn〉 C 〈d1, . . . , dn〉 iff 〈c1, . . . , cn〉 E 〈d1, . . . , dn〉
and 〈c1, . . . , cn〉 6= 〈d1, . . . , dn〉.

Recall that given a Kripke frame F = 〈W,R〉, w ∈ F and X ⊆ W , we say
that X totally covers w and we write w ≺ X if X = w>, that is, X is the set of
all immediate successor of w. Now, if every point in W has only finitely many
successor, then R is the reflexive and transitive closure of the immediate suc-
cessor relation and thus is completely determined by such a relation. Therefore,
since for any finitely generated descriptive frame F = 〈W,R,P〉, for each k ∈ ω,
W≤k is finite, every point inW<ω has only finitely many successor and thus the
relation R ∩W<ω on F<ω is completely determined by the relation ≺ relating
point and subsets of W<ω.

Definition 3.4. Let FHA(n) be the free Heyting algebra over n generators
and let g1, . . . , gn be the generators of FHA(n). We denote by FInt(n) the
dual descriptive frame 〈WInt(n), RInt(n),PInt(n)〉 of FHA(n) and call it the n-
canonical frame for Int. Moreover, we denote by MInt(n) = 〈FInt(n),VInt(n)〉
the dual descriptive coloured model of 〈FInt(n), v〉, where v is the standard
valuation, and call it the n-canonical model for Int.
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Before moving on, let us remark the following well known properties of the
κ-canonical frame and model for Int.

Lemma 3.9. Let F be a λ-generated descriptive frame. Then F is (isomorphic
to) a generated subframe of FInt(κ) and the standard model M = 〈F,V〉 on F
is a generated submodel of MInt(κ), for any κ ≥ λ.

We are now going to give a complete description of the upper part of FInt(n),
namely of the points at finite depth of the n-canonical frame for Int, for every
n ∈ ω. In particular, we are going to define a model N(n) = 〈U(n),V〉 based on
the frame U(n) = 〈U(n), R,Q〉 and show that U(n) ∼= F<ωInt(n).

Let n ∈ ω be fixed and consider the Boolean algebra 〈Coln,E〉 . We construct
N(n) by induction on layers U(n)=k, where 1 ≤ k < ω.

(k = 1) Let U(n)=1 consists of 2n points u1, . . . , u2n and let h : U(n)=1 → Coln
be a bijection. Moreover, let R(ui) = {ui} and col(ui) = h(ui) for all
i ∈ {1, . . . , 2n};

(k = m+ 1) Assume that the model N=d has been defined for all d ≤ m.

(a) For every point w ∈ U(n)=m and each colour 〈c1, . . . , cn〉 C col(w),
add to the model a unique point v such that R(v) = R(w)∪ {v} and
let col(v) = 〈c1, . . . , cn〉.

(b) For every antichain X ⊆ U(n)≤m with ≥ 2 points at least one of
which in U(n)=m and each colour 〈c1, . . . , cn〉 E col(u) for every
u ∈ X, add to N=m+1 a unique point v and let R(v) = R(X) ∪ {v}
and let col(v) = 〈c1, . . . , cn〉.

Then let U(n) =
⋃ω
i=1 U(n)=i, R be the relation determined by the previous

construction and finally let V(pj) = {w ∈ U(n) | cwj = 1} for all pj ∈ VarLn.
From the previous construction, it is clear that the model N(n) = 〈U(n),V〉

based on the general frame U(n) = 〈U(n), R,Q〉, whereQ = {V(ϕ) |ϕ ∈ ForLn}
is a well defined model. Furthermore, N is the minimal model such that
max(U(n)) has 2n points of different colours and that satisfies the items (a)
and (b) of the construction above, namely, there are no proper submodels N′ of
N with the same features and thus it is unique up to isomorphisms.

Before showing that N is isomorphic to the upper part of the n-canonical
model MInt(n), notice the following

Lemma 3.10. For every k, n ∈ ω, U(n)≤k is a n-generated descriptive frame.

Proof. Since, for every k ∈ ω, U(n)≤k is finite, U(n)≤k is clearly descriptive.
Now, consider the generated submodel N≤k = 〈U(n)≤k,V′〉 of N, that is,

V′(pj) = V(pj) ∩ U(n)≤k, for all j ∈ {1, . . . , n},

and let f be a proper p-morphism from from U(n)≤k onto F. Since U(n)≤k is
finite, F is also finite and thus, by Lemma 3.2, f is a finite composition of α-
or β-reductions. But then, by the construction of U(n), it follows that any α-
or β-reduction identifies points of different colours and therefore we have that
U(n)≤k is n-generated by Theorem 3.3.

We are now ready to prove the following
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Theorem 3.11. For every n ∈ ω, U(n) ∼= F<ωInt(n).

Proof. Let n ∈ ω be fixed. We are going to show, by induction on k ∈ ω, that
U(n)≤k ∼= F≤kInt(n). By construction U(n)≤1 has 2n distinct point. Moreover, by
Theorem 3.4, F≤1

Int(n) has at most 2n points. Since, by Lemma 3.10, U(n)≤1 is
a n-generated descriptive frame, it follows from Lemma 3.9 that FInt(n) must
contain a isomorphic copy of U(n)≤1 as a generated subframe. Therefore, we
can conclude that U(n)≤1 ∼= F≤1

Int(n).
Now let k > 1 and suppose, for induction hypothesis, that U(n)≤m ∼= F≤mInt (n)
for all m ≤ k. Again by Lemma 3.10 and Lemma 3.9, we can assume wlog that
FInt(n) contains U(n)≤k+1 as a generated subframe. Now, suppose towards
a contradiction that U(n)≤k+1 6∼= F≤k+1

Int (n). Since U(n)≤k ∼= F≤kInt(n), there
exists a point w ∈ F=k+1

Int (n) such that w /∈ U(n)=k+1. Consider the set w> of
the immediate successor of w. Since, w is not a maximal element of FInt(n),
w> 6= ∅ and, moreover, by Theorem 3.8 (i), w> is finite. Notice furthermore that
w> ⊆ F=k

Int(n) = U(n)=k. Now, first suppose that |w>| = 1. Then w> = {v},
for some v ∈ U(n)=k. If col(w) = col(v) then we are in the following situation:

w

v

and we can consider the α-reduction on FInt(n) that identifies w and v. There-
fore, by the Colouring Theorem, it follows that FInt(n) is not n-generated, which
is a contradiction.
If, otherwise, col(w) C col(v), then, by the point (a) of the construction of U(n),
it follows that there exists u ∈ U(n)=k+1, and thus in F≤k+1

Int (n), such that u ≺ v
and col(u) = col(w). Then we are in the following situation:

w

v

u

and we can consider the β-reduction on FInt(n) that identifies w and u. There-
fore, by the Colouring Theorem, it follows that FInt(n) is not n-generated, which
is again a contradiction.
Finally, suppose that |w>| = m and let w> = {v1, . . . , vm}, for some points
vj ∈ U(n)=k for all j ≤ m. Then col(w) E col(vj) for all j ≤ m and thus, by the
point (b) of the construction of U(n), it follows that there exists u ∈ U(n)=k+1,
and thus in F≤k+1

Int (n), such that u ≺ w> and col(u) = col(w). Then, we are in
the following situation:

u w

v1 v2 v3 . . .
vm

Then again consider the β-reduction on FInt(n) that identifies w and u. By the
Colouring Theorem, we still get a contradiction.
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Therefore U(n)≤k+1 ∼= F≤k+1
Int (n). We can thus conclude that

U(n) =
⋃
i∈ω

U(n)≤i ∼=
⋃
i∈ω

F≤iInt(n) = F<ωInt(n).

The next picture shows the generated submodel M≤2
Int(2) of MInt(2) with its

colouring, where we let 〈1, 1〉 = a, 〈1, 0〉 = b, 〈0, 1〉 = c and 〈0, 0〉 = d1.

a b c d

d d c d d d d d d d d d dbddcb

Figure 3.1: The generated submodel M≤2
Int(2).

Let us now introduce an important tool due to de Jongh which allows us to
identify and characterize the principal cones of finite depth of the n-canonical
model.

Definition 3.5. Let us consider the n-canonical model MInt(n) = 〈FInt(n),V〉
and let w be a point of F<ωInt(n). We define, by induction on d(w) the Ln-formulas
φw and ψw as follows:

(d(w) = 1)

φw =
∧

w∈V(pj)

pj ∧
∧

w/∈V(pk)

¬pk

ψw = ¬φw.

(d(w) > 1) Let S(w) ⊆ VarLn be the following set of variables

S(w) = {pj |w /∈ V(pj), v ∈ V(pj) for all v ∈ w>}

and then let

φw =
∧

w∈V(pj)

pj ∧

(
(
∨
S(w) ∨

∨
v∈w>

ψv)→
∨
v∈w>

φv

)

ψw = φw →
∨
v∈w>

φv.

1Please notice that both the drawings [23, Fig. 8.12] and [69, Fig. 2] are misleading.
Indeed, they both miss a point in F=2

Int(2) and there are points with the same colours and
successors.
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We call the Ln-formulas φw and ψw the de Jongh formulas.

Theorem 3.12. For every w ∈ F<ωInt(n), the following hold:

(i) w↑ = V(φw);

(ii) WInt(n) \ w↓ = V(ψw).

Proof. We show (i) and (ii) simultaneously by induction on the depth of w.

d(w) = 1 Then w ∈ max(FInt(n)) and thus w↑ = {w} ⊆ V(φw). Conversely,
let v be a point in WInt(n) such that v 6= w. If v ∈ max(FInt(n)),
then col(w) 6= col(v) and thus v /∈ V(φw). Hence, if v ∈ u↓, for some
u ∈ max(FInt(n)) different from w, then also v /∈ V(φw). Finally, if v ∈
F>1

Int(n) and max(v) = {w}, then it must be the case that col(v) / col(w)
and, consequently v /∈ V(φw). Therefore, w↑ = V(φw) and, since by the
definition of intuitionistic negation we have

V(ψw) = V(¬φw) = WInt(n) \V(φw)↓,

it follows that V(ψw) = WInt(n) \ w↓.

d(w) > 1 Assume that the theorem holds for all points of depth < d(w). In
particular, the theorem holds for the set w> of all the immediate successors
of w. Since, for all v ∈ w>, w ∈ v↓, it follows that w /∈ WInt(n) \ v↓ and
thus w 6|=

∨
v∈W> ψv. Moreover, by definition of S(w), it follows that

w 6|=
∨
S(w) ∨

∨
v∈W> ψv and consequently w ∈ V(φw). Since V(φw)

is an upset, we thus have w↑ ⊆ V(φw). Conversely, let v ∈ V(φw).
Then, since v |=

∧
w∈V(pj) pj , it follows that col(w) E col(v). Now, if

v 6|=
∨
S(w)∨

∨
v∈W> ψv, then col(w) = col(v) and v ∈ u↓ for all u ∈ w>.

Consequently, by the structure of F<ωInt(n), it follows that v = w ∈ w↑.
If, instead, v |=

∨
S(w) ∨

∨
v∈W> ψv, then also v |=

∨
v∈w> φv. Hence

v ∈ V(φu) for some u ∈ w> and thus v ∈ u↑ ⊆ w↑, by the induction
hypothesis. Therefore, V(φw) = w↑. Moreover, notice that q /∈ V(ψw)
iff q 6|= φw →

∨
v∈w> φv. The previous relation holds exactly when there

exists u ∈ q↑ such that u |= φw and u 6|=
∨
v∈w> φv, that is, iff u ∈ w↑

and u /∈ v↑ for all v ∈ w>. But this is equivalent to u being equal to
w and thus we have q /∈ V(ψw) iff q ∈ w↓. We can thus conclude that
WInt(n) \ w↓ = V(ψw).

The previous theorem tells us that the principal cones as well as the comple-
ments of the principal downsets of F<ωInt(n) are definable in MInt(n). One could
wonder whether it is the case that all the upsets of F<ωInt(n) are definable. The
answer to this question is negative. Indeed, it is possible to show that, for every
n ≥ 1, the cardinality of the set F<ωInt(n) is 2ℵ0 (cfr. [14, Theorem 3.2.19]); but
since there are only countably many distinct Ln-formulas, it follows that not all
the upsets of F<ωInt(n) are definable.

Now, if we replace HA with any subvariety VL, which is the characteristic
variety of a si-logic L, in Definition 3.4, then we get the n-canonical frame FL(n)
and the n-canonical model ML(n) for L. By Lemma 3.9, FL(n) is a generated
subframe of FInt(n) and its upper part F<ωL (n) can be obtained by removing
from F<ωInt(n) all the points in which some formulas in L are refuted (under
VInt(n)).



3.1. FINITELY GENERATED HEYTING ALGEBRAS 85

For instance, the (upper part) of the n-canonical frame for LC, F<ωLC(n),
can be obtained from F<ωInt(n) by removing all the points which have at least
two immediate successors and their predecessors. The following pictures shows
the 2-canonical model for LC. Notice that FLC(2) is finite, confirming the well
known fact that LC is locally tabular2.

a b c d

b c d d d

d d

Figure 3.2: The 2-canonical model MLC(2).

A straightforward generalization of Lemma 3.9 yields the following

Lemma 3.13. Let L be an intermediate logic and let F be a λ-generated de-
scriptive frame for L. Then F is (isomorphic to) a generated subframe of FL(κ)
and the standard model M = 〈F,V〉 on F is a generated submodel of ML(κ), for
any κ ≥ λ.

It is well know that each intermediate logic L is characterized by its n-
canonical models, that is, for every Ln-formula ϕ, the following holds:

ϕ ∈ L⇐⇒ML(n) |= ϕ.

If, furthermore, L is finitely approximable, then we have the following

Theorem 3.14. Let L be a finitely approximable intermediate logic. Then, for
every Ln-formula ϕ,

ϕ ∈ L⇐⇒M<ω
L (n) |= ϕ.

Proof. The direction (=⇒) clearly holds. For (⇐=), suppose that ϕ /∈ L. Since
L is finitely approximable, it is characterized by its finite Kripke models and
therefore there exists a model N = 〈G,V〉 for L based on the finite frame G
such that N 6|= ϕ. Therefore, V(ϕ) 6= 1G+ in the dual finite Heyting algebra
G+. Now let A be the subalgebra of G+ generated by V(p1), . . . ,V(pn). Then
A is a finite, n-generated Heyting algebra belonging to the characteristic variety
VL of L and such that V(ϕ) 6= 1A. Then, by Lemma 3.13, it follows that its
dual standard model 〈A+,V〉 is a generated submodel of ML(n). Since A+ is
finite, 〈A+,V〉 is a generated submodel of M<ω

L (n) and thus M<ω
L (n) 6|= ϕ.

Therefore, if L is an intermediate logic that is finitely approximable, then
L (in the language of κ variables Lκ) is characterized by the model M<ω

L (κ).
This means that the κ-canonical frame FL(κ) is completely determined by the
upper part F<ωL (κ) and that (F<ωL (κ)+)+ ∼= FL(κ). This latter fact is also a
consequence of the following more general

2Cfr. also [75].
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Lemma 3.15. Let X = 〈X, τ,R〉 be an Esakia space and let U ⊆ X be an upset.
Then the double dual (U+)+ of the ordered-topological subspace U = 〈U, τU , RU 〉
is an Esakia space order-homeomorphic to the generated subspace of X induced
by U . In particular, if moreover U is dense in X, then (U+)+ ∼= X .

Proof. The ordered-topological subspace U = 〈U, τU , RU 〉 may not be an Esakia
space, since it may not be compact. However, the relation RU is still a clopen
relation (cfr. the proof of Theorem 2.21) and thus the algebra of the clopen
upsets of U , namely U+, is a Heyting algebra. Therefore, (U+)+ is an Esakia
space. Furthermore, by Corollary 2.26, U is a closed upset and thus the gener-
ated subspace induced by U , U , is an Esakia space. Now, notice that, for each
upset V ⊆ X and for every subsets P,Q ⊆ X, we have

[X \ (P \Q)↓X ] ∩ V = (X ∩ V ) \ [(P \Q)↓X ∩ V ]
= V \ [(P \Q) ∩ V ]↓V by Thorem 2.21
= V \ [(P ∩ V ) \ (Q ∩ V )]↓V .

and thus
(P ⊃X Q) ∩ U = (P ∩ U) ⊃U (Q ∩ U).

Therefore, since every element of U+ is of the form V ∩U for some clopen upset
V of X, the map V ∩ U 7→ V ∩ U is an isomorphism between U+ and U+.
Consequently (U+)+ ∼= (U+)+ ∼= U .

It is also worth to point out that if we consider intermediate logics L with the
disjunction property, we can get more information on the n-canonical models
for L. In particular, we have the following

Theorem 3.16. Let L be an intermediate logic. Then L has the disjunction
property iff, for every n ∈ ω, the n-canonical frame for L, FL(n), is rooted.

Proof. Consider, for every n ∈ ω, the Lindenbaum-Tarski algebra for L over
the language Ln, LL(n). Now, suppose that L has the disjunction property and
let [ϕ] ∨ [ψ] = [1] for some arbitrary [ϕ], [ψ] ∈ LL(n). Then ϕ ∨ ψ ∈ L and
thus either ϕ ∈ L or ψ ∈ L. Consequently, either [ϕ] = [1] or [ψ] = [1], that
is, LL(n) is well connected. Conversely, suppose that LL(n) is well connected
for every n ∈ ω and let ϕ ∨ ψ ∈ L. Then Varϕ ∪ Varψ ⊆ VarLk for some
k ∈ ω. Thus [ϕ]∨ [ψ] = [1] holds in LL(k) and since LL(k) is well connected, we
have either [ϕ] = [1] or [ψ] = [1]. Hence either ϕ ∈ L or ψ ∈ L, i.e. L has the
disjunction property. Therefore, L has the disjunction property iff, for every
n ∈ ω, LL(n) is well connected. But now notice that FL(n) is rooted iff the
Esakia space XFL(n) corresponding to it is rooted. By Proposition 2.42, XFL(n)
is rooted iff the VL-free algebra FVL

(n) over n-generators is well connected.
Since FVL

(n) ∼= LL(n), the theorem follows.

It is well know that Int has the disjunction property and, consequently, the
n-canonical frames for Int are rooted. Moreover, it can be shown (cfr. [14,
Theorem 3.2.13]) that, for every n ∈ ω, FInt(n)\F<ωInt(n) 6= ∅ and, in particular,
that FInt(1) \ F<ωInt(1) = {r} is a singleton set consisting of the root of FInt(1).
The next picture shows the 1-canonical model MInt(1). In the literature, the
upper part M<ω

Int(1) is also called the Rieger-Nishimura ladder.
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〈1〉

...
...

r

Figure 3.3: The 1-canonical model MInt(1).

We now point up some features of the Esakia space XFInt(n) = 〈X, τ,R〉 cor-
responding to FInt(n). First notice that, since HA is finitely approximable, for
every n ∈ ω, the n-generated HA-free algebra FHA(n) is finitely approximable.
Hence by Proposition 2.43, we have that Xfin is a dense subset of the space
XFInt(n). By Remark 5, we also have Xfin ⊆ Xiso↑ ⊆ Xiso. Therefore, we have

Lemma 3.17. The isolated points of the Esakia space XFInt(n) = 〈X, τ,R〉 are
exactly the points at finite depth. Equivalently, X<ω coincide with the sets of
atoms of FInt(n).

Proof. It suffice to show that Xiso ⊆ Xfin. If x /∈ Xfin, then Xfin \ {x} = Xfin
and thus x ∈ Xfin \ {x} = X, since Xfin is dense in X and, consequently, x is a
limit point of Xfin. Now, if x is an isolated point of X, then x is also an isolated
point of Xfin and thus x is not a limit point of Xfin. This contradiction shows
that x /∈ Xiso.

Therefore, for XFInt(n), we have Xfin = Xiso↑ = Xiso, consequently Xiso↑ is
dense in X and thus, by Proposition 2.40, we can conclude that

Lemma 3.18. For every n ∈ ω, the n-generated HA-free algebra FHA(n) is
completely join-prime generated.

Furthermore, since all the principal prime filters of FHA(n) are generated
by a prime element and all the prime elements are also completely join-prime, it
follows, by Theorem 2.28 (ii), that the set of all principal prime filters of FHA(n)
is included in Xfin. But since all the non-principal prime filters of FHA(n) are
elements of X=ω = X \Xfin by Remark 7, we have that Xfin is exactly the set
of all principal prime filters of FHA(n).

3.2 Finitely presented Heyting algebras
Recall that an Heyting algebra A is said to be finitely presented if A is isomorphic
to the quotient of a free Heyting algebra FHA(n), for some n < ω, under a
compact congruence, which can be always generated by a pair 〈ϕ,>〉.
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3.2.1 Implicational complexity
Definition 3.6. Let ϕ be a L-formula. The implicational complexity c(ϕ) of ϕ
is defined inductively as follows:

• c(ϕ) = 0 if ϕ is atomic;

• c(η ◦ ξ) = max(c(η), c(ξ)), for ◦ ∈ {∧,∨};

• c(η → ξ) = max(c(η), c(ξ)) + 1;

For every n, k < ω, let us denote by Ξkn the set of Ln-formulas, constructed from
the variables p1, . . . , pn, of implicational complexity at most k, that is,

Ξkn := {ϕ ∈ ForLn | c(ϕ) ≤ k}.

Lemma 3.19. For any n, k < ω, the set Ξkn contains only finitely-many non-
equivalent in Int formulas.

Proof. Fix an arbitrary n < ω and proceed by induction on k.

(k = 0) Notice that the elements of Ξ0
n can be brought into disjunctive normal

form, that is, any ϕ ∈ Ξ0
n is equivalent to

∨
i

∧
j Γij , where Γij ⊆ VarLn.

Therefore the number of non-equivalent formulas in Ξ0
n is ≤ 22n .

(k = m+ 1) By induction hypothesis, the number of non-equivalent formulas
in Ξmn is finite, say κ < ℵ0. Since any ϕ ∈ Ξkn is equivalent in Int to
ψ1 → ψ2 for some ψ1, ψ2 ∈ Ξmn , it follows that the cardinality of the set
of non-equivalent formulas in Ξkn is bounded by 2κ < ℵ0.

Consider the n-canonical frame FInt(n) = 〈WInt, RInt,PInt〉 for some fixed
n < ω. Recall that the admissible sets of FInt(n) are exactly the upsets VInt(ϕ)
for some Ln-formula ϕ, where VInt is the standard valuation on FInt(n). Now
let w ∈WInt. For any k < ω, we define the k-bounded theory of w to be the set
Tk(w) defined as follows

Tk(w) := {ϕ ∈ Ξkn |w ∈ VInt(ϕ)}.

Define a preorder -k on WInt by letting

w -k u⇐⇒ Tk(w) ⊆ Tk(u),

and then let ∼k⊆WInt ×WInt be the equivalence relation defined by

w ∼k u⇐⇒ w -k u & u -k w.

Therefore, by definition, we have -k+1⊆-k, for every k < ω. Furthermore,
notice that, since FInt(n) is refined, it follows that⋂

k

-k= RInt.

Finally, remark that, by the previous lemma, for each k < ω, there are only
finitely many ∼k-equivalence classes, that is, ∼k has finite index.
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For every w ∈ WInt and each k < ω, let ϕkw and ψkw be the Ln-formulas
defined as follows:

ϕkw :=
∧
Tk(w)

ψkw :=
∨

(Ξkn \ Tk(w)).

It is understood that in the above formulas, the sets Tk(w) and Ξkn \ Tk(w)
are considered up to Int-equivalence and thus, by Lemma 3.19, ϕkw and ψkw are
well defined and belong to Ξkn.

Remark 8. For every w, v ∈WInt and each k < ω,

v |= ϕkw ⇐⇒ w �k v
v 6|= ψkw ⇐⇒ v �k w.

Therefore,
v 6|= ϕkw → ψkw ⇐⇒ ∃z ∈ v↑ (z ∼k w).

The following proposition shows the connection between the natural order
RInt on WInt and the preorders -k.

Proposition 3.20. Let w, v ∈WInt and let k < ω. The following equivalences
hold:

(i) w �0 v ⇐⇒ w ∈ VInt(p) implies v ∈ VInt(p), for every p ∈ VarLn;

(ii) w �k+1 v ⇐⇒ for every v′ ∈ v↑, there is w′ ∈ w↑ such that w′ ∼k v′.

Proof. (i) The direction (=⇒) follows trivially by the definition of -0. Con-
versely, since each ϕ ∈ Ξ0

n is equivalent to a Ln-formula in disjunctive normal
form, the direction (⇐=) follows easily by the definition of |=.
(ii) For (⇐=), suppose that ϕ ∈ Tk+1(w). By assumption, there is z ∈ w↑
such that z ∼k v. So, w -k z -k v and thus it is clear that if ϕ ∈ Ξkn, then
ϕ ∈ Tk+1(v). So assume that ϕ is of the form ψ1 → ψ2, where c(ψi) = k, for
i ∈ {1, 2} and let v′ ∈ v↑ be such that v′ |= ψ1. Then, by assumption, there is
z ∈ w↑ such that z ∼k v′. Hence, since ψ1 ∈ Tk(v′), ψ1 ∈ Tk(z) as well. But
w -k+1 z and thus z |= ϕ. Hence z |= ψ2, that is, ψ2 ∈ Tk(z). Consequently,
ψ2 ∈ Tk(v′) and, since v′ was arbitrary, we can conclude that v |= ϕ. Hence
ϕ ∈ Tk+1(v) and therefore w �k+1 v.
For (=⇒), assume w �k+1 v and consider the following set {[u]k |u ∈ v↑}. Since
there are only finitely many ∼k-equivalence classes, such set is finite. By choos-
ing exactly one representative ui for each equivalence class, we get a finite set
{u1, . . . , uj} ⊆ v↑ such that each element v′ ∈ v↑ is ∼k-equivalent to one of the
ui’s. Now, let ξv be the following Ln-formula:

ξv :=
j∨
i=1

(ϕkui
→ ψkui

).

Notice that ξv ∈ Ξk+1
n and, for each z ∈WInt,

z 6|= ξv ⇐⇒ for all i ∈ {1, . . . , j}, z 6|= ϕkui
→ ψkui

⇐⇒ for all i ∈ {1, . . . , j}, exists x ∈ z↑ such that x ∼k ui.
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In particular, we have v 6|= ξv. So, ξv /∈ Tk+1(v) and, since w �k+1 v, we also
get ξv /∈ Tk+1(w). Therefore, for all i ∈ {1, . . . , j}, there is w′ ∈ w↑ such that
w′ ∼k ui. Hence, by the choice of the ui’s, for every v′ ∈ v↑, there is w′ ∈ w↑
such that w′ ∼k v′.

For any w ∈WInt, X ⊆WInt and k < ω, we let

w↑k :={v ∈WInt |w -k v},

X↑k :=
⋃
w∈X

w↑k.

So, by definition, we have that X↑k is the smallest upward ↑k-closed subset of
WInt containing X. Furthermore, we have the following

Lemma 3.21. Let X ⊆ WInt. Then X = VInt(ϕ), for some ϕ ∈ Ξkn, if and
only if, X↑k = X. Therefore, X ⊆ WInt is admissible in FInt(n) iff X = X↑k
for some k < ω.

Proof. Suppose X = VInt(ϕ), for some ϕ ∈ Ξkn and let w ∈ X↑k. Then there
is v ∈ X such that v -k w. Therefore ϕ ∈ Tk(w) and so w ∈ VInt(ϕ) = X.
Conversely, suppose that X↑k = X. Let δ :=

∨
w∈X ϕ

k
w ∈ Ξkn, which is a finite

disjunction, provided we consider the index set modulo ∼k-equivalence. Then
it is easily seen that v ∈ VInt(δ) iff v ∈ X↑k, that is, X = VInt(δ). Finally, we
can conclude that X ⊆WInt is admissible in FInt(n) iff it is of the form VInt(ϕ)
for some ϕ ∈ ForLn iff X = X↑k for k = c(ϕ).

Notice that by the previous lemma, for any w ∈WInt,

w↑k = VInt(ϕkw) ∈ PInt.

Furthermore, it is easily seen that

w↓k = WInt \VInt(ψkw) ∈ −PInt.

Consequently it follows that the ∼k-equivalence class of w, [w]k = w↑k ∩ w↓k,
is a finite intersection of elements of PInt ∪ −PInt and thus a clopen set of
the Esakia space corresponding to FInt(n). Let us underline this fact with the
following

Remark 9. Let w ∈WInt and k < ω. The ∼k-equivalence class of w,

[w]k = {v ∈WInt | v ∼k w},

is a clopen set in the Esakia space XFInt(n) corresponding to FInt(n).

Now, for any k < ω, let [FInt(n)]k = 〈[WInt]k, [-k]〉 be the canonical quotient
of 〈WInt,-k〉, that is,

[WInt]k = {[w]k |w ∈WInt}
[w]k[-k][v]k ⇐⇒ w -k v.

Recall that, for any subset A ⊆ WInt, [A] denote the set of the ∼k-equivalence
classes of the elements of A, namely [A] := {[a] | a ∈ A}. Therefore, by definition
of the partial ordering, for every A ⊆WInt, we have

[A↑k] = [A][↑k],
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that is, ↑k-upsets of WInt corresponds to upsets in [WInt]. Moreover, notice
that, for any ϕ ∈ Ξkn, the admissible set VInt(ϕ) of FInt(n) is ∼k-saturated,
that is ⋃

[VInt(ϕ)] ⊆ VInt(ϕ).

Conversely, given any upset [A] ⊆ [WInt], we have [A] = [A][↑k] = [A↑k] and
consequently [A] = [VInt(ψ)], for some ψ ∈ Ξkn, by Lemma 3.21 (and so [A] is
also ∼k-saturated). We can thus conclude that the upsets of [WInt] correspond
exactly to the ∼k-equivalence classes [VInt(ϕ)] for the Ln-formulas ϕ of impli-
cational complexity ≤ k. Finally, observe that, for w, v ∈WInt, if w �k v, then
either w 6-k v or v 6-k w and thus, by Remark 8, we have either w ∈ VInt(ψkv )
and v /∈ VInt(ψkv ) or v ∈ VInt(ψkw) and w /∈ VInt(ψkw), that is, w and v are
separated by ∼k-saturated admissible sets. Hence ∼k is a Priestley equivalence
relation on FInt(n). Therefore, we have the following

Proposition 3.22. For any k < ω, the canonical projection

π∞k : FInt(n)→[FInt(n)]k
w 7→[w]k

is an onto Priestley morphism. Therefore, the Priestley dual of the finite frame
[FInt(n)]k is isomorphic to the finite bounded distributive sublattice FkHA(n) of
the elements of implicational complexity ≤ k of the free Heyting algebra FHA(n).

Since for any j < k and w, v ∈ WInt we have w -k v =⇒ w -j v, it follows
that the maps

πkj : [FInt(n)]k → [FInt(n)]j
[w]k 7→ [w]j

are monotone surjections. Therefore we have the following diagram

FInt(n) . . . [FInt(n)]k+1 [FInt(n)]k . . . [FInt(n)]1 [FInt(n)]0
πk+1

k π1
0

which we call the standard approximation of FInt(n).

3.2.2 Finitely copresented frames
Definition 3.7. Let F be a descriptive frame. Then F is said to be finitely
copresented if its dual Heyting algebra F+ is finitely presented.

By the previous definition, it immediately follows that a descriptive frame
F = 〈W,R,P〉 is finitely copresented iff it is isomorphic to an admissible set
of the n-canonical frame FInt(n) for some n < ω, that is, if F ∼= FInt(n)/ϕ,
where FInt(n)/ϕ is the subframe of FInt(n) generated by VInt(ϕ) for some
Ln-formula ϕ3. Furthermore, the universal property of the finitely presented
Heyting algebra F+ translates into the following dual statement for F:

3In terms of Esakia spaces, we have that an Esakia space X = 〈X, τ,R〉 is finitely copre-
sented if it is order-homeomorphic to a clopen upset of the Esakia space EL(n) dual to the free
Heyting algebra FVL

(n) for some finite set of generators n. In particular, if X+ ∼= FVL
(n)/ϕ,

then X is order-homeomorphic to the subspace generated by the clopen upset ϕ̂ of EL(n).
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(#) for every descriptive frame G = 〈V, S,Q〉 and every family {Qi}1≤i≤n
of admissible sets of G such that ϕ(Q1, . . . , Qn) = V , there exists a
unique p-morphism h : G → F such that h−1(Gi) = Qi, where the family
{Gi}1≤i≤n is the set of generators of F. Furthermore, h is injective if
{Qi}1≤i≤n generates G.

The following lemma shows the relationship existing between Ln-formulas
and the corresponding finitely copresented frames.

Lemma 3.23. Let ϕ and ψ be two Ln-formulas. Then

FInt(n)/ϕ ⊆
I
FInt(n)/ψ ⇐⇒ ϕ→ ψ ∈ Int.

Proof. Since the universes of FInt(n)/ϕ and FInt(n)/ψ are VInt(ϕ) and VInt(ψ)
respectively, we have

VInt(ϕ) ⊆ VInt(ψ)⇐⇒ VInt(ϕ) \VInt(ψ) = ∅
⇐⇒ (VInt(ϕ) \VInt(ψ))↓ = ∅
⇐⇒WInt \ (VInt(ϕ) \VInt(ψ))↓ = WInt

⇐⇒ VInt(ϕ) ⊃ VInt(ψ) = WInt

⇐⇒ VInt(ϕ→ ψ) = WInt

⇐⇒ ϕ→ ψ ∈ Int.

Recall that every finitely generated frame G = 〈V, S,Q〉 is isomorphic to a
generated subframe of the n-canonical frame FInt(n), where n is the cardinality
of the set of generators of F, that is, V is a closed upset of WInt. Since every
closed upset in a Esakia space is an intersection of clopen upsets, it follows that

V =
⋂
j∈J

Qj ,

where Qj ∈ PInt for each j ∈ J .
We call the family PG = {Qj}j∈J a presentation of G. Furthermore, since each
Qj = VInt(ϕj) for some Ln-formula ϕj , we define the implicational degree of
PG as the maximum between the implicational complexity of the Ln-formulas
that appear in PG, that is, max({c(ϕj) |VInt(ϕj) ∈ PG}. Relying on these
facts, we can use the following

Definition 3.8. LetG be a generated subframe of the n-canonical frame FInt(n)
for some n < ω. The rank of G, ρ(G), is the minimum implicational degree of
a presentation for G.

Lemma 3.24. Let G ⊆
I
FInt(n), for some n < ω. Then G is finitely copresented

if and only if the rank of G is finite.

Proof. Let G = 〈V, S,Q〉 and suppose that ρ(G) = k < ω. Let {VInt(ϕj)}j∈J
be a presentation for G such that, for each j ∈ J , c(ϕj) ≤ k. Then let v ∈ V
and suppose that v -k w for some w ∈ WInt. Since V =

⋂
j∈J VInt(ϕj), then

v ∈ VInt(ϕj) for all j ∈ J . But c(ϕj) ≤ k. Consequently, w ∈ VInt(ϕj) for all
j ∈ J , that is, w ∈ V . Hence V = V ↑k and so V ∈ PInt by Lemma 3.21. Thus
G is finitely copresented.
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Example 7. Let k < ω and consider the frame [FInt(n)]k. Its dual is a fi-
nite bounded distributive lattice and thus a finitely presented Heyting algebra.
Therefore [FInt(n)]k is (isomorphic to) an admissible set of FInt(n). In partic-
ular,

[WInt] =
⋃

[A]⊆[WInt]

[A][↑k],

that is, [WInt] can be though as the (finite) union of all its (clopen) upsets.
Since, for [A], [B] ⊆ [WInt], we have that also [WInt] \ ([A] \ [B])[↓k] is an
upset of [WInt] and such upset corresponds to an admissible set of implicational
complexity k + 1, it follows that ρ([FInt(n)]k) = k + 14.

Given any finitely presented frame G = 〈V, S,Q〉, we have the following
diagram, where ι : G ↪→ FInt(n) is the inclusion V ⊆ WInt and the ιk’s are the
obvious inclusions between the quotients frames.

FInt(n) . . . [FInt(n)]k+1 [FInt(n)]k . . . [FInt(n)]1 [FInt(n)]0

G . . . [G]k+1 [G]k . . . [G]1 [G]0

πk+1
k π1

0

ι

χk+1
k

ιk+1 ιk

χ1
0

ι1 ι0

We call the family of finite posets {[G]i}i<ω the standard approximation of G.

Lemma 3.25. For any j > ρ(G), [G]j is an [↑j ]-upset of [FInt]j. Consequently,
the inclusion ιj : [G]j ↪→ [FInt]j is a p-morphism.

Proof. Let [u] be a point of [G]j , [v] a point in [FInt(n)]j and suppose that
[u][�j ][v]. We then have u ∈ V = VInt(ϕ), for some Ln-formula ϕ such that
c(ϕ) = ρ(G). Hence, since u -j v, it follows that v ∈ V . Thus [v] ∈ [G]j .

Observe that, except for the frames G and [G]j for j > ρ(G), none of the
[G]k are [↑k]-upsets of [FInt(n)]k. However they come very close to be so, in the
following sense: if [u]k ∈ [G]k, [v]k ∈ [FInt(n)]k, then, for all i < k,

[u]k[�k][v]k =⇒ [v]i ∈ [G]i.

Indeed, if [u]k[�k][v]k, then u -k v and, by Proposition 3.20, for every i < k,
we can find u′ ∈ u↑ such that u′ ∼i v. Therefore, [v]i = [u′]i ∈ [G]i.

This situation is described in [60] as the property of the inclusion mapping
ιk : [G]k → [FInt(n)]k of being πki -open or a πki -p-morphism. More generally, let
F = 〈W,R〉,G = 〈V, S〉 and D be finite Kripke frames and let f : F → G and
g : G → D be monotone maps. We say that f is open relatively to g (briefly
g-open) if the following condition holds: for every w ∈W, v ∈ V ,

f(w)Sv =⇒ ∃x ∈W (wRx & (g ◦ f)(x) = g(v)).

Equivalently, we have that f is g-open if, for every A ⊆ D,

f−1(g−1(A)↓) = f−1(g−1(A))↓.
4If ρ([FInt(n)]k) < k + 1, then every U ∈ PInt would be an upset of [WInt], but this is

impossible because of the infiniteness of FInt(n).
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Whenever f is the inclusion map, we say that F ⊆ G is itself g-open5. Further-
more, notice the following fact:

Remark 10. Let F ⊆ G be g-open and let w ∈ F. Then w↑G∩F is also g-open.

Now, let F = 〈W,R〉 and G be finite Kripke frames and let a monotone map
g : F → G be given. In this framework, a subset X ⊆ W is said to be rooted if
X has a least element x ∈ X, which we call the root. We define Fg = 〈W d,⊇〉
to be the Kripke frame whose underlying set is

W d := {S ⊆W |S rooted & g-open}.

Furthermore, we let rg : Fg → F be the function associating to each element
S ∈ W d its root. Notice that rg is order-preserving and it is easily seen that it
is also a g-open map by Remark 10. The importance of such a construction is
explained in the next proposition, due to Ghilardi [60]:

Proposition 3.26. Let g : F→ G be a monotone map between the finite Kripke
frames F = 〈W,R〉 and G = 〈V, S〉. Given a finite Kripke frame D = 〈B, T 〉
and a g-open monotone map h : D→ F, there exists a unique rg-open monotone
map j : D→ Fg such that the following triangle commutes

D F

Fg

h

j
rg

Proof. The map j : D→ Fg is defined as follows: for every b ∈ B,

j(b) = {h(c) | c ∈ b↑}.

As an immediate consequence of the previous proposition, notice that by
choosing the identity on F as h, we get a map rg : F→ Fg such that rg ◦rg = 1F.
By definition, we have that rg(w) = w↑ and thus we have, for every point w ∈W
and Q ∈W g with root q,

rg(Q)Rw ⇐⇒ Q ⊇ rg(w),

that is, rg is a right adjoint of rg which is also a section. Consequently, the
map rg is also co-open6. Let us summarize the previous considerations in the
following

5By considering the dual point of view, the g-openness of f : F → G says that the dual
map f+ : G+ → F+ preserves the operation of implication between elements in the image of
g+ : D+ → G+, that is, for all D1, D2 ∈ D+,

f+(g+(D1)→G+ g+(D2)) = f+(g+(D1))→F+ f+(g+(D2)).

6A map g : F→ G between Kripke frames F = 〈W,R〉 and G = 〈V, S〉 is said to be co-open
if it is satisfies the following dual condition of p-morphisms: for every w ∈W and q ∈ V ,

f(w)Sq =⇒ ∃v ∈W (vRw & f(v) = q).

Then notice that if Q ∈ W g and w ∈ W are such that rg(Q)Rw, then rg(Q) ∈ W g satisfies
such condition.
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Corollary 3.27. Let g : F → G be an order-preserving map between the finite
Kripke frames. Then rg : Fg → F is a co-open map that admits a right adjoint
rg : F→ Fg which is a section of it.

Let a Priestley morphism g : F→ G between finite frames F and G be given.
We iterate the construction above by defining, for all j ≥ 0, the finite frames
Fj+1 and the maps rj+1 : Fj+1 → Fj inductively as follows:

F0 =F r0 = g

Fj+1 =F
rj

j rj+1 = rrj .

Notice that, for all j ≥ 1, each rj is surjective. Thus we obtain the following
diagram:

. . . Fj+1 Fj . . . F1 F0 G
rj+1 rj r1 r0 (∆)

where, for all j ≥ 0, rj+1 is a rj-open map. We denote by lim←−g F the limit of the
above sequence in the category PS of Priestley spaces and by r∞j : lim←−g F→ Fj

the canonical maps. Since lim←−g F is a cone on ∆, we have, for all j ≥ 0,
rj+1 ◦ r∞j+1 = r∞j .

Theorem 3.28. Let (lim←−g F)+ = lim−→g+ F+ be the dual object of lim←−g F in the
category DL of bounded distributive lattices, that is, the colimit of the sequence
∇ dual to ∆. Then lim−→g+ F+ is a bi-Heyting algebra satisfying the following
universal property:

(?) for every Heyting algebra B and any g+-open DL-morphism h : F+
0 →

B, there exists a unique Heyting morphism u : lim−→g+ F+ → B such that
u ◦ (r∞0 )+ = h.

Proof. Notice that, by the very definition of the sequence ∆, the implication
operation is well-defined in the colimit lim−→g+ F+ and thus it is a Heyting algebra.
Furthermore, since the rj ’s are also co-open for all j ≥ 1, by Corollary 3.27
it follows that the operation of co-implication is also well-defined in it and
thus lim−→g+ F+ is a bi-Heyting algebra. Now let first consider a finite Heyting
algebra B and let h : F+

0 → B be a g+-open morphism in DL. Then the
dual j0 := h+ : B+ → F0 of h is a g-open Priestley morphism between finite
posets. Therefore, by Proposition 3.26, there exists a unique r1-open monotone
map j1 : B+ → F1 such that r1 ◦ j1 = j0. But then we can repeatedly apply
Proposition 3.26 to the ji’s and get the following commutative diagram

B+

. . . F3 F2 F1 F0

j1j2j3
j0

r3 r2 r1
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Therefore B+ is a cone on the sequence ∆ and thus, by the universal property
of limits, there exists a unique Priestley morphism u : B+ → lim←−g F such that
r∞i ◦ u = ji. Let us show that u is in fact an Esakia morphism. So let c ∈ B+,
d ∈ lim←−g F and suppose u(c) ≤ d. By the monotonicity of the r∞j ’s, we have

ji+1(c) ≤i+1 r
∞
i+1(d),

for all i ≥ 0, and since ji+1 is ri+1-open, it follows that there exists si ∈ c↑ such
that ri+1 ◦ ji+1(si) = ri+1 ◦ r∞i+1(d), that is,

r∞i (u(si)) = r∞i (d).

Now consider the set S = {s ∈ c↑ | r∞i (u(s)) = r∞i (d), for some i < ω}. Clearly
S is non-empty and finite and thus we can consider a maximal element s∗ in
S. Then s∗ must be a successor of all the si and therefore, for all i ≥ 0,
r∞i (u(s∗)) = r∞i (d). Hence s∗ ∈ c↑ and u(s∗) = d; consequently, u is an Esakia
morphism such that r∞0 ◦ u = j0. Dualizing, we have h = u+ ◦ (r∞0 )+, so it
follows that the Heyting morphism u+ : lim−→g+ F+ → B is the unique morphism
such that u+ ◦ (r∞0 )+ = h.

Thus we have proved (?) for every finite Heyting algebra. As a consequence
of the fact that the variety HA of Heyting algebras is finitely approximable,
every Heyting algebra can be represented as a subdirect product of finite Heyting
algebras and thus, using the universal property of limits, by a standard argument
one can finally prove (?)

Remark 11. By virtue of the universal property (?), lim−→g+ F+ must be a finitely
presented Heyting algebra and it is not difficult to show that the finite set
(r∞0 )+(F+

0 ) is a set of generators for it.
Now we are going to prove that every finitely presented Heyting algebras

can be represented as the colimit of a dual sequence of the form ∆.
Theorem 3.29 (Butz [21]). Let G be a finitely copresented descriptive frame
and let ρ(G) = k. Then G ∼= lim←−χk+1

k

[G]k+1, where χk+1
k : [G]k+1 → [G]k.

Proof. We can assume that G is the frame FInt(n)/ϕ, where ϕ ∈ Ξkn. Further-
more, we let G1, . . . , Gn be the generators of G+, so that G = ϕ(G1, . . . , Gn).
Since each Gi is represented by a formula in Ξ0

n, it follows that each Gi is a
∼j-saturated upset for each j ≥ 0. Therefore the [Gi]k+1’s are upset of [G]k+1
that generate ([G]k+1)+ = F+

0 and, consequently, the clopen upsets

Qi = (r∞0 )−1([Gi]k+1), i ∈ {1, . . . , n},

are generators of (lim←−χk+1
k

[G]k+1)+ by the previous Remark. Furthermore, since

the canonical projection r∞0 is χk+1
k -open and [Gi]k+1 = (χk+1

k )−1([Gi]k) for
every i ∈ {1, . . . , n}, it follows that,

ψ(Q1, . . . , Qn) = (r∞0 )−1([ψ(G1, . . . , Gn)]k+1),

for every ψ ∈ Ξkn. In particular, by the surjectivity of r∞0 , it follows that
ϕ(Q1, . . . , Qn) = lim←−χk+1

k

[G]k+1. So, by the universal property (#) of G, there
exists an injective Esakia morphism h : lim←−χk+1

k

[G]k+1 → G such that

h−1(Gi) = Qi = (r∞0 )−1([Gi]k+1), ∀i ∈ {1, . . . , n}.
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On the other hand, the Priestley morphism χ∞k+1 : G → [G]k+1 is χk+1
k -open

and thus, by the dual of (?), there is a Esakia morphism u : G→ lim←−χk+1
k

[G]k+1

such that r∞0 ◦ u = χ∞k+1. Hence, for each i ∈ {1, . . . , n}, we have

u−1 ◦ h−1(Gi) = (u−1 ◦ (r∞0 )−1)([Gi]k+1)
= (χ∞k+1)−1([Gi]k+1)
= Gi,

where the last equation holds since Gi is ∼k+1-saturated. But the Gi’s are the
generators G+ and this implies that the composition of the dual maps is the
identity on G+, that is, u+ ◦h+ = 1G+ . Therefore h+ : G+ → (lim←−χk+1

k

[G]k+1)+

is injective and, dually, h is onto. Hence h : lim←−χk+1
k

[G]k+1 → G is an order
homeomorphisms and so G ∼= lim←−χk+1

k

[G]k+1.

Corollary 3.30. Every finitely presented Heyting algebra is a bi-Heyting alge-
bra.

Remark 12. Consider the diagram (∆). If we let g be the unique map to
the one point frame 1, then any Priestley morphism from a frame G to F0
will be g-open. Consequently, by Theorem 3.28, the dual of lim←−g F will be the
Heyting algebra freely generated by the distributive lattice F0. In particular,
for π0

−1 : [FInt(n)]0 → 1 we have FInt(n) ∼= lim←−π0
−1

F.

The following interesting result gives us a criterion to settle when a finitely
presented Heyting algebra is well-connected.

Proposition 3.31. Let G be a finitely copresented frame. Then G is rooted iff
[G]ρ(G)+1 is rooted.

Proof. Let ρ(G) = k. Clearly, if G is rooted, then so is [G]ρ(G)+1. Conversely,
suppose that [G]ρ(G)+1 is rooted. By Theorem 3.29, we have G ∼= lim←−χk+1

k

F, so
that if we show that lim←−χk+1

k

F is rooted we are done. Now, a root for lim←−χk+1
k

F

would be a point w = (wi)i<ω ∈ lim←−χk+1
k

F such that, for each i < ω,

• r∞i (w) ≤Fi
v, for all v ∈ Fi;

• ri+1 ◦ r∞i+1(w) = r∞i (w).

Let w0 be the root of [G]ρ(G)+1 = F0 and define wi+1 := wi↑. Clearly, for each
i < ω, wi ∈ Fi and wi+1 ≤Fi+1 v for any v ∈ Fi+1, since points in Fi+1 are
subsets of Fi, wi+1 = Fi and the ordering is reverse inclusion. Moreover, we
have ri+1(wi+1) = wi, since by definition ri+1 maps ri-open rooted subsets of
Fi onto their roots. Therefore, the point w = (wi)i<ω so identified satisfies the
two above conditions and thus it is the root of lim←−χk+1

k

F.

We conclude this section by reminding the reader a few more results concern-
ing finitely copresented frames. The following theorem has first been proved by
Ghilardi and Zawadowski [65] by employing a sheaf representation of Heyting
algebras. Cfr. also van Gool, Reggio [161] for a more topological approach to
the issue.
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Theorem 3.32. Let F and G be finitely copresented descriptive frames and let
h : F→ G be a p-morphism. Then h is open in the topological sense.

As a consequence of the previous theorem, we get the following remarkable
property of Heyting algebras.

Corollary 3.33. Let A be a finitely generated subalgebra of a finitely presented
Heyting algebra B. Then A is also finitely presented.

Proof. Dualizing, we have that A+ is a generated subframe of FInt(n), for some
n < ω, and a p-morphic image of B+. So, let g : B+ → A+ be a onto p-
morphism. Then i ◦ g : B+ → FInt(n), where i : A+ → FInt(n) is the inclusion
map, is also a p-morphism. In particular, i ◦ g is a p-morphism between finitely
copresented descriptive frames and thus it is open by Theorem 3.32. Therefore
i ◦ g(B+) = A is open in FInt(n) and, consequently, A is finitely copresented,
being a clopen upset of FInt(n).

3.3 Finitely generated regular projective Heyt-
ing algebras

Let L be an intermediate logic and consider its corresponding variety VL and
the associated equational category VL. We remind the reader that a Heyting
algebra A ∈ VL is said to be regular projective in VL if, for any regular epi
e : C → B and any morphism f : A → B, there exists a morphism g : A → C
such that the following diagram commutes

C

A B

e

f

g

We now provide a characterization of regular projective finitely generated
Heyting algebras for any finitely approximable intermediate logic L. For that
purpose, the following result will be useful.

Theorem 3.34. Let K be an equational category.

1. A retract of a regular projective object is regular projective.

2. If f : A→ B is a surjective morphism and B is regular projective, then B
is a retract of A.

3. An algebra A in K is regular projective iff it is a retract of a K-free algebra.

3.3.1 Finitely generated regular injective frames
Let L be a finitely approximable intermediate logic and consider its correspond-
ing variety VL and the associated equational category VL. Denote by ESL and
by DFL the subcategories of ES and DF respectively which are dual to VL.

Now, by duality, it follows that a Heyting algebra A is regular projective in
VL iff the corresponding dual Esakia space and descriptive frame A+ are regular
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injective in ESL and DFL respectively. Since we know that in equational
categories the regular epimorphism are just the surjective morphisms, we thus
have that a descriptive frame F for L is regular injective in DFL iff, whenever
G and D are descriptive frames for L such that G is a generated subframe of
D and f : G → F is a p-morphism, then f can be extended to a p-morphism
h : D → F. An alternative equivalent formulation of a regular injective frame
comes from the dual statement of Theorem 3.34 which tells us that a descriptive
frame F for L is regular injective iff whenever F is a generated subframe of some
canonical frame FL(κ) for L, then there exists a p-morphism g : FL(κ) → F
which is the identity on F.

Say that a descriptive frame F = 〈W,R,P〉 is finitely approximable if Wfin
is dense in the corresponding Esakia space XF = 〈W, τP , R〉. Furthermore, we
denote by FO = 〈WO, RO,PO〉 the descriptive frame obtained from F by adding
a new point below all elements of W , that is,

WO = W ∪ {a};
RO = R ∪ {〈a,w〉 |w ∈W};
PO = P ∪ {WO};

where a is such that {a} ∩ W = ∅. Notice that PO is the Heyting algebra
obtained from P by adding a new top element or, equivalently, as the vertical
sum P⊕2 of P with the two elements Boolean algebra and it is thus subdirectly
irreducible. Moreover, with respect to the corresponding Esakia spaces, we
have that XFO = 〈WO, τPO , RO〉 is the Esakia space obtained as the extension
topology of W plus {a}, which corresponds to the Alexandroff extension of W ,
since 〈W, τP〉 is a Stone space7.

Lemma 3.35. Let L be a finitely approximable intermediate logic and F be a
regular injective frame in DFL. Then F is finitely approximable.

Proof. Since F is regular injective, then F is a p-morphic image of a κ-canonical
frame FL(κ). Now consider the corresponding Esakia spaces XF = 〈Y, τ ′, S〉
and XFL(κ) = 〈X, τ,R〉 of F and FL(κ) respectively and let f : X → Y be
a onto Esakia morphism. From the fact that L is finitely approximable, we
deduce that Xfin is dense in X and thus f(Xfin) is dense in Y , since f is a
continuous surjection. Furthermore, since f is a p-morphism, we have that
f(Xfin) ⊆ Yfin which implies that Yfin is a dense subset of Y . Therefore F is
finitely approximable.

Lemma 3.36. Let F = 〈W,R,P〉 and G = 〈V, S,Q〉 be two finitely approximable
descriptive frames and let f : W<ω → V <ω be a p-morphism between F<ω and
G<ω. Then there exists a unique p-morphism h : W → V between F and G that
extends f . Furthermore, if f is onto, then also is h.

Proof. If f : W<ω → V <ω is a p-morphism, then it can be shown that the
dual map f+ : Q<ω → P<ω of f , defined by f+ = f−1, is a Heyting algebra

7 As we mentioned, the dual operation of O coincide with the operation ⊕2 and is nothing
but the operation Γ introduced by Jaśkowski in [88] where it is also shown that

Int = {ϕ ∈ ForL | Jn |= ϕ, for all n ≥ 1},

where the Kripke frame J1 is the one-point frame 1 and Jn+1 is the result of the operation O

on the disjoint union of n copies of Jn.
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homomorphism between (G<ω)+ and (F<ω)+. Then, by duality, the dual map
(f+)+ of f+, defined by (f+)+ = (f+)−1 is a p-morphism from ((F<ω)+)+ to
((G<ω)+)+. We have thus the following commutative diagram

F<ω Q<ω ((F<ω)+)+

G<ω P<ω ((G<ω)+)+

f f+ (f+)+

Now, by Lemma 3.15, we have that ((F<ω)+)+ ∼= F and that ((G<ω)+)+ ∼= G,
therefore, by identifying the two frames, we may assume that (f+)+ := h is
a p-morphism between F and G. By the duality construction, we thus have
h �W<ω = f , that is, h extends f . Now, notice that f is a continuous function
defined on a dense subset of W and h is a continuous extension of f over W .
Suppose that g : W → V is another continuous extension of f over W and
consider the set

B = {w ∈W | g(w) = h(w)}.

Since V is Hausdorff, it not hard to show that B is closed inW . But then, since
W<ω ⊆ B, we have W = W<ω ⊆ B = B. Therefore, g = h and we conclude
that h is unique.

Recall that a subset X ⊆ W of a frame F = 〈W,R〉 covers a point w ∈ W
(w � X) if w↑ = X↑ ∪ {w}. Moreover, let us state the following

Definition 3.9. Let L be an intermediate logic and let F be a descriptive frame
for L. Then F is said to have the L-extension property if, for every descriptive
frame G = 〈V, S,Q〉 such that G ⊆

I
F, d(G) < ω and GO ∈ DFL, there exists

w ∈ F such that w � V 8.

We are now ready to provide the (dual) characterization of finitely generated
regular projective Heyting algebras mentioned at the beginning of this section.

Theorem 3.37. Let L be a finitely approximable intermediate logic. A finitely
generated descriptive frame F for L is regular injective in DFL iff F is finitely
approximable and F has the L-extension property.

Proof. (=⇒) Let F = 〈W,R,P〉 be a finitely generated regular injective frame
in DFL and suppose that G = 〈V, S,Q〉 is a descriptive generated subframe
of F such that d(G) < ω and GO ∈ DFL. By Lemma 3.35, we have that F is
finitely approximable. Assume that n is the cardinality of the set of generators
of F. Since F is regular injective and F ⊆

I
FL(n), there exists a p-morphism

g : FL(n) → F which is the identity on F. Now, since GO ∈ DFL and GO is
n-generated as well, GO ⊆

I
FL(n) and we let v be the root of GO in FL(n). Then

v � V in FL(n) and therefore g(v) � g(V ) = V , by Lemma 1.12 and the fact
that V ⊆

I
W .

(⇐=) Assume that F is a finitely approximable, n-generated descriptive frame
with the L-extension property. By Lemma 3.13, F is a generated subframe of
the canonical frame FL(n) = 〈X,S,Q〉. In order to prove that F is regular

8Notice that if G is a rooted generated subframe of F, then the condition is trivial, since
w can be taken to be the root of G.
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injective, we need to find a surjective p-morphism h from FL(n) to F which
is the retract of the inclusion map from F to FL(n). So consider the points at
finite depth of FL(n), that is, the frame F<ωL (n). Clearly F<ω ⊆

I
F<ωL (n). We are

now going to define the value f(v) of the retract f : X<ω →W<ω by induction
on the depth of v ∈ X<ω. First notice that since both the points in X<ω and
W<ω are atoms of the respective descriptive frames FL(n) and F, it suffice to
define a p-morphism between κF<ωL (n) and κF<ω. So, suppose that f is already
defined for all points in X≤k and let v ∈ X=k+1. Now, if v ∈W=k+1, then put
f(v) = v; otherwise, since f is already defined on the set v> of the immediate
successors of v, consider the Kripke frame G = 〈f(v>↑), R �f(v>↑)〉. Clearly
G ⊆

I
F<ω ⊆

I
F and d(G) < ω. Furthermore, notice that GO is a p-morphic

image of FL(n)v = 〈v↑, S �v↑〉 ∈ DFL and thus GO belongs to DFL as well.
Hence, by hypothesis, there exists a point w in F<ω such that w � f(v>↑) and
we let f(v) = w. The verification that f is indeed a p-morphism is left to the
reader.
Now, since L has the finite model property, the canonical frame FL(n) is finitely
approximable and thus the conditions of Lemma 3.36 apply and we get an onto
p-morphism h : FL(n) → F that extends f . In order to show that h is the
morphism we sought, we only need to prove that h is the identity on F. Take
into consideration the corresponding Esakia spaces XFL(n) and XF of FL(n) and
F respectively and let B = {y ∈ X |h(y) = y}. It is easy to prove that B is
a closed subset of X and since XF is a generated subspace of XFL(n), B is also
closed in W . Thus, since W<ω ⊆ B ⊆ W and W<ω is dense in W , it follows
that B = W and so h �F= 1F.

Remark 13. It absolutely can not be said that Theorem 3.37 above is some-
thing really new in the literature on intermediate propositional logics. Some-
thing analogous has already been proved by Ghilardi in [62] (cfr. also [65]):
a straightforward generalization to finitely approximable intermediate logics of
Theorem 5 is basically our result restricted to finitely copresented descriptive
frames. In fact, when dealing with finitely copresented frames in any finitely ap-
proximable intermediate logic, the requirement of finite approximability can be
dropped (cfr. Lemma 5.23) and thus our theorem boils down to the equivalence
of (ii) and (iii) of Ghilardi’s result.

Of course, our working setting is different from Ghilardi’s. In particular,
Ghilardi’s result relies on a background duality that contains some combinatorial
ingredients (some of which are presented in §3.2) which replace the topological
ingredients of Esakia duality and force one to work with finitely copresented
frames only. Furthermore, Ghilardi’s characterization of regular injective finitely
copresented frames is mediated by the use of a particular substitution θA (the
Löwenheim substitution) that makes the proof of such a result more involved
and does not allow an immediate translation of the used notions to our setting.
Still, the positive side of this approach is its costructiveness and it is thus more
appealing when one deals with algorithmic issues.

Theorem 3.37 is more close to Grigolia’s Theorem 3.1 of [69] (cfr. Proposition
3.39 below). Indeed, our theorem is a nothing but a generalization to finitely
approximable varieties of Heyting algebras of Grigolia’s result. Even though
Grigolia’s proof also makes use of Esakia duality, we still think our proof is
more linear and simpler.

To summarize, our Theorem 3.37 can be seen as a slight generalization of
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some already known results about regular injective frames in the literature on
intermediate propositional logics. Its relevance is mainly due to the fact that
it relies only on Esakia duality and thus it can be used, alongside with all the
topological machinery of Esakia duality, to prove (or provide different proofs of)
facts related with regular projective Heyting algebras.

From the previous theorem, by considering only finite frames, we get the
following result obtained by Ghilardi for locally tabular intermediate logics [64,
Proposition 4].

Proposition 3.38 (Ghilardi). Let L be a finitely approximable intermediate
logic and F = 〈W,R〉 a finite frame for L. Then F is regular injective in DFL

iff, for every generated subframe G = 〈V, S〉 ⊆
I
F such that GO ∈ DFL, there

exists w ∈ F such that w � V .

Furthermore, if we consider the variety HA of Heyting algebras, we get the
following results obtained by Grigolia [69, Theorem 3.1].

Proposition 3.39 (Grigolia). A finitely generated descriptive frame F is injec-
tive in DF iff F is finitely approximable and has the extension property.

Notice that in the previous proposition we used the adjective “injective”
instead of the phrase “regular injective”. For the reason why this change is
possible, cfr. the following

Remark 14. Recall that in an equational category K, since all the surjective
morphism are epic and the regular epimorphism are exactly the surjective mor-
phisms, the notions of regular epimorphism and epimorphism coincide iff K has
the ES-property, that is, iff K is a balanced category. For equational categories
VL corresponding to varieties that algebraize some intermediate logics L, the
logical counterpart of the ES-property is the following infinitary version of the
so-called Beth definability property. Let X,Y ⊆ VarL be such that X ∩ Y = ∅
and let Γ ⊆ ForLX∪Y ; then Y is said to be implicitly defined in terms of X by
Γ (in L) if, for all y ∈ Y ,

Γ, σ(Γ) `L y ↔ σ(y) (ID)

for every substitution σ such that σ(x) = x for all x ∈ X. Moreover, we say
that Y is explicitly defined in terms of X by Γ (in L) if for all y ∈ Y there exists
a LX -formula ϕy such that

Γ `L y ↔ ϕy. (ED)

Finally, L is said to have the (infinitary) Beth property if (ID) implies (ED)9.
It is well known that the Beth property is closely related to the Craig’s in-

terpolation property, namely the former is implied by the latter, and that, for
9We say that L has the finite Beth property if (ID) implies (ED) when Y is a finite set of

variables. Such a property corresponds, algebraically, to the weak ES-property that states that
all almost onto epis are surjective, where a homomorphism f : A→ B is said to be almost onto
when B is generated by f(A)∪{b} for some b ∈ B. A classical result of Kreisel [93] states that
all varieties of Heyting algebras have the weak ES-property. In contrast, Maksimova [108, 109]
has shown that a stronger version of the Beth property, called projective Beth property and
that corresponds algebraically to the request that all strong epis are surjective, holds only for
finitely many varieties of Heyting algebras (the exact number of them is 16).
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instance, Int, KC, LC and Cl do have interpolation10. Therefore, for these
logics, the corresponding equational categories VL are balanced and all the epi-
morphisms are regular. Hence, by duality it follows that all the monomorphism
are regular in ESL. Now, someone could wonder whether such an equiva-
lence holds for all the subcategories of Esakia spaces. This is not the case:
there is a continuum of subcategories ESL of ES for which the equivalence
between monomorphism and regular monomorphisms does not hold. Indeed,
it has recently been shown in [126] that all the varieties of Heyting algebras
corresponding to the logics of bounded width BWn, for all n > 2, as well as
a continuum of (locally finite) subvarieties of the variety V(RN) generated by
the Rieger-Nishimura lattice lack the ES-property11.

The following proposition shows that the variety of Heyting algebras behaves
very much like to the variety of lattices when projective algebras are concerned
(cfr. Corollary 5.10 of [52]).

Proposition 3.40. A finitely generated Heyting algebra A ∈ HA is projective
iff A is (isomorphic to) a subalgebra of a finitely generated HA-free algebra.

Proof. Let n be the cardinality of the set of generators of A. Clearly if A is pro-
jective, then A is the retract of the HA-free algebra FHA(n) and thus a subalge-
bra of it. Conversely, suppose that A is a subalgebra of FHA(m) for somem < ω
(wlog, we can assume that n ≤ m). Let F = 〈X,S,Q〉 be the dual descriptive
frame of A and consider the m-canonical frame FInt(m) = 〈WInt, RInt,PInt〉
for Int. By duality, there exists a onto p-morphism h : FInt(m) → F. By the
same reasoning of Lemma 3.35, we have that F is finitely approximable. Now let
G = 〈V, T,R〉 be a descriptive frame such that G ⊆

I
F and d(G) < ω. Since F is

finitely generated and the depth of G is finite, by letting min(V ) = {v1, . . . , vk},
we have that {vi} is clopen in the Esakia space corresponding to F, for each
i ∈ {1, . . . , k}, and thus h−1(vi) is clopen in WInt. Since FInt(m) is finitely
approximable, the intersection Vi = h−1(vi)∩W<ω

Int is non-empty and so we can
consider a point xi ∈ Vi for each i ∈ {1, . . . , k}. Now, let D :=

⊎
i∈{1,...,k} xi↑

and notice that D = 〈D,RInt �D,PInt ∩D〉 is a generated subframe of FInt(m)
of finite depth. Hence, by Proposition 3.39, there exists a point w ∈ WInt
such that w � D and, since p-morphism preserves the covering relation, we
have h(w) � h(D). But h(D) = V : indeed, if x ∈ h(D), then x = h(y)
for some y ∈ D; so, y ∈ xi↑ for some i ∈ {1, . . . , k} and, consequently,
vi = h(xi)Th(y) = x, that is, x ∈ V . Conversely, if x ∈ V , then vjTx for
some j. Thus h(xj)Tx and, since h is a p-morphism, there exists y ∈ xj↑ such
that h(y) = x; hence y ∈ D and x ∈ h(D). Consequently h(w) is a point in
X covered by V and therefore F is regular injective again by Proposition 3.39.
Dualizing, A is a projective algebra in HA.

10The algebraic counterpart of Craig’s interpolation property for an intermediate logic L
is the amalgamation property of the corresponding variety VL: for any A,B and C in VL,
if f : A → B and g : A → C are monomorphisms, then there exists an algebra D ∈ VL

and monomorphisms h : B → D and j : C → D such that h ◦ f = j ◦ g. A classical result of
Maksimova [107, 105] states that there are exactly 8 si-logics with the amalgamation property.
Cfr. also [41, §A.7] for a proof of the fact that HA has the amalgamation property based on
the duality with Esakia spaces.

11The reader interested on the topic of interpolation and definability in modal and intu-
itionistic logic is referred to the monograph [57].
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By taking into consideration only the finite frames in Proposition 3.39, we
get a different proof of the characterization of finite projective Heyting algebras
given by Balbes and Horn [5] in terms of vertical sums of the two- and four-
elements Boolean algebras 2 and 4. Cfr. also [69, Corollary 3.2].

Corollary 3.41. Let A be a finite Heyting algebra. Then A is projective inHA
iff A is isomorphic to the Heyting algebra⊕n

i=1
Bi,

where, for all i < n, Bi is either isomorphic to the Boolean algebras 2 or 4 and
Bn is isomorphic to the Boolean algebra 2.

Proof. By duality, it suffice to show that the frame A+ is injective in DF iff it
is isomorphic to the frame

⊕n
i=1 Bi+, where, for each i < n, Bi+ is either the

one point frame 2+: or the two point frame 4+ ∼= 2+ ] 2+: and Bn+
is isomorphic to 2+.
The direction (⇐=) is clear. For (=⇒), suppose that A+ is injective and let
{1, . . . , n} be the layers of A+. Consider the last layer A=n

+ : if A=n
+ contains

more than two points, say v and u, then by Proposition 3.38, there exists w in
A+ such that w � {v, u}, thus w ∈ A=n+1

+ , contrary to the fact that n was the
last layer of A+. So A+ is rooted (and by duality A is subdirectly irreducible).
Now, for each k ≤ n− 1, A=k

+ must contain at most 2 points. Otherwise, if for
some k, A=k

+ has m ≥ 3 elements, then A=k+1
+ must have at least 2m −m − 1

elements (the cardinality of the set of antichains of two or more elements), that
is, |A=k

+ | < |A=k+1
+ |, contrary to the finiteness of A+. Therefore max(A+) has

at most 2 points. Suppose that a 6= b are the maximal elements of A+ and
A=2

+ = {c, d}. If c � {a, b} and d � {b}, then there must be e, f ∈ A=3
+ such

that f � {d, a} and e � {c, d}. In the same way {f, c} and {e, f} must cover
the elements of A=4

+ and thus we eventually get the Rieger-Nishimura ladder

a b

c d

e f

...
...

which we know is infinite, getting a contradiction with the finiteness of A+.
Therefore, if a layer contains two distinct elements a, b, then if the next layer
contains two elements as well, these elements are both covered by {a, b}. If the
next layer contains only one element, then this element is covered by {a, b}.
Finally, if a = b, then {a} covers all the elements of the next layer. We can
conclude that A+ ∼=

⊕n
i=1 Bi+.
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Corollary 3.42. Let A ( max(FInt(n)). Then FInt(n)\A↓ is injective in DF
for every n < ω.

Proof. Let FInt(n) = 〈WInt, RInt,PInt〉 and denote by G = 〈WInt \ A↓, S,Q〉
the descriptive generated subframe FInt(n) \ A↓ of FInt(n). Clearly G is also
n-generated. Furthermore, since A is a finite union of atoms, A ∈ PInt, that is,
A is clopen in the corresponding Esakia space XFInt(n) of FInt(n). Hence since
RInt is a clopen relation, A↓ is also clopen and thus WInt \A↓ is a clopen upset
of WInt. It follows that (WInt \A↓)<ω = W<ω

Int ∩ (WInt \A↓) is the intersection
of a dense subset with an open subset of WInt and therefore (WInt \ A↓)<ω is
dense in WInt \A↓, that is, G is finitely approximable.
Now let D = 〈V, S′,Q′〉 be such that D ⊆

I
G and d(D) < ω. Since D ⊆

I
FInt(n)

and FInt(n) is injective in DF , there exists w ∈ FInt(n) such that w � V . If
w /∈ G, then w ∈ A↓ and thus wRIntm for some maximal element m ∈ A. Since
w↑ = V ∪ {w}, it follows that m ∈ V , contrary to the fact that V ∩ A↓ = ∅.
Thus w is a point in G covered by V and G is injective in DF .

Let L be an intermediate logic and F be a descriptive frame. A descriptive
generated subframe G ∈ DFL of F is said to be L-universal (for F) if every
generated subframe D′ of F which is a p-morphic image of a descriptive frame
D in DFL is also a generated subframe of G. The following Lemma provides
plenty of examples of L-universal generated subframes.

Lemma 3.43. Let F = 〈V, S,Q〉 be a generated subframe of the n-canonical
frame FInt(n) for Int. Then, for every intermediate logic L, the generated
subframe F ∩ FL(n) = 〈V ∩WL, R,P〉 of F, given by the intersection of F with
the n-canonical frame FL(n) = 〈WL, RL,PL〉 for L, is a L-universal subframe
for F.

Proof. Notice that, since F ∩ FL(n) ⊆
I
FL(n), F ∩ FL(n) is indeed a generated

subframe of F in DFL. So let D′ be a generated subframe of F such that D′ is
a p-morphic image of a frame D ∈ DFL. Therefore, since D′ ⊆

I
F ⊆

I
FInt(n),

D′ is also n-generated descriptive frame that belongs to DFL. But then, by
Lemma 3.13, D′ ⊆

I
FL(n). Hence D′ ⊆

I
F ∩ FL(n).

The most interesting property of L-universal subframe is stated in the fol-
lowing

Lemma 3.44. Let L1, L2 be two intermediate logics such that L1 ⊆ L2. Then
a L2-universal generated subframe G ∈ DFL2 of a regular injective frame F in
DFL1 is regular injective in DFL2 .

Proof. Let D1 and D2 be descriptive frames for L2 such that D1 ⊆I D2 and
let f : D1 → G be a p-morphism. Since G ⊆

I
F, we can consider f as a p-

morphism between D1 and F (more precisely, consider the p-morphism obtained
by extending the codomain of f to F). Since Ob(DFL2) ⊆ Ob(DFL1) and F
is injective, f can be extended to a p-morphism g : D2 → F. But then, since
G is L2-universal for F and g(D2) is a generated subframe of F which is a p-
morphic image of D2 ∈ DFL2 , g(D2) is also a generated subframe of G, that is,
g : D2 → G is a p-morphism and g �D1= f . Thus we conclude that G is regular
injective in DFL2 .
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Now we shall make use of the previous results in order to prove that ev-
ery descriptive frame for L which is isomorphic to a finitely copresented frame
FL(n)/ϕ, where ϕ ∈ ForLn is a consistent Harrop formula, is regular injective.
Recall that the class H of Harrop formulas is defined inductively as follows:

(i) VarL ∪ {⊥} ⊆ H;

(ii) if ϕ,ψ ∈ H, then ϕ ∧ ψ ∈ H;

(iii) if ϕ ∈ ForL and ψ ∈ H, then ϕ→ ψ ∈ H.

We then have the following

Proposition 3.45. Let ϕ ∈ H be a consistent Ln-formula. Then, for every
intermediate logic L, FL(n)/ϕ is regular injective in DFL.

Proof. Since, for every formula ϕ ∈ ForLn,

FL(n)/ϕ = VL(n)(ϕ) = VInt(n)(ϕ) ∩WL = FInt(n)/ϕ ∩ FL(n),

by Lemmas 3.43 and 3.44 it suffices to show that FInt(n)/ϕ is injective in DF .
Thus we proceed following the inductive definition of H.

(i) Notice that since ⊥ is excluded by hypothesis we shall deal only with
propositional variables. So let pi ∈ VarLn and consider the descriptive
frame FInt(n)/pi = 〈V,RInt �V ,PInt ∩ V 〉. Since V = VInt(n)(pi) ∈ PInt,
V is a clopen upset of FInt(n) and thus V <ω = W<ω

Int ∩ V is also dense in
V , being W<ω

Int dense in WInt. Therefore FInt(n)/pi is a finitely approx-
imable frame. Now consider any generated subframe G = 〈V1, R1,P1〉
of FInt(n)/pi such that d(G) < ω. If V1 is rooted, that is, if V1 = v↑
for some v ∈ V1, then v � V1. If V1 is not rooted, then min(V1) is an
antichain of points at finite depth. Let c = 〈c1, . . . , cn〉 be the minimal
colour of the points in min(V1). By the construction of F<ωInt(n), there
exists a point w ∈ W

=d(G)+1
Int such that col(w) = c and w � V1. Since

VInt(n)(pi) = {x ∈ WInt | cxi = 1}, it follows that cwi = ci = 1 and thus
w ∈ V . Hence, by Proposition 3.39, FInt(n)/pi is injective in DF12.

(ii) Let ϕ,ψ ∈ ForLn be two Harrop formulas such that their conjuction is
consistent and consider the corresponding finitely copresented frames

FInt(n)/ϕ = 〈V1, RInt �V1 ,PInt ∩ V1〉

and
FInt(n)/ψ = 〈V2, RInt �V2 ,PInt ∩ V2〉.

By duality, we have that

FInt(n)/ϕ ∧ ψ = FInt(n)/ϕ ∩ FInt(n)/ψ

and thus V1∩V2 = VInt(n)(ϕ)∩VInt(n)(ψ) is a non-empty clopen upset of
WInt. Therefore, it follows that FInt(n)/ϕ ∧ ψ is a finitely approximable
generated subframe of FInt(n). Now consider any generated subframe

12Alternatively, notice that FInt(n)/pi is isomorphic to the n-canonical frame FInt(n − 1)
and thus injective by Proposition 3.40.
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G = 〈V, S,Q〉 of FInt(n)/ϕ ∧ ψ such that d(G) < ω. As before, if V is
rooted, that is, if V = v↑ for some v ∈ V , then v � V . If V is not rooted,
then let c = 〈c1, . . . , cn〉 be the minimal colour of the points in min(V ).
By the construction of F<ωInt(n), there exists a point w ∈ W=d(G)+1

Int such
that col(w) = c and w � V . Since col(w) = col(v) for some point v ∈
min(V ) ⊆ V1 ∩V2, it follows that also w ∈ V1 ∩V2. Hence, by Proposition
3.39, FInt(n)/ϕ ∧ ψ is injective in DF .

(iii) Let ϕ ∈ ForL and ψ ∈ H and consider the corresponding finitely cop-
resented frames FInt(n)/ϕ and FInt(n)/ψ defined as in (ii) above. Then,
by letting FInt(n)/ϕ → ψ = 〈V,RInt �V ,PInt ∩ V 〉, we have that V =
WInt \ (V1 \V2)↓. First notice that if ψ ↔ ⊥ ∈ Int, that is, if V2 = ∅, then
FInt(n)/ϕ → ψ ∼= FInt(n) \ V1↓. But, for any closed subset U of WInt,
we have U↓ = max(U)↓. Indeed, since max(U) ⊆ U , max(U)↓ ⊆ U↓;
conversely, if x ∈ U↓, then xRInty for some y ∈ U . Since U is closed,
by Theorem 2.17 (i), there exists z ∈ max(U) such that yRIntz and
thus x ∈ max(U)↓. Therefore, since V1 is a clopen upset, we have
max(V1) ( max(FInt(n)) and thus FInt(n)/ϕ→ ψ is injective in DF by
Corollary 3.42. So, let us assume that ψ is also consistent. Notice that,
by the same reasoning as above, FInt(n)/ϕ→ ψ is finitely approximable.
Now consider any generated subframe G = 〈X,S,Q〉 of FInt(n)/ϕ → ψ
such that d(G) < ω and let min(X) = {x1, . . . , xm}. Suppose that there
are no points k ∈ V such that k � X. Since, by the construction of
F<ωInt(n), the set {y ∈ WInt | y � X} 6= ∅, let z be a such a point. Then
z /∈ V , that is, z ∈ (V1 \ V2)↓. So, there exists a point u ∈ V1 \ V2 such
that zRIntu. Now, if u is a proper successor of z, then xjRIntu for some
xj ∈ min(X). Therefore xj ∈ (V1 \ V2)↓, but this is impossible because
xj ∈ X ⊆

I
V . Consequently, it must be the case that z = u ∈ V1 \ V2.

Since V1 is an upset, min(X) ⊆ V1 and thus also min(X) ⊆ V2. Hence G
is also a generated subframe of FInt(n)/ψ of finite depth. Furthermore,
by the induction hypothesis, FInt(n)/ψ is injective in DF and thus, by
Proposition 3.39, there exists a point k ∈ V2 such that k � X. But then
k ∈ V too and thus there exists a point in V covered by X. By the con-
sequentia mirabilis, we can actually conclude that there are points k ∈ V
such that k � X. Consequently FInt(n)/ϕ → ψ is injective in DF by
Proposition 3.39.

We are now in a position to give a different proof of the following theorem
by Minari and Wroński:
Theorem 3.46 (Minari, Wroński [124]). Let L be an intermediate logic. Then,
if ϕ→ (η ∨ δ) ∈ L and ϕ ∈ H, then (ϕ→ η) ∨ (ϕ→ δ) ∈ L.
Proof. Let Varϕ ∪Varη ∪Varδ ⊆ VarLn and assume that the hypothesis of
the theorems hold. Consider the finitely copresented frames

FL(n)/ϕ = 〈V1, RL �V1 ,PL ∩ V1〉,
FL(n)/η = 〈V2, RL �V2 ,PL ∩ V2〉,
FL(n)/δ = 〈V3, RL �V3 ,PL ∩ V3〉.

Since ϕ→ (η ∨ δ) ∈ L it follows that

V1 ⊃ (V2 ∪ V3) = WL \ (V1 \ (V2 ∪ V3))↓ = WL,
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and, consequently,
(V1 \ (V2 ∪ V3))↓ = ∅. (1)

Now, in order to show that (ϕ → η) ∨ (ϕ → δ) ∈ L, we need to show that the
equation (V1 ⊃ V2) ∪ (V1 ⊃ V3) = WL holds or, equivalently, that

(V1 \ V2)↓ ∩ (V1 \ V3)↓ = ∅. (2)

First notice that if ϕ is inconsistent, that is, if V1 = ∅, then we are done. Thus
we can assume that ϕ is a consistent Ln-formula. For reductio, let us assume
that w ∈ (V1 \ V2)↓ ∩ (V1 \ V3)↓ for some w ∈ WL. Then there are points
y ∈ V1 \ V2 and z ∈ V1 \ V3 such that wRLy and wRLz. Notice that if y /∈ V3,
then y ∈ V1 \ (V2 ∪ V3) and, consequently, w ∈ (V1 \ (V2 ∪ V3))↓, contrary to
(1). Therefore, y ∈ V3 and, analogously, z ∈ V2. This implies that y and z are
incomparable elements of FL(n) and w is a proper predecessor of both y and z.
Furthermore, since ϕ is a consistent Harrop formula, it follows from Proposition
3.45 that FL(n)/ϕ is a regular injective descriptive frame in DFL. So, let
f : WL → V1 be the p-morphism from FL(n) onto FL(n)/ϕ which is the retract
of the inclusion V1 ⊆ WL. Thus f(w) is a point in V1 such that f(w)RLy and
f(w)RLz, but then f(w) /∈ V2 ∪ V3 and f(w) ∈ (V1 \ (Q ∪ R))↓, contradiction.
We can thus conclude that (2) holds.

Finally notice that, since any negated formula is an Harrop formula, the
previous result strengthens Prucnal’s Theorem 1.32 stating that the Kreisel-
Putnam rule

¬p→ (q ∨ r)
(¬p→ q) ∨ (¬p→ r)

is admissible in every intermediate logic.



Chapter 4

Structural completeness

In §1.3.1 we introduced the notion of structural completeness for intermediate
propositional logics. We are now going to look deeper into this notion in the
more general context of propositional logics both from a logical and an algebraic
point of view. The main sources for this chapter are [30] for the logical part and
[7] and [38] for the algebraic one.

4.1 The Logical Setting
Given a propositional language L, that is a finite set of connectives with their
specified finite arity, recall that an axiomatic system AS on L is given by a
pair AS = 〈Ax,R〉, where Ax ⊆ ForL is the non-empty set of axioms and
R ⊆ P<ω(ForL) × ForL is the set non-empty of inference rules. The notion
of an AS-derivation of a formula ϕ from the set of assumption Γ is defined
analogously as for intermediate logics and we write Γ `AS ϕ. The relation
`AS⊆ P(ForL)×ForL is called the derivability relation ofAS1. Recall moreover
that we call a formula ϕ a theorem of AS if `AS ϕ and the logic of the axiomatic
system AS, denoted by AS, is defined to be the set of theorems of AS. We will
also write Th(`) to denote the set of theorems of the consequence relation `,
so that AS = Th(`AS).

We have also seen that, by the Łoś-Suzko Theorem, `AS is a finitary conse-
quence relation (cfr. Definition 1.5) and every finitary consequence relation `
can be obtained as the derivability relation `AS of an axiomatic system AS. In
this situation, we say that ` is axiomatized by AS. Therefore in what follows we
will be often making a systematical confusion between a given axiomatic system
AS and its derivability relation `AS . Moreover, when speaking of a consequence
relation ` we will always mean a finitary structural consequence relation.

Definition 4.1. Let ` and `′ be consequence relations. We say that `′ is an
extension of ` and we write ` ≤ `′ if ` ⊆ `′. Moreover, `′ is called a proper

1In §1.1.1 we required that the rule of substitution (Subst) had to be included in the set
of inference rules R of a given axiomatic system AS = 〈Ax,R〉 and defined the derivability
relation `AS by omitting the reference to substitution instances. We have opted to change
the previous definition in order to conform with the common literature on the topic, cfr., for
instance, [142], [30] or [127]. Anyway, it is clear that the two definitions give rise to the same
derivability relation, which is what really matters.

109
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extension of `, written `< `′, if `( `′. We say that `′ is an axiomatic extension
of ` if `′ can be axiomatized by adding only axioms to some axiomatization of
`.

Definition 4.2. Let AS1 and AS2 be two axiomatic systems. We say that
AS1 and AS2 are logically equal (notation: AS1 ∼0 AS2) if AS1 = AS2, i.e. if
their logics are the same, and we say that AS1 and AS2 are deductively equal
(notation: AS1 ∼1 AS2) if `AS1 = `AS2 .

It follows directly from the previous definitions that both ∼0 and ∼1 are
equivalence relations on the class of the axiomatic systems and that, for any
two axiomatic systems AS1 and AS2, AS1 ∼1 AS2 =⇒ AS1 ∼0 AS2.
Example 8. In the present context, Int = 〈AxInt, {MP, (Subst)}〉, where AxInt
is the set of axioms from Definition 1.4. Furthermore `Int < `Cl and, in partic-
ular, `Cl is an axiomatic extension of `Int, since Cl = 〈AxInt ∪ {p∨¬p},MP〉.

The following simple lemma will be useful in the sequel.

Lemma 4.1. Let AS = 〈Ax,R〉 be an axiomatic system. Then

AS ∼1 〈AS,R〉.

Proof. Just notice that extending the set of axioms of AS by the set of theorems
of AS does not change the definition of AS-consequence.

4.1.1 Admissible and Derivable Rules
Definition 4.3. Let AS = 〈Ax,R〉 be an axiomatic system. An inference rule
r : Γ/ϕ is said to be admissible in AS (or in `AS), if the logic AS is closed
under r, that is, if AS ∼0 〈Ax,R∪ {r}〉.

The previous notion has been introduced by Paul Lorenzen in [100] in the
context of intuitionistic propositional logic2. The following lemma shows that
the previous definition is equivalent to the definition of admissible rule given in
§1.3.1.

Lemma 4.2. Let AS = 〈Ax,R〉 be an axiomatic system and Γ/ϕ an inference
rule. Then Γ/ϕ is admissible in AS iff, for every substitution σ : VarL → ForL,

σ(Γ) ⊆ AS =⇒ σ(ϕ) ∈ AS.

For an axiomatic system AS = 〈Ax,R〉, we denote by Ra the set of all
admissible rules of AS and by p∼AS the consequence relation defined by the
axiomatic system 〈Ax,Ra〉. Directly from the definition of admissible rule, it
follows that AS ∼0 〈Ax,Ra〉 and in particular that p∼AS is the greatest conse-
quence relation having AS as its set of theorems. Moreover, since admissibility
depends only on the logic of the axiomatic systems, given two logically equal
axiomatic systems AS1 = 〈Ax1,R1〉 and AS2 = 〈Ax2,R2〉, then a rule Γ/ϕ is
admissible in AS1 iff it is admissible in AS2, or, equivalently, p∼AS1 = p∼AS2 .

2Lorenzen’s “operative interpretation” which stands behind the definition of admissible
rule is that a rule r is admissible if every application of r can be eliminated from the extended
calculus. Cfr. [144].
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Definition 4.4. Let AS = 〈Ax,R〉 be an axiomatic system. An inference rule
Γ/ϕ is said to be derivable in AS (or in `AS), if Γ `AS ϕ.

For an axiomatic system AS = 〈Ax,R〉, we denote by Rd the set of all
derivables rules of AS. It is easily seen that AS ∼1 AS

′ = 〈Ax,Rd〉.

4.1.2 Structural Completeness and related notions
We will now recall the definition of structural completeness and introduce some
other variants which will be of interest in the rest of this thesis. The notion
of structural completeness was first introduced in [134] by Pogorzelski and has
been since then an interesting theme of investigation3.

Structural Completeness

Definition 4.5. An axiomatic system AS = 〈Ax,R〉 is said to be structurally
complete if every admissible rule in AS is derivable in AS, that is, if p∼AS ⊆ `AS .

Notice that, since every derivable inference rule in AS is admissible in AS,
for a structurally complete axiomatic system AS we have p∼AS = `AS . The fol-
lowing lemma provides an intrinsic characterization of structural completeness,
which is often used as a definition.

Lemma 4.3 (Makinson, [104]). Let ` be a consequence relation. Then ` is
structurally complete iff every proper extension `′ contains new theorems, that
is

` < `′=⇒ Th(`) ( Th(`′). (sc)

Proof. (=⇒) Suppose that ` is structurally complete. We show (sc) by contra-
position. If Th(`) = Th(`′), then, being p∼ the greatest consequence relation
having the same set of theorems as Th(`), we have `′ ⊆ p∼. Since ` is struc-
turally complete, we have p∼ ⊆ `. Therefore `′ ≤ `.
(⇐=) Assume conversely that (sc) holds. Let R be the set of rules derivable in
`. Then, for AS = 〈Th(`),R〉, we have ` = `AS . Suppose for contradiction
that `AS is not structurally complete, that is, suppose that there exists a rule
r which is admissible in `AS but not derivable. Then consider the axiomatic
system AS′ = 〈Th(`),R∪ {r}〉: we have `AS < `AS′ , but since r is admissible
Th(`AS) = Th(`AS′), contradicting (sc).

For any consequence relation `, p∼ is also called the structural completion
of `. By factoring out the set of all axiomatic systems by the equivalence
relation ∼0, it follows that the structural complete axiomatic systems are the

3Immediately after Pogorzelski’s 1971 paper, Prucnal [135, 136] showed the structural com-
pleteness of some classes of purely implicational axiomatic systems, while Dzik and Wroński
[39] proved that the intermediate logics LC and BDn are structurally complete. Makinson
[104] gave a different characterization of structural completeness in the language of conse-
quences operators and Prucnal and Wroński [139] an algebraic reformulation of the same
notion (cfr. also [7]). Citkin [27, 28] studied the notion of structural completeness in the
lattice of si-logics, while Rybakov [142] investigated structural completeness in the lattice of
extension of modal logic K4 and Moraschini [125] in the lattice of extensions of the positive
fragment of K4. For many-valued logics, including Łukasiewicz logics, cfr. the papers of
Wojtilak [162, 163, 164]. For fuzzy logics, see Cintula and Metcalfe [25], while the reader
interested in structural completeness in the context of substructural logics is referred to Olson
et al. [127].
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≤-maximal members of the ∼0-equivalence classes. Therefore in this sense we
can see structural completeness as a maximality condition4.

Hereditarily Structural Completeness

Definition 4.6. An axiomatic system AS = 〈Ax,R〉 is said to be hereditarily
structurally complete (hsc, for short) if every (not necessarily proper) extension
of `AS is structurally complete.

Clearly a hsc axiomatic system is structural complete. One may wonder if the
converse also hold, that is if the notion of hereditarily structural completeness
and structural completeness are equivalent. That is not the case, since, for
instance, in [27] it is shown that Medvedev’s logic ML, despite being structural
complete, it is not hereditarily structural complete5. Notice moreover that any
extension of a hsc consequence relation is hsc.

The following lemma gives another characterization of hsc axiomatic sys-
tems.

Lemma 4.4. Let AS = 〈Ax,R〉 be an axiomatic system. Then AS is hsc iff,
for every consequence ` ≥ `AS, ` = `AS′ where AS′ = 〈Ax ∪ Th(`),R〉.

Proof. (=⇒) Assume `AS is hsc and let ` be a consequence relation such that
`AS ≤ `. Now let AS′ be the axiomatic system 〈Ax ∪ Th(`),R〉. Since Ax ⊆
Th(`) and R ⊆ `, we have `AS ≤ `AS′ ≤ `. Moreover, Th(`AS′) = Th(`) and
since `AS is hsc, we have that `AS′ is structurally complete and thus `AS′ = `
by Lemma 4.3.
(⇐=) Suppose `AS ≤ `1 < `2 and consider AS1 = 〈Ax ∪ Th(`1),R〉 and
AS2 = 〈Ax∪Th(`2),R〉. Therefore, by the condition of the lemma, `AS1 = `1
and `AS2 = `2. Since `1 propertly extend `2, we must have Th(`1) ( Th(`2),
that is `1 is structurally complete by Lemma 4.3.

Notice that the previous lemma allows us to interpret hereditarily structural
completeness in the following way: given a hsc axiomatic system AS = 〈Ax,R〉,
every new (non derivable) rule of inference r can be replaced by a set of axioms.
Indeed, if AS1 = 〈Ax,R ∪ {r}〉, then by the previous proposition we have
AS1 ∼1 AS

′ = 〈Ax ∪ Th(`AS1),R〉.

Active and Passive Structural Completeness

It could be the case that, given an axiomatic system AS and an inference rule
r, r is admissible in AS only because the condition defining admissibility is
trivially satisfied. Such rules have been first isolated by Rybakov et al. in [143]
and are called passive.

Definition 4.7. Let AS = 〈Ax,R〉 be an axiomatic system and let r : Γ/ϕ
an inference rule. The inference rule r is said to be active if there exists a

4In logic it is very often the case that the notion of completeness is connected to some
kind of maximality and the case of structural completeness provides an example of such a
phenomenon. For the study of maximality/completeness conditions such as structural com-
pleteness, Post-completeness and definitional completeness on axiomatic systems, cfr. [151].

5For the study of hereditarily structural complete axiomatic systems with a particular focus
on intermediate logics, cfr. [30].
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substitution σ : VarL → ForL such that

σ(Γ) ⊆ AS,

and r is said to be passive otherwise, that is, if, for every substitution σ,

σ(Γ) * AS.

Passive inference rules have been called like this because they are really
“passive”: they can never be used for any real derivation. Nevertheless, passive
rules are still of interest: when taking into consideration passive rules one can
get different notions of structural completeness.

Definition 4.8. Let AS = 〈Ax,R〉 be an axiomatic system:

(i) we say that AS is passively structurally complete if every passive inference
rule of AS is derivable in AS;

(ii) we say that AS is actively structurally complete if every admissible in AS
active inference rule of AS is derivable in AS.

It is clear that an axiomatic system AS is structurally complete iff it is
actively and passively structurally complete. The notion of passive structural
completeness has been introduced by Wronski [168] under the name of non-
overflow completeness and has been investigated also by [54] and [25]6, while
the notion of active structural completeness has been first introduced by Dzik
in [36] and then studied from an algebraic perspective in [38].

It can be easily seen that passive structural completeness is preserved up-
wards, that is, if a consequence relation ` is passively structurally complete,
then all its extensions are passively structurally complete too. Moreover, the
following observation is of interest.

Proposition 4.5 (Wroński). The intuitionistic propositional calculus Int is
passively structurally complete.

Proof. Indeed, suppose that the inference rule Γ/ϕ is not derivable in Int. Then
also Γ/⊥ is not derivable in Int, which is equivalent by the Deduction Theorem
to
∧

Γ → ⊥ /∈ Int. By Glivenko’s theorem,
∧

Γ → ⊥ /∈ Cl and thus, for some
model M based on the frame 1, we have M 6|= ¬Γ. Therefore M |= Γ and we
can define a substitution σ by

σ(pi) =
{
> if M |= pi

⊥ otherwise.

for all pi ∈ Var
∧

Γ. Then for all ψ ∈ Γ, σ(ψ) ∈ Cl and since Int is equal to
Cl with respect to variables free formulas, we have σ(ψ) ∈ Int for all ψ ∈ Γ.
Hence σ(Γ) ⊆ Int, that is, Γ/ϕ is not passive.

It follows that every intermediate logic L is passively structural complete and
that structural completeness and active structural completeness are equivalent
notions in the context of intermediate logics.

6An inference rule Γ/p is said to be an overflow rule if p /∈ VarΓ and an axiomatic system
AS is called overflow complete if every admissible in AS overflow rule is derivable in AS.
Notice that AS is overflow complete iff, for every inference rule Γ/ϕ, if Γ/ϕ is not derivable
in AS, then there exists a substitution σ such that σ(Γ) ⊆ AS and this last condition is
equivalent by contraposition to AS being passively structurally complete.
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4.2 The Algebraic Setting
We have seen in §1.5 that the algebraic semantics for intuitionistic propositional
logic is given by the class of all Heyting algebras HA, while, for any intermedi-
ate logic L, the algebraic semantics is given by a specific subclass VL of Heyting
algebras. All these classes of algebras are actually varieties and, in general, most
of the axiomatic systems throughly studied by logicians are algebraizable by a
variety of algebras of the appropriate similarity type. However, when dealing
with the notion of structural completeness or, more generally, with inference
rules, the algebraic language of quasivariety theory is the most suited7. There-
fore, let us start with some useful facts from the theory of quasivarieties8.

Recall that a quasivariety is a class Q of algebras of the same similarity type
which is closed under I, S, P and PU , or, equivalently, a class Q satisfying a given
set of quasi-identity. Since a quasivariety Q is not closed under H, we should
be careful when dealing with congruences of algebras from Q. Furthermore, let
us denote the algebra presented by 〈Y |S〉 by FQ(Y, S) (or simply F(Y, S) when
the class to which it belongs is clear). Notice that if S is empty, then FQ(Y, S)
is just FQ(Y ), that is, the Q-free algebra over Y .

The following theorem establishes a connection between quasi-identities and
finitely presented algebras in a given quasivariety Q of Ω-algebras.

Theorem 4.6. Let Q be a quasivariety of Ω-algebras and let ϕ be the following
quasi-identity over Ω(X):

p1 ≈ q1 & . . . & pn ≈ qn ⇒ p ≈ q.

Denote by ψ the first-order formula &n

i=1pi ≈ qi and let Sψ ( Id(X) be the
following set of identities: Sψ = {pi ≈ qi | i ∈ {1, . . . , n}}. Moreover let
π : FQ(X)→ FQ(X,Sψ) and ν : Tm(X)→ FQ(X) be the natural maps. Then
the two following series of equivalences holds:

(i) FQ(X) |= ψ ⇐⇒ FQ(X) |= Sψ ⇐⇒ FQ(X) ∼= FQ(X,Sψ)

(ii) Q |= ϕ⇐⇒ FQ(X,Sψ) |= p ≈ q [π ◦ ν].

Proof. (i) The first equivalence is trivial. Now, consider the surjective ho-
momorphism π ◦ ν : Tm(X) → FQ(X,Sψ) given by the composition of the
two natural projections ν and π. Notice that, by the Homomorphism’s The-
orem, Tm(X)/ker(π ◦ ν) is isomorphic to FQ(X,Sψ) and ker(π ◦ ν) is the
smallest congruence on Tm(X) containing Sψ. Thus if FQ(X) ∼= FQ(X,Sψ),
then θQ(X) = ker(π ◦ ν), thus Sψ ⊆ θQ(X) and FQ(X) |= Sψ. Conversely,
if FQ(X) |= Sψ, then Sψ ⊆ θQ(X), whence ker(π ◦ ν) ⊆ θQ(X). Since
FQ(X,Sψ) ∈ Q, we have ker(π ◦ν) = θQ(X) by the definition of θQ(X). There-
fore FQ(X) ∼= FQ(X,Sψ).
(ii) IfQ |= ϕ, then since FQ(X,Sψ) ∈ Q, we have FQ(X,Sψ) |= ϕ. By definition

7For every axiomatic system AS, its finitary structural consequence relation `AS can be
associated with an algebraic semantics given by a quasivariety. The relation `AS is thus said
to be BP-algebraizable, that is, algebraizable in the sense of Blok and Pigozzi. Cfr. [51]
for issues related to algebraizability of arbitrary structural consequence relations and, more
generally, for an introduction to the field of abstract algebraic logic. Cfr. also [54] for the study
of admissible rules for such consequence relations in the framework of abstract algebraic logic.
Cfr. also the footnote 9 below.

8The reader interested in the theory of quasivarieties should consult Gorbunov’s book [67].
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of |=, it follows that if FQ(X,Sψ) |= ψ [π ◦ ν], then FQ(X,Sψ) |= p ≈ q [π ◦ ν].
But the antecedent holds by the definition of FQ(X,Sψ), thus FQ(X,Sψ) |=
p ≈ q [π ◦ ν] and 〈p, q〉 ∈ ker(π ◦ ν). Finally, let A ∈ Q, g : Tm(X) → A a
valuation in A and suppose that g(ψ) holds in A. Then Sψ ⊆ ker(g), whence
ker(π ◦ ν) ⊆ ker(g). Since 〈p, q〉 ∈ ker(π ◦ ν), it follows that g(p) = g(q), that is,
A |= ϕ. Since A was arbitrary, we conclude that Q |= ϕ.

The following lemma will also be useful.

Lemma 4.7. Let Q be a quasivariety and A ∼= FQ(Y, S) be a Q-finitely pre-
sented algebra. Consider the quasi-identity

ϕ(y1, . . . , yk) : p1 ≈ q1 & . . . & pn ≈ qn ⇒ p ≈ q,

where S = {pi ≈ qi | i ∈ {1, . . . , n}}. Then, for any B ∈ Q, B 6|= ϕ ⇐⇒ there
exists a homomorphism h : A→ B such that B 6|= p(h([~y ])) = q(h([~y ])).

Proof. (=⇒) If B ∈ Q is such that B 6|= ϕ(y1, . . . , yk), then there are elements
~b = b1, . . . , bk ∈ B such that we have pi(~b ) = qi(~b ) for all i ∈ {1, . . . , n} but
p(~b ) 6= q(~b ) in B. Then let g : Y → B be the function associating to each yj the
corresponding bj as in the above equalities. Then, by the universal property for
finitely presented algebras, there exists a homomorphism ĥ : A → B such that
ĥ ◦ iA = g. Therefore we have B 6|= p(ĥ([~y ])) = q(ĥ([~y ])).
(⇐=) Follows from the fact that A |= &n

i=1pi ≈ qi and positive formulas are
preserved by homomorphism.

4.2.1 Structural Completeness and related notions in Qua-
sivarieties

The following notions probably would not have been taken into consideration
if the correspondence between axiomatic systems and quasivarieties mentioned
above had not been discovered.

Definition 4.9. Let Q be a quasivariety. Then we say that

• Q is structurally complete if, for every quasivariety Q′,

Q′ ( Q =⇒ V(Q′) ( V(Q),

that is, if every proper subquasivariety Q′ generates a proper subvariety;

• Q is primitive if Q is hereditarily structurally complete. Equivalently
stated, for all quasivarieties Q1,Q2,

Q2 ( Q1 ⊆ Q =⇒ V(Q2) ( V(Q1).

Since the correspondence between axiomatic systems and quasivarieties is
effective, the definitions and the results obtained in §4.1.2 and §4.1.2 for conse-
quence relations can be operationally translated in terms of the corresponding
quasivarieties. For instance, consider a consequence relation ` and its corre-
sponding quasivariety Q` and let τ be the map transforming formulas to (set
of) equations in such a way that ϕ ∈ Th(`) implies that Q` |= τ (ϕ). Then
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an inference rule Γ/ϕ is admissible in ` implies that the Q-free algebra on ω
generators satisfies the quasi-equation τ (Γ)⇒ τ (ϕ), since substitutions can be
seen as valuations in the Q-free algebra9. Therefore, the translation of lemmas
4.3 and 4.4 reads as follows:

Lemma 4.8. A quasivariety Q is structurally complete if, for every quasi-
identity q, if FQ(ω) |= q, then Q |= q, that is, if

Q = Q(FQ(ω)).

Lemma 4.9. A quasivariety Q is primitive iff, for every quasivariety Q′,

Q′ ⊆ Q =⇒ Q′ = Q∩ V(Q′).

The notion of structural completion also makes sense in the algebraic frame-
work. Indeed, for a quasivariety Q, the structural completion of Q is the quasi-
variety Q̃ = Q(FQ(ω)). The next lemma shows that Q̃ is indeed well defined.
See [7, Proposition 2.3] for the proof.

Lemma 4.10. Let Q be a quasivariety. Then Q̃ is the unique subquasivariety
of Q which is structurally complete and V(Q) = V(Q̃).

Since varieties of algebras are quasivarieties, let us see what happens when
applying the previous definitions to an arbitrary variety.

Lemma 4.11. Let V be a variety.

(1) V is structurally complete iff every proper subquasivariety Q′ generates a
proper subvariety;

(2) V is primitive iff every subquasivariety is a variety.

Proof. (1) is simply the definition of structural completeness. As to (2), suppose
V is primitive and let Q be a subquasivariety. Then by Lemma 4.9, it follows
that Q = V∩V(Q) and, since V is a variety, Q is a variety as well. Conversely, if
every subquasivariety is a variety, then, for everyQ1,Q2 ⊆ V, if V(Q2) = V(Q1),
then Q1 = Q2 by assumption and thus V is primitive.

Active and Passive Structural Completeness in Quasivarieties

Let Ω be a similarity type and X a countable set of variables. Given a quasi-
identity over Ω(X)

ϕ : p1 ≈ q1 & . . . & pn ≈ qn ⇒ p ≈ q,

we denote by ϕa and ϕc respectively the first-order formulas over Ω(X)

(p1 ≈ q1 & . . . & pn ≈ qn) and p ≈ q

and we denote by ϕ¬a the first-order formula over Ω(X)

¬(p1 ≈ q1 & . . . & pn ≈ qn).
9 In abstract algebraic logic, the map τ is called a (finitary structural) transformer. When

a consequence relation ` is algebraizable in the sense of Blok and Pigozzi, the map τ comes
in pair with another structural transformer ρ from equations to (set of) formulas and the pair
〈τ ,ρ〉 satisfies a few basic conditions that establish the (deductive) equivalence of ` with the
corresponding quasivariety Q`. Cfr. [51, Definition 3.1.1]. The treatment of admissibility
of Rybakov’s [142] is actually based on the correspondence between axiomatic systems and
quasivarieties in the framework of abstract algebraic logic.
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Definition 4.10. Let Q be a quasivariety of Ω-algebras and ϕ be a quasi-
identity over Ω(X). We say that ϕ is Q-active if FQ(ω) 6|= ϕ¬a, while ϕ is said
to be Q-passive if FQ(ω) |= ϕ¬a.

Having defined an algebraic analogue of the notion of active and passive rule
of inference, we can give the following

Definition 4.11. Let Q be a quasivariety. We say that Q is

• passively structurally complete (psc for short) if, for every Q-passive quasi-
identity ϕ,

Q |= ϕ;

• actively structurally complete (asc for short) if, for every Q-active quasi-
identity ϕ,

FQ(ω) |= ϕ =⇒ Q |= ϕ.

Let us first characterize passively structurally complete quasivarieties. First
recall that, given a similarity type Ω and a set of variables X, by a positive,
existential sentence ϕ over Ω(X) we mean a fist-order formula of the following
form

∃~y
∨
i∈I

&j∈Ji
ψij ,

where I and the Ji’s are finite non-empty sets, the ψij ’s are atomic formulas, i.e.
identities of type Ω over X, and ~y is a (possibly empty) finite tuple of variables
including all Varϕ.

Now, for a given class of algebras Q, let us denote by Q− the class of all non
trivial members of Q. The following theorem is basically due to Wroński [168].

Theorem 4.12. Let Q be a quasivariety, Then Q is passively structurally com-
plete iff, for every positive existential sentence ϕ, either Q |= ϕ or Q− |= ¬ϕ.

Proof. (=⇒) Assume Q is passively structurally complete and consider a posi-
tive existential sentence ϕ := ∃~y

∨
i∈I &j∈Jiψij . Now, if Q− 6|= ¬ϕ, there exists

a nontrivial A ∈ Q− such that A 6|= ¬ϕ. So A |= ∃~x&j∈Jiψij for some i ∈ I.
Let us denote ∃~x&j∈Jiψij by δ. In order to show that Q |= ϕ, it suffice to
show that Q |= δ. Consider the quasi-identity ξ: &j∈Ji

ψij ⇒ y = z, where
y, z /∈ Varψij for all j ∈ Ji. Clearly Q 6|= ξ, since A 6|= ξ. Therefore ξ is not
Q-passive and thus FQ(ω) 6|= ξ¬a, whence FQ(ω) |= δ. Being δ an existential
positive sentence, it is preserved by homomorphism and since for every B ∈ Q
we can find an homomorphism h : FQ(ω)→ B, we have B |= δ. So, Q |= ϕ.
(⇐=) By contraposition, suppose Q is not passively structurally complete and
let ϕ: ψ ⇒ η be a Q-passive quasi-identity such that Q 6|= ϕ. Then there
exists a nontrivial algebra A ∈ Q− such that A 6|= ϕ. In particular, by letting
δ := ∃~xψ(~x), A |= δ. Therefore Q− 6|= ¬δ. Moreover, since ϕ is Q-passive,
FQ(ω) |= ¬δ and thus Q 6|= δ. Hence δ is a positive existential sentence such
that both Q 6|= δ and Q− 6|= ¬δ.

Now, let us turn the attention to actively structurally complete quasivari-
eties. The following theorem, except for a few minor changes, is due to Dzik
and Stronkowski [38, Theorem 3.1].
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Theorem 4.13. Let Q be a quasivariety. Then the following are equivalent:

(1) Q is actively structurally complete;

(2) for every A ∈ Q and n ≤ ω, A× FQ(n) ∈ Q(FQ(n)) ⊆ Q(FQ(ω));

(3) for every A ∈ QSI and n ≤ ω, A× FQ(n) ∈ Q(FQ(n)) ⊆ Q(FQ(ω));

(4) for every A ∈ Q and n ≤ ω, if there exists a morphism h : A → FQ(n),
then A ∈ Q(FQ(n)) ⊆ Q(FQ(ω));

(5) for every A ∈ QFP and n ≤ ω, if there exists a morphism h : A→ FQ(n),
then A ∈ Q(FQ(n)) ⊆ Q(FQ(ω)).

Proof. (1)=⇒(2) Let A be an algebra in Q and fix some arbitrary n ≤ ω.
Choose ϕ(y1, . . . , yn) to be a quasi-identity such that FQ(n) |= ϕ. More-
over, notice that FQ(ω) |= ϕ. Now, if Q |= ϕ, then, since A × FQ(n) ∈ Q,
A×FQ(n) |= ϕ and thus A×FQ(n) ∈ Q(FQ(n)) ⊆ Q(FQ(ω)), since Q(FQ(n))
is a quasi-equational class. If Q 6|= ϕ, then, since Q is asc, FQ(ω) |= ϕ¬a.
Now if A × FQ(n) 6|= ϕ¬a, then A × FQ(n) |= ∃~xϕa and since existential posi-
tive sentences are preserved by homomorphisms we would have FQ(ω) 6|= ϕ¬a,
contradiction. Thus A × FQ(n) |= ϕ¬a and therefore A × FQ(n) |= ϕ. Hence
A× FQ(n) ∈ Q(FQ(n)) ⊆ Q(FQ(ω)).
(2)=⇒(3) Trivial.
(3)=⇒(4) Let A ∈ Q and h : A → FQ(n) a homomorphism. It can be shown
that A is isomorphic to a subdirect product of a family {Bi}i∈I of Q-subdirectly
irreducible algebras. If I = ∅, then A is trivial and A ∈ Q(FQ(n)) ⊆ Q(FQ(ω)).
So suppose I 6= ∅, then, for each i ∈ I, Bi × FQ(n) ∈ Q(FQ(n)) by (3). Hence∏
i∈I(Bi×FQ(n)) ∼=

∏
i∈I Bi×FQ(n)I ∈ Q(FQ(n)). Then, since FQ(n) is iso-

morphic with the diagonal of FQ(n)I , A×FQ(n) is isomorphic to a subalgebra
of
∏
i∈I Bi×FQ(n)I and therefore it belongs to Q(FQ(n)). But the subalgebra

of A× FQ(n) with universe the set {〈a, h(a)〉 | a ∈ A} is isomorphic to A. We
thus conclude that A ∈ Q(FQ(n)) ⊆ Q(FQ(ω)).
(4)=⇒(5) Trivial.
(5)=⇒(1) Let ϕ be a Q-active quasi-identity such that FQ(ω) |= ϕ and con-
sider the Q-finitely presented algebra FQ(κ, ϕa) with presentation given by
〈Varϕa|{pi(x1, . . . xk) ≈ qi(x1, . . . xk)}i∈I〉 where each pi ≈ qi is a conjuct of ϕa.
Now, since ϕ is Q-active, FQ(ω) 6|= ϕ¬a and therefore FQ(ω) |= ϕa(a1, . . . , ak)
for some choice a1, . . . , ak of elements of FQ(ω). Since k < ω, we can find a finite
bound on the number of generators needed to construct the terms a1, . . . , ak and
thus regard such terms as elements of FQ(n) for some n < ω. Then, by letting
h : κ→ {a1, . . . , ak} be the function respecting the previous choice of elements,
by the universal property of fp-algebras, there exists a unique homomorphism
ĥ : FQ(κ, ϕa)→ FQ(n) such that ĥ �κ= h. Then by (5), FQ(κ, ϕa) ∈ Q(FQ(n)).
Therefore, since FQ(ω) |= ϕ implies FQ(n) |= ϕ, we have FQ(κ, ϕa) |= ϕ and,
in particular, FQ(κ, ϕa) |= ϕc[ν] where ν : Tm(κ) → FQ(κ, ϕa) is the natural
map. Hence Q |= ϕ by Theorem 4.6 (ii) and Q is asc.

Notice that we can further simplify condition (5). Indeed we have the fol-
lowing

Corollary 4.14. Let Q be a quasivariety. Then Q is actively structurally com-
plete iff the following condition holds:
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(5’) for every A ∈ QFP and n ≤ ω, if there exists a morphism h : A→ FQ(n),
then A ∈ SP(FQ(n)).

4.3 Canonical formulas
In this section we are going to present the machinery of canonical formulas,
introduced and developed by Zakharyaschev in a series of papers for ExtInt as
well for transitive modal logics. The motivation behind such an introduction is
the attempt to give a characterization of the geometry of frames F which refute
a given L-formula ϕ.
Definition 4.12. Let F = 〈W,R,P〉 and G = 〈V, S,Q〉 be frames. A partial
map f from W onto V is called a subreduction of F to G if, for all x, y ∈W and
v ∈ V ,
(i) xRy & x, y ∈ domf =⇒ f(x)Sf(y);

(ii) f(x)Sv =⇒ ∃y ∈ domf (xRy & f(y) = v);

(iii) ∀X ∈ Q f−1(X)↓ ∈ P,
where Q = {V \X |X ∈ Q} and P = {W \X |X ∈ P}. If G is a finite Kripke
frame, then (iii) is equivalent to
(iv) W \ f−1(v)↓ ∈ P.
A set X ⊆ W is said to be cofinal in F if X↑ ⊆ X↓. We then say that f is
a cofinal subreduction if domf is cofinal in F and that f is globally cofinal if
W = domf↑. Furthermore, G is said to be a (cofinal) subframe of F if G ⊆ κF
and the identity map on V is a (cofinal) subreduction of F onto G. Finally,
let D be a (possibly empty) set of antichains in G. We say that f satisfies the
closed domain condition for D if

¬∃x ∈ domf↑ \ domf ∃d ∈ D f(x↑) = d↑ (CDC)

We denote by D\ the set of all antichains of G and if K = 〈K,T 〉 is a generated
subframe of G, then we let

D �K:= {d ∈ D | d ⊆ K}.

Definition 4.13. Let F = 〈W,R〉 be a finite frame and let a0, . . . , an be its
points. Assume also that D is a (possibly empty) set of antichains in F.
The intuitionistic canonical formula β(F,D,⊥) is the L-formula

β(F,D,⊥) :=
∧
aiRaj

ψi,j ∧
∧
d∈D

ψd ∧ ψ⊥ → p0,

where

ψi,j = (
∧

¬ajRak

pk → pj)→ pi,

ψd =
∧

ai∈W\d↑

(
∧

¬aiRak

pk → pi)→
∨
aj∈d

pj ,

ψ⊥ =
n∧
i=0

(
∧

¬aiRak

pk → pi)→ ⊥.
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The L-formulas β(F,D) is obtained from β(F,D,⊥) by deleting the conjunct ψ⊥
and it is called the intuitionistic negation free canonical formula; the L-formulas
β(F, ∅) and β(F, ∅,⊥) are called the subframe and cofinal subframe formulas for
F respectively. Finally, the L-formula β(F,D\,⊥) is said to be the frame formula
for F.

The following result is one of the two cornerstones that provides the charac-
terization mentioned at the beginning of this section. The refutability criterion
for canonical formulas is the following

Theorem 4.15. Let G = 〈V, S,Q〉 be any frame, F = 〈W,R〉 a finite rooted
frame and let D be a (possibly empty) set of antichains in F. Then the following
holds:
G 6|= β(F,D,⊥) iff there is a cofinal subreduction of G to F satisfying (CDC)
for D.

Proof. (=⇒) Suppose that β(F,D,⊥) is refuted in a model N = 〈G,U〉. Denote
by ψFD the premises of β(F,D,⊥) and define a partial map f from V onto W
as follows:

f(w) =
{
ai if w |= ψFD , w |=

∧
¬aiRaj

pj and w 6|= pi,

undefined otherwise.

Let us shot that f satisfies (CDC) for D, leaving to the reader the task of
showing that f is actually a cofinal subreduction of G to F. So, let d ∈ D and
suppose, for reductio, that f(w↑) = d↑ for some w ∈ domf↑ \ domf . Then
w |= ψd and, since w ∈

⋂
aj∈d f

−1(aj)↓, w 6|=
∧
ai∈W\d↑(

∧
¬aiRak

pk → pi).
Hence, for some ai ∈W \ d↑, there exists v ∈ w↑ such that v |=

∧
¬aiRak

pk and
v 6|= pi. Thus f(v) = ai ∈ f(w↑), contrary to our assumption.
(⇐=) Conversely, assume that f is a cofinal subreduction of G to F satisfying
(CDC) for D. Define a valuation U in G by letting

U(pi) := V \ f−1(ai)↓.

Again we leave to the reader the task of proving that 〈G,U〉 6|= β(F,D,⊥) by
showing that w |= ψFD , for each w ∈ f−1(a0).

Example 9. A frame F = 〈W,R,P〉 refutes the Kreisel-Putnam axiom kp iff
F is cofinally subreducible to one of the two following frame, with (CDC) for
D = {d} being satisfied,

d

d

The next theorem represents a sort of convers of the previous one. For the
proof, cfr. [23, Theorem 9.36].
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Theorem 4.16. There is an algorithm which, given a L-formula ϕ, returns a fi-
nite number of finite rooted frames F1, . . . ,Fn and sets D1, . . . ,Dn of antichains
in them such that, for any frame F, F 6|= ϕ iff there is a cofinal subreduction of
F onto Fi, for some i ∈ {1, . . . , n}, satisfying (CDC) for Di.

The apparatus of canonical formulas, which is an extension of the Jankov’s
approach to characteristic formulas, has been proven particularly fruitful in the
study of intermediate logics, since every si-logic can be axiomatized by canonical
formulas. Indeed, as an immediate consequence of Theorems 4.15 and 4.16, we
get the following

Theorem 4.17. There exists an algorithm which, given a L-formula ϕ, returns
canonical formulas β(F1,D1,⊥), . . . , β(Fn,Dn,⊥) such that

Int + ϕ = Int + β(F1,D1,⊥) + . . .+ β(Fn,Dn,⊥).

So the set of intuitionistic canonical formulas is complete for ExtInt.

Let us continue with a few useful lemmas on subreductions.

Lemma 4.18. Let G = 〈V, S,Q〉 be a frame, F = 〈W,R〉 a finite Kripke frame
and D a set of antichains in F. If f is a cofinal subreduction of G to F satisfying
(CDC) for D and w ∈ domf , then the restriction g := f �w↑ of f to w↑ is a
globally cofinal subreduction of Gw to Ff(w) satisfying (CDC) for D �Ff(w) .

Proof. It is clear that g is a subreduction of Gw to Ff(w). Furthermore, if
x ∈ domg↑, then x ∈ y↑ for some y ∈ domg = domf ∩ w↑. Consequently, since
domf is cofinal in F, there exists z ∈ domf such that x ∈ z↓. Hence z ∈ domg
and x ∈ domg↓. So, g is globally cofinal. Finally, since domg↑ \ domg ⊆
domf↑ \ domf and each antichain d ∈ D �Ff(w) is also an antichain in D, it
follows that g satisfies (CDC) for D �Ff(w) .

Lemma 4.19. Let Fi = 〈Wi, Ri,Pi〉 for i ∈ {1, 2, 3} be frames, f1 a cofinal
subreduction of F1 onto F2 and f2 a cofinal subreduction of F2 onto F3. Then
the composition f2 ◦ f1 is a cofinal subreduction of F1 onto F3.

Lemma 4.20. Let F = 〈W,R〉 and G = 〈V, S〉 be finite Kripke frames with D
and E sets of antichains for F and G respectively. If f is a cofinal subreduction
of G onto F satisfying (CDC) for D such that

• an antichain e ⊆ domf↑ is in E whenever f(e↑) = d↑ for some d ∈ D,

then β(G,E,⊥) ∈ Int + β(F,D,⊥).

Proof. Let H be a frame such that H 6|= β(G,E,⊥). By Theorem 4.15, there
exists a cofinal subreduction g from H onto G satisfying (CDC) for E. Since h =
f ◦g is a cofinal subreduction of H onto F by Lemma 4.19, we only need to prove
that h satisfies (CDC) for D. So suppose that there is a point w ∈ domh↑ and
an antichain d ∈ D such that h(w↑) = d↑. Consider the antichain e ⊆ V such
that g(w↑) = e↑. It follows that e ⊆ domf↑ and f(e↑) = d↑, consequently e ∈ E.
Since g satisfies (CDC) for E, we have w ∈ domg. But then g(w) ∈ domf↑ and,
since g(w↑) = g(w)↑, the following equality holds: f(g(w)↑) = d↑. Therefore,
since f satisfies (CDC) for D, g(w) ∈ domf and, consequently, w ∈ domh.
We conclude that h also satisfies (CDC) for D. Hence H 6|= β(F,D,⊥) by the
refutability criterion.
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We conclude this section by showing the power of the apparatus of canonical
formulas in proving the following well-known result concerning Jankov’s logic
KC. Denote by P the set of positive L-formulas, that is, L-formulas that do
not contain any occurrence of ¬.

Theorem 4.21 (Jankov, [87]). Let L be an intermediate logic. The following
equivalence holds:

L ⊆ KC⇐⇒ Int ∩ P = L ∩ P.

Proof. (=⇒) Suppose L is included in KC. Since Int ⊆ L, it suffice to show
L ∩ P ⊆ Int. By Theorem 4.17, we can consider a negation free canonical
formulas β(F,D) /∈ Int. So, there exists a finite frame G such that G 6|= β(F,D).
Then also 1⊕G 6|= β(F,D) and, since 1⊕G is a KC-frame, we get β(F,D) /∈ KC.
Hence β(F,D) /∈ L.
(⇐=) First notice that if a negation free canonical formulas β(F,D) /∈ KC,
then β(F,D) /∈ Int and thus β(F,D) /∈ L by our assumption. So, suppose that
β(F,D,⊥) /∈ KC. By completeness of KC with respect to finite frames with
a top element, there exists a finite frame G such that 1 ⊕ G 6|= β(F,D,⊥). By
Theorem 4.15, let f : 1 ⊕ G → F be a cofinal subreduction satisfying (CDC)
for D. Then it must be the case that F ∼= 1 ⊕ K for some finite frame K. Let
us denote by aF the unique maximal point of F. Furthermore, we also have
β(F,D) /∈ KC. Consequently, β(F,D) /∈ L and therefore there is a L-frame H
and a subreduction g : H→ F satisfying (CDC) for D. Now, extend g by letting
g∗(x) = aF for every x ∈ max(H). Then g∗ is a cofinal subreduction from H
onto F satisfying (CDC) for D, hence β(F,D,⊥) /∈ L.

4.3.1 Partial Esakia equivalences
Let us first translate the notions of subreduction in terms of Esakia spaces.
Given Esakia spaces X = 〈X, τ,R〉 and Y = 〈Y, γ, S〉, a partial map f from X
onto Y is said to be a partial Esakia morphism from X to Y if the following
hold:

(i) domf is a closed subset of X;

(ii) f �domf is a p-morphism;

(iii) for every clopen subset U of Y , f−1(U)↓ is a clopen subset of X.

.
It is worth mentioning that the theory of such morphisms was developed

in [9], where it is also shown that such a notion sharpens the notion of subre-
duction as it is defined in Definition 4.12. This comes not as a surprise, since
Zakharyaschev’s definition deals with general frames and not only with the de-
scriptive ones. Nevertheless, as pointed out in [9], in order to develop a suitable
duality theory one has to take into consideration the notion of partial Esakia
morphisms and so we do for the purpose of introducing the notion of partial
Esakia equivalence10.

10Obviously, one can also elaborate on the issue by introducing further specification on the
notion of partial Esakia equivalence in order to get an appropriate duality with respect to the
notions of well partial Esakia morphism, strong partial Esakia morphism and partial Esakia
morphism satisfying the Closed Domain Condition as they are defined in [9].
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Recall that a partial equivalence relation ∼ on a given set X is a symmetric
and transitive relation and if we restrict ∼ to the set

D∼ := {x ∈ X | ∃y ∈ X(x ∼ y)},

which is called the domain of ∼, we get an equivalence relation11. Now, given
any partial function h : X → Y , the relation ∼h, defined, for all x, y ∈ X, as
follows,

x ∼h y ⇐⇒ x, y ∈ domf & h(x) = h(y),

is a partial equivalence relation onX. So, given Esakia spaces X = 〈X, τ,R〉 and
Q = 〈Q, γ, S〉, any partial Esakia morphism f : X → Q from X to Q induces a
partial equivalence relation ∼f . Furthermore, we have the following

Lemma 4.22. Let f be a partial Esakia morphism from the the Esakia space
X = 〈X, τ,R〉 to the Esakia space Q = 〈Q, γ, S〉. Then the quotient [Df ] of the
ordered topological subspace Df = 〈domf, τdomf , R �domf 〉, under the equivalence
relation ∼f , is an Esakia space order-homeomorphic to Q and such that, for
every clopen subset [U ] of [domf ],

⋃
[U ]↓ is a clopen downset of X.

Proof. Consider the map f �domf . By definition, it is a p-morphism. Let us
show that f �domf is continuous. It suffice to show that, for each clopen upset
U of Q, both f−1(U) and f−1(Q \ U) belongs to τdomf . Notice that, since f is
a subreduction, the set f−1(Q \ U)↓ is a clopen of X and

f−1(Q \ U)↓ ∩ domf = f−1(Q \ U↓) = f−1(Q \ U),

since Q \ U is a downset. Moreover, it is easy to check that

X \ f−1(Q \ U)↓ ∩ domf = f−1(U).

Consequently, the map f �domf is a continuous p-morphisms. Furthermore,
since domf is closed in X and X is compact, domf is also compact. So, being
f a continuous function from a compact space to a Hausdorff space, it is closed,
hence a quotient map. So, the quotient [Df ] of Df under the equivalence ∼f is
order-homeomorphic to Q with the induced map

f̃ : [domf ]→ Q

[x] 7→ f(x),

being a homeomorphism. Finally, let [U ] be a clopen of [domf ]. Then we have⋃
[U ] = f−1(f(U)) and, since f̃([U ]) = f(U) is clopen in Q, we have that

⋃
[U ]↓

is a clopen downset of X, being f a a partial Esakia morphism.

Corollary 4.23. Let X = 〈X, τ,R〉 be an Esakia space and Q = 〈Q, γ, S〉 an
ordered topological space. The following equivalence holds: Q is a subframe of
X if and only if Q is a closed subspace of X and, for every clopen subset U of
Q, U↓ is a clopen downset of X.

11Indeed, if x ∈ D∼, then x ∼ y for some y ∈ X; consequently, y ∼ x by symmetry and
x ∼ x by reflexivity.
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Proof. (=⇒) Suppose that Q is a subframe of X . Thus the partial identity
map i : X → Q is a partial Esakia morphism. In particular, we have that
dom i = Q is a closed subspace of 〈X, τ〉. Now, notice that, for any subset
U ⊆ Q, i−1(U) = U and, since the quotient of Q under the identity relation is
Q itself, we have that U↓ is a clopen downset of X, for each clopen subset U of
Q by the previous Lemma.
(⇐=) Since 〈Q, γ〉 is a closed subspace of the compact space 〈X, τ〉, 〈Q, γ〉 is
compact as well. Suppose that ¬(xSy). Since S = R �Q, we have ¬(xRy) and
by the Priestley separation axiom, there exists a clopen set U of X such that
x ∈ U and y /∈ U . But then U ∩ Q is a clopen upset in Q separating x and
y. Hence Q is a Priestley space. Now, let us consider a clopen subset U of Q.
Notice that U↓S = U↓ ∩Q. By hypothesis, U↓ is a clopen of X and thus U↓S
is clopen in Q. Thus S is a clopen relation and Q an Esakia space. Finally, the
partial identity function i : X → Q on Q is a partial Esakia morphism from X
to Q.

Definition 4.14. Let X = 〈X, τ,R〉 be an Esakia space. A partial equivalence
relation ∼ on X is called a partial Esakia equivalence if the following conditions
hold:

1. D∼ is a closed subset of X;

2. For every w, v ∈ D∼, wRv implies [w] ⊆ [v]↓;

3. For every w, v ∈ D∼, if ¬(w ∼ v), then w and v are separated by an
∼-saturated clopen upset of D∼;

4.
⋃

[U ]↓ is clopen in X, for every clopen subset [U ] of [D∼].

We can thus consider the quotient [D∼] induced on the ordered topological
subspace D∼ = 〈D∼, τD∼ , R �D∼〉 by ∼ and we call such a space the Esakia
prequotient space of X given by the partial Esakia equivalence ∼.

Lemma 4.24. Let X = 〈X, τ,R〉 be an Esakia space and ∼ a partial Esakia
equivalence on X. Then the Esakia prequotient space of X is an Esakia space
and the partial map f∼ : X → [X ] from the Esakia space X onto the Esakia
quotient space [X ] given by

f∼(x) = [x],

for each x ∈ D∼, is a partial Esakia morphism.

Proof. Suppose that the relation ∼ is a partial Esakia equivalence on X . Being
D∼a closed subset of the Hausdorff space X, D∼ is compact. Therefore, [D∼]
is also compact. Moreover, one can show as in Lemma 2.36 that [D∼] satisfies
the Priestley separation axiom and thus [D∼] is a Priestley space. Now, let [U ]
be a clopen of [D∼]. By hypothesis,

⋃
[U ]↓ is clopen in X and, consequently,⋃

[U ]↓D∼ =
⋃

[U ]↓∩D∼ is clopen in D∼. But, (
⋃

[U ])↓D∼ =
⋃

([U ][↓D∼ ]), hence
[U ][↓D∼ ] is clopen in [D∼]. So, [R �D∼ ] is a clopen relation and we conclude
that [D∼] is an Esakia space. Finally one can show that f∼ is a partial Esakia
morphism as in Lemma 2.36 and Proposition 2.37.

Proposition 4.25. Let X be an Esakia space. There exists a one-to-one cor-
respondence between the partial Esakia equivalence on X and the partial Esakia
morphism from X .
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4.4 Structural completeness and canonical for-
mulas

Given a finite rooted Kripe frame F and a set D of antichains in it, we denote
by ρ(F,D,⊥) the inference rule whose premises and conclusion are the premises
and the conclusion of β(F,D,⊥), that is

{ψi,j | aiRaj}, {ψd | d ∈ D}, ψ⊥
ρ(F,D,⊥) := p0

.

Furthermore, recall that a rule r : Γ/ψ is not satisfied in a frame G = 〈V, S,Q〉
(we write: G 6|= r) if there exists a descriptive valuation V on G such that
V(
∧

Γ) = V and V(ψ) 6= V .

Theorem 4.26. Let F be a finite rooted Kripe frame, D a set of antichains
in F, and let G = 〈V, S,Q〉 be a descriptive frame. Then G 6|= ρ(F,D,⊥) if
and only if there exists a globally cofinal subreduction from G onto F satisfying
(CDC) for D. In particular, if D = D\, then G 6|= ρ(F,D\,⊥) if and only if F
is a p-morphic image of G.

Proof. (⇐=) Let h : G → F be a globally cofinal subreduction from G onto
F satisfying (CDC) for D. From the proof of Theorem 4.15, it follows that
w |=

∧
aiRaj

ψi,j ∧
∧

d∈D ψd ∧ ψ⊥ and w 6|= p0, for each w ∈ h−1(a0). But,
since f is globally cofinal, we have that min(G) ⊆ h−1(a0) and, consequently,
G 6|= ρ(F,D,⊥).
(=⇒) Suppose that G 6|= ρ(F,D,⊥). Then, by the refutability criterion for
canonical formulas, there is a globally cofinal subreduction f of G to F satisfying
(CDC) for D. Furthermore, if D = D\, we are going to show that we can extend
f to a plain function. Suppose there exists a point x ∈ V \ domf . Then, by
(CDC), f(x↑) = ax↑ for some ax ∈W . Then by defining g : V → F as

g(x) =
{
f(x) if x ∈ domf,
ax x /∈ domf,

we get a p-morphism from G to F.

Proposition 4.27. Let L be a structurally complete intermediate logic, F a
finite rooted frame and let D be a set of antichains in F. If β(F,D,⊥) /∈ L, then
there exists a globally cofinal subreduction from FL(n) onto F satisfying (CDC)
for D, for some n < ω. In particular, if D = D\, then F is a p-morphic image
of the n-canonical frame FL(n), for some n < ω.

Proof. Assume that β(F,D,⊥) /∈ L and suppose, for reductio, that there are
no globally cofinal subreduction from FL(n) onto F satisfying (CDC) for D,
for every n < ω. Then, by Theorem 4.26, it follows that, for each n < ω,
FL(n) |= ρ(F,D,⊥) and thus also FL(ω) |= ρ(F,D,⊥). Therefore, ρ(F,D,⊥)
is an admissible rule of L and, since L is structurally complete, the L-formula
β(F,D,⊥) ∈ L. However, this contradicts our assumption.

Lemma 4.28. Let VL be a finitely approximable variety of Heyting algebras
and let A be a subdirectly irreducible finitely presented algebra in VL. Then A
is finite.
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Proof. Consider the dual descriptive L-frame F = 〈W,R,P〉 of A. Then, by
Proposition 2.42, W = w↑ for some w ∈ Wiso. Furthermore, by Lemma 5.23,
Wfin is dense in W and thus Wiso = Wfin. Indeed, since F is finitely generated,
Wfin ⊆ Wiso and thus it suffice to show that Wiso ⊆ Wfin. If x /∈ Wfin, then
Wfin \ {x} = Wfin and thus x ∈ Wfin \ {x} = W , since Wfin is dense in W .
Consequently, x is a limit point of Wfin. Since Wfin ⊆ W , then x is also a
limit point of W and thus x /∈ Wiso. Therefore w ∈ Wfin, that is, w↑ = W is
finite.

By the previous lemma, for any finitely approximable variety of Heyting
algebras VL, the subdirectly irreducible finitely presented algebras of VL are
exactly the subdirectly irreducible finite algebras of VL. Furthermore, we have
the following

Theorem 4.29. Let L be a finitely approximable intermediate logic. Then L
is structurally complete if and only if every finite rooted frame F ∈ DFL is a
p-morphic image of the n-canonical L-frame FL(n), for some n < ω.

Proof. (=⇒) This follows immediately by Proposition 4.27.
(⇐=) Suppose that L is not structurally complete and let r : Γ/ϕ be an ad-
missible rule that is not derivable in L. Since L is finitely approximable, there
exists a finite frame G such that G 6|=

∧
Γ → ϕ. In particular, there exists

a point w ∈ G such that w |=
∧

Γ and w 6|= ϕ. Hence F = w↑ is a finite
rooted frame in DFL such that F 6|= r. Now, if F is a p-morphic image of the
n-canonical L-frame FL(n), for some n < ω, then F is also a p-morphic image
of FL(ω). But then we have that FL(ω) 6|= r and thus that r is not admissible
in L, contradicting our assumption.



Chapter 5

Unification in intermediate
logics

5.1 Preliminary of Unification Theory
Broadly speaking, unification can be described as the attempt to identify two
given symbolic expressions by replacing certain sub-expressions in them by other
expressions. More concretely, consider a similarity type Ω and a set of variables
X and let t and s be Ω-terms over X. The unification problem for the terms
t and s is then as follows: is it possible to replace the variables in t and s by
some other Ω-terms over X in a way that the resulting Ω-terms are syntactically
equal?

A unification problem for two given Ω-terms t and s thus asks for the ex-
istence of a substitution σ : X → Tm(X) such that σ(t) = σ(s). Such a sub-
stitution is called a unifier of t and s. In general, there can be infinitely many
unifiers for a given unification problem, therefore one should be interested in
finding the most general unifier, that is, a unifier such that every other unifier
can be obtained by instantiation.

Unification theory is the abstract theory of unification in the sense that it
provides the formal definition for the most important notions involved in an
abstract unification process, investigates the related properties of these notions
and studies general unification algorithms applicable to a wide range of con-
texts1.

5.1.1 Symbolic E-Unification
The unification process described above is also called syntactic, since it is re-
quired that the unified terms turn out to be syntactically equal2. By replacing
syntactical equality by equality modulo a given equational theory E, we get a

1For the history of unification theory, an explanation of the concepts involved as well as
an overview of the most interesting topics and results concerned with unification theory, cfr.
the survey paper [4].

2Furthermore, such kind of unification is called first-order, because of the fact that the
terms involved in the unification process do not contain higher-order variables, that is, vari-
ables ranging over functions symbols. In what follows we will deal only with unification
problems of this type.

127
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much harder kind of unification called E-unification. Indeed, contrary to syn-
tactic unification, E-unification can be undecidable and, even when it is not,
one may not find a most general unifier for a given E-unification problem. Let
us define E-unification in a precise formal way.

Let a similarity type Ω and a countable set of variables X = {x0, x1, x2, . . .}
be fixed. A substitution is any mapping σ : X → Fm(X). Most of the times,
we will only consider substitutions σ which are constant on a cofinite subset of
X, that is, such that the set

Dom(σ) = {x ∈ X | σ(x) 6= x},

called the domain of σ, is finite. The range of σ is the following set

Ran(σ) = {σ(x) | x ∈ Dom(σ)}

and we denote the set of variable occurring in the range of σ as VarRan(σ). By
the universal mapping property of Tm(X), substitutions can be extended in a
unique way to endomorphisms of Fm(X) and compose in the standard way.

An equational theory over Ω, or an equational Ω-theory, is a set

E = {pi ≈ qi | i ∈ I}

of identities of type Ω over X, that is, E a set of pairs 〈pi, qi〉 ∈ Tm(X) ×
Tm(X). Clearly E axiomatizes the variety of Ω-algebras VE consisting of those
Ω-algebras A such that A |= E.

Notice that any substitution can be “extended” to an endomorphism of
FVE

(X). Indeed, given a substitution τ : X → Tm(X), since the set of vari-
ables X is in one-to-one correspondence with the set [X] = {[x] | x ∈ X} of the
free generators of FVE

(X), first consider the map [τ ] : [X] → Tm(X) given by
[τ ]([x]) = τ(x) for all [x] ∈ [X]; then let πVE

: Tm(X)→ FVE
(X) be the natural

projection and finally consider the composition πVE
◦ [τ ] : [X]→ FVE

(X). Now,
by the universal mapping property of FVE

(X), we get a (unique) endomorphism
τ : FVE

(X)→ FVE
(X) such that τ �[X]= πVE

◦ [τ ]. It is immediately seen that

τ(q) = p =⇒ τ([q]) = [p].

Conversely, given any endomorphism h : FVE
(X) → FVE

(X), we can recover a
substitution σh : X → Tm(X) such that σh = h just by letting σh(x) = p iff
[p] = h([x]), for all x ∈ X.

Furthermore, by a similar reasoning, we can also show that substitutions
are closely related to valuations in FVE

(X). In this case, given a substitution
τ : X → Tm(X), we first extend τ to an endomorphism of Tm(X) and then
we get a valuation vτ : Tm(X) → FVE

(X) simply by taking the composition
πVE
◦τ . Conversely, with each valuation h : Tm(X)→ FVE

(X), we can associate
the substitution γh : X → Tm(X), defined by γh(x) = p iff [p] = h(x), for all
x ∈ X. It is evident that vγh = πVE

◦ γh = h.
Since these facts will be frequently used in what follows, we will formally

state them in the following

Remark 15. Let E be an equational theory over Ω and τ : X → Tm(X) a
substitution. The τ -endomorphism of FVE

(X) and the τ -valuation in FVE
(X)

are the homomorphism τ : FVE
(X) → FVE

(X) and vτ : Tm(X) → FVE
(X)



5.1. PRELIMINARY OF UNIFICATION THEORY 129

defined as above and for which it holds that τ(x) = p implies τ([x]) = [p] and
vτ (x) = [p]. Furthermore, every endomorphism of FVE

(X) and every valuation
in FVE

(X) is the σ-endomorphism and the σ-valuation for some substitution σ.

Remark 16. Let E be an equational theory over Ω and let τ : X → Tm(X)
be a substitution. Then, for any identity p ≈ q of type Ω over X,

VE |= τ(p) ≈ τ(q)⇐⇒ FVE
(X) |= p ≈ q [vτ ].

Definition 5.1. A (symbolic) E-unification problem is a finite set of identities
Σ ( Id(X) of type Ω over X, that is a set

Σ = {sj ≈ tj | j ∈ J}

for some finite index set J . A unifier for Σ, or a solution for Σ, is a substitution
σ such that

VE |= σ(sj) ≈ σ(tj), for all j ∈ J.
We denote by UE(Σ) the set of unifiers for the E-unification problem Σ and we
say that Σ is unifiable, or solvable, if UE(Σ) 6= ∅3.

Given two E-unification problems Σ and Σ′, we say that Σ is equivalent Σ′
if UE(Σ) = UE(Σ′).

Definition 5.2. Let σ and τ be substitutions and let Y ⊆ X be a subsets of
variables. We say that σ is more general than τ (with respect to E and Y ), and
we write τ 4YE σ, if there exists a substitution θ such that

VE |= (θ ◦ σ)(x) ≈ τ(x), for all x ∈ Y.

Thus τ 4YE σ means that τ is an istantiation of σ up to E-equivalence and
only as far as variables in Y are concerned. Notice that the relation 4YE is
reflexive and transitive, thus by endowing the set of unifiers UE(Σ) of a given
solvable unification problem Σ with the relation 4YE , where Y = VarΣ is the set
of variables occurring in the equations of Σ, we get a preordered set 〈UE(Σ),4YE〉
and 4YE is called the instantiation preorder of Σ4.

Now, the most fundamental and valuable piece of information one would like
to have with respect to E in connection with unification issues is the unification
type of E. Let us introduce this notion in an abstract setting.

Let 〈P,�〉 be a preorder. Define the following equivalence relation on P by
requiring, for all p, q ∈ P ,

p ∼ q ⇐⇒ p � q & q � p.

Moreover, we can naturally induce a partial order≤ on the class of∼-equivalence
classes P/ ∼ by

[p] ≤ [q]⇐⇒ p � q.
Thus 〈P/ ∼,≤〉 is a poset and it is called the canonical quotient of 〈P,�〉.

3In order to be precise, we have just defined what is usually called an elementary E-
unification problem, namely finite sets of identities Σ that do not contain function symbols
not included in the signature Ω. Cfr. [4, Definition 3.9].

4We could also have defined unifiers for a given unification problem Σ as substitutions with
a finite domain equal to the set of variables occurring in Σ, consistently with the definition
of the instantiation preorder 4Y

E . Cfr. [4, §3.2.1] for a discussion concerning the definition of
the instantiation preorder.
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Definition 5.3. Let 〈P,�〉 be a preorder. A subset M ⊆ P of P is called
complete if, for all p ∈ P , there exists m ∈ M such that p � m. A complete
subset M is said to be a µ-set of 〈P,�〉 if all elements of M are mutually
�-incomparable.

Lemma 5.1. Let 〈P,�〉 be a preorder and let M be a µ-set for 〈P,�〉. Then
[M ] = {[m] | m ∈ M} is a µ-set for the canonical quotient 〈P/ ∼,≤〉 and [M ]
coincide with the set of ≤-maximal elements of P/ ∼. Conversely, if the set
Q of ≤-maximal elements of P/ ∼ is complete, then the set {m | [m] ∈ Q},
obtained by choosing exactly one representative for each maximal equivalence
class, is a µ-set for 〈P,�〉.

It follows moreover that all µ-sets for 〈P,�〉, if any, have the same cardinality.
This allows us to give the following

Definition 5.4. Let 〈P,�〉 be a preorder. We say that 〈P,�〉 (or, simply P ,
when the preorder is clear from the context) has type

1 if it has a µ-set of cardinality 1;

ω if it has a µ-set of finite (greater that 1) cardinality;

∞ if it has a µ-set of infinite cardinality;

0 if it has no µ-set at all.

It has to be understood that the above list of types is arranged in decreasing
order of desirability. We are now ready for giving the main definition of this
section.

Definition 5.5. Let E be an equational Ω-theory. The unification type of E is

• unitary (or 1), if, for every solvable E-unification problem Σ, UE(Σ) has
type 1;

• finitary (or ω), if, for every solvable E-unification problem Σ, UE(Σ) has
type 1 or ω and there exists a solvable E-unification problem Σ such that
UE(Σ) has type ω;

• infinitary (or ∞) if, for every solvable E-unification problem Σ, UE(Σ)
has type 1, ω or ∞ and there exists a solvable E-unification problem Σ
such that UE(Σ) has type ∞;

• nullary (or 0) if there exists a solvable E-unification problem Σ such that
UE(Σ) has type 0.

Thus the unification type of an Ω-theory E is defined to be unitary, finitary,
infinitary or nullary according to the worst cases among types of solvable unifi-
cation problems Σ. When an Ω-theory E has unitary unification type - the best
case according to our definition -, then, for every solvable unification problem Σ,
UE(Σ) has a µ-set of cardinality 1 and, according to Lemma 5.1, the canonical
quotient 〈UE(Σ)/ ∼,≤YE〉 has a maximum element [σ]. Every element τ ∈ [σ] is
called a most general unifier (briefly mgu) for Σ. Since a mgu is unique up to
∼-equivalence, one speaks of the mgu for Σ. If it is the case that [σ] is maximal,
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but not a maximum, then any element τ ∈ [σ] is instead called a maximally
general unifier for Σ.

Examples of each kind are presented in [4, §3.4], where it is also stated the
solvability and complexity of the related decision problems and references for
the unification algorithms are also supplied. Cfr. also [3], for different (non-
equivalent) characterizations of unification type 0.

5.1.2 Algebraic E-Unification
We now present an equivalent algebraic approach to E-unification due to Ghi-
lardi [61]. The main feature of this approach is its categorical nature: being
based only on the notions of finitely presented and regular projective object, this
approach can be introduced in any abstract category and makes unification type
a categorical invariant5.

Let us fix an Ω-theory E for some given similarity type Ω and a countable set
of variablesX = {x0, x1, x2, . . .}. Consider moreover the variety VE axiomatized
by E. Recall that we can consider this variety as the equational category VE

with Ω-algebras satisfying the equations in E as objects and the related Ω-
homomorphism as arrows.

Recall that an algebra A in the equational category VE is said to be finitely
presented if A ∼= FVE

(Y, S) for some finite presentation 〈Y |S〉, that is, if A is
isomorphic to the algebra FVE

(Y )/Θ(S) where FVE
(Y ) is the free object in

VE generated by Y and Θ(S) is the congruence relation generated by the set
S6. Moreover, we remind the reader that we call an object A ∈ VE regular
projective in VE if, for any regular epi e : C→ B and any morphism f : A→ B,
there exists a morphism g : A→ C such that the following diagram commutes

C

A B

e

f

g

By the way, when we are dealing only with fp algebras, the notion of regular
projectivity can be further simplified. Indeed, we have the following
Lemma 5.2. A fp algebra P is regular projective in VE iff every regular epi
f : A → P is a split epimorphism, i.e. it has a section h : P → A such that
f ◦ h = 1P.
Remark 17. It is not difficult to show that a finitely presented algebra A in
VE is regular projective in VE iff it is regular projective in VE

fp, that is, in
the full subcategory of VE determined by finitely presented algebras. Indeed,
coequalizers in VE

fp are coequalizers in VE : given a couple of parallel morphism
between fp algebras f1, f2 : F(Y, S) → F(X,Z), the coequalizer of f1 and f2,
both in VE

fp and VE , is given by the quotient map f : F(X,Z)→ F(X,Z ∪Z ′)
with Z ′ = {〈ty1, t

y
2〉 | y ∈ Y } where f1([y]) = [ty1] and f2([y]) = [ty2].

5Cfr. [61, §7] for a comparison of Ghilardi’s approach to E-unifications through projectivity
with other algebraic approaches, for instance the approach presented in [4, §3.3.3].

6As we mentioned in the beginning of this section, the notion of finitely presented algebra is
a purely categorical notion since it is known that an algebra A in V is finitely presented iff the
representable functor of A, HomV (A,−), preserves filtered colimits. Cfr. [58], in particular
§6 and §7.
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We are now ready to give the relevant definition of an algebraic E-unification
problem.

Definition 5.6. An (algebraic) E-unification problem is a finitely presented
algebra A in VE . An algebraic unifier for A, or a solution for A, is a morphism
h : A→ P where P is a projective fp algebra in VE .
We denote the set of algebraic unifiers for the E-unification problem A by UE(A)
and we say that A is algebraically unifiable, or solvable, if UE(A) 6= ∅.

Definition 5.7. Let A be an algebraic E-unification problem and let h : A→ P1
and g : A→ P2 be algebraic unifiers for A. We say that h is more general than
g, and we write g 4 h, if there exists a morphism j : P1 → P2 making the
following diagram commute

A

P1 P2

h g

j

Again, it is easily shown that, for every algebraic E-unification problem A,
〈UE(A),4〉 is a preorder set. Therefore, the definition of the algebraic unifi-
cation type of VE , where E is an Ω-equational theory, is the expected one,
namely,

Definition 5.8. Let E be an equational Ω-theory. The algebraic unification
type of VE is

• unitary (or 1), if, for every solvable E-unification problem A, UE(A) has
type 1;

• finitary (or ω), if, for every solvable E-unification problem A, UE(A) has
type 1 or ω and there exists a solvable E-unification problem A such that
UE(A) has type ω;

• infinitary (or ∞) if, for every solvable E-unification problem A, UE(A)
has type 1, ω or ∞ and there exists a solvable E-unification problem A
such that UE(A) has type ∞;

• nullary (or 0), if there exists a solvable E-unification problem A such that
UE(A) has type 0.

It is clear that, in this algebraic setting, a mgu h : A→ P for a given algebraic
unification problem A is a morphism through which any other algebraic unifier
g for A can be factorized.

The following theorem, due to Ghilardi, shows the equivalence of the sym-
bolic and algebraic approach to E-unification7.

Theorem 5.3 (Ghilardi). Let E be an Ω-theory for some given similarity type
Ω over a countable set of variables X = {x0, x1, x2, . . .} and let VE be the
equational category associated with the variety VE of algebras axiomatized by E.
Consider the (symbolic) E-unification problem

Σ = {sj ≈ tj | j ∈ J}
7For the proof of the theorem, cfr. [61, Theorem 4.1].
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for some finite index set J and let Y = Var(Σ). Moreover, let A be the finitely
presented algebra presented by the finite presentation 〈Y,Σ〉. Then the preorder
UE(Σ) of unifiers of Σ and the preorder UE(A) of algebraic unifiers of A are
equivalent as categories, that is, the posets of their canonical quotients are iso-
morphic. In particular, Σ is unifiable iff A is algebraically unifiable and the
unification type of E and the algebraic unification type of VE coincide.

Another advantage of Ghilardi’s approach is that the determination of the
unification type of locally finite varieties V over finite algebraic languages be-
comes concretely simpler. Indeed, for such varieties, the class of fp algebras and
the class of finite algebras coincide, as stated in the following

Proposition 5.4. Let V be a locally finite variety of Ω-algebras, where Ω =
〈F , ar〉 is a finite similarity type, i.e. |F| < ω, and let A be an Ω-algebra in V.
Then A is finite iff A is finitely presented.

5.1.3 Other Types of Unification
As we mentioned en passant at the end of §5.1.1, there are other different (non-
equivalent) characterizations of unification type 0. In this section, we will focus
on the opposite side of the unification type list and deal instead with different
forms of unitary unification.

Let us consider an equational Ω-theory E and a countable set of variables
X. Let σ and τ be substitutions and Y ⊆ X a set of variables. We say that σ
is not seen by τ (through E and Y ) if

VE |= (τ ◦ σ)(x) ≈ τ(x), for all x ∈ Y.

Now, let Σ be a E-unification problem. A unifier σ ∈ UE(Σ) is said to be
transparent if Dom(σ) = VarRan(σ) and σ is not seen by any τ ∈ UE(Σ)
through Var(Σ).

Definition 5.9. Let E be an equational Ω-theory. We say that E has trans-
parent unification if, for every solvable E-unification problem Σ, there exists a
transparent unifier σ in UE(Σ).

Transparent unification has been introduced by Wroński in [167], where it
is shown that it is a stronger form of unitary unification. Indeed, we have the
following

Lemma 5.5. Let E be an equational Ω-theory and Σ be a E-unification problem.
A unifier σ ∈ UE(Σ) is transparent iff σ is most general and idempotent.

Proof. (=⇒) Suppose σ ∈ UE(Σ) is transparent. Then σ is clearly a mgu for Σ.
Moreover, since σ does not see itself, we have

VE |= (σ ◦ σ)(x) ≈ σ(x), for all x ∈ Var(Σ),

that is, σ is idempotent.
(⇐=) Conversely, suppose σ ∈ UE(Σ) is an idempotent mgu for Σ and let
τ ∈ UE(Σ). Since τ 4Var(Σ)

E σ, there exists a substitution θ such that

VE |= (θ ◦ σ)(x) ≈ τ(x), for all x ∈ Var(Σ).
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Thus, by composing with σ on the right,

VE |= (θ ◦ σ ◦ σ)(x) ≈ τ ◦ σ(x), for all x ∈ Var(Σ);

finally, since σ is idempotent, we then get, for all x ∈ Var(Σ),

VE |= τ(x) ≈ (τ ◦ σ)(x).

The following very important class of unifiers has been introduced by Ghi-
lardi [61, 62, 63], mainly for investigations in propositional logics. Consider a
E-unification problem Σ = {sj ≈ tj | j ∈ J}, where J = {1, . . . , j} is a finite
index set. A unifier σ ∈ UE(Σ) is said to be projective if Dom(σ) = VarRan(σ)
and VE satisfies the following quasi-identities:

s1 ≈ t1 & . . . & sj ≈ tj ⇒ σ(x) ≈ x, for all x ∈ Var(Σ).

Definition 5.10. Let E be an equational Ω-theory. Then E is said to have
projective unification if, for every solvable E-unification problem Σ, there exists
a projective unifier σ in UE(Σ).

Let us now translate the notion of projective unification in the algebraic
context. If a symbolic E-unification problem Σ = {sj ≈ tj | j ∈ J}, for some
finite index set J = {1, . . . , j}, and a projective unifier σ ∈ UE(Σ) are given,
then consider the corresponding algebraic unification problem A ∼= FVE

(Y,Σ)
where Y = VarΣ and letB be the VE-free algebra FVE

(Y ). Define the algebraic
unifier eσ : A→ B by letting, for all t ∈ Tm(Y ),

eσ([t]A) = [σ(t)]B.

Notice that the previous definition is sound. Indeed, if, for some t1, t2 ∈ Tm(Y ),
we have [t1]A = [t2]A, then by Theorem 4.6 (ii), VE |= &Σ⇒ t1 ≈ t2 and thus
[σ(t1)]B = [σ(t2)]B, since σ ∈ UE(Σ). Furthermore, since σ is projective,
we have also VE |= s1 ≈ t1 & . . . & sj ≈ tj ⇒ σ(x) ≈ x, for all x ∈ Y , and
therefore, again by Theorem 4.6, we have [σ(x)]A = [x]A. Then, by induction on
the construction of terms, we get that A validates [σ(t)] = [t] for all t ∈ Tm(Y ).
Finally, consider the natural projection π : B→ A associating each element [t]B
of B with the corresponding equivalence class [t]A in A. Then it easy to see
that π ◦ eσ = 1A, that is, A is the retract of the VE-free algebra B and it is
therefore a regular projective object in VE .
Conversely, if A is regular projective, then 1A is an algebraic unifier for A. Since
the canonical projection π : B→ A is a regular epi, it has a section s : A→ B by
Lemma 5.2. It can be easily seen that the substitution σ : Y → Tm(Y ) defined,
for all the xi’s in Y , by taking σ(xi) to be any term ti such that s([xi]A) = [ti]B
is a unifier for Σ. But π ◦ s = 1A and therefore we have

[xi]A = (π ◦ s)[xi]A = π([σ(xi)]B) = [σ(xi)]A,

for all xi ∈ Y . Since A is finitely presented by 〈Y |Σ〉, by Theorem 4.6 (ii), we
get VE |= &Σ⇒ σ(x) ≈ x, for all x ∈ Y , that is, σ is projective.

So, we have just proved the following

Lemma 5.6. Let E be an equational Ω-theory. Then E has projective unifi-
cation iff every solvable algebraic E-unification problem A in VE is a regular
projective object in VE.
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Therefore, having projective unification is a rather strong property. Indeed,
we have the following

Lemma 5.7. Let E be an equational Ω-theory with projective unification. Then
VE is actively structurally complete.

Proof. If E has projective unification, then every fp algebra in VE is regular
projective in VE . By Theorem 3.34, this means that every fp algebra A is
the retract of a VE-free algebra and, in particular, that A embeds in FVE

(ω).
Therefore, we have A ∈ Q(FVE

(ω)) and VE is asc by Theorem 4.13 (5).

We conclude this section with a lemma which clarifies the relation between
projective and transparent unification, but first let us translate also the notion
of transparent E-unification in the algebraic setting. Let an equational Ω-theory
E be given. An algebraic E-unification problem A = FVE

(Y,Σ) is said to be
transparent in VE if there exists a unifier h : A→ FVE

(Y ) in UE(A) such that,
for any unifier g ∈ UE(A),

g ◦ π ◦ h = g,

where π : FVE
(Y ) → FVE

(Y,Σ) is the canonical projection. In such a case, we
call h a transparent algebraic unifier for A.

Lemma 5.8. Let E be an equational Ω-theory. Then E has transparent uni-
fication iff every solvable algebraic E-unification problem A is transparent in
VE.

Proof. (=⇒) Let A ∼= FVE
(Y, S) be a solvable algebraic E-unification problem.

Let σ be a transparent unifier for the symbolic E-unification problem S. We
claim that the morphism eσ : A → FVE

(Y ), defined as above, is a trasparent
algebraic unifier for A. Indeed, consider an algebraic unifier g ∈ UE(A). Then
g : A → B is a morphism where B is a fp projective object in VE . Thus B
is the retract of a VE-free algebra FVE

(Z) for some finite generating set Z
and, in particular, there exists a monomorphism s : B→ FVE

(Z). Now, define
the substitution τ : Y → Tm(Z) by taking τ(yi) to be any term ti such that
(s ◦ g)[xi]A = [ti]FVE

(Z). Therefore, for all the yi’s in Y , we have by definition

(s ◦ g)[yi]A = [τ(yi)]FVE
(Z),

and thus, by induction on the construction of terms,

(s ◦ g)[t]A = [τ(t)]FVE
(Z),

for all t ∈ Tm(Y ). Therefore, since in A all the equalities from S holds, we
have that τ is indeed a unifier for S. Furthermore, for all t ∈ Tm(Y ), we have

g([t]A) = g([σ(t)]A).

Indeed, suppose otherwise. Then, since s is injective, we would have

[τ(t)]FVE
(Z) = (s ◦ g)([t]A) 6= (s ◦ g)([σ(t)]A) = [τ ◦ σ(t)]FVE

(Z),

contrary to the transparency of σ. Therefore, we have

g ◦ π ◦ eσ = g,
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that is, A is transparent.
(⇐=) Let Σ be a solvable symbolic E-unification problem and consider the cor-
responding algebraic E-unification problem A ∼= FVE

(Y,Σ), where Y = VarΣ.
Let h ∈ UE(A) be a transparent algebraic unifier. We claim that the unifier
σh : Y → Tm(Y ) defined as

σh(yi) = ti ⇐⇒ h([yi]A) = [ti]FVE
(Y ),

is a transparent unifier for the symbolic E-unification problem Σ. So, consider a
unifier τ ∈ UE(Σ). Without loss of generality, we can assume that Dom(τ) = Y .
Now consider the morphism eτ : A→ FVE

(Q), where Q = VarRan(τ), defined
as above. Since eτ ∈ UE(A), we have, for all y ∈ Y ,

[τ(y)]FVE
(Q) = eτ ([y]A)

= eτ ◦ π ◦ h([y]A) since h is transparent
= eτ ◦ π([σh(y)]FVE

(Y ))
= eτ ([σh(y)]A)
= [τ ◦ σh(y)]FVE

(Q)

and thus VE |= (τ ◦ σh)(y) ≈ τ(y), for all y ∈ Y .

Notice that, given an algebraic E-unification problem A ∼= FVE
(Y, S) and a

transparent algebraic unifier h for A, we also have h ◦ π ◦ h = h and thus the
composition h◦π : FVE

(Y )→ FVE
(Y ) is an idempotent morphism. We are now

ready to make explicit the relation existing between projective and transparent
E-unification.

Lemma 5.9. Let E be an equational Ω-theory. Then E has projective unifica-
tion iff E has transparent unification and VE is actively structurally complete.

Proof. (=⇒) If E has projective unification, then E has transparent unification,
since every projective unifier is transparent. Moreover VE is actively structurally
complete by Lemma 5.7.
(⇐=)1 Suppose E has transparent unification and VE is actively structurally
complete. Consider a solvable unification problem Σ = {sj ≈ tj | j ∈ J} and
let σ ∈ UE(Σ) be a transparent unifier. Therefore the quasi-identities

ϕx : s1 ≈ t1 & . . . & sj ≈ tj ⇒ σ(x) ≈ x,

for all x ∈ VarΣ, are VE-active. By definition of transparent unifier, we have
that σ is not seen by τ for all τ ∈ UE(Σ). Equivalently, for every substitution
τ , if VE |= τ(s1) ≈ τ(t1) & . . . & τ(sj) ≈ τ(tj), then VE |= τ(σ(x)) ≈ τ(x) for
all x ∈ VarΣ. But then, by Remarks 15 and 16, we have FVE

(ω) |= ϕx for all
x ∈ VarΣ. So, since VE is asc, VE |= ϕx for all x ∈ VarΣ, i.e. σ is a projective
unifier for Σ.
(⇐=)2 Suppose E has transparent unification and VE is actively structurally
complete. Consider a solvable algebraic unification problem A ∼= FVE

(Y, S).
We show that A is a regular projective object in VE . Let g : A → FVE

(Y ) be
a transparent unifier for A. Then by Corollary 4.14 we have A ∈ SP(FVE

(Y )),
that is, there exists an embedding h : A→ FVE

(Y )I of A into some direct power
of FVE

(Y ) for some index set I. For each i ∈ I, consider the algebraic unifiers
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hi = πi ◦ h : A → FVE
(Y ). It is readily seen that h = ĥ where ĥ is the natural

homomorphism obtained from the hi’s. Furthermore, since g is transparent, we
have, for all i ∈ I,

hi ◦ π ◦ g = hi.

Now, for every [p], [q] ∈ A,

[p] 6= [q] =⇒ ĥ([p]) 6= ĥ([q])
=⇒ ĥ([p])(i) 6= ĥ([q])(i) for some i ∈ I
=⇒ hi([p]) 6= hi([q])
=⇒ hi ◦ π ◦ g([p]) 6= hi ◦ π ◦ g([q])
=⇒ g([p]) 6= g([q])

that is, g : A→ FVE
(Y ) is an embedding. Therefore, g(A) ∼= A is a subalgebra

of FVE
(Y ) and by letting f : FVE

(Y ) → g(A) be the morphism obtained from
g ◦ π by restricting the codomain, we have, by the idempotency of g ◦ π, that f
is a retraction of the inclusion map i : g(A) → FVE

(Y ). Thus g(A) is a retract
of a VE-free algebra and thus A is a regular projective object in VE .

5.2 Unification in Intermediate Logics
Let us first consider Int and its characteristic variety VInt. We know that VInt
is the variety of Heyting algebra HA and we can take any (finite) set EHA
of identities over the similarity type 〈∧,∨,→, 0〉 that axiomatizes HA8 as the
equational theory of Heyting algebras.

Now consider an arbitrary EHA-unification problem for the equational the-
ory of Heyting algebras

Σ = {sj ≈ tj | j ∈ J}

for some finite index set J . It can be easily seen that Σ is equivalent to the
EHA-unification problem Σ∗ consisting of only the following single equation:∧

j∈J
sj ↔ tj ≈ 1.

Notice moreover that, by the algebraic completeness theorem for Int, we have

σ ∈ UE(Σ∗)⇐⇒ HA |= σ(
∧
j∈J

sj ↔ tj ≈ 1)

⇐⇒ HA |= σ(
∧
j∈J

sj ↔ tj) ≈ 1

⇐⇒ σ(
∧
j∈J

sj ↔ tj) ∈ Int.

Thus, an EHA-unification problem consists in the problem of making a single
L-formula a theorem of the logical calculus Int.

8For instance, we can take as EHA the set of all theorems of Int or we can let EHA be the
set of all identities ϕ ≈ 1 where ϕ is an axiom of the intuitionistic propositional calculus Int.
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We can clearly extend the above considerations to each intermediate logic
L. Thus, in the logical context, a unification problem for L is just a single
L-formula ϕ and a L-unifier for ϕ is a substitution σ : VarL → ForL such that

`L σ(ϕ).

Also the definition of the instantiation preorder of ϕ is straightforward. Indeed,
given two substitutions σ and τ , we let Y = Varϕ and we say that σ is more
general than τ (with respect to L and Y ), and we write τ 4YL σ, if there exists
a substitution θ such that, for all p ∈ Y ,

`L (θ ◦ σ)(p)↔ τ(p).

Algebraic completeness of ExtInt allows us to translate in logical terms the
notion of a projective unifier. Indeed, given a unifiable L-formula ϕ, we say that
a substitution σ : VarL → ForL is a projective unifier for ϕ if σ is a L-unifier
for ϕ and, moreover,

ϕ `L σ(p)↔ p, for all p ∈ Varϕ.

In this case, we say that ϕ is projective. Moreover, notice that by Theorem 1.19
(ii) of replacement of L-equivalents the previous condition is equivalent to

ϕ `L σ(ψ)↔ ψ,

for all ψ ∈ ForL such that Varψ ⊆ Varϕ.

Remark 18. Notice that we can also reinterpret the notion of admissible rule
by means of unification notions as follows: an inference rule Γ/ϕ is admissible
in an intermediate logic L iff every L-unifier for

∧
Γ is a L-unifier for ϕ iff

UL(
∧

Γ) ⊆ UL(ϕ).

Investigations on the unification type of intermediate propositional logics
have started during the nineties with the works of Wroński and Ghilardi9, who
basically managed to locate, in the lattice of intermediate propositional logics,
most of the logics having good unification properties. In particular, in [62] it is
shown that Int has finitary unification and that any intermediate propositional
logic having unitary unification type must be an extension of the Jankov’s logic
KC; in [167], it is stated that any intermediate propositional logic is an extension
of the Gödel-Dummet logic LC exactly when such a logic enjoys projective
unification.

A clear picture of the situation concerning unification type in the lattice of
intermediate propositional logics ExtInt can be summarized in the following
theorem (cfr. [35, Theorem 8]):

Theorem 5.10. All extensions of KC coincide with all logics having uni-
tary unification type plus some having nullary unification type. All sublogics of
Log (1 + 1)O coincide with all logics having finitary unification type, plus some
having nullary unification type (plus all sublogics having infinitary unification
type, if any).

9However, it would not be wrong to say that such investigations could be traced back to the
early 20th century in the works of Löwenheim or even to the beginning of the history of logic
itself in Boole’s work. Indeed, both logicians gave their contribution to the determination of
the unification type of classical logic Cl. Cfr. [113].
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Since the pair 〈Log (1+1)O,KC〉 is a splitting pair of the lattice ExtInt, namely,
for every logic L ∈ ExtInt, either KC ⊆ L or L ⊆ Log (1 + 1)O, the previous
theorem gives indeed an good description of the situation concerning unification
types.

The relationship between unification and admissible rules has recently at-
tracted the attention of scholars and has renewed investigations on unification
issues. For instance, in [68], it is shown that the logic of bounded branching Tn

has finitary unification type, for every n ≥ 1. Now, the unification type of many
well-known intermediate logics is not known and thus unification issues in in-
termediate propositional logics are still an open field of research. In particular,
the major open problem is whether there exists an intermediate propositional
logic having unification type ∞10.

5.3 Topological approach to unification
We will use the topological framework introduced in the previous chapters in
order to investigate unification issues in intermediate logics. Let us first translate
the basic notions of unification theory in this new setting.

Let L be an intermediate logic. All the notions concerning unification theory
given in §5.1.2 with respect to equational category VL corresponding to the
variety induced by L can be dualized to the category DFL. So, in this setting,
a unification problem is a finitely copresented frame F ∈ DFL and a unifier for
F is a p-morphism u : I → F where I is a finitely copresented regular injective
frame in DFL. Furthermore, given two unifiers u1 : I1 → F and u2 : I2 → F
for F, u1 � u2, that is, u2 is more general that u1, if there exists a p-morphism
making the following triangle

I1 I2

F

u1 u2

commute. So, if F is regular injective in DFL, it is immediately seen that the
identity morphism 1F : F→ F is a most general unifier for F.

As a warm up, let us prove the well-known fact that intuitionistic logic Int
has finitary unification.

Lemma 5.11. Let F = 〈W,R,P〉 ⊆
I
FInt(n), for some n < ω, be a finitely

copresented descriptive frame. If F is injective, then, for all k < ω, the subframe
F↑k ⊆

I
FInt(n) generated by W↑k is also injective.

Proof. First notice that F↑k is finitely copresented by Lemma 3.21 and thus
also finitely approximable by Lemma 5.23. We now prove that F↑k has the

10During the revision of the present thesis, a very interesting paper, written by Dzik, Kost
and Wojtylak, has appeared as a preprint on ArXiv: Unification types and union splittings
in intermediate logics (https://arxiv.org/abs/2205.10644). The research paper is dense and
seems full of very interesting results. In particular, the authors claim that there are exactly
four maximal logics with nullary unification, only two minimal logics with hereditary finitary
unification and, furthermore, that none of the locally tabular intermediate logics has infinitary
unification.
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extension property. So, let G = 〈V, S,Q〉 be a generated subframe of F↑k such
that d(G) < ω. For every point v ∈ V , we can find a point uv ∈ W such that
uv ∼k−1 v. Without loss of generality, we can assume that d(uv) < ω (otherwise
since W ∩ [uv]k−1 is a non-empty clopen set in WInt and W<ω

Int is dense, pick a
point in W ∩ [ui]k−1∩W<ω

Int 6= ∅). Then, U =
⋃
v∈V uv↑ is a generated subframe

of F of finite depth and consequently, since F has the extension property, there
exists z ∈ W such that z � U . Now, by the properties of F<∞Int (n) and by
the choice of the uv’s, we can find a point w ∈ WInt such that w � V and
col(w) = col(z). So, if we show that z -k w than we are done. By construction,
it suffice to show that z ∼k−1 w. We proceed, by induction on i ∈ {0, . . . , k−1},
by showing that z ∼i w.

(i = 0) Just notice that z ∼0 w iff col(z) = col(w);

(i = s+ 1) Assume that z ∼s w holds for all s ∈ {0, . . . , k − 2}. We prove
separately

(i) z -s w and (ii) w -s z.

(i) Let x ∈ w↑. We need to find y ∈ z↑ such that x ∼s−1 y. So, if
x = w, then y := z works by induction hypothesis. If x 6= w, then
x ∈ V , hence, by construction ux ∼k−1 x and, since k − 1 ≥ s − 1
and ux ∈ z↑, we can take y := ux.

(ii) Let x ∈ z↑. We need to find y ∈ z↑ such that x ∼s−1 y. So, if
x = w, then y := z works again by induction hypothesis. Otherwise,
suppose x 6= z. Then x ∈ uv↑ for some v ∈ V . Since by construction
uv ∼k−1 v, there exists q ∈ v↑ such that q ∼k−2 x. But k− 2 ≥ s− 1
and, consequently, by letting y := q we are done.

We can conclude that F↑k is injective by Proposition 3.39.

Remark 19. Recall that, by the dual of Corollary 3.33, any finitely generated
p-morphic image F of a finitely copresented frame G is also finitely copresented.
Furthermore, if G is injective, then it is a p-morphic image of a m-canonical
frame FInt(m), for some m < ω and, consequently, F is a p-morphic image of
FInt(m) as well. Thus, by the dual of Proposition 3.40, F is injective too.

Let us consider a solvable unification problem F and let h : I→ F be a unifier
for F. By the previous remark, it follows that h(I) ⊆

I
F is a finitely copresented

injective descriptive frame. Then, by Lemma 5.11,

Fh := h(I)↑ρ(F)

is also a finitely copresented injective frame and, since h(I) ⊆
I
Fh, it follows that

h is also a unifier for Fh11. Furthermore, since F↑ρ(F) = F, we also have Fh ⊆I F.
So, any unifier for F is also a unifier for a injective frame of the same rank of
F which is also a generated subframe of F. Therefore, it follows that, for any
solvable unification problem F, the finite set of morphisms

{1G |G ⊆I F,G injective & ρ(G) ≤ ρ(F)}

is a complete set of unifiers for F. In particular, we can conclude that
11Indeed, if A ⊆

I
B, then any unifier G g−→ A can be extended to G

g−→ A
i−→ B, where i is the

obvious inclusion. Alternatively, notice that any substitution σ that unifies the Ln-formula
corresponding to A also unifies the Ln-formula corresponding to B by Lemma 3.23.
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Theorem 5.12. Intuitionistic logic Int has finitary unification type.

5.3.1 Some general results on unification
Proposition 5.13. Let L be an intermediate logic with unitary unification and
let F1 = 〈X1, R1,P1〉 and F2 = 〈X2, R2,P2〉 be two finitely copresented regular
injective frames in DFL. If the L-frame F1 + F2 is finitely copresented, then
F1 + F2 is also regular injective in DFL.

Proof. Notice that the canonical injections ii : Fi → F1+F2, i = 1, 2, are unifiers
for F1 + F2 and therefore, since L has unitary unification, there exist a finitely
copresented regular injective frame J in DFL and a unifier u : J→ F1 +F2 that
is more general than both i1 and i2. Furthermore, by taking into consideration
the fact that F1 + F2 is the coproduct of F1 and F2, we have the following
commuting diagram

F1 + F2

F1 J F2

F1 + F2

[r1,r2]

i1

i1

r1

u

r2

i2

i2

Consequently, for both i = 1, 2, we have u ◦ [r1, r2] ◦ ii = u ◦ ri = ii and thus,
by the universal property of coproducts, it follows that u ◦ [r1, r2] = 1F1+F2 .
So F1 + F2 is regular injective in DFL being a retract of the regular injective
frame J.

By taking advantage of the previous result we can prove the following

Proposition 5.14 (Ghilardi). Let L be an intermediate logic with unitary uni-
fication. Then KC ⊆ L.

Proof. Towards a contradiction, suppose that L has unitary unification but
wem /∈ L. Consider the finitely copresented frames FL(1)/¬p = 〈X1, S1,Q1〉
and FL(1)/¬¬p = 〈X2, S2,Q2〉. Notice that, by Proposition 3.45, both frames
FL(1)/¬p and FL(1)/¬¬p are regular injective frames in DFL. Furthermore,
since X1 = VL(¬p) and X2 = VL(¬¬p), the Xi’s are disjoint clopen upsets of
the 1-canonical frame FL(1) = 〈W,R,P〉 and thus

FL(1)/wem = FL(1)/¬p+ FL(1)/¬¬p

is a regular injective finitely copresented frame in DFL by Proposition 5.13.
Therefore, FL(1)/wem is a retract of FL(1) and so there exits an onto p-
morphism h : W → X1 ] X2 such that h �X1]X2= 1FL(1)/wem. Furthermore,
since wem /∈ L, W \ X1 ] X2 is non-empty and so let w ∈ W \ X1 ] X2.
Since w /∈ X1 ]X2 = VL(wem) = VL(¬p)∪VL(¬¬p), there are incomparable
points v1 ∈ VL(p) and v2 ∈ VL(¬p) such that wRv1 and wRv2. Since VL(p) ⊆
VL(¬¬p), both v1, v2 ∈ X1 ] X2 and so, by definition of h, we have h(w)Sv1
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and h(w)Sv2. Consequently, since h(w) ∈ VL(wem), either h(w) ∈ VL(¬p) or
h(w) ∈ VL(¬¬p), but then we would have either v1 ∈ VL(p) ∩VL(¬p) = ∅ or
v2 ∈ VL(¬p) ∩VL(¬¬p) = ∅, respectively.

In an analogous way, we can also show the following

Proposition 5.15 (Wroński). Let L be an intermediate logic. Then L has
projective unification if and only if LC ⊆ L.

Proof. (=⇒) Aiming for a contradiction, suppose that L has projective unifica-
tion but da /∈ L. Consider the finitely copresented frame FL(2)/da = 〈X,S,Q〉.
By hypothesis, FL(2)/da is regular injective in DFL and thus it is the re-
tract of the 2-canonical frame FL(2) = 〈W,R,P〉 for L. In particular, there
exits an onto p-morphism h : W → X such that h �X= 1FL(2)/da. Further-
more, X is a clopen upset of W and, since da /∈ L, W \ X is non-empty.
By Corollary 2.18, max(W \ X) 6= ∅ and so let w ∈ max(W \ X). Since
w /∈ X = VL(da) = VL(p → q) ∪ VL(q → p), there are incomparable points
v1 ∈ VL(p) \ VL(q) and v2 ∈ VL(q) \ VL(p) such that wRv1 and wRv2. By
maximality of w, both v1, v2 ∈ X, but then, by definition of h, we have h(w)Sv1
and h(w)Sv2 and thus h(w) /∈ VL(da) = X, contradiction.
(⇐=) Since projectivity is preserved by proper extensions, it suffice to show
that LC has projective unification. So let F be a solvable unification problem.
Since LC is locally tabular, F is a finite generated subframe of some n-canonical
frame FLC(n) for LC. Now, notice that any generated subframe G ⊆

I
F such

that GO ∈ DFLC has to be rooted. Hence F is regular injective by Proposition
3.38 and, consequently, LC has projective unification.

5.3.2 Negative results on unification
In this section we generalize a result of Ghilardi [64] in order to show that a
wide range of intermediate logics do not have finitary unification type. But
before proceeding further, recall that the notion of finitely presented algebra
is a purely categorical notion: it is a well known fact that an algebra A in
an equational category V is finitely presented iff the representable functor of
A, HomV(A,−) : V → Set, preserves filtered colimits, that is, A is finitely
presented iff, for each filtered diagram D of type J in V ,

HomV(A, lim−→
j

Dj) ∼= lim−→
j

HomV(A, Dj). (?)

Proposition 5.16. Let C be a cocomplete category. A finite colimit of finitely
presented objects is finitely presented.

The previous proposition allows us to prove the following

Lemma 5.17. Let V be an equational category. A finitely generated (regular)
projective algebra A ∈ V is finitely presented.

Proof. Let A be a finitely generated (regular) projective object in V . Then, by
Theorem 3.34, A is a retract of a finitely generated free V-algebra FV(n) for
some n < ω, that is, there are morphism s : A� and r : FV(n)� A such that
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s ◦ r = 1A. It is immediate to see from the following diagram

A FV(n) FV(n)

A

1A

r 1FV (n)

r
s

that r : FV(n)� A is the coequalizer of the pair of parallel arrows

1FV(n) : FV(n)→ FV(n)
s ◦ r : FV(n)→ FV(n).

Being a finite colimit of the finitely presented algebra FV(n), A is finitely pre-
sented as well by Proposition 5.16.

Let L be a fixed finitely approximable intermediate logic. We are now going
to introduce a method to make a finitely generated frame in DFL regular
injective. Let F = 〈W,R,P〉 be a n-generated descriptive L-frame. By Lemma
3.9, F is isomorphic to a generated subframe of FL(n) and we can thus assume
that F ⊆

I
FL(n). Define inductively the Kripke frames ιn(F) as follows:

• ι0(F) = F<ω;

• ιn+1(F) is the frame obtained from ιn(F) by adding a new point xS when-
ever S is a generated subframe of ιn(F) such that

1. d(S) < ω;
2. SO ∈ DFL;
3. ¬∃y ∈ ιn(F) (y � S).

The partial order of ιn+1(F) is the reflexive closure of the union of the
partial order of ιn(F) together with all the pair 〈xS , y〉 where y ∈ S.

Finally, we let ι(F) be the double dual of the union of all the ιn(F), that is

ι(F) := ((
ω⋃
n=0

ιn(F))+)+.

Notice that ι(F) is nothing but the closure of the upset
⋃ω
n=0 ιn(F) in FL(n) by

Lemma 3.15 and that ι(F)<ω =
⋃ω
n=0 ιn(F). Indeed, if x ∈ ι(F)<ω \

⋃ω
n=0 ιn(F),

then x ∈
⋃ω
n=0 ιn(F) \ {x}, that is, x is a limit point of

⋃ω
n=0 ιn(F) and, since⋃ω

n=0 ιn(F) ⊆ ι(F), x is also a limit point of ι(F). But this contradicts the fact
that x is isolated in ι(F), since x ∈ ι(F)<ω.

Lemma 5.18. For any finitely generated frame F ∈ DFL, the following hold:

1. ι(F) is a regular injective frame in DFL;

2. if G is a non-empty generated subframe of F such that d(G) < ω and
GO ∈ DFL and there is no v ∈ F such that v � G but there exists
w ∈ ι(F) such that w � G, then w ∈ ι1(F) and must be xG.
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Proof. (1) By construction, ι(F) is a generated subframe of FL(n) for some n < ω
and thus finitely generated as well. Furthermore, ι(F) is finitely approximable,
since, by the above remark, ι(F)<ω is dense in ι(F). Finally, every generated
subframe G ⊆

I
ι(F) of finite depth such that GO ∈ DFL covers a point w ∈ ι(F).

So the conditions of Theorem 3.37 apply and ι(F) is regular injective in DFL.
(2) Immediate from the construction of ι(F).

The following Lemma shows that p-morphisms do not increase the depth
between points.

Lemma 5.19. Let F = 〈W,R,P〉 and G = 〈V, S,Q〉 be descriptive frames and
let f : F → G be a p-morphism. If F is Noetherian, then d(x) ≥ d(f(x)) for
every point x ∈W .

Proof. Inductively assume that the claim holds for all proper successor of x and
suppose for reductio that d(x) < d(f(x)). Then let v ∈ f(x)↑ be such that
d(v) = d(x). Since f is a p-morphism, there exists y ∈ x↑ such that f(y) = v.
Moreover, since v is a proper successor of f(x), y must be a proper successor of
x. Consequently, d(y) < d(x) = d(v) = d(f(y)), contradiction.

Now let f : F→ G be a p-morphism between the finitely generated descrip-
tive L-frames F = 〈W,R,P〉 and G = 〈V, S,Q〉. Define by induction on n < ω
the maps ιn(f) : ιn(F)→ ιn(G) as follows:

• ι0(f) = f �W<ω ;

• ιn+1(f) is the extension of ιn(f) obtained by letting

ιn+1(f)(xS) = y ⇐⇒ y � ιn(f)(S) and
∀z(z � ιn(f)(S)→ col(z) E col(y)),

where col is the standard colouring of FL(n).

Notice that, for each n < ω, ιn(F) is actually a Noetherian Kripke frame
by Remark 6 and the contruction of ιn(F). Therefore, it follows by the very
definition of ιn(f) and Lemma 1.12 that ιn(f) is actually a p-morphism between
ιn(F) and ιn(G). However, we also prefer to show it directly with the following

Lemma 5.20. For every n < ω, the function ιn(f) : ιn(F) → ιn(G) is a well
defined p-morphism.

Proof. Since the base case is covered by Lemma 5.19, suppose for induction hy-
pothesis that the claim holds for n. Consider a point xS ∈ ιn+1(F)\ιn(F). Then,
ιn(f)(S) is a generated subframe of ιn(G) ⊆

I
FL(n) such that d(ιn(f)(S)) < ω

and ιn(f)(S)O ∈ DFL since it is a p-morphic image of SO. So, if there exists
no point v ∈ ιn(G) such that v � ιn(f)(S), then there exists a unique point
xιn(f)(S) ∈ ιn+1(G) covered by ιn(f)(S) and ιn+1(f)(xS) = xιn(f)(S); if, oth-
erwise, there are points in ιn(G) covered by ιn(f)(S), then there exists also
a point y whose colour is maximal with respect to colours c E col(u) for each
u ∈ ιn(f)(S). Since, in this case, ιn+1(f)(xS) = y and such a y is uniquely deter-
mined by its colour, ιn+1(f) is well defined. Moreover, the map is clearly mono-
tone. So, in order to check that ιn+1(f) is a p-morphism, let ιn+1(f)(x) < y
for some x ∈ ιn+1(F) and y ∈ ιn+1(G). We have to find a point z ∈ x↑ such
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that ιn+1(f)(z) = y. If x ∈ ιn(F), then ιn+1(f)(x) = ιn(f)(x) ∈ ιn(G) and
thus y must be in ιn(G) as well and the back-condition holds by induction hy-
pothesis. If x /∈ ιn(F), then x = xS for some non-empty S ⊆

I
ιn(F) satisfying

(1)-(3). Then by definition ιn+1(f)(xS) � ιn(f)(S) and so y ∈ ιn(f)(S), that
is, y = ιn(f)(z) for some z ∈ S. Since xS ≤ q for all q ∈ S and z ∈ S ⊆ ιn(F),
ιn+1(f) is indeed a p-morphism.

Now let ιω(f) be the union of all the ιn(f). It is immediate to see that
ιω(f) is a p-morphism between ι(F)<ω and ι(G)<ω. Then we let ι(f) be the
unique p-morphism between ι(F) and ι(G) extending ιω(f) as in Lemma 3.36.
Furthermore, notice the following immediate corollary of Lemma 5.17.

Lemma 5.21. Let F = 〈W,R,P〉 be a finitely generated regular injective frame
in DFL. Then F is finitely copresented.

Therefore, for every finitely generated descriptive frame F for L, ι(F) is
finitely copresented. Moreover, since finitely copresented frames are finitely
generated as well, our construction makes sense also for every finitely copre-
sented frame.

Remark 20. The ι-construction just presented, despite the fact that applies
not only to finite frames but to finitely generated frames as well, is very much
alike to the procedure introduced by Ghilardi in [64]. One big difference of
Ghilardi’s construction with respect to our’s is the insertion of a new point xS
covering a generated subframe S even in the case such point already existed.
As stated by Ghilardi himself in the footnote 6 of [64], such a condition

is due to the fact that we want to keep the construction functorial,
i.e. operating well on morphisms: if we do not insert such points
when it is not needed, then we could be forced to make arbitrary
choices for choosing the image of an inserted point which is not
inserted anymore in the codomain of a morphism (it goes without
saying that such arbitrary choices make functoriality problematic).

And in fact our construction faces such a problematic. Let us make clear the
situation with an example. Denote by DFL

fcp the full subcategory of DFL

of finitely copresented descriptive frame for L. Then ι : DFL
fcp → DFL

fcp

would be a functor if the following conditions were satisfied:

(1) ι(1F) = 1ι(F), for any frame F in DFL
fcp;

(2) ι(f) ◦ ι(g) = ι(f ◦ g), for any morphism f, g in DFL
fcp.

As to (1) our construction still works. However, condition (2) is not satisfied
as it is shown in the following picture, where the p-morphisms g : F → G and
f : G→ D are drawn above in between the corresponding frames12.

12Here we are clearly assuming an intermediate logic L such that FO is a L-frame, such as
Int. Notice moreover that F is nothing but the sum of the three point frame (1 + 1)O, also
known as “the fork”, with itself.
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F:

xF

G: D:

ι1(g)

ι1(f)

ι1(f ◦ g)

Figure 5.1: A counterexample to the functoriality of ι(·).

Now, Ghilardi’s procedure works well in the context of locally finite varieties of
Heyting algebras, because the insertion of a new point covered by a generated
subframe is not more possible after a certain depth. However, when dealing
with finitely approximable varieties, there is no assurance that such a bound
exists and thus we might end up with a frame that is not finitely generated
anymore. Consequently, since being finitely generated is of greatest importance
for our purposes, it seems that we need to give up to the functoriality of ι(·).
Furthermore, another drawback of our construction is that the sufficiency con-
dition of point (i) of Lemma 8 in [64] does not hold anymore, that is, it is not
the case that, given any morphism f : F → G in DFL, for all w ∈ ιn+1(F),
ιn+1(f)(w) ∈ ιn(G) implies w ∈ ιn(F). Since this condition plays a key rôle in
the proof of the main result on unification in locally finite varieties, we need to
work harder in order to show that such a result still holds in our setting.

Before proceeding further, let us prove some other useful facts which deal,
more or less directly, with ι(·) and, first of all, let us look more closely to
what happen when ι is applied to sums of frames. So, suppose we have two
p-morphism f1 : F1 → G1 and f2 : F2 → G2 and let h : F1 + F2 → G1 + G2 be
[f1, f2], the unique arrow making the co-product diagram commute

F1 + F2

F1 G1 + G2 F2

h
i1

f1 f2

i2

Now let us consider the p-morphism ι(h) : ι(F1 +F2)→ ι(G1 +G2). First notice
that the set of points of ι(F1 + F2) can be written as the union of the disjoint
underlying sets of ι(F1) and ι(F2) with the set of points in the middle part of
ι(F1 + F2), that is

ι(F1 + F2)∗ = {x ∈ ι(F1 + F2) |x � S, S ∩ Fi 6= ∅ for i = 1, 2}.
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Notice moreover that ι(F1 + F2)∗ ∩ ι0(F1 + F2) = ∅. Furthermore, in such a
situation, we have, for any x ∈ ι<ω(F1 + F2),

ι(h)(x) ∈


ι<ω(G1) if x ∈ ι<ω(F1),
ι<ω(G2) if x ∈ ι<ω(F2),
ι(G1 + G2)∗ if x ∈ ι(F1 + F2)∗.

In particular, one can easily show that, when ι(·) is applied to a coproduct
diagram, then the new diagram preserves its commuting properties, that is,

ι(F1 + F2)

ι(F1) ι(G1 + G2) ι(F2)

ι(h)
ι(i1)

ι(f1) ι(f2)

ι(i2)

The previous simple remark will be of greatest importance in the proof of The-
orem 5.25 below.

Lemma 5.22. Let F = 〈W,R,P〉 and G = 〈V, S,Q〉 be finitely generated de-
scriptive frames for L and let f : F→ G be a p-morphism. Furthermore, suppose
that F is finitely approximable. Then if there exists v ∈ V <ω such that f(x) = v
for some point x ∈W , then there exists also z ∈W<ω such that f(z) = v.

Proof. Since v ∈ V <ω, v is an isolated point of V and thus {v} is clopen in V .
Hence f−1(v) is a non-empty clopen set in W and since W<ω is dense in W ,
f−1(v) ∩W<ω 6= ∅. Therefore there exists z ∈W<ω such that f(z) = v.

Remark 21. Let F = 〈W,R,P〉 be a descriptive frame, x ∈ W and S,Q ⊆
I
W

be two upsets of W such that both x /∈ S and x /∈ Q. If x � S and x � Q, then
S = Q.

Proof. By definition of the relation �, we have S ⊆ x↑, Q ⊆ x↑, x> ⊆ S and
x> ⊆ Q. Now let y ∈ S. Then xRy and x 6= y, since otherwise x ∈ S as well.
So y is a proper successor of x and thus there exists an immediate successor z
of x such that zRy. Hence z ∈ Q and thus y ∈ Q, since Q is upward closed.
Thus S ⊆ Q and analogously Q ⊆ S. Consequently S = Q.

Lemma 5.23. Let F = 〈W,R,P〉 be a finitely copresented descriptive frame for
a finitely approximable intermediate logic L. Then F is finitely approximable.

Proof. Without loss of generality we can assume that W is a clopen upset of
the Esakia space EL(n) = 〈X, τ, S〉 dual to the free Heyting algebra FVL

(n) for
some n < ω. Now, since L is finitely approximable, X<ω is dense in X and
since W ∈ τ it follows that W ∩X<ω = W<ω is dense in W . Thus F is finitely
approximable.

Now consider the sequence of Kripke frames Gn = 〈Vn, Sn〉 (for n ≥ 2)
defined as follows:

Vn = {1, . . . , n} ∪ {〈i, j〉 | 1 ≤ i < j ≤ n},
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while the partial ordering Sn is defined by letting

xSny ⇐⇒ x = y, or
x = 〈i, j〉 and y = i, or
x = 〈i, j〉 and y = j.

Thus, for instance, G3 is the following frame:

The following lemma concerning the injectivization of the frames Gn is cru-
cial for our purposes.

Lemma 5.24. Let Y be a generated subframe of ιk(Gn) (k ≥ 0) such that
there exists a point 〈i, j〉 of Vn in Y. Then the three point frame (1 + 1)O is a
p-morphic image of Y.

Proof. We proceed by induction on k. For the base case, let Y ⊆
I
Gn and

〈i, j〉 ∈ Y for some 1 ≤ i < j ≤ n. We distinguish three cases:

(a) Y = 〈i, j〉↑: then clearly Y ∼= (1 + 1)O;

(b) Y = 〈i, j〉↑ ∪ S, where S ⊆ max(Gn) \ {i, j}: then by identifying all the
points of S either with i or with j we get a p-morphism from Y onto
(1 + 1)O;

(c) Y = 〈i, j〉↑ ∪ S, where S ⊆
I
Gn contains points 〈k, l〉 different from 〈i, j〉:

first, if there are points in max(S) that are not above any point of the
form 〈k, l〉 in S, then identify such points either with i or with j as in (b).
We can thus assume that Y is the union of upsets of the form 〈k, l〉↑. Since
there are at most k(Gn) = n2−n

2 such upsets, we proceed by induction on
the number m ≥ 2 of such upsets. Consider the case m = 2, that is,
Y = 〈i, j〉↑ ∪ 〈k, l〉↑. Now, there are two possibilities:
(1) either i = k or j = l: then first identify the two other distinct points
and then the two points 〈i, j〉 and 〈k, l〉 at the bottom as shown in the
picture below:

 

The composition of the two β-reductions is the wanted p-morphism from
Y onto (1 + 1)O.
(2) Both i 6= k and j 6= l: then by first identifying either i and k or j and
l, we get back to the previous scenario and again we get a p-morphism
from Y onto (1 + 1)O.
Now, for the induction step, let the claim holds form < k(Gn) and suppose
that Y is the union of m+ 1 different upsets of the form 〈i, j〉↑. Consider
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any two such upsets 〈i, j〉↑ and 〈k, l〉↑. If they are disjoint, then reduce
them according to the possibility (2) of the base case; otherwise, reduce
them according to the possibility (1) of the base case. In either cases, Y
reduces to a generated subframe Y′ of Gn which is the union of m upsets
of the form 〈i, j〉↑. By the inductive hypothesis, (1 + 1)O is a p-morphic
image of Y′ and thus also of Y.

Now, assume for induction hypothesis that the claim of the Lemma holds for
any generated subframe of ιk(Gn) such that there is a point 〈i, j〉 belonging to
it for some 1 ≤ i < j ≤ n and let us prove it for k+ 1. So let Y ⊆

I
ιk+1(Gn) and

〈i, j〉 ∈ Y for some 1 ≤ i < j ≤ n. Now, if min(Y) ⊆ ιk(Gn), then Y ⊆
I
ιk(Gn)

and the claim of the Lemma follows by induction hypothesis. Therefore, let
y1, . . . , yj ∈ min(Y) \ ιk(Gn). By definition of ι(Gn), for each i ∈ {1, . . . , j},
there exists Si ⊆I ιk(Gn) such that yi � Si. Then

S =
⋃

x∈min(Y)∩ιk(Gn)

x↑ ∪
⋃

1≤i≤j
Si

is a generated subframe of ιk(Gn) containing a point 〈i, j〉 for some 1 ≤ i < j ≤ n
and thus, by IH, there exists an onto p-morphism h : S → (1+1)O. Since S ⊆

I
Y,

by Lemma 1.13 it follows that Y[S/(1 + 1)O] is a p-morphic image of Y. But
then we can further reduce Y[S/(1+1)O] by a finite sequence of steps of β- and
α-reduction, namely, for example,

. . .y3y2y1 yj

 

and we can thus conclude that (1 + 1)O is a p-morphic image of Y.

We are ready for the main result of this section.

Theorem 5.25. Let VL be a finitely approximable variety of Heyting algebras
whose unification type is finitary and let F be a finite frame. If the finite frame
(F + 1O)O

F

belongs to DFL, then the finite frame (F + (1 + 1)O)O
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F

also belongs to DFL.

Proof. Aiming for a contradiction, suppose that the unification type of VL is ω,
(F+ 1O)O ∈ DFL but (F+ (1+ 1)O)O /∈ DFL. Since 1 is a p-morphic image of
any frame, we have that the frame (1 + 1)O is a p-morphic image of (F + 1O)O
and thus belongs to DFL as well. Now consider the sequence Gn = 〈Vn, Sn〉
(for n ≥ 2) of frames defined above. Notice that Gn ∈ DFL for all n ≥ 2,
since all the cones of Gn are isomorphic either to 1 or to (1 + 1)O. Thus the
frames F+Gn’s all belong to DFL and the maps gn : F+Gn → F+ 1O defined
by letting gn be the identity on F and mapping the pair 〈i, j〉 onto the root of
1O and the maximal points of Gn onto the maximal point of 1O are surjective
morphism in DFL.
Since finite frames are finitely copresented, we can apply the functor ι and get
p-morphisms

ι(gn) : ι(F + Gn)→ ι(F + 1O).
Now consider the following subset Q ⊆ ι(F + 1O):

Q = {z ∈ ι(F + 1O) | ∀y(z ≤ y → y � F + 1O)}. (?)

Notice that since (F + 1O)O ∈ DFL, by Lemma 5.18 we have that the point
xF+1O ∈ ι1(F + 1O) is the unique point covered by F + 1O and therefore

Q = {z ∈ ι(F + 1O) | ∀y(z ≤ y → y 6= xF+1O)}
= {z ∈ ι(F + 1O) | z � xF+1O},

that is, V is a non-empty upset of ι(F+1O). We let D be the generated subframe
of ι(F + 1O) whose underlying set is Q.
Now, since ι(F + 1O) is finitely copresented, it is (isomorphic to) an admissible
set of the n-canonical frame FL(n) for L for some n < ω. Thus, by identifying
the points, we have that xF+1O is a point in FL(n)<ω and, by Theorem 3.12, the
generated subframe FL(n) \ xF+1O↓ is admissible. Therefore, the intersection
ι(F + 1O) ∩ FL(n) \ xF+1O↓ = D is also an admissible set of FL(n), that is,
D is finitely copresented. So we shall take D as an example of a non-finitary
unification problem.
First of all, let us prove that, for any 2 ≤ n < ω, the range of ι(gn) is included
in D. Suppose not: there exists z ∈ ι(F + Gn) such that ι(gn)(z) /∈ Q. Thus
ι(gn)(z) ≤ xF+1O and, since ι(gn) is a p-morphism, there exists z′ ∈ z↑ such
that ι(gn)(z′) = xF+1O . Furthermore, since xF+1O ∈ ι(F + 1O)<ω, by Lemma
5.22 there exists also a point v ∈ ι(F + Gn)<ω such that ι(gn)(v) = xF+1O .
However, such a point cannot exist as a consequence of the following:

Lemma 5.26. For every k ≥ 1, if v ∈ ιk(F+Gn) is such that ι(gn)(v) = xF+1O ,
then the frame (F+(1+1)O)O is a p-morphic image of some generated subframe
of v↑.
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Proof. By induction on k. For the base case, let us assume that v ∈ ι1(F+Gn).
Since ι(gn)(v) /∈ ι0(F+1O), it must be the case that v /∈ ι0(F+Gn) and thus it is
of the form vS for some upset S ⊆

I
F + Gn such that SO ∈ DFL. Furthermore,

since by definition of ι(gn), ι0(gn)(S) = gn(S) = F + 1O, S must contain F and
at least one point 〈i, j〉 of Vn. Then, since F and Gn are disjoint, S \ F is a
generated subframe of ι0(Gn) containing a point of the form 〈i, j〉 and thus,
by Lemma 5.24, the fork (1 + 1)O is a p-morphic image of S \ F. Therefore,
(F + (1 + 1)O)O is a p-morphic image of (F + S \ F)O = SO ∼= vS↑.
For the inductive step, let us assume that the statement of the lemma holds
for k and suppose that v ∈ ιk+1(F + Gn). Without loss of generality, we can
further assume that v /∈ ιk(F + Gn) and thus that it is of the form vS for some
upset S ⊆

I
ιk(F + Gn) such that SO ∈ DFL and such that there is no point in

ιk(F + Gn) covered by S. Then, by definition of ι(gn), xF+1O � ιk(S) and we
can distinguish two cases:

(a) xF+1O ∈ ιk(S): in which case xF+1O is the image under ι(gn) of a point of
S and the lemma follows by induction hypothesis;

(b) xF+1O /∈ ιk(S): then F + 1O = ιk(S) by Remark 21 and thus ιk(S) does
not contain any point of ιm(F + 1O) for any m ≥ 1. First notice that, for
any j ≥ 1, (ιj(F) \ ι0(F)) ∩ S = ∅. Indeed, if there exists such a point
y in the intersection, then, since y ∈ ιs+1(F) \ ιs(F) for some 0 ≤ s < k
and ι(gn) �ι(F) is the identity on ι(F), ιk(S) would contain a point of
ιj(F + 1O) for some j ≥ 1, contrary to our previous remark. Analogously,
S does not contain any point of ι∗(F+Gn), since, otherwise, ιk(S) would
again contain a point of ιm(F + 1O) for some m ≥ 1. Therefore, it must
be the case that the set v> of immediate successors of v contains all the
minimal points of F, at least a point q ∈ ιk(Gn) \ ιk−1(Gn), other points
q1, . . . , ql of ιk(Gn) and nothing else, that is, we let

min(S) = v> = min(F) ∪ {q1, . . . , ql, q}.

Notice, furthermore, that Q = q↑ ∪
⋃l
i=1 qi↑ is a generated subframe of

ιk+1(Gn) containing a point of Vn of the form 〈i, j〉 and thus, by Lemma
5.24, the frame (1+1)O is a p-morphic image of Q. Finally, since Q∩F = ∅,
it follows that the frame (F+(1+1)O)O is a p-morphic image of the frame
(F +Q)O = SO ∼= vS↑.

We can thus restrict the codomain of the ι(gn)’s to D. Let us denote by dn the
restricted maps. Therefore the maps

dn : ι(F + Gn)→ D

are unifiers for our unification problem D. Since VL has finitary unification,
for cardinality reasons there exists a unifier d : I → D which is more general
than infinitely many dn’s. Hence, for infinitely many n’s, the following triangles
commute

ι(F + Gn) I

D

hn

dn
d
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Now, I is a finitely copresented injective frame in DFL and thus max(I) ≤ 2k
for some k < ω. Since p-morphisms map maximal points to maximal points,
for some n, there exists distinct points i1, i2 ≤ n of Vn ⊆ ι(F + Gn) such that
hn(i1) = hn(i2). Consider the generated subframe S = F + {〈i1, i2〉, i1, i2} of
ι(F + Gn). Notice that the image hn(S) is isomorphic to F + 1O, since hn
identifies the maximal points i1 and i2 but does not identify anything else, since
dn �F+Gn

= gn and the above triangle commutes. Then hn(S) is a generated
subframe of I of finite depth and, since (F + 1O)O ∈ DFL and I is injective,
there exists a point x ∈ I such that x � hn(S). But then, since p-morphisms
preserve the covering relation and by the commutativity of the above triangle,
we have d(x) � F + 1O. However, by the very definition (?) of D, there can not
be any such point d(x) in D.

Corollary 5.27. The following intermediate logics do not have finitary unifi-
cation type:

• the logics of bounded width BWk(k ≥ 2);

• the logics of bounded top width BTWk(k ≥ 2);

• the Kreisel-Putnam logic KP;

• the weak Kreisel-Putnam logic WKP and all the logics NDk(k ≥ 3)13;

• the logics of bounded cardinality BCk(k ≥ 4).

13For each k ≥ 1, the logic NDk is the logic Int +ndk as defined at the beginning of §6.2.



Chapter 6

Friedman logics

In his famous One Hundred and Two Problems in Mathematical Logic [53],
Harvey Friedman asked, in the section devoted to propositional calculi, the
following question1:

41. There is a set of formulae T in the propositional calculus based
on ⊥,&,∨,→ obeying (i) ⊥ /∈ T , (ii) A&B ∈ T if and only if
A,B ∈ T , (iii) A ∨ B ∈ T if and only if A ∈ T or B ∈ T , and (iv)
A → B ∈ T if and only if every substitution that puts A in T also
puts B in T . Furthermore this T is not unique. [53, p. 118]

It is immediate to show that such a set T of L-formulas must be a proper
subset of ForL closed under modus ponens. Furthermore, it is also assumed
that T is closed under uniform substitution and thus it is not difficult to prove
that it contains all the axioms of the intuitionistic propositional calculus Int2.
Therefore, such a set T must be an intermediate logic. Since condition (iii)
and (iv) for intermediate logics correspond respectively to the disjunction prop-
erty and to structural completeness, any intermediate logic satisfying these two
properties could be a solution for Friedman’s problem.

Definition 6.1. An intermediate logic L is said to be Friedman if L enjoys the
disjunction property and L is structurally complete.

A positive (almost total) solution for Friedman’s problem 41 has been provided
by Tadeusz Prucnal in [137, 138] where he showed that Medvedev’s logic ML
is Friedman. However, whether there exists a unique Friedman logic or not it is
still an open issue.

6.1 Negatively stable logics
Before starting, it is worth mentioning that the main source for this section is
[119]. Cfr. also [24] and, particular, §3.2.1, §3.4.2 and §5, for analogous results.

1Even if what follows has the form of a statement, Friedman explicitly write that it “should
not be viewed as a conjecture” since it can “be at least likely as [its] negation”. [53, p. 113]

2Indeed, it is possible to show that such a subset T ( ForL is closed under substitution
iff Int ⊆ T (cfr. [138, Lemma 1]) and Friedman claims that “such a T must properly contain
all provable formulae of the intuitionistic propositional calculus”.

153
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Given a formula ϕ ∈ ForL, we say that ϕ is negative if it is of the form
¬ψ, for some ψ ∈ ForL and we denote by N the set of negative formulas.
Furthermore, we say that a substitution σ : VarL → ForL is negative if, for
each p ∈ VarL, σ(p) ∈ N . We will usually indicate negative substitutions by
σN .

Definition 6.2. A non-standard intermediate logic (nsi-logic, for short) in the
language L is any consistent set L of L-formulas satisfying the following condi-
tions:

• Int ⊆ L;

• L is closed under modus ponens (MP);

• L is closed under the following rule of negative substitution:
ϕ

σN (ϕ) ,
for any negative substitution σN .

Thus any intermediate logic is a nsi-logic, since it is closed under uniform sub-
stitution, but the converse does not hold.

For any L-formula ϕ, we denote by ϕn the formula obtained from ϕ by
replacing any occurrence of a propositional variable p with its negation ¬p.

Definition 6.3. Let L be an intermediate logic. The negative variant of L is
the set of L-formulas Ln defined as follows:

Ln = {ϕ |ϕn ∈ L}.

Notice that Ln can not be be an intermediate logic, unless Ln = Cl. Indeed,
Ln will not be closed under uniform substitution, since, for every p ∈ VarL,
¬¬p→ p ∈ Ln. However, we have the following

Lemma 6.1. Let L be an intermediate logic. Then the negative variant Ln
of L is a non-standard intermediate logic including L. In particular, Ln is
the smallest set of L-formulas that contains L, all the formulas of the form
¬¬p→ p, where p ∈ VarL, and closed under modus ponens.

We have just seen that (·)n is an operator from the lattice of intermediate
logics to the lattice of non-standard intermediate logic. We are now going to
introduce an operator on the lattice of nsi-logics which gives us back an inter-
mediate logic.

Definition 6.4. Let L be a nsi-logic. The standardization of L is the set of
L-formulas Ls defined as follows:

Ls = {ϕ |σ(ϕ) ∈ L, for every substitution σ}.

Since Int is included in the standardization of any nsi-logic, it can be readily
seen that Ls is the greatest intermediate logic contained in L. Now, the compo-
sition (·)ns of the negative-variant operator with the standardization operator
gives us an operator defined on the lattice of the intermediate logics, which we



6.1. NEGATIVELY STABLE LOGICS 155

denote, following [24], by (·)ν . In particular, it is not hard to show that (·)ν is
a closure operator on the complete lattice of intermediate logics3.

The fixed points of a given closure operator c on a poset 〈W,≤〉, that is the
elements u ∈W such that u = c(u), are commonly called closed elements. With
this is mind, we give the following

Definition 6.5. Let L be an intermediate logic. We say that L is negatively
stable if it is a closed element of the operator (·)ν .

As a consequence of very known facts about closure operators4, we have
that the set of negatively stable logics forms a complete lattice under set-
theoretic inclusion. In particular, given a family {Li}i∈I of negatively stable
logics,

⋂
i∈I Li is the greatest negatively stable logic contained in each Li and

the logic (
∑
i∈I Li)ν is the smallest negatively stable logic containing each Li.

We are now going to present a different syntactical characterization of negatively
stable logics.

A L-formula ϕ is said to be essentially negative if every occurrence of a vari-
able in it is under the scope of some ¬ and we denote by EN the set of essentially
negative formulas. Moreover, we call any substitution σ an essentially negative
substitution if σ(VarL) ⊆ EN and we will usually indicate essentially negative
substitutions by σN !. Notice that the set EN of essentially negative formulas
can be defined as the smallest set of L-formulas containing the set of negative
formulas N and closed under the following set of connectives: {∧,∨,→}. Equiv-
alently, every essentially negative formula ϕ is of the form ψ(¬ξ1, . . . ,¬ξn) for
some L-formulas ψ(p1, . . . , pn), ξ1, . . . , ξn. Therefore, any substitution instance
σ(ϕ) of an essentially negative formula ϕ is still essentially negative. Further-
more, notice the following feature of essentially negative formulas:

Lemma 6.2. Let ϕ be an L-formula. Then ¬ϕ↔ ¬(ϕnn) ∈ Int. Therefore, if
ϕ is an essentially negative formula, ϕ↔ ϕnn ∈ Int.

Proof. We proceed by induction on ϕ. Since ¬γ ↔ ¬¬¬γ ∈ Int, the claim holds
for p ∈ VarL and ϕ ∈ For¬L. So, let ϕ := η ◦ δ where ◦ ∈ {∧,∨,→}. Notice
that since, for any L-formulas ξ and ψ, (ξ → ¬ψ) ↔ ¬(ξ ∧ ψ) ∈ Int, it suffice
to show that both

¬(¬(η ◦ δ) ∧ (η ◦ δ)nn) ∈ Int and ¬(¬((η ◦ δ)nn) ∧ (η ◦ δ)) ∈ Int.

By using the induction hypothesis, it can immediately seen that both formulas
belong to Cl and thus they also belong to Int by Glivenko’s Theorem. Fur-
thermore, if ϕ is essentially negative, then ϕ is of the form ϕ′(¬ξ1, . . . ,¬ξk) for
some L-formulas ϕ′(p1, . . . , pk) and ξ1, . . . , ξk. Since, for each i ≤ k, we have
¬ξi ↔ ¬(ξnni ) ∈ Int, the equivalence ϕ↔ ϕnn ∈ Int holds by the Replacement
Theorem.

3Recall that a closure operator on a given a partially ordered set 〈W,≤〉 is any mapping
c : W →W satisfying, for all u, v ∈W , the following properties:

(i) u ≤ c(u) (Extensivity)
(ii) u ≤ v =⇒ c(u) ≤ c(v) (Monotonicity)
(iii) c(u) = c(c(u)) (Idempotency)

4Cfr., for instance, [20, Theorem 5.2].
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Definition 6.6. Let L be an intermediate logic. We say that L is essentially
negative determined if the following holds for every L-formula ϕ:

σN !(ϕ) ∈ L, for every essentially negative σN ! =⇒ ϕ ∈ L.

It then follows that an essentially negative determined intermediate logic L
is a logic whose set of essentially negative theorems “determines” the set of all
theorems of L. Now the next theorem (cfr. [119, Theorem 3]) provides the
syntactic characterization of negatively stable logics mentioned before.

Theorem 6.3. Let L be an intermediate logic. Then L is negatively stable iff
L is essentially negative determined.

Proof. (=⇒) Suppose that L is stable and let ϕ be such that σN !(ϕ) ∈ L for
every σN !. Now notice that, since ¬¬p ↔ p ∈ Ln, every substitution σ is
equivalent in Ln to σN !, for some essentially negative substitution σN !. Thus,
σ(ϕ) ∈ Ln for every substitution σ, and, consequently, ϕ ∈ Lns = Lν = L.
(⇐=) Suppose that L is essentially negative determined and let ϕ ∈ Lν . So,
σ(ϕ) ∈ Ln, for every substitution σ, and, in particular, σN !(ϕ) ∈ Ln, for every
essentially negative substitution σN !. Hence (σN !(ϕ))n ∈ L by definition of
Ln and (σN !(ϕ))nn ∈ L, since L is closed under substitution. But then, since
σN !(ϕ) is essentially negative, we have σN !(ϕ) ↔ (σN !(ϕ))nn ∈ Int by Lemma
6.2. Therefore σN !(ϕ) ∈ L and, consequently, ϕ ∈ L.

We are now going to introduce a particular class of Kripke frames that,
as we shall see, are directly connected with the stability property previously
introduced.

Definition 6.7. Let F = 〈W,R〉 be a finite Kripke frame. We say that F is
coatomistic if F satisfies the following condition:

¬(xRy) =⇒ max(Fy) * max(Fx), (c-A)

for every points x, y in W .

Since, for every frame F = 〈W,R,P〉, we have xRy =⇒ max(Fy) ⊆ max(Fx),
it follows that in coatomistic frame the position of every point is determined by
the set of the maximal points above it5.

Theorem 6.4. Let L = LogK be an intermediate logic and suppose that each
F ∈ K is a finite coatomistic frame. Then L is negatively stable.

Proof. Suppose ϕ(p1, . . . , pn) /∈ L. Then there exists a finite coatomistic frame
F = 〈W,R〉 ∈ K refuting ϕ under some valuation V. For every point x in F,
let qx be a new variable and extend the valuation V to these new variables by
letting

V∗(qx) = max(F) ∩W \ x↑,
5The adjective “coatomistic” comes from lattice and order theory. Indeed, in a poset

〈P,≤〉 with greatest element 1, a coatom is an element covered by 1 and 〈P,≤〉 is said to be
coatomistic if every elements p ∈ P is the greatest lower bound of a set of coatoms. In general,
every poset 〈P,≤〉 such that every elements p ∈ P is the greatest lower bound of the maximal
elements above it is coatomistic.
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that is V∗(qx) is the set of the maximal points in F which are not accessible
from x. Now, consider a point y in F. Then, by definition of V and the fact
that F satisfies (c-A), we have

y |= ¬qx ⇐⇒ max(Fy) ⊆ max(Fx)
⇐⇒ y ∈ x↑.

and thus we have, for every pi ∈ VarL,

V∗(
∨

x∈V(pi)

¬qx) = V(pi).

Now, define the substitution σ as follows: for each i ∈ {1, . . . , n},

σ(pi) =
∨

x∈V(pi)

¬qx.

Since V(pi) is finite, σ is a well-defined essentially negative substitution such
that V∗(σ(ϕ)) = V(ϕ). Consequently, σ(ϕ) /∈ L, L is essentially negative
determined and so negatively stable by Theorem 6.3.

The previous theorem is particular interesting since it allows us to easily
exhibit a pletora of intermediate negatively stable logics. Indeed, we have the
following

Corollary 6.5. The following intermediate logics are negatively stable:

• Intuitionistic logic Int;

• the logics of bounded branching Tn(n ≥ 1);

• Medvedev’s logic ML.

Proof. Just notice that every Jaśkowski’s frame Jn
6, every n-ary tree (n > 1)

and each Medvedev frame Pn are finite coatomistic frames and the class of such
frames respectively characterize Int, Tn(n ≥ 1) and ML.

6.1.1 Other negatively stable logics: the logic of rhom-
buses and their variants

Another interesting example of a stable logic is the logic of rhombuses RH,
introduced by Maksimova in [106], which is defined as the logics of the class of
the frames Rn, for n < ω, defined as follows:
for every n < ω, let us consider the subset N = {1, . . . , n + 1} ⊆ N of natural
numbers with the restriction of the standard linear ordering on N and, for every
1 ≤ i ≤ j ≤ n+ 1, consider the intervals [i, j] = {m ∈ N | i ≤ m ≤ j}; then the
Kripke frame Rn = 〈Wn, Sn〉 is the frame such that

Wn = {[i, j] | i, j ∈ N, i ≤ j}
[i1, j1]Sn[i2, j2] ⇐⇒ [i1, j1] ⊇ [i2, j2]

6Cfr. the footnote 7 in Chapter 3.
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For instance, the RH-frames R1, R2 and R3 are respectively as follows:

Figure 6.1: The RH-frames R1, R2 and R3.

By letting R = {Rn |n < ω}, it is immediate to see that RH := LogR
is a finitely approximable intermediate logic with the disjunction property and
such that S + T2 ⊆ RH. Furthermore, since every Rn is a coatomistic frame,
it follows immediately from Theorem 6.4 that

Corollary 6.6. RH is negatively stable.

The logic RH has been introduced in order to provide a counterexample to
the maximality of T2 as a constructive logic and it has also been considered as a
potential candidate for that rôle (cfr. [22, §2.2]). However, such a conjecture has
been falsified by Ferrari and Miglioli who, in [47], showed that RH is actually
properly contained in another constructive logic.

We are now going to define a sequence of logics that are characterized by
frames which arise as a variation on the construction of the frames for RH. Let
us fix some positive natural numbers m ≥ 1 and consider, for every n < ω, the
subsets Nm

n = {1, . . . , (n ·m) + 1} ⊆ N of natural numbers with the restriction
of the standard linear ordering on N. Then we define the frame Rm

n to be the
pair

Rm
n := 〈Wm

n ,⊇〉,

where

Wm
n = {[i, j] | i, j ∈ Nm

n , j = i+ (m · k) for some 0 ≤ k ≤ n}.

Finally, we let

Rm = {Rm
n |n < ω} and RHm = LogRm.

In what follows, some examples of RHm-frames for m ∈ {2, 3, 4} are depicted.

a a b b

c c

Figure 6.2: The RH2-frames R2
2 and R2

3.
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a a b b

c c

Figure 6.3: The RHm-frames R3
2 and R4

1.

Notice that, form = 1, the frames in Rm coincide with the frames in R, that
is, we have RH1 = RH. Furthermore, each consideration we made concerning
RH can be made identically for every RHm. In particular, for every m ≥ 1 and
every n < ω, the frame Rm

n ∈ Rm is coatomistic and since every logic RHm is
finitely approximable by definition, we have

Proposition 6.7. For each m ≥ 1, the logic RHm is a finitely approximable
constructive negatively stable intermediate logic containing the logic S + Tm+1.

We are now going to show that the logics RHm form a sequence of logics
such that, for each m > 0, RHm+1 ( RHm. In order to show that fact, we
prove the following

Lemma 6.8. For each m > 0 and each n < ω, the frame Rm
n is a p-morphic

image of the frame Rm+1
n .

Proof. Let an arbitrary m > 0 be fixed. We are going to recursively define a
uniform algorithmic procedure that reduces Rm+1

n to Rm
n for every n > 07 and

then prove by induction on n that it is indeed sound.
Consider Rm+1

n and let r be its root. By construction, we have that

d(Rm+1
n ) =n+ 1;

|max(Rm+1
n )| = |(Rm+1

n )=1| = ((m+ 1) · n) + 1;
|(Rm+1

n )=k+1| = |(Rm+1
n )=k| − (m+ 1).

So, r has exactly m+2 immediate successor and we let w ∈ r> be the rightmost
one. Then w↑ is a generated subframe of Rm+1

n isomorphic to Rm+1
n−1 and thus

we can apply our reduction procedure to w↑. Then w↑ reduces to Rm
n−1 and we

can consider the frame Rm+1
n [w↑/Rm

n−1], which looks like as follows:

7Indeed, notice that, for any k > 0, the frames Rk
0 are isomorphic to the one-point frame

1 and thus we can skip the case n = 0.
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21 31
. . . . . . . . .

22 32

. . .
Rm
n−1

...
... . . . ... ...

...
2n−1 3n−1

. . . . . .

. . .
w

r

Now, for each layer k ≤ n of Rm+1
n [w↑/Rm

n−1], beginning from k = 1 and going
down until k = n following the natural progression, identify the elements 2k and
3k, that is, the second and the third element of (Rm+1

n [w↑/Rm
n−1])=k starting

from the left. The resulting reduced frame is then isomorphic to Rm
n .

Let us check, by induction on n ≥ 1, that our algorithm is sound and that
the obtained frame is indeed isomorphic to Rm

n . For n = 1, notice that our
algorithm boils down to the identification of the maximal points 21 and 31 of
Rm+1

1 . The previous identification is a β-reduction and the reduced frame is
nothing but r with m + 1 immediate successor, which is indeed isomorphic to
the frame Rm

1 . For the induction step, assume that our reduction procedure
works for n − 1 and let us prove that it is also sound for n. Consider again
the frame Rm+1

n [w↑/Rm
n−1] depicted above. By the induction step, it is indeed

a reduction of the frame Rm+1
n by Lemma 1.13. Then the identification of the

two maximal points 21 and 31 is again β-reduction and thus this step is sound.
Furthermore, notice that the cardinality of the maximal points in this reduced
frame, call it D1, is

|max(D1)| = |max(Rm+1
n )| − (|max(Rm+1

n−1 )− |max(Rm
n−1)|)− 1

= (m+ 1)n− [(m+ 1)n−mn− 1]
= |max(Rm

n )|,

that is, D≤1
1
∼= (Rm

n )≤1. So assume that the identification of 2k and 3k is sound
for some arbitrary 1 < k < n and that D≤kk

∼= (Rm
n )≤k. Consider the points

2k+1 and 3k+1. They are the intervals [2, 2+m ·k] and [3, 3+m ·k] respectively.
Therefore, it follows that in Rm+1

n we have

2>k+1 ={2k, 2k + 1, . . . , 2k + (m+ 1)}
3>k+1 ={3k, 3k + 1 . . . , 3k + (m+ 1)},

where sk + c is the interval [s+ c, s+ (m · (k−1)) + c] for s ∈ {2, 3}. Now notice
that, since

|(Rm+1
n )=k| = |(Rm+1

n−1 )=k−1| = (m+ 1) + |(Rm+1
n−1 ))=k|,
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the m+1th-element of (Rm+1
n )=k coincide with the 1st-element of the generated

subframe (w↑)=k ∼= (Rm+1
n−1 )=k, and, in particular, we have that

2k + (m+ 1) = 2R
m+1
n−1

k

3k + (m+ 1) = 3R
m+1
n−1

k .

But then, since the elements 2R
m+1
n−1

k and 3R
m+1
n−1

k are identified inRm+1
n [w↑/Rm

n−1],
it follows that 2>k+1 = 3>k+1 in Dk. Hence the identification of the two points
is a β-reduction and thus the obtained frame Dk+1 is a sound reduction of Dk.
Finally, since

|D=k+1
k+1 | = |D

=k+1
k | − 1

= |D=k
k | − (m+ 1)− 1 = |(Rm

n )=k| −m
= |(Rm

n )=k+1|

and every element of D=k+1
k+1 has exactly m + 1 immediate successors, we have

D≤k+1
k+1

∼= (Rm
n )≤k+1. We can thus conclude that the frame Dn obtained as the

final step of our reducing procedure is a sound reduction of Rm+1
n isomorphic

to Rm
n , as we wanted8.

Since bbn+1 ∈ RHn but bbn+1 /∈ RHn+1, by the previous lemma we can
immediately infer that

Proposition 6.9. For each m > 0, RHm+1 ( RHm.

Finally, notice that
⋂

1≤m RHm is still a negatively stable logic and that
S ⊆

⋂
1≤m RHm. In [24], Ciardelli showed that Scott logic S is negatively

stable too. Moreover, both logics enjoy the disjuction property. We thus make
the following
Conjecture.

⋂
1≤m RHm = S.

6.2 Friedman logics in ExtInt
We are now going to see where Friedman’s logics are situated in the lattice of
all the si-logics ExtInt. First notice that, by Theorem 1.32, any Friedman logic
L include KP and thus we have a first lower bound on the family of Friedman
logics. As we shall see later on, this bound is not optimal and can be improved,
but let us now focus on the upper bound.

Consider the following sequence of L-formulas (k ≥ 1)

ndk = (¬p→ ¬q1 ∨ . . . ∨ ¬qk)→ (¬p→ q1) ∨ . . . ∨ (¬p→ ¬qk)

and define the logic ND to be the following intermediate logic:

ND = Int + {ndk | k ≥ 1}.
8The reader can also look at Figure 6.2 and 6.3, where the case for m = 2, 3 and n = 2 is

illustrated as follows: the identification of the points labelled by b is the induction step that
reduces the cone of the rightmost immediate successor of the root to the frame R2

1 and R3
1

respectively. Then the two β-reduction of the elements labelled by a and then by c give a
frame isomorphic to R1

2 and R2
2 respectively.
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Notice that every occurrence of a variable in ndk is under the scope of some ¬
and thus, for each k ≥ 1, ndk ∈ EN .

The logic ND has been introduced by Maksimova in [106] where it is also
proved that it has the disjunction property and is not finitely axiomatizable.
Thus it is clear that ND ( KP ( ML. Moreover, the logic ND has other
interesting properties as well. The following result is well known9:

Theorem 6.10. Let L be a decidable or finitely approximable si-logic and ϕ an
essentially negative L-formula. Then the logic L+ϕ is also decidable or finitely
approximable respectively.

As an immediate corollary of the previous theorem we get that ND is a
decidable intermediate logic with the finite model property. Furthermore, we
have the following normal form lemma for L-formulas in EN .

Lemma 6.11. Let ϕ be an essentially negative L-formula. Then ϕ is equivalent
in ND to a L-formula of the form ¬ξ1 ∨ . . . ∨ ¬ξk (k ≥ 1).

We are now ready to prove the following result of Maksimova [106] which
gives us the desidered upper bound on Friedman logics.

Theorem 6.12 (Maksimova). Let L be an intermediate logic with the disjunc-
tion property and such that ND ⊆ L. Then L is included in Medvedev’s logic
ML.

Proof. Suppose for reductio that there exists an intermediate logic L with the
disjunction property and such that ND ⊆ L * ML. Then there exists a formula
ϕ ∈ L\ML. Since ML is stable by Corollary 6.5, without loss of generality, we
can assume that ϕ is essentially negative. Now, since ϕ ∈ EN and ND ⊆ L, by
Lemma 6.11 it follows that ¬ξ1 ∨ . . . ∨ ¬ξm ∈ L \ML for some m ≥ 1. Since
L has the disjunction property, ¬ξj ∈ L for some j but then, by Glivenko’s
Theorem, ¬ξj ∈ML and thus ¬ξ1 ∨ . . . ∨ ¬ξm ∈ML, contradiction.

From the previous theorem and the fact that ND ( KP, it follows that any
Friedman logic is included in ML. Since Medvedev’s logic itself is Friedman,
the upper bound is thus optimal.

Remark 22. Notice that, since the inclusion ND ⊆ML holds, Theorem 6.12
tells us that Medvedev’s logic is in fact a maximal intermediate logic with the
disjunction property. Whether there exists a finitely axiomatizable maximal
intermediate logic with the disjunction property is still an open issue.

The following characterization of Medvedev’s logic is due to the Soviet logi-
cian L.A. Levin [98]:

Theorem 6.13 (Levin). Medvedev’s logic of finite problems ML coincides with
the set of L-formulas ϕ such that σ(ϕ) ∈ KP for every essentially negative
substitution σ. Formally,

ML = {ϕ ∈ ForL |σ(ϕ) ∈ KP, for every σ : VarL → EN}.
9Cfr. [23, Theorem 11.9 and Theorem 11.10] for a proof.
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Proof. Suppose that ϕ /∈ML. Then, by the proof of Theorem 6.12, we can find
an essentially negative substitution instance σ(ϕ) of ϕ such that σ(ϕ) /∈ ML.
Since KP ⊆ ML, it follows that σ(ϕ) /∈ KP. Conversely, let ϕ ∈ ML and
consider an essentially negative substitution σ. Since σ(ϕ) ∈ ML and ND ⊆
ML, by Lemma 6.11 we have σ(ϕ)↔

∨m
j=1 ¬ξj ∈ML. But then, by Glivenko’s

theorem, the fact that ML has the disjunction property and ND ⊆ KP, we
have that σ(ϕ) ∈ KP.

Notice that in the proof of the previous theorem the only assumption used
with respect to KP is the fact that ND ⊆ KP. Therefore, we can generalize
the previous theorem by substituting to KP any intermediate logic L such that
ND ⊆ L ⊆ML. In particular, we have the following

Theorem 6.14. Let L be an intermediate logic with the disjunction property
and such that ND ⊆ L. Then

ML = {ϕ ∈ ForL |σ(ϕ) ∈ L, for every σ : VarL → EN}.

Moreover, from the previous results, we also have

Corollary 6.15. Let L be an intermediate logic with the disjunction property
and such that ND ⊆ L. Then L ∩ EN = ML ∩ EN .

A fortiori, any Friedman logic also coincides with Medvedev’s logic on essen-
tially negative formulas. Now, let us improve such a coincidence by introducing
another set of L-formulas. Let EN ∗ be the smallest set of L-formulas extending
the set of the essentially negative formulas EN with the following condition

(*) if ϕ ∈ EN ∗ and ψ ∈ ForL, then ψ → ϕ ∈ EN ∗.

We are going to show that ML coincide with any Friedman logic on the set
EN ∗. Indeed, such a claim is an immediate consequence of the the following
useful lemma

Lemma 6.16. Let L be an intermediate logic with the disjunction property and
such that ND ⊆ L. If a rule r: ψ1, . . . , ψn

ϕ
is admissible in L, then r is

derivable in ML. Furthermore, if ϕ is essentially negative, then the converse
also holds.

Proof. By contraposition, suppose that the formula
∧
i ψi → ϕ /∈ ML. By

the fact that ML is structurally complete, it follows that there exists a sub-
stitution σ such that σ(ψi) ∈ ML for each i ∈ {1, . . . , n} and σ(ϕ) /∈ ML.
Since Medvedev’s logic is negatively stable, there also is an essentially negative
substitution τ such that (τ ◦ σ)(ϕ) /∈ ML. So, since by Theorem 6.12 L is
included in ML, we have that (τ ◦ σ)(ϕ) /∈ L. However, for each i ∈ {1, . . . , n},
(τ ◦ σ)(ψi) ∈ L by Theorem 6.14 and thus we can conclude that the rule r is
not admissible in L.
For the second part of the Lemma, assume that ϕ ∈ EN and suppose that the
L-formula

∧
i ψi → ϕ ∈ ML. Consider an arbitrary substitution σ and sup-

pose that σ(ψi) ∈ L for each i ∈ {1, . . . , n}. Then both σ(
∧
i ψi → ϕ) and the

σ(ψi)’s belong to ML and consequently we also have σ(ϕ) ∈ ML. But since
the set of essentially negative formulas is closed under substitution, it follows
that σ(ϕ) ∈ L by Corollary 6.15. Hence, by the arbitrariness of σ, we conclude
that r is admissible in L.
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Proposition 6.17. Let L be a Friedman logic. L ∩ EN ∗ = ML ∩ EN ∗.

Notice that the Scott axiom sa is a formula in EN ∗ which is a theorem of
Medvedev’s logic and thus, from the previous proposition, it follows that any
Friedman logic must be an extension of the logic SKP = Int + {sa,kp}10.

Admissible rules of KP

We are now going to introduce an operation on Kripke frames which has been
first taken into consideration by G. C. Meloni in [117].
Let two Kripke frames F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉 be given. The con-
nected product of F1 and F2 is the Kripke frame F1⊗F2 = 〈W1⊗W2, R〉 defined
as follows:

• W1 ⊗W2 = W1 ]W2 ] (W1 ×W2);

• for x, y ∈W , xRy ⇐⇒ (x, y ∈W1 and xR1y) or
(x, y ∈W2 and xR2y) or
(x = 〈u, v〉, y ∈W1 and uR1y) or
(x = 〈u, v〉, y ∈W2 and vR2y) or
(x = 〈u, v〉, y = 〈u′, v′〉 and uR1u

′, vR2v
′).

Clearly, if both F1 and F2 are rooted and w1, w2 are the roots of F1 and F2
respectively, then also F1 ⊗ F2 is rooted and 〈w1, w2〉 is its root. For instance,
the connected product of the two elements frame 1O with itself is the following
frame

〈1, a〉

〈1, b〉 〈2, a〉

〈2, b〉
1

2

a

b

Figure 6.4: The Kripke frame 1O ⊗ 1O.

Notice that, for each i ∈ {1, 2}, Fi is a generated subframes of F1⊗F2. The
following lemma states that the class KPfin of finite rooted frames for KP is
closed under ⊗. For the proof, cfr. [117] or [123, Lemma 2.1].

Lemma 6.18. Let F = 〈W,R〉 and G = 〈V, S〉 be two finite rooted Kripke
frames in KPfin. Then F⊗G also belongs to KPfin.

10Actually, any Friedman logic must be a proper extension of SKP, since such a logic is
not structurally complete as shown in [123].
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Notice that, as an immediate corollary of the previous lemma, we get another
proof of the fact that KP has the disjunction property. However, the main
reason we have introduced such a construction is to show the admissibility of
some interesting rules in KP. In particular, we have the following

Lemma 6.19. The following rules are admissible in KP:

(a) : (¬¬p→ p)→ p ∨ ¬p
¬p ∨ ¬¬p

(b) : (p→ q)→ (r ∨ s)
((p→ q)→ r) ∨ (¬p→ s)

Proof. (a) Notice that since the conclusion is an essentially negative formula
and sa ∈ML, such a rule is admissible in KP by Lemma 6.16.
(b) Suppose that for some L-formulas ϕ,ψ, γ and δ,

((ϕ→ ψ)→ γ) ∨ (¬ϕ→ δ) /∈ KP.

Since KP = LogKPfin, there exist finite rooted Kripke frames F = 〈W,R〉 and
G = 〈V, S〉 in KPfin and valuations V1 and V2 such that, for some points w ∈ F,
v ∈ G,

w |= ϕ→ ψ and w 6|= γ

v |= ¬ϕ and v 6|= δ.

Consider the model (F⊗G,V), given by the valuation V defined as follows: for
all p ∈ VarL, V(p) = V1(p)∪V2(p). Now, consider the point k = 〈w, v〉 ∈ F⊗G.
Clearly, we have k 6|= γ ∨ δ. Furthermore, if k 6|= ϕ → ψ, then there is a
point q ∈ k↑ such that q |= ϕ and q 6|= ψ. Then, if q ∈ F, w ≤ q and
consequently, by the monotonicity of the entailment, q |= ψ, which contradicts
the assumption. If q ∈ G, then v ≤ q and thus q |= ϕ ∧ ¬ϕ, contradiction.
Finally if q = 〈q1, q2〉 ∈ F × G, then q ≤ q2 and v ≤ q2 and consequently we
get again q |= ϕ ∧ ¬ϕ. Therefore k |= ϕ → ψ and thus k 6|= (ϕ → ψ) → γ ∨ δ.
So, since F ⊗ G ∈ KPfin, (ϕ → ψ) → γ ∨ δ /∈ KP and we conclude that (b) is
admissible in KP.

Corollary 6.20. The Kreisel-Putnam logic KP is not structurally complete.

Proof. By the previous lemma, the rule corresponding to the Scott axiom sa is
admissible in KP, however sa /∈ KP.

6.3 On Medvedev frames
Let us consider a Medvedev frame Pn = 〈P(n) \ {∅},⊇〉. Denote by W the
universe of Pn and, for every point U ∈ Pn, let xU be the principal upset U↑,
so that x{i} = {{i}}. The frame Pn is a n-generated frame, since the x{i}’s
generate every possible other upset of Pn. Indeed, since Pn is coatomistic, the
position of every point in Pn is determined by the set of the final points above
it and thus we have, for every U ∈ Pn,

xU = W \ (
⋃
i/∈U

x{i})↓. (α)
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Since Pn is finite, it follows that every upset V of Pn is a finite union of cones
and thus, for some subset Θ ⊆W , it has the form

V =
⋃
K∈Θ

xK =
⋃
K∈Θ

(W \ (
⋃
i/∈K

x{i})↓)11.

However, we can actually refine such result. So, let us take a closer look to Pn.

Lemma 6.21. For every n < ω, the Medvedev frame Pn is dlog2 ne-generated.

Proof. The set max(Pn) of final elements of Pn consists of the sigletons {i},
where i ∈ n = {0, . . . , n− 1}. Write each i ∈ n in binary notation, prefixing, if
needed, some 0’s, in order to have a blog2 nc+ 1-bit sequence as follows

i = 〈iblog2 nc+1, . . . , iblog2 ic+1 . . . , i1〉.

Now, for j ∈ {1, . . . , dlog2 ne}, define

Uj := {i ∈ n | ij = 1}

and consider the corresponding principal upset xUj of Pn. We are going to show
that the sets of upsets {xUj | j ∈ {1, . . . , dlog2 ne} is a generating set for P+

n .
Let f : Pn → F be a proper onto p-morphism. Since Pn is finite, by Lemma 3.2,
f can be written as the composition f1 ◦ · · · ◦fm of α- or β-reductions. Now, we
notice that, by the structure of Pn, any proper p-morphism must first identify
two distinct final points: hence fm has to be a β-reduction12. Now, let {i}, {k}
be distinct points of max(Pn) such that fm({i}) = fm({k}). Since i 6= k, we
have ij 6= kj for some j ∈ {1, . . . , dlog2 ne} and thus, without loss of generality,
we can assume that i ∈ Uj and k /∈ Uj . Hence {i} ∈ xUj

and {k} /∈ xUj
and,

consequently, col({i}) 6= col({j}). As f was arbitrary, we conclude that P+
n is

actually generated by the xUj
’s by the Colouring Theorem 3.313.

Due to the boolean structure of every Medvedev frame, we have the following
interesting property.

11In particular, by letting V be the valuation on Pn defined by V(pi) = x{i}, we have that
V can be defined through V by the Ln-formula

ϕV :=
∨

K∈Θ

¬(
∨
i/∈K

pi).

Notice that ϕV is an essentially negative formula.
12Here we are assuming n > 2, since, in such a case, a proper p-morphisms can begin with

an α-reduction too.
13By the remarks in the previous paragraph the set Θ = {x{i} | i ∈ n} generates P+

n , so,
in order to prove that {xUj

| j ∈ {1, . . . , dlog2 ne} generates P+
n , it is also possible to show

that each element x{i} ∈ Θ is definable directly from the xUj
’s by means of the set-theoretic

operations ∩,∪,⊃. For instance, for n = 8, one has

U1 = {1, 3, 5, 7}, U2 = {2, 3, 6, 7}, U3 = {4, 5, 6, 7},

and thus gets the upsets x{i} in the following ordered way:

(1) x{0} = W \ (xU1 ∪ xU2 ∪ xU3 )↓; (2) x{1} = W \ (xU2 ∪ xU3 ∪ x{0})↓;
(3) x{2} = W \ (xU1 ∪ xU3 ∪ x{0})↓; (4) x{3} = W \ (xU3 ∪

⋃
i∈{1,2,0} x{i})↓;

(5) x{4} = W \ (xU1 ∪ xU2 ∪ x{0})↓; (6) x{5} = W \ (xU2 ∪
⋃

i∈{1,4,0} x{i})↓;
(7) x{6} = W \ (xU1 ∪

⋃
i∈{2,4,0} x{i})↓; (8) x{7} = xU1 ∩ xU2 ∩ xU3 .
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Lemma 6.22. Let Pn be a Medvedev frame and let σ be a permutation of the
maximal elements of Pn. Then σ induces an automorphism jσ : Pn → Pn.

Proof. Let x ∈ Pn and define jσ by induction on d(x) as follows:

• if d(x) = 1, then let jσ(x) = σ(x);

• if d(x) = k + 1, then, whenever x ≺ U , we let jσ(x) = y if y ≺ jσ(U).

We now show, for each x, y ∈ Pn,

x ≤ y ⇐⇒ jσ(x) ≤ jσ(y).

(=⇒) If d(x) = 1, then x = y and jσ(x) = σ(x) = σ(y) = jσ(y). Now assume
that d(x) = k+ 1 and suppose that x < y. Then xl s ≤ y and the depth
of s is k. Thus, by induction hypothesis, jσ(s) ≤ jσ(y). Furthermore,
since s ∈ x> and x ≺ x>, by the definition of jσ we have jσ(x) ≺ jσ(x>).
Consequently jσ(s) ∈ jσ(x>) and jσ(x)l jσ(s) ≤ jσ(y).

(⇐=) Let jσ(x) ≤ jσ(y). If d(x) = 1, then σ(x) = σ(y) and thus x = y, since
σ is a bijection. So suppose that d(x) = k + 1. Let s be an immediate
successor of jσ(x) such that jσ(y) ∈ s↑. Since jσ(x) ≺ jσ(x>), we have
that s = jσ(q) for some q ∈ x>. Hence jσ(q) ≤ jσ(y) and by the induction
hypothesis we get q ≤ y. Hence xl q ≤ y.

Remark 23. Given a transposition (xy) of two maximal elements ofPn, we also
get an automorphism j(xy) : Pn → Pn. Furthermore, since every permutation σ
is a product of transpositions, we have jσ = jτm

◦ . . . ◦ jτ1 , where σ = τm . . . τ1.

Proposition 6.23. For every n < ω, the Medvedev frame Pn is regular injective
in DFML.

Proof. Since the frame Pn is a finite rooted frame in DFML and ML is struc-
turally complete, there exists an onto p-morphism h : FML(k) → Pn for some
k < ω, by Proposition 4.27. Furthermore, since max(Pn) = n, it must be the
case that k > dlog2 ne and consequently Pn is a generated subframe of FML(k)
by Lemma 6.21. Now, we show that, for all Q ∈ Pn ⊆I FML(k),

h(Q) = Q, (*)

by induction on the depth of Q. Using if necessary Lemma 6.22, (*) holds for
the final points of Pn, so let us assume by induction hypothesis that h(Q) = Q
for all Q ∈ Pn such that d(Q) = s < n. Let A be a point of Pn such that
d(A) = s + 1 and consider the set of immediate successor A> of A. Then,
A � A>↑ and, since p-morphisms preserve coverings, we have h(A) � h(A>↑).
Since, for all B ∈ A>↑, d(B) ≤ s, it follows by the induction hypothesis that
h(A) � h(A>↑) = A>↑. Finally, since for every Q ∈ Pn and ∆ ⊆ Pn, Q � ∆
implies

⋃
∆ = Q, we conclude h(A) = A. Being a retract of the k-canonical

frame, Pn is regular injective in DFML.

As an immediate consequence of the previous lemma, we have the following
result, for which we give also a direct proof.

Lemma 6.24. For every n ∈ ω, Pn is a retract of Pn+1.
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Proof. Clearly Pn ⊆I Pn+1. Define a retraction r : Pn+1 → Pn of the inclusion
map i : Pn → Pn+1 as follows: for each point U ∈ Pn+1,

r(U) =
{
U, if n /∈ U ;
(U \ {n}) ∪ {n− 1}, otherwise.

Then it is easily seen that r is a onto p-morphism and r ◦ i = 1Pn
.

The following lemma will also be useful in what follows.

Lemma 6.25. Let a Medvedev frame Pn, for some n ∈ ω, be given and let k ∈
ω. Then

⊎k−1
i=0 Pni ⊆I Pk·n and there exists an onto p-morphism f : Pk·n → Pn

such that f �Pni
= 1Pn

.

Proof. It is immediately seen that the disjoint union of k copies of Pn is a
generated subframe of Pk·n. In particular, for each i ∈ k, the root of Pni

is
taken to be the set rPni

= {i · n, (i · n) + 1, . . . , (i · n) + (n − 1)}. Now, let
f : Pk·n → Pn be defined as follows: for every A ∈ Pk·n,

f(A) = modn(A),

where modn(A) = {modn(i) | i ∈ A}. Let us show that f is a p-morphism. Let
A,B ∈ Pk·n and suppose first that A ⊇ B. Then clearly modn(A) ⊇ modn(B)
and so f is monotone. Now assume that f(A) ⊃ Q for some Q ∈ Pn. Then,
for C = {i ∈ A |modn(i) ∈ Q}, we have A ⊃ C and f(C) = Q. Consequently,
f is a p-morphism and, since f({0, . . . , (k · n)− 1}) = {0, . . . , n− 1}, f is onto.
Finally, notice that, for each i ∈ k, f(rPni

) = n and thus f �Pni
= 1Pn .

Let us focus on some p-morphic images of Medvedev frames. The following
is a well-known result due to Maksimova, Skvortsov and Shehtman [110].

Lemma 6.26. Let F be a finite rooted frame. Then, for some n < ω, there
exists a p-morphism from 1 ⊕ Pn onto 1 ⊕ F. Consequently, there exists a
p-morphisms from Pn+1 onto 1⊕ F.

Now consider a Medvedev’s frame Pn for some arbitrary n ∈ ω. Let us
identify the first two leftmost maximal point of Pn and denote by F0 := [Pn]
the resulting quotient frame and notice that max(F0) ∼= max(Pn−1). Now,
among the points in F=2

0 , we have exactly one point x with only one immediate
successor y and n − 2 pairs 〈ui, vi〉 of points that have the same immediate
successors. So, let F1 = [F0] be the quotient frame obtained by identifying x
and y and the points ui and vi for all i ∈ {1, . . . n−2}. Notice that F≤2

1
∼= P≤2

n−1
Now, consider the points in F=3

1 : there are n − 2 points xi that have only
one immediate successor yi and

(
n−2

2
)
pairs 〈ui, vi〉 of points that have the

same immediate successors. Again identify the xi’s with the yi’s and the ui’s
with the vi’s and denote by F2 = [F1] the resulting frame. Again notice that
F≤3

2
∼= P≤3

n−1. Proceeding in this fashion, we have that Fk has
(
n−2
k

)
points

of depth k + 2 with a single immediate successor and
(
n−2
k+1
)
pair of points of

depth k + 2 with the same set of immediate successors and F≤k+1
k

∼= P≤k+1
n−1 .

We exemplify the previous reduction procedure for the Medvedev’s frame P4.
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P4

F0

x1 u1 u2 v1 v2

y1

F1

x1 u1x2

y1

v1

y2

F2

y1

x1

By considering the previous reduction procedure, we notice the following
facts. First of all, we have Fn−2 ∼= Pn−1 ⊕ 1. Furthermore, when we get to
Fn−3, we can reduce the frame in the following three different ways:

(a) by identifying only the linear points that have only one immediate succes-
sors;

(b) by identifying only the points that have strictly more than one immediate
successors;
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(c) by identifying only 1 ≤ k < n − 2 of the n − 2 points that have exactly
one immediate successors and all the points that have strictly more than
one immediate successors.

The resulting quotient frames will be respectively isomorphic to the frames
P≤n−2
n−1 ⊕ (1 + 1)O, Pn−1

n−2 ⊕ 1 and Pn−1
k ⊕ 1, where Pn−1

k is the frame obtained
from Pn−1 by adding k linear points below the points in P=n−2

n−1 . For instance,
in the case n = 4, we get the following four frames

We summarize the previous considerations in the following

Lemma 6.27. For every n ∈ ω, k ≤ n− 2,

(i) Pn ⊕ 1 is a p-morphic image of Pn+1;

(ii) P≤n−1
n ⊕ (1 + 1)O is a p-morphic image of Pn+1;

(iii) Pn−1
k ⊕ 1 is a p-morphic image of Pn+1.

We remark that point (i) of the previous Lemma is nothing but a special
case of the following more encompassing result, first discovered by Grigolia14.

Lemma 6.28. Let F be a finite rooted frame. Then, Pn ⊕ F ∈ DFML, for
every n ∈ ω.

Proof. By Lemma 6.26, there exist an onto p-morphism g : 1⊕Pk → 1⊕ F, for
some k ∈ ω. We notice that, for every point u different from the root of an
arbitrary Medvedev frame, u↓ ∼= 1 ⊕ Pj , where j = d(u) + 1. Now, consider
the Medvedev frame P(k+1)+n and let w be a point in it such that d(w) = n.
Then we have w↑ ∼= Pn and w↓ ∼= 1⊕Pk. Let G ⊆I P(k+1)+n be the generated
subframe ofP(k+1)+n with domainW \w↓∪{w}. Since w↑ ⊆

I
G and w↑ is regular

injective in DFML by Proposition 6.23, there exists a retraction h : G → Pn.
Now, let j : P(k+1)+n → Pn ⊕ F be the function defined as follows:

14Private communication.
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j(u) =
{
h(u), if u ∈ G;
g(u) if u ∈ w↓ \ {w}.

It is not hard to show that j is actually a surjective p-morphism and, conse-
quently, Pn ⊕ F ∈ DFML.

Notice that every finite rooted frame F ∈ DFML is actually a p-morphic
image of some Medvedev frame Pn. Indeed, if F ∈ DFML, then the frame-
formula β(F,D\,⊥) /∈ ML. Consequently, for some n ∈ ω, Pn 6|= β(F,D\,⊥)
and thus there exists an onto p-morphism f : Pm → F for some m ≤ n by
Theorem 4.15. So, as an immediate corollary of the previous lemmas, we get

Proposition 6.29. Let F be a finite rooted frame in DFML and G a finite
rooted frame. Then the frames F ⊕ G and F≤d(F)−1 ⊕ (1 + 1)O both belong to
DFML. Furthermore, if |F=d(F)−1| = k, then the frames F

j ⊕ 1, for j < k, also
belong to DFML.

Proof. Let us show the last part of the claim. Since F ∈ DFML, without loss of
generality, F is a p-morphic image of a Medvedev frame Pn such that each point
x ∈ Pn such that x 6= n is mapped to a point different to F’s root. Therefore,
if |F=d(F)−1| = k, it must be the case that n ≥ k. Now, for every choice of
j < k points of F=d(F)−1, we can pick (possibly using Lemma 6.22) a sequence
of immediate successors of Pn’s root which are mapped bijectively onto the
selected points of F. Then it becomes clear that F

j ⊕ 1 is a p-morphic image of
the frame Pn

j ⊕ 1.

Notice that if d(F) > k, then we can relax the bound on j by letting j ≤ k.
For instance, by letting F be the 1-canonical Medvedev’s frame FML(1) (cfr.
the following section §6.4)

we get the following frames:

Figure 6.5: The derivatives of FML(1).
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However, we cannot always relax the bound, since, for each n ∈ ω, the frame
Pn

n ⊕ 1 does not belong to DFML, as shown in the following

Proposition 6.30. For each n ∈ ω, Pn

n ⊕ 1 is not a p-morphic image of any
Medvedev frame.

Proof. Suppose on the contrary that f : Pj → Pn

n ⊕ 1 is an onto p-morphism.
Notice that j > n and, moreover, we can assume, without loss of generality,
that the root of Pj is the only point which is mapped to the root of Pn

n ⊕ 1.
Let a1, . . . , an be the immediate successors of Pn

n ⊕ 1’s root that have only one
immediate successor ordered from left to right and let Ui ∈ P=j−1

j be such that
f(Ui) = ai for each i ∈ {1, . . . , n}. Now, we distinguish two cases according to
whether n is even or odd. If n is even, then consider the points in Pj

A =
⋂

i∈{1,...,n
2 }

Ui and B =
⋂

i∈{n
2 +1,...,n}

Ui;

if n is odd, consider instead the following points in Pj

A =
⋂

i∈{1,...,bn
2 c+1}

Ui and B =
⋂

i∈{bn
2 c+1,...,n}

Ui.

First notice that, by the choice of the Ui’s and the fact that j > n, both A and
B are indeed points of Pj , that is, both sets are non-empty. Moreover, by the
structure of Pn

n ⊕ 1 and the fact that f is monotone, f(A) and f(B) are points
of Pn which are above or equal to the points

UA =
⋂

i∈{1,...,n
2 }

xi and UB =
⋂

i∈{n
2 +1,...n}

xi,

if n even, or above or equal to the points

UA =
⋂

i∈{1,...,bn
2 c+1}

xi and UB =
⋂

i∈{bn
2 c+1,...n}

xi,

if n is odd, where each xi is the point of Pn which is above ai. For instance,
the case n = 4 is depicted as follows:

x1 x3x2

UA

x4

UB

a4a2 a3a1

Now, notice that UA↑∩UB↑ = ∅ and, consequently, f(A)↑∩f(B)↑ = ∅. However,
again relying on the choice of the Ui’s and the fact that j > n, we have A∩B 6= ∅
and thus f(A ∩B) ∈ f(A)↑ ∩ f(B)↑, which is a contradiction.
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Let us now investigate some connections between Medvedev frames and
canonical formulas. First, notice the following

Lemma 6.31. Let F be a finite rooted frame, f : Pn → F a cofinal subreduction,
for some n ∈ ω, and let a ∈ max(F). Then there exists a cofinal subreduction
g : Pn+1 → F such that {n} ∈ g−1(a).

Proof. Since f is cofinal, there exists {i} ∈ max(Pn) such that {i} ∈ f−1(a).
Let g : Pn+1 → F be the composition f ◦ jτ ◦ r, where jτ : Pn → Pn is the
automorphism induced by the transposition τ = ({i}{n−1}) and r : Pn+1 → Pn

the retraction of Lemma 6.24.

Lemma 6.32. Let n, k ∈ N such that 0 < k ≤ n. Then k · 2(n−k)+1 ≤ 2n+1.

Proof. By double induction on n, k.

(n = 1) So k = n = 1 and the inequality holds.

(n = q + 1) For k = 1, we have that the inequality is true. Now, let k = s + 1
and assume that the inequality holds for k ≤ s. Then we compute

k · 2(n−k)+1 = (s+ 1) · 2(q−s)+1

≤ (s+ s) · 2(q−s)+1

= s · 2(q−s)+1 + s · 2(q−s)+1

≤ 2q+1 + 2q+1 = 2n+1

Proposition 6.33. Let F = 〈W,R〉 be a finite rooted frame. If β(F,⊥) /∈ML,
then P2|F| 6|= β(F,⊥).

Proof. By induction on |F|.

(|F| = 1) Then P2|F| = P2 ∼= (1 + 1)O is easily seen to be reducible to the one
point frame 1 ∼= F. Consequently P2|F| 6|= β(F,⊥) by Theorem 4.15.

(|F| = n+ 1) First notice that β(F,⊥) /∈ ML implies β(Fa,⊥) /∈ ML for each
a ∈W . Now, if F = G⊕ 1, then, since |G| = n, we have P2|G| 6|= β(G,⊥)
by induction hypothesis and thus P2|G| ⊕ 1 6|= β(F,⊥). Consequently,
P2|G|+1 6|= β(F,⊥) by Lemma 6.27 (i), hence also P2|F| 6|= β(F,⊥). So,
without loss of generality, we can depict F as follows:

F:
a1

. . .

aka2 a3
. . .

. . .. . .

a0

and we notice that k is such that k ≤ n. Since |Fai | ≤ (n − k) + 1, by
the induction hypothesis, P2(n−k)+1 6|= β(Fai ,⊥) for each i ∈ {1, . . . , k}.
Consequently, we get cofinal subreductions fi : P2(n−k)+1 → Fai

for each
i by Theorem 4.15 and we can consider each domfi as a subset of the
i − 1th Medvedev frame isomorphic to P2(n−k)+1 in the Medvedev frame
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Pk·2(n−k)+1 as in Lemma 6.25. Then we can define a cofinal subreduction
h from the Medvedev frame Pk·2(n−k)+1 onto F by letting

h(x) =


fi, if x ∈ domfi;
a0 if x↑ = Pk·2(n−k)+1 ;
undefined otherwise.

So, we have Pk·2(n−k)+1 6|= β(F,⊥) by Theorem 4.15 and thus also

P2n+1 = P2|F| 6|= β(F,⊥)

by Lemma 6.32.

6.4 On the canonical L-frames for Friedman log-
ics

Now let us turn back to Friedman logics and let L be any such intermediate
logic. Let us investigate the structure of F<∞L (n), for some n < ω. Recall that,
since L has the disjunction property, by Theorem 3.16 every canonical L-frame
FL(n) is rooted. Furthermore, notice that

Lemma 6.34. The three point frame (1 + 1)O belongs to DFL.

Proof. Consider the 1-canonical L-frame FL(1), which is rooted by the previous
remark. Let Ai, for i ∈ {0, 1, 2}, be the set of points of FL(1) which see respec-
tively both the final points and only one of the two point final points of FL(1).
Notice that each Ai is non-empty and

⋃
i∈{0,1,2}Ai = WL(1). Then, the map

h : FL(1)→
0

1 2

defined by letting h(x) = i⇐⇒ x ∈ Ai is a well defined onto p-morphism.

Proposition 6.35. Let F be a finite rooted frame and D a set of antichains in
F. If d = {a, b} ⊆ max(F) does not totally cover any point in F and d ∈ D,
then β(F,D,⊥) ∈ L.

Proof. Suppose for contradiction that β(F,D,⊥) /∈ L. Then, by Proposition
4.27, there exists a globally cofinal subreduction f : FL(k)→ F of the k-canonical
frame for L to F satisfying (CDC) for D for some k ∈ ω. Since f is cofinal,
let xa and xb be maximal point of FL(k) such that xu ∈ f−1(u) for u ∈ d. By
Lemma 6.34, there exists a point y ∈ FL(k) such that y ≺ {xa, xb}. Notice that
y ∈ domf↑ and d ⊆ f(y↑), consequently, y must belong to domf by (CDC).
But then d totally covers f(y), contrary to our hypothesis.

By the previous results, we have that the finite rooted frames in Figure 6.6
do not belong to DFL.

Lemma 6.36. Let L be an intermediate logic. Then SL ⊆ L⇐⇒ S /∈ DFL.
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S E R2

Figure 6.6: Three frames that are not in DFL.

Proof. It is well known that SL = Int + χS, where χS is the frame formula
for S. Therefore the following equivalence holds: SL ⊆ L ⇐⇒ χS ∈ L. Now,
if SL * L, then χS /∈ L and thus there exits a frame F ∈ DFL such that
F 6|= χS. By the refutability criterion for canonical formulas it follows that
S is a p-morphic image of a generated subframe of F and thus S ∈ DFL.
Conversely, if S ∈ DFL, then L ⊆ LogS. Since S 6|= χS, χS /∈ L and,
consequently SL * L.

Corollary 6.37. Let L be a Friedman logic. Then SL ⊆ L.

Let us partially investigate some points at finite depth of the n-canonical
frame of a Friedman logic L. Clearly, FL(n) is a generated subframe of FInt(n),
for each n < ω. In particular, we have FL(1) ⊆

I
FInt(1). Furthermore, since

the Scott frame S does not belong to DFL and FL(1) is rooted, it follows that
FL(1) must be a rooted generated subframe of the following frame

Figure 6.7: The frame D.

Moreover, we already know that L ⊆ ML and thus, for each n < ω, the
Medvedev frame Pn ∈ DFL. Now, notice that the frame P3 can be reduced
to the frame D by the following two steps of β-reduction

1

2

and, thus, it follows that D ∈ DFL too. Hence, we have the following

Proposition 6.38. Let L be a Friedman logic. The 1-canonical frame FL(1) is
isomorphic to the frame D of Figure 6.7.
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For n ≥ 2, we obtain F≤2
L (n) from F≤2

Int(n) by removing each point of depth
2 that has strictly more than two immediate successors, since, otherwise, the
frame E would belong to DFL. So, for instance, we have

p1, p2 p1 p2

p1 p2p2p1

Figure 6.8: The Friedman submodel M≤2
L (2).

Furthermore, by Lemma 6.21, we get the following

Proposition 6.39. Let L be a Friedman logic. For every n < ω, the Medvedev
frame P2n is a generated subframe of the n-canonical frame FL(n) for L such
that

max(P2n) = max(FL(n)).

Now, let us continue our inquiry on the points at finite depth of n-canonical
L-frames. Consider again the frame F≤2

L (2) with the following labelling of the
points

a b c d

4 6 8 105 7 9 11 12 13321

and let us focus on the points at depth 3. First of all, notice that there can
not be any points xA ∈ W=3

L (2) such that xA � A, where A ⊆ W≤2
L (2) is an

antichain such that A ∩W=1
L (2) 6= ∅, that is, containing points of both depth

1 and 2. Indeed, suppose otherwise and let A and xA be as claimed. Let
A=i = A ∩W=i

L (2) be the set of immediate successor of xA at depth i ∈ {1, 2}.
Then it follows that B = A=2↑ ∩max(FL(2)) is disjoint from A=1 and thus, by
identifying all the points in the sets A=1, A=2 and B, we reduce the frame xA↑
to the Scott frame S, which, by Proposition 6.35, does not belong to DFL. So,
we can limit ourselves to considering only antichains X ⊆ W=2

L (2) of points of
depth 2. Moreover, observe that there cannot be points of depth 3 covered by an
antichain X ⊆ {1, 2, 3, 9, 10, 11, 12, 13} such that {n,m} ⊆ X, where 1 ≤ n ≤ 3
and 9 ≤ m ≤ 13, because it is easily seen that such an upset would again be
reducible to the frame S. That being said, let us first consider the antichains
given by two points.
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There are
(13

2
)
possible combinations of two elements from W=2

L (2). Among
them, the combinations allowing the covering of an element are exactly those
contained in the following sets:

Θ1 = {{1, 2}, {1, 3}, {2, 3}},
Θ2 = {{4, 5}, {6, 7}},
Θ3 = {{n,m} |n ∈ {1, 2, 3},m ∈ {4, 5, 6, 7, 8}}
∪ {{9,m} |m ∈ {4, 5, 10, 11}}
∪ {{13,m} |m ∈ {6, 7, 10, 12}}.

In fact, there can not be point at depth 3 covered by a two-point antichain which
is not in

⋃3
i=1 Θi, since it can be shown that the principal upset generated by

such a point would be reducible to a frame that does not belong to DFL. For
instance, take the antichain {6, 11} and suppose there exists a point x{6,11} such
that x{6,11} � {6, 11}. Then, by identifying the final points b, c ∈ x{6,11}↑, we
get the frame R2, which, as we have already seen, does not belong to DFL.
So, for each A ∈ Θ1, we have a point xA ∈ W=3

L (2) such that xA � A and
xA↑ ∼= 1⊕ 2⊕ 1. For each A ∈ Θ2 there exists a point xA ∈ W=3

L (2) such that
xA � A and xA↑ ∼= 2⊕ 2⊕ 115 and, finally, for each A ∈ Θ3 there exists a point
xA ∈W=3

L (2) such that xA � A and xA↑ ∼= FL(1).
Now, regarding the points of W=3

L (2) covered by a three-point antichain,
first notice that the frames

1⊕ 3⊕ 1 P∗3

are actually Friedman-frames, since they can be obtained fromP3 by identifying
all the final points and only two final points respectively.
Remark 24. A beautiful and well-known result of Citkin states that an in-
termediate logic L is hereditarily structurally complete if and only if the finite
rooted frames of Figure 6.6 as well as the frame 1 ⊕ 3 ⊕ 1 and the following
penthagon frame

1⊕G

15Notice that the frames 1⊕ 2⊕ 1 and 2⊕ 2⊕ 1 belong to DFL. Indeed, just identify the
final points of the L-frames FL(1) in order to get 1⊕ 2⊕ 1, while by identifying all the points
in the principal upset generated by the rightmost point of depth 2 of P3 one gets 2⊕ 2⊕ 1.
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do not belong toDFL
16. Therefore, since 1⊕3⊕1 is actually a Friedman frame,

it follows that any Friedman logic is not hereditarily structurally complete. In
particular, the Medvedev’s logic ML is not hereditarily structurally complete.
Notice moreover that also the frame 1⊕G belongs to DFL for L Friedman by
Lemma 6.26.

Now, consider the following frame, called the butterfly,

0

31
2

54

Figure 6.9: The butterly frame B.

Notice that B ∼= P2
2 ⊕ 1 and, consequently, B does not belong to DFML.

Furthermore, we also have (cfr. Assertion 4.12 of [69])

Proposition 6.40. The butterfly frame B does not belong to DFL.

Proof. Suppose for reductio that B ∈ DFL. Since B is rooted and finite, it
follows by Proposition 4.27 that there exists a p-morphism h : FL(n)→ B from
the n-canonical frame FL(n) = 〈WL, RL,PL〉 for L onto B, for some n < ω.
Let us consider the final point a ∈ max(FL(n)) such that col(a) = 〈0, . . . , 0〉.
Then h maps a onto a final point of B, say h(a) = 5. Consider the set

A := (h−1(5) ∩max(FL(n))) \ {a}

and, for each i ∈ B, define the sets Ui as follows:

Ui := h−1(i) \A↓.

Then, each Ui is clopen inWL and, for j = 0, 3, we have Uj = ∅. Indeed, if U3 is
non-empty, let w ∈ U3 be maximal by Corollary 2.18. Then max(w) ⊆ h−1(5)∩
max(FL(n)). Since w /∈ A↓, it must be the case that max(w) = {a}, that is, a
is the only maximal point seen by w. So, there exists also a point v ∈ w↑ such
that vla. But then, by construction of FL(n), we have col(v) C col(a), which is
a contradiction. Now, let b ∈ max(FL(n)) be a point such that h(b) = 4. Then,
by the structure of FL(n), there exists a point c ∈ W=2

L such that c ≺ {a, b}
and h(c) = 2. Consequently, we have c ∈ U2 and thus Uj 6= ∅ for j = 1, 2.
Now, consider the generated subframe FL(n) \A↓ of FL(n). For each i ∈ B, Ui
is also a clopen subset ofWL\A↓ and thus, by Corollary 2.18, we can choose two
minimal points uj ∈ min(Uj) for j = 1, 2. Clearly, u1 and u2 are incomparable;
moreover, there are no points in FL(n) \ A↓ which are below both u1 and u2.

16In Citkin’s original paper [27], such a result is stated as a theorem without proof. In
[142], Citkin’s theorem is obtained as a corollary of an analogous result concerning hereditarily
structurally complete modal logics extending K4. A direct, self-contained proof of Citkin’s
theorem, based on Esakia duality and the method of subframe formulas, can be found in [16].
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Indeed, if w ∈ WL \ A↓ is such that wRLuj for j = 1, 2, then h(w) = 0, hence
w ∈ U0, contrary to the fact that U0 is empty. Thus, a fortiori, the frame
FL(n) \ A↓ can not be rooted. However, since A ( max(FL(n)), by Corollary
3.42 and Lemma 3.44, FL(n) \A↓ is regular injective in DFL and so, being the
retract of the rooted frame FL(n), FL(n) \A↓ is also rooted.

Finally, notice that the frame

a

b

does not belong to DFL, since a↑ \ b↓ has two minimums and thus it is not
a KP-frame. Therefore, there are

(13
3
)
possible three elements antichains of

elements from W=2
L (2) and those covering a point in W=3

L (2) are exactly the
ones that belong to the following sets:

Ψ1 = {{1, 2, 3}},
Ψ2 = {{a, 4, 5} | a ∈ {1, 2, 3, 9}}
∪ {{a, 6, 7} | a ∈ {1, 2, 3, 13}}

Ψ3 = {{a, b, 10} | a ∈ {4, 5}, b ∈ {6, 7}}
∪ {{a, 8, 11} | a ∈ {4, 5}}
∪ {{a, 8, 12} | a ∈ {6, 7}}
∪ {{10, 11, 12}}.

Again, there can not be any point at depth 3 covered by a three-point an-
tichain which is not in

⋃3
i=1 Ψi, since it can be shown that the principal upset

generated by such a point would be (reducible to) a frame that does not belong
to DFL. For each A ∈ Ψ1, we have a point xA ∈ W=3

L (2) such that xA � A
and xA↑ ∼= 1⊕ 3⊕ 1; for each A ∈ Ψ2, there is a point xA ∈W=3

L (2) such that
xA � A and xA↑ ∼= P∗3 and, finally, for each A ∈ Ψ3, there exists xA ∈W=3

L (2)
such that xA � A and xA↑ ∼= P3.

Lemma 6.41. For each w ∈ F=3
L (2), w has at most 3 immediate successors.

Proof. Let w ∈ F=3
L (2) and suppose that |w>| = k > 3. Let us distinguish

various cases depending on m = |max(w)|. First notice that m > 1, since there
are at most three distinct points of depth 2 with the same unique successor.

(m = 2) Then w> could be either a subset of {1, 2, 3, 4, 5, 9} or a subset of
{1, 2, 3, 6, 7, 13}. Indeed, w> = {1, 2, 3, 8} is not allowed, because w↑ \ d↓
has three minimums and thus w refutes kp. Without loss of generality,
we can assume that w> ⊆ {1, 2, 3, 4, 5, 9} := A, since the resulting frame
would be isomorphic. Now notice that, for each {m, 8} ⊆ U ⊆ A such
that |U | ≥ 4, where m ∈ {1, 2, 3}, it must be the case that n ∈ U ,
where n ∈ {4, 5}, otherwise the resulting generated subframe would not
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be prefinally connected and thus would refute the Scott axiom sa. But
then, it can be easily seen that w↑ would be reducible to the butterfly
frame and, consequently, w↑ /∈ DFL, contrary to w ∈ F=3

L (2). So, the
only possible choice for w> containing at least 4 points is as a subset
of {1, 2, 3, 4, 5} and thus it must contain at least two element of {1, 2, 3}
along with either 4 or 5. But then the resulting frame w↑ refutes kp, since
w↑ \ b↓ has at least two minimums.

(m = 3) There are 3 distinct pair of final points of w↑ and thus, by Proposition
4.27, each such pair Ai, (i = 1, 2, 3) has to cover a point xAi

∈ w>.
Consequently, w> must contain at least another point u distinct from the
xAi

’s. Since u can see at most 2 points, there is a final point v ∈ max(w)
which is not seen by u. Moreover, for some i, v /∈ Ai and thus it follows
that {u, xAi} ⊆ w↑ \ v↓, that is, w↑ \ v↓ has at least two minimums and
therefore w 6|= kp, contrary to the fact that w↑ is frame for L ⊇ KP.

(m = 4) In this case, due to Proposition 4.27, we have {n,m, 8, 10, 11, 12} ⊆
w>, for n ∈ {4, 5} and m ∈ {6, 7}. But then we have |min(w↑ \ d↓)| ≥ 3
and consequently w 6|= kp, contrary to the fact that w↑ is frame for
L ⊇ KP.

Therefore we conclude that there is no point w ∈ FL(2) of depth 3 with strictly
more than 3 immediate successors.

By the previous lemma, we have completely determined the points at depth
3 of the 2-canonical Friedman frame FL(2), whose principal upsets are depicted
in Figure 6.10. In particular, one can show that there are exactly 48 points in
F=3
L (2).
Someone could wonder whether Lemma 6.41 can be somehow generalized in

order to cover the case of points at arbitrary depth and of arbitrary n-canonical
frames. There seems to be no method for doing this task. For instance, notice
that there are points of depth 3 in the n-canonical frame FL(n) that can have
2n − 1 immediate successors, since, by Lemma 6.26, the frame 1⊕ (2n − 1)⊕ 1
belongs to DFML ⊆ DFL. Still, we can bound the cardinality of the set of
the immediate successors of some particular points using a technique of [110].

A frame F = 〈W,R,P〉 is said to be everywhere branching if every point
w ∈W \max(W ) has at least two immediate successors, or, equivalently, if no
point in W has only one immediate successor.

Lemma 6.42. Let F = 〈W,R〉 be a finite rooted everywhere branching frame
and assume that h : Pj → F is a p-morphism from the Medvedev frames Pj

onto F, for some j ∈ ω. Then, for each v ∈ W , there exists V ∈ Pj such that
h(V ) = v and |V | ≤ 2d(v)−1.

Proof. Consider an arbitrary point v ∈W . We proceed by induction on d(v).

(d(v) = 1) Since h is onto, there exists U ∈ Pi such that h(U) = v. Then, for
any V ∈ max(U), we have h(V ) = v and |V | = 1 ≤ 2d(u)−1.

(d(v) = n+ 1) Let U ∈ Pi be such that h(U) = v. Then the restriction
h �U↑ : Pk → Fv of h to U↑ is a p-morphism from a Medvedev’s frame Pk

onto the finite rooted everywhere branching frame Fv, for some k ≤ j. Let
v1 and v2 be immediate successors of v. By induction hypothesis, there
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exist U1, U2 ∈ Pk such that h(Ui) = vi and |Ui| ≤ 2n−1 for i ∈ {1, 2}.
Then, for V = U1 ∪ U2 ⊆ U , we have, for i ∈ {1, 2},

v = h(U)Rh(V )Rh(Ui) = vi,

and, since the vi’s are immediate successors of v, it must be the case that
h(V ) = v and |V | ≤ |U1|+ |U2| ≤ 2n = 2d(v)−1.

Corollary 6.43. Let the finite rooted everywhere branching frame F = 〈W,R〉
be a p-morphic image of a Medvedev frames Pj for some j ∈ ω. Then, for all
v ∈W , |v>| ≤ 2d(v)−1.

Proof. Suppose not, that is, there exists v ∈ W such that |v>| = k > 2d(v)−1.
By the previous lemma, v is the image (under some p-morphisms h) of a point
V in Pj such that |V | ≤ 2d(v)−1. Since h is a p-morphism, V must have at least
k immediate successors, but there are only

( |V |
|V |−1

)
= |V | < k of them.

Now, for any n < ω, consider the n-canonical frame FL(n) for L Friedman.
We say that a point w ∈ FL(n) is everywhere branching if the generated sub-
frame w↑ ⊆

I
FL(n) is everywhere branching. Then, relying on Corollary 6.47 of

the following Section 6.4.1, we can prove the following

Proposition 6.44. Let w ∈ F<∞L (n) be an everywhere branching point at finite
depth of the n-canonical frame FL(n) (n < ω) for a Friedman logic L. Then
|w>| ≤ 2d(w)−1.

Proof. Since w↑ ∈ DFML by Corollary 6.47, the frame formula β(w↑,D\,⊥)
does not belong to ML and, consequently, Pj 6|= β(w↑,D\,⊥) for some j ∈ ω.
Thus w↑ is a p-morphic image of some Medvedev frame Pk for some k ≤ j.
Since w↑ is a finite rooted everywhere branching frame, the result follows from
Corollary 6.43.

Finally, notice that the proof of Proposition 6.23 can be repeated words by
words in order to prove that

Proposition 6.45. For every n < ω, the Medvedev frame Pn is regular injective
in DFL.

6.4.1 Is Medvedev’s logic the only Friedman logic?
In the previous sections we have seen that any Friedman logic L coincides with
Medvedev’s logic ML on a large class of formulas. Furthermore, the analysis
on the canonical L-frames has not revealed any reason to think that L has to
be different from ML and that’s why we align ourselves with Grigolia [69] in
making the following
Conjecture. Medvedev’s logic ML is the only Friedman logic.

There are many ways one could possibly show that ML ⊆ L, for L Friedman.
For instance, one could prove that L has to be negatively stable. But that
is easier said than done, since there is actually no clue on how to define an
essentially negative substitution σ such that σ(ϕ) /∈ L for any L-formula ϕ /∈ L.
We think that the most straightforward way to prove the conjecture is to rely
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on the apparatus of canonical formulas. Indeed, by Theorem 4.17, if we show
that, for every finite rooted frame F and set of antichains D in F,

β(F,D,⊥) /∈ L =⇒ β(F,D,⊥) /∈ML, (?)

then we are done. Let us see what are the intricacies of this approach.
Suppose that β(F,D,⊥) /∈ L. Without loss of generality, we shall assume

that

(i) D has to be non-empty (since ML enjoys the disjunction property);

(ii) |max(F)| > 1 (by Lemma 6.26);

(iii) F is not of the formG⊕K for some finite rooted framesG,K (by Proposition
6.29).

Furthermore, we can also assume that (?) holds for all finite frames G and set
of antichains E in G such that d(G) < d(F) as inductive hypothesis.

Now, from the assumption, it follows that β(Fai ,D �Fai
,⊥) /∈ L for each

i ∈ {1, . . . , k}, where {ai}i∈{1,...,k}, k ≥ 2, is the set of immediate successor of
F’s root. Then, by induction hypothesis, it follows that the canonical formula
β(Fai

,D �Fai
,⊥) /∈ ML for each i ∈ {1, . . . , k} and, in particular, there are

globally cofinal subreductions fai
: Pji

→ Fai
satisfying (CDC) for D �Fai

for
some Medvedev frame Pji . Moreover, there is also a globally cofinal subre-
duction h : FL(k) → F of the k-canonical frame for L to F satisfying (CDC)
for D for some k ∈ ω. Now, the task should be that of constructing a cofinal
subreduction f of some Medvedev frame Pm onto F satisfying (CDC) for D
using the fai

’s as building blocks. Actually one can show that there is a cofinal
subreduction j : Pm → F satisfying (CDC) for

⋃
i∈{1,...,k}D �Fai

but there is no
clue on how to deal with closed domains d ∈ D \

⋃
i∈{1,...,k}D �Fai

. Of course
one should look at h and try to get some informations on it but there seems to
be no way to make any progress. The problem is that the fai

’s are completely
unrelated to h. Actually one can show that f and h coincide on the maximal
elements (which implies that closed domains d ⊆ max(F) are taken care of),
but nothing more.

Of course, the situation would be different, if the globally cofinal subreduc-
tion h were induced by a projective unifier σ of the antecedent of β(F,D,⊥): in
such a scenario, the inductive hypothesis would ensure the existence of points
xai ∈ FML(|F|) such that xai ∈ h−1(ai) for each i ∈ {1, . . . , k} and, conse-
quently, any point x ∈

⋂
i∈{1,...,k} xai↓ ∩ FML(|F|), which exists since FML(|F|)

is rooted, would be mapped to the root of F because of the fact that h satisfies
(CDC) for D and that {ai}i∈{1,...,k} can be assumed to belong to D.

It seems that the key to make progress is to find a way to relate the subre-
ductions in ML with that of L. For instance, notice that the following condition
would be sufficient in order to prove the conjecture:

( ¿ ) for every globally cofinal subreduction h : FL(k) → F of the k-canonical
frame for L to F satisfying (CDC) for D for some k ∈ ω, the restriction of
h to FML(k) is still a cofinal subreduction onto F satisfying (CDC) for D.

Let us try to prove ( ¿ ). Let h : FL(k) → F be a globally cofinal subreduc-
tion satisfying (CDC) for D for some k ∈ ω. Define h′ to be the restriction
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of h to domh \
⋃
b∈F\a↑ h

−1(b), where a is an immediate successor of F’s root.
Then h′ : FL(k) → Fa is a cofinal subreduction and, by the refutability cri-
terion for canonical formulas, we have FL(k) 6|= β(Fa,D �Fa ,⊥), under the
valuation V(pj) = WL \ h′−1(aj). Since V(pj) = VL(σ(pj)), where VL is the
canonical valuation and σ the substitution associated to h, it follows that the
substitution instance σ(β(Fa,D �Fa

,⊥)) /∈ L. Being L structurally complete,
there exists a substitution τ such that τ(σ(ψ)) ∈ L and τ(σ(pa)) /∈ L, where
ψ is the antecedent of the canonical formula β(Fa,D �Fa

,⊥). In particular,
by considering the p-morphism hτ : FL(s)→ FL(k) induced by τ , we have that
h◦hτ : FL(s)→ Fa is a globally cofinal subreduction satisfying (CDC) for D �Fa .
By induction hypothesis, the restriction of h ◦ hτ to FML(s) is again a cofinal
subreduction onto Fa satisfying (CDC) D �Fa

. Hence, by denoting by rML
the root of FML(s), it follows that hτ (rML) is a point in FML(k) such that
hτ (rML) ∈ h−1(a). But now we face some problems.

Firstly, what if a is the unique successor of F’s root? In such a case we can
assume without loss of generality (recall that ML is finitely approximable) that
there exists a point at finite depth x ∈ F<∞ML such that x ≺ y and y ∈ h−1(a).
Now, if x is not mapped by h to the root of F, we can extend h to a globally
cofinal subreduction h′ that maps x to F’s root, being {x} clopen. So we still
get a globally cofinal subreduction from FML(k) onto F satisfying (CDC) for D
(hence β(F,D,⊥) /∈ML), but the claim ( ¿ ) is not proved, since h′ is different
from h.

Secondly, even if F’s root a0 has more that one immediate successor, say
a>0 = {a1, . . . , an}, it could be the case that a>0 /∈ D. In such a case, there
is no guarantee that a point x ∈ FML(k) ∩

⋂n
i=1 h

−1(ai)↓ (which exists, since
FML(k) is rooted) belongs also to h−1(a0). Consequently, again, we can still
get a globally cofinal subreduction from FML(k) onto F satisfying (CDC) for D
(hence β(F,D,⊥) /∈ML), but we can not claim to have proved ( ¿ ).

So there seems to be no easy way to prove ( ¿ ) unless some further conditions
on the globally cofinal subreduction h are imposed. Nevertheless, taking into
consideration the previous remarks, we can prove the following

Proposition 6.46. Let F be a finite rooted everywhere branching frame and let
h be a globally cofinal subreduction from the k-canonical frame FL(k) for L, for
some k ∈ ω, onto F satisfying (CDC) for D where {a> | a ∈ F} ⊆ D. Then
the restriction of h to FML(k) is still a cofinal subreduction onto F satisfying
(CDC) for D.

Proof. Let us denote by a0 the root of F and proceed by induction on d(F).

(d(F) = 2) Notice that if |max(F)| > 2, then D = {a>0 }. Otherwise, let D 3
d ⊂ max(F) be different from a>0 and, for each d ∈ d, pick a maximal
point xd ∈ max(FL(k)) such that xd ∈ h−1(d). Since the Medvedev frame
x↑ whose maximal points are the xd’s is a generated subframe of FL(k),
we have h(x↑) = d↑, contrary to the fact that h satisfies (CDC) for D.
So, the only closed domain is a>0 and, reasoning as above, there exists a
point x ∈ FML(k) such that h(x) = a0. In particular, the restriction of h
to FML(k) is still a cofinal subreduction onto F satisfying (CDC) for D.

(d(F) = n+ 1) Let a>0 = {b1, . . . , bn}, for n > 1. Reasoning as in the case of ( ¿ )
above, we can find points xbi ∈ FML(k) ∩ h−1(bi) for each i ∈ {1, . . . , n}.
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Since FML(k) is rooted, there exists a point x ∈ FML(k) such that

x ∈
n⋂
i=1

bi↓.

But x ∈ domh↑ and h(x↑) ⊇ a>0 ↑, consequently x ∈ h−1(a0) by (CDC).
Thus the restriction of h to FML(k) is a cofinal subreduction onto F sat-
isfying (CDC) for D.

Corollary 6.47. Let L be a Friedman logic. For every k ∈ ω, the everywhere
branching points of finite depth of FL(k) coincide with those of FML(k), that is:

B(F<∞L (k)) = B(F<∞ML(k)),

where B(A) = {x ∈ A |x is everywhere branching}.

Proof. Since FML(k) ⊆
I
FL(k), the inclusion ⊇ is clear. So, let x ∈ B(F<∞L (k)).

Then x↑ ∈ DFL and, consequently, the frame formula β(x↑,D\,⊥) /∈ L. Then,
by Proposition 4.27 , there exists a globally cofinal subreduction h : FL(s)→ x↑
satisfying (CDC) for D\. Since x↑ is a finite rooted everywhere branching frame
and {a> | a ∈ x↑} ⊆ D\, by the previous Proposition the restriction of h to
FML(s) is still a cofinal subreduction onto x↑ satisfying (CDC) for D\. Hence,
by the refutability criterion for canonical formulas, β(x↑,D\,⊥) /∈ ML and
x↑ ∈ DFML. Therefore, we conclude that x ∈ B(F<∞ML(k)).

6.5 Some remarks on the decidability of the n-
letter fragment of Medvedev’s logic

The issue of the decidability of Medvedev’s logic ML is a major open problem in
the field of intermediate logics. The only direct try to settle the question seems
to be the one made by Dov Gabbay in [55]: in §6 he outlined a decidability
proof for ML, which, however, has been shown to be wrong by Skvortsov in
[147]. Since ML is finitely approximable by definition, to provide a recursive
axiomatization of ML would imply the decidability of ML. Still, very little is
known on the matter and the only significative result is the one by Maksimova,
Shetman and Skvortsov in [110], namely that ML is not finitely axiomatizable17.

Recently, Ciardelli [24], rediscovering some interesting results of Miglioli et
al. [119], has proposed a new line of investigation on the issue of the decidability
of ML which relies on Levin’s characterization of Medvedev’s logic. Let us
investigate the issue more deeply.

Definition 6.8. An essentially negative substitution σ : VarLn → EN is said
to be m-simple (m ∈ ω) if

σ(pi) =
∨
j∈m
¬pij , for every pi ∈ VarLn,

17Interestingly enough, Skvortsov [147] showed that the so-called logic of infinite problems
ML∞ = Log Pω , where Pω = 〈P(ω) \ {∅},⊇〉, is a recursively axiomatizable intermediate
logic included in ML. Therefore, one could try to prove the equality ML∞ = ML in order
to prove the decidability of Medvedev’s logic.
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and pik 6= pjl for every k, l ∈ m and i 6= j. Moreover, an essentially negative
substitution σ : VarLn → EN is said to be simple if σ is m-simple for some
m ∈ ω.

A simple EN -substitution is thus completely determined by the number m
of distinct propositional variables occurring in each disjunct and clearly, for
i ≤ j, a j-simple substitution σ : VarLn → EN is more general than a i-simple
substitution τ : VarLn → EN . Furthermore, notice the following easy

Lemma 6.48. For every EN -substitution τ : VarLn → EN , there exists a
simple EN -substitution σ that is more general than τ modulo ND-equivalence.

Proof. For every pi ∈ VarLn, τ(pi) is equivalent to some disjuctive formula∨
j∈ki
¬ξij , for some finite ki ∈ ω, by Lemma 6.11. Let k = max{ki}i∈n and

consider a k-simple substitution σ : VarLn → EN . Let θ : VarL → ForL be
the substitution defined as follows:

θ(pij) =
{
ξij if j ∈ ki,
> otherwise.

Then θ ◦ σ(pi)↔ τ(pi) ∈ ND, for every pi ∈ VarLn, that is τ �ND σ.

As an immediate consequence of the previous lemma, Levin’s characteriza-
tion of Medvedev’s logic can be refined as follows:

ML = {ϕ(p0, . . . , pn−1) ∈ ForL |σ(ϕ) ∈ KP, ∀ simple σ : VarLn → EN}.

Hence, the following question comes to mind:

(?) is it possible to find, for every n ∈ ω, a bound k(n) such that, given any
formula ϕ ∈ ForLn, ϕ ∈ML if and only if σ(ϕ) ∈ KP for a k(n)-simple
substitution σ : VarLn → EN ?

Of course a positive answer to the previous question would provide a decision
algorithm for Medvedev’s logic based on the decidability of KP and this is in
fact the line of investigation proposed by Ciardelli. Furthermore, both [24] and
[119] proved that for n = 1 such a bound exists and it is equal to 2. However,
a 2-simple substitution is not enough to deal with formulas with two variables,
since, as shown in [119, p. 556], there exists a L-formula ϕ(p0, p1) /∈ML such
that ϕ(¬p0

0 ∨ ¬p0
1,¬p1

0 ∨ ¬p1
1) ∈ KP.

In order to understand what is going on, let us see in detail why a 2-simple
substitution σ : VarL1 → EN suffices to deal with formulas in ForL1, while a
1-simple substitution is not enough. First, notice that (?) can be equivalently
restated in topological terms as follows:

(?∗) is it possible to find, for every n ∈ ω, a bound k(n) such that the continu-
ous p-morphism hσ : FML(k(n) · n)→ FML(n), induced by a k(n)-simple
substitution σ : VarLn → EN , is onto?

Consider the 1-simple substitution

σ1 : VarL1 → EN
p1 7→ ¬p1
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and let hσ1 : FML(1) → FML(1) be the induced p-morphism. As shown in the
following Figure 6.11, hσ1 is not surjective, since the point d cannot be in the
range of hσ1 . Indeed, if z ∈ h−1

σ1
(d), then z ∈ 2↓, since a /∈ V(p1) = {b};

moreover, since hσ1 is a p-morphism, there exists k ∈ z↑ such that k ∈ h−1
σ1

(b)
and, consequently, k /∈ 2↓. Thus, z ∈ {3, 5} and, by the monotonicity of hσ1 ,
we have d ≤ a, which is a contradiction.

1 2
p1

3 4

5

a b

p1

c d

e

Figure 6.11: The dashed lines represent the p-morphism
hσ1 : FML(1)→ FML(1).

Now, consider instead the 2-simple substitution

σ2 : VarL1 → EN
p1 7→ ¬p1 ∨ ¬p2

and let hσ2 : FML(2) → FML(1) be the induced p-morphism. In particular,
notice that we have

h−1
σ2

(V(p1)) = V(σ(p1))
= WML(2) \ (V(p1)↓ ∩V(p2)↓).

By the finiteness of FML(1) it is not hard to prove that hσ2 is surjective, as shown
in Figure 6.12. In this scenario, the point d can indeed be reached by hσ2 : since
7 ≺ {2, 3}, we have that 7 ∈ V(p1)↓ ∩V(p2)↓ and hσ2(7) � {hσ2(2), hσ2(3)} =
{a}. Furthermore, hσ2(7) 6= a, since otherwise, 7 ∈ h−1

σ2
(a) = h−1

σ2
(V(p1)) and,

consequently, 7 /∈ V(p1)↓ ∩ V(p2)↓, which is a contradiction. Therefore, the
only point that 7 can be mapped to is d.

What we have discovered from the previous analysis is the fact that diffi-
culties arise when points like d are concerned, that is, points that have a single
immediate successor. Let us call such points linear points. Moreover, when we
are dealing with the n-canonical FML(n) for n ≥ 2, there are other particular
points that need specific consideration, that is, points that have the same imme-
diate successors, like 6 and 6∗ in the 2-canonical frame FML(2) of Figure 6.12.
We call such points twin points. Finally we say that a point is critical if it is
either a linear point or a twin point.
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Now consider the 2-canonical frame FML(2) for Medvedev’s logic. Following
the analysis of the n-canonical Friedman frames of §6.4, we have seen that the
maximal depth of a linear point x ∈ FML(2) is 4, namely, x↑ ∼= FML(1) ⊕ 1,
while the maximal depth of a twin point is 3. Since the maximal depth of a
linear point in FML(1) is 2 and a 2-simple substitution was enough to cover it,
let us see if a 4-simple substitution σ induces an onto p-morphism hσ between
n-canonical frames for ML.

Let σ : VarL2 → EN be the 4-simple substitution defined as follows

σ(p1) =
∨

i∈{1,3,5,7}

¬pi, σ(p1) =
∨

i∈{2,4,6,8}

¬pi,

and let hσ : FML(8) → FML(2) be the induced p-morphism for which the fol-
lowing equalities hold:

h−1
σ (V(p1)) = WML(8) \

⋂
i∈{1,3,5,7}

V(pi)↓ (1)

h−1
σ (V(p2)) = WML(8) \

⋂
i∈{2,4,6,8}

V(pi)↓. (2)

Consider the following partial picture of FML(2) where all the critical points
are depicted (the linear points are red and the twin points blue).

p1, p2
1

p1
2

p2
3 4

p1
8

p2
10 12 149 11 13 15 16 177

p2
6

p1
5

18 19 20
p1

22 24 2521 23
p2

26 27

We are now going to prove that every critical point of FML(2) is in the range
of hσ. In particular, we show that, for every critical point x ∈ FML(2), there
exists a Medvedev frame Pj ⊆I FML(8) such that hσ(Pj) = x↑.

We proceed in the following manner. For every critical point x ∈ FML(2),
we draw the corresponding Medvedev frame Px

j that is purported to show the
claim: the label at the right of each point U ∈ Px

j expresses the point in FML(2)
on which U is mapped to by hσ, while the label above each point U ∈ max(Px

j )
expresses the set J ⊆ {1, . . . , 8} such that U ∈ V(pj) for each j ∈ J . For
instance, the case x = 5 can be shown simply like this:
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5

13|24
1

5|68
1

Indeed, the root of the above Medvedev frame (denote it by r) belongs to the set⋂
i∈{2,4,6,8}V(pi)↓ and thus hσ(r) /∈ V(p2) by (2); however r does not belong

to the set
⋂
i∈{1,3,5,7}V(pi)↓ and, consequently, hσ(r) ∈ V(p1) by (1). Since

the points above r are mapped by hσ onto 1, it follows that hσ(r) must be 5.
Furthermore, notice that, since hσ is a p-morphism, we need not to take into
consideration the critical points in the following set {5, 6, 8, 10, 20, 23}. Here is
a possible mapping of the critical points of FML(2).

7
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57|68
1
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13|24
1

57|2468
2
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1357|68
3
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7|2468
2
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25

1 1010

1|24
1

3|6
1

1357|8
3

26

20 820

5 8 8

1|24
1

8

8

28

3|68
1

7|2468
2

5|2468
2

27

23 1023

6 10 10

13|8
1

10

10

310

57|6
1

1357|4
3

1357|2
3

Table 6.1: The mapping of the critical points of FML(2).

As a consequence of the previous considerations, we can prove the following

Proposition 6.49. The continuous p-morphisms hσ : FML(8) → FML(2) in-
duced by the 4-simple substitution σ : VarL2 → EN is surjective.

Proof. Let us first show that every point of x ∈ F<∞ML(2) is in the range of hσ by
induction on d(x). By the previous considerations we can assume, without loss of
generality, that x is not a critical point. Of coursemax(FML(2)) ⊆ hσ(FML(8)),
so let d(x) be n+1. Since x ≺ {y1, . . . , yk}, (k > 1), by the induction hypothesis
there are points zi ∈ FML(8) such that hσ(zi) = yi for every i ∈ {1, . . . , k}. Since
FML(8) is rooted, we can pick a point z ∈

⋂
i∈{1,...,k} zi↓. Hence, hσ(z) < yi for

each i ∈ {1, . . . , k} and, consequently, hσ(z) ≤ x, because x is not a twin point.
Therefore, as hσ is a p-morphisms, there exists z′ ∈ z↑ such that hσ(z′) = x. So,
we have proved that F<∞ML(2) ⊆ hσ(FML(8)). But then FML(2) = hσ(FML(8)),
since F<∞ML(2) is dense in FML(2) and hσ(FML(8)) is closed in FML(2).

Corollary 6.50. The 2-letter fragment of Medvedev’s logic ML is decidable.

It is well known that, for the negatively stable logic Int, a 2-simple substi-
tution σ : VarLn → EN induces an onto p-morphims hσ : FInt(2n) → FInt(n)
for every n ∈ ω. This is possible because, for every finite frame F, the frame
(F + F)O ∈ DF Int and thus any linear point x ∈ FInt(n) can be shown to be
in the range of hσ as follows: choose carefully two isomorphic disjoint rooted
generated subframe Gi ⊆I FInt(2n), i ∈ {1, 2}, such that hσ(Gi) = y↑, where
x ≺ y; then by the choice of the Gi’s, one has that hσ((G1 + G2)O) = x↑.



192 CHAPTER 6. FRIEDMAN LOGICS

Of course the previous technique is not allowed in ML, since every frame
F ∈ DFML has to be prefinally connected. Furthermore, due to the connected
structure of FML(n), it seems plausible to suppose that, in order to cover, with
a simple substitution σ : VarLn → EN , a linear point x ∈ F<∞ML(n), at least
d(x) · 2 different maximal points are needed in the domain of hσ. This in fact
worked out well with FML(2), since the maximal depth of a linear point was 4.
However, we shall not expect that this works out with every FML(n) for n ≥ 3
for the following reason: Medvedev’s logic is finitely approximable but it is not
locally tabular. Consequently, for some n ≥ 2, the n-canonical frame FML(n)
will be infinite and thus, in FML(n+1), the upset VML(pi) will also be infinite,
since it is isomorphic to FML(n). Therefore, for every point x ∈ VML(pi)
at finite depth k, there will also be a linear point y ≺ x at depth k + 1. So
FML(n+1) will contain linear points at every possible depth and, if our previous
supposition is sound, there won’t be any simple substitution which induces a
p-morphism onto FML(n+ 1).



Appendix A

Is Medvedev’s logic the
logic of knowledge?

In [120] Miglioli and Usberti provide a philosophical analysis of the notion of
knowledge to arrive at a so-called “paradigm of logical validity” which, in the
end, turns out to be different from the classical and intuitionist ones. Let us
briefly recall their main ideas.

A.1 Miglioli and Usberti’s analysis of knowledge
The authors first start by stating two different and largely shareable theses
which they take for granted:

i/ If logic is understood as the theory of abstract laws of knowl-
edge, then a law of logic is a proposition that can be recognized
as true only by virtue of the meaning of the logical constants
it contains.

ii/ In turn, the meaning of the logical constants must be charac-
terized in terms of the notion of knowledge by explaining how
the knowledge of the truth of a complex proposition depends
on the knowledge of the truth of the propositions of which it is
composed. [120, p. 112]

Therefore, they conclude that the paradigm of logical validity they sought should
be extracted from a logical analysis of the notion of knowledge. Furthermore, in
order for such an analysis not to be circular, Miglioli and Usberti carefully decide
to involve a new notion, conceptually prior to that of knowledge. In particular,
the authors maintain that such a notion, say A, must share a common feature
with the notion of truth, namely its being independent of any cognitive domain:

We call “ modal ” such a role of the notions of truth and falsehood
which consists in marking that invariant feature enjoyed by all sen-
tences used to express knowledge or share information, to whatever
cognitive domain they belong to. [120, p. 113]
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Afterwards, Miglioli and Usberti realize that the notion of evidence, as it
is commonly understood and initially considered as a potential candidate for
A, is not suitable for that rôle, since it is sensitive to the context in which it
is used: the fact that having evidence for an empirical proposition ϕ does not
imply the truth of ϕ, whereas this usually holds when ϕ is a mathematical
proposition, means that the notion of evidence is indeed not invariant with
respect to different cognitive domains.

The authors thus distinguish two different notions of evidence that attain to
two different cognitive modalities which can be experienced towards the objects
of knowledge: given any proposition ϕ,

(A) a justification, or a possible evidence, for ϕ is anything that entitles a
fallible subject to assert ϕ;

(B) an evidence for ϕ is anything that entitles an omniscient observer to assert
ϕ.

The notion of justification, being fallible, allows one to fulfill the modal rôle
of the notion of truth and therefore to consider knowledge from a unitary point
of view, despite of the cognitive domain in which one is situated; the notion of
evidence, being infallible, can instead replace the notion of truth as a key notion
of the theory1.

Bearing in mind the traditional platonistic account of knowledge as “justi-
fied true belief”, Miglioli and Usberti propose the following as a first intuitive
conceptual analysis of the sentence “s knows that ϕ”:

s knows that ϕ ⇐⇒ (i) s believes that ϕ;
(ii) s has justifications for (believing that) ϕ;
(iii) s has evidences for (believing that) ϕ.

Since the notion of evidence introduced by Miglioli and Usberti has the same
properties of the notion of truth, the previous account of knowledge faces the
same problems of the traditional ones and, in particular, it is challenged by the
classical Gettier’s counterexamples. However, by taking into consideration the
Gettier cases, the authors pinpoint as a possible solution to such difficulties the
necessity of an inductive definition of the notion of knowledge:

It seems to us that Gettier’s counterexample highlights a deep
flaw of the traditional analysis, namely the fact that it tries to give
a definition of the notion “s knows that A” without analyzing the
internal structure of A. [. . .]

It seems to us that between the characterization given [as justified
true belief] and a desired adequate definition there must be the same
relationship as between the aristotelian definition [of truth] and the
one given by Tarski. [120, pp. 119, 120]

1Miglioli and Usberti clearly realize that, by making reference to the cognitive modality
of the omniscient observer, they reintroduced the classical notion of truth in their setting;
however, they explicitly state that such a “notion of truth does not play the rôle of the key
notion of the theory, as it does in the classical theory of the logical constant, but it has only
an explanatory function; explanatory of the concept of evidence.” [120, p. 117]
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So, Miglioli and Usberti continue their enquiry by giving a formal, induc-
tive characterizations of the relation (ii) and (iii) of the intuitive definition of
knowledge2.

Definition A.1. An assignment is any function a : VarL → P(O) associating
to each propositional variable p a finite non-empty set a(p) of (arbitrary) objects.

Given an assignment a, we can uniquely extend it to a function fa from the
set ForL of well-formed formulas to P(O) as follows:

• fa(⊥) = {⊥};

• fa(p) = a(p), for any p ∈ VarL;

• fa(ϕ ∧ ψ) = fa(ϕ)× fa(ψ);

• fa(ϕ ∨ ψ) = (fa(ϕ)× 0) ∪ (fa(ψ)× 1);

• fa(ϕ→ ψ) = fa(ψ)fa(ϕ).

We can think of the set fa(ϕ) as the set of justification for ϕ and we denote
by ϕ̂ any element of fa(ϕ). The requirement that a(p) is finite is due to the
fact that the class of the possible evidences for any given proposition has to
be controllable by an individual with finite capacities. Furthermore, notice
the constructive character of such a definition: for instance, a justification for
a disjunctive proposition ϕ ∨ ψ is defined as the disjoint union of the set of
justification for ϕ with that of ψ and is thus given by either a justification for
ϕ or a justification for ψ; a justification for an implicative sentence ϕ → ψ
is nothing but a function from the set of possible evidence for ϕ to the set of
possible evidence for ψ and embodies the idea of having a method to transform
every justification for ϕ into a justification for ψ.

The reader could be puzzled as to the case of negated sentences ¬ϕ, which,
as usual, are defined as ϕ→ ⊥. In particular, one could wonder why the class of
possible evidences for ⊥ is its own singleton. The reason for this choice is purely
technical and seems to be driven only to justify the following consequence: there
can be only one justification for a negated sentence ¬ϕ, namely the constant
function with value ⊥. Since the philosophical motivation given by the authors
is not completely coherent, let us examine the issue more deeply.

Miglioli and Usberti argue that the contradiction can either be characterized
as that thing for which there cannot be justifications, or as that thing for which
there cannot be evidence. Now, if the latter, then the set of possible evidence
for ⊥ must be non-empty (otherwise the two alternatives coincide). So, given
any assignment a, every ⊥̂ ∈ fa(⊥) must fail to be an evidence and therefore
the individual subject must always be able to say that this is in fact the case.
However, there is no a priori reason to think that a fallible subject can always tell
whether a justification is an evidence or a pseudo-justification and, consequently,

no subject would ever be able to assert a negated formula [ϕ→ ⊥],
since he would not be able to recognize a justification as a justifica-
tion of the contradiction. [120, p. 124]

2The relation (i) is taken as primitive since its study attain more to the domain of psy-
chology than to that of logic.
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Therefore, the only viable option is the first alternative, that is, the set of
justification for ⊥ is the empty set:

[t]his treatment has two notable consequences. Firstly, the class
of justification for a negated formula [¬ϕ] will contain exactly one
element: the constant function with value ∅ defined on the class of
justifications for [ϕ]. Secondly, a subject would never be wrong on
the fact that ⊥ express a contradiction: since there are no justifi-
cations for ⊥, a fortiori there can not be evidences for ⊥. [120, p.
124]

Finally, Miglioli and Usberti reckon that these two consequences could also be
obtained by defining the class of possible evidences for ⊥ as {⊥}, “provided that
this will always turn out to be a pseudo-justification (never an evidence)” [120,
p. 124].

Now, leaving aside the fact that this final choice is exactly the second re-
jected alternative, the careful reader will immediately recognize that the first
alternative has to be rejected as well: since there are no function with empty
codomain, there can not be justifications for negated sentences! So, a philo-
sophical motivation for the case of negated sentences is clearly missing.

One possible way to motivate the case of negated sentences is to claim that
any two distinct individual subjects s1 and s2 should share the same set of
justification for ⊥, since any two such justifications for ⊥ must ultimately be
the same. Usually, contradiction is taken to consist in an incongruity between
two or more propositions. However, in order to avoid any circularity, ⊥ has to be
taken as an explicit contradiction of the simplest syntactical form (for instance,
we can not have p ∧ ¬p as a definition of ⊥). Now, it can be the case that
a subject s has a pseudo-justification ϕ̂ for a contingent proposition ϕ that is
sound in itself: ϕ̂ could be logically deduced from another justification ψ̂ for ψ.
However, any justification ⊥̂ for ⊥ an individual subject s can have not only has
to be a pseudo-justification, but it has to be unsound in itself: it must contain
some errors, perhaps it boils down to a sort of paralogism. Consequently, it is
safely to suppose that s could be in principle be able to recognize the mistake.
Therefore, one could argue that justifications for ⊥ share this characteristic
feature and thus can be identified with one another: the set of justification for
⊥ would thus be a singleton. Leaving a question mark on this issue, let us move
on with the formal definition of evidence.

Definition A.2. Given an assignment a, a discrimination (relative to a) is a
function χa :

⋃
p∈VarL a(p) → 2 associating with each element p̂ of every a(p)

one of the two possible values 0 or 1.

A discrimination χa can uniquely be extended to a function from the set⋃
ϕ∈ForL fa(ϕ) of the justifications of any given formula as follows:

• χa(⊥) = 0;

• χa(〈 ϕ̂, ψ̂ 〉) = 1⇐⇒ χa( ϕ̂ ) = 1 & χa( ψ̂ ) = 1;

• χa(〈 ϕ̂, 0 〉) = 1⇐⇒ χa( ϕ̂ ) = 1;

• χa(〈 ψ̂, 1 〉) = 1⇐⇒ χa( ψ̂ ) = 1;
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• χa(ϕ̂→ ψ) = 1⇐⇒ ∀ϕ̂ ∈ fa(ϕ)(χa( ϕ̂ ) = 1 =⇒ χa(ϕ̂→ ψ(ϕ̂)) = 1).
In this setting, a justification ϕ̂ for ϕ is an evidence (relatively to χa) for

ϕ if χa( ϕ̂ ) = 1. Notice that a discrimination is nothing but the characteristic
function of the set of all possible given justification (relative to an assignment)
and thus formalize the idea that

it is not a intersubjective feature which makes justifications evi-
dences, but the objective fact that things really are as those justifi-
cations entitle one to believe. [120, p.125]

Finally, Miglioli and Usberti reckon that any explicit reference to the subject
s in the relation “s knows that ϕ” can be dispensed with, since one can assume
that a given class of justification fa(ϕ) canonically represents a class of subjects:

speaking of a justification for a given sentence is thus making
implicit reference to the subject(s) that use(s) it. [120, p.125]

Here is thus the final definition proposed by the authors in order to concep-
tually describe the relation of knowing something:

s knows that ϕ ⇐⇒ (i) s believes that ϕ;
(relative to a and χa) (ii) there exists a justification ϕ̂ for ϕ;

(iii) ϕ̂ is an evidence for ϕ.

A.2 Medvedev’s logic as a paradigm of logical
validity

Having completed the task of giving an adequate definition of knowledge, Migli-
oli and Usberti continue their investigation on the paradigm of logical validity.
In particular, alongside with the distinction between justification and evidence,
they introduce the distinction between the epistemic content and the meaning
of a sentence.

Very roughly, the epistemic content of a sentence can be con-
ceived as what it means for an epistemically limited subject, the
meaning as what it means for the omniscient observer. [. . .] it is
natural to identify the epistemic content of a sentence with the class
of its justifications, its meaning with the class of the evidences for
it. [120, p.127]

In the formal setting, by fixing an assigment a one thus assigns epistemic
contents to formulas, while by fixing a discrimination χa one can specify their
meanings. Therefore, as a consequence of (i/ ), a logical law is a law which
can be perceived as true by only virtue of the epistemic content of the logical
constants it contains. So, in order to capture the notion of a logical law, Miglioli
and Usberti propose the following
Definition A.3. Let an assignment a be fixed. A formula ϕ is said to be
cognitively evident (relatively to a) if and only if there exists a justification ϕ̂
which is an evidence for ϕ relatively to every discrimination χa. Formally, by
letting Ea := {ϕ |ϕ is a-cognitively evident}, we have

ϕ ∈ Ea ⇐⇒ ∃ϕ̂ ∈ fa(ϕ)∀χa (χa( ϕ̂ ) = 1). (A.1)
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Definition A.4. A formula ϕ is said to be constructively logically valid if and
only if it is cognitively evident relative to every possible assignment. Formally,
by letting C := {ϕ |ϕ is constructively logically valid}, we have

ϕ ∈ C ⇐⇒ ∀a ∃ϕ̂ ∈ fa(ϕ)∀χa (χa( ϕ̂ ) = 1). (A.2)

Notice the two universal quantifiers in (A.2). Starting from the right, we
have a first generalization on the class of discriminations (given an arbitrary
assignment). As was said above, when we fix an assignment a, we assign a spe-
cific epistemic content to formulas. Consequently, if there exists a justification
ϕ̂ for a formula ϕ which turns out to be an evidence no matter how things in
the universe are, then such a formula ϕ would express a truth in the specific
cognitive domain pictured by a. Here we have thus a first level of validity:

it is clear that the knowledge we have about [a specific field] is neither
a logical truth nor is it dependent on a single discrimination. It
seems reasonable to understand it as related to the epistemic content
assigned to the constant of [this field]. Cognitive evidence can thus
be proposed as an alternative to the classical notion of validity in a
theory. [120, p.128]

Finally, the second universal quantifier represents a generalization about the
class of assignments. Thus, by abstracting from any possible specific epistemic
content, a second level of validity is reached which would coincide with the
logical one.

The reader familiar with the work of the Soviet logician Juri T. Medvedev
will immediately recognize that, given an assignment a, the set of justifications
fa(ϕ) for ϕ is nothing but the set admissible possibilties for the finite problem
ϕ in Medvedev’s formalization of Kolmogorov’s interpretation of intuitionistic
logic as a calculus of problem. Furthermore, by considering the restriction of a
discrimination χa to the set of justification fa(ϕ), we get a characteristic func-
tion for fa(ϕ) which identifies the set of justifications for ϕ which are evidences:
the set {ϕ̂ |χa( ϕ̂ ) = 1} can therefore be identified with Medvedev’s set of solu-
tion for the finite problem ϕ. Finally, Medvedev’s identically solvable formulas
coincide with constructively logically valid formulas, so Miglioli and Usberti’s
approach toward knowledge turns out to be equivalent to Medvedev’s account
for specifying a calculus of problem and we have that the class C coincides with
Medvedev’s logic ML.

A.3 Minimal adequate conditions for the logic
of knowledge

On the ground of their analysis of the notion of knowledge, Miglioli and Usberti
identify the logic of knowledge with Medvedev’s logic of finite problems ML.
However, it might be the case that a different characterization K of the relation
“s knows that ϕ” yields a different logic LK. If we assume that all the axioms of
intuitionistic logic are reasonable principle of knowledge, then every such logic
would be both an extension of intuitionistic logic Int and a proper sublogic of
classical logic Cl and thus it would be an intermediate logic. Is it possible to
pinpoint any specific feature that such a logic must possess? Is there a set of
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minimal adequate conditions that a logic should have to be called the logic of
knowledge? And if it is so, does such a set identify a unique logic?

A.3.1 The disjunction property
On the basis of Miglioli and Usberti’s account of knowledge, we have the fol-
lowing equivalence:

s knows that ϕ ∨ ψ ⇐⇒ s knows that ϕ or s knows that ψ. (D)

The previous equivalence entails on the logical level that the logic C enjoys
the disjunction property and it is straightforward to see that if a given account of
knowledge K enjoys (D), then the corresponding logic LK enjoys the disjunction
property.

Now, (D) seems to be a natural requirement as to an explication of the
disjunction and it is fairly plausible to assume that any characterization of
knowledge would satisfy (D). Indeed, since the direction (⇐=) is obvious, any
possible counterexample to (D) must provide a situation in which a subject s
knows a disjunctive fact ϕ ∨ ψ without knowing either ϕ or ψ. Moreover, such
a counterexample can not rely on the principle of excluded middle (or on any
principle classically equivalent to it) and it is thus really hard to formulate it.
Consequently, we can assume that the logic of knowledge enjoys the disjunction
property.

Is the disjunction property a sufficient criterion in order to identify the logic
of knowledge? It is a well known fact that there exist a continuum of inter-
mediate logics with the disjunction property, however, as Miglioli and Usberti
notice,

from this standpoint, it is clear that any constructive logic (that is,
with the disjunction property) that contains any other constructive
logic would be the logic we sought. [120, p.129]

As Miglioli and Usberti sadly reckon, such a maximum constructive logic
does not exist. However, among the continuum-many maximal intermediate
logics with the disjunction property, maybe it is still possible to identify the
logic of knowledge. In particular, Theorem 6.12 tells us that Medvedev’s logic
is maximal with respect to the intermediate logics with the disjunction property
containing the logic ND. Consequently, if, for instance, one can manage to show
that kp is a valid principle of knowledge, then Miglioli and Usberti’s logic C (and
thus ML) can indeed be considered the logic of knowledge.

The authors are confident about this point. In fact, they notice the following
fact:

Intuitionistically [kp] is invalid because it is possible to have a
procedure to transform every proof of [¬ϕ] into a proof of [ψ ∨ ξ],
but only a few proofs of [¬ϕ] are transformed by the procedure into
proofs of [ψ] and only some others are transformed into proofs of [ξ].
However, this argument does not apply to the notion of justification
we provided since, as we saw, the justification for a negated formula
could be only one. [120, p.129]
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Therefore, they go on to say that a philosophical motivation is needed for
this feature of justification and that perhaps it can be achieved by providing an
argument in favor of an extensional interpretation of the notion of procedure as
a set-theoretic function.

A.3.2 Structural completeness
We have seen that (D) is not in general a sufficient condition for determining
the logic of knowledge. Can we find another analogous equivalence to boil
down the set of possible logics of knowledge? Now, (D) is taken to be an
explication of the logical constant of disjunction, so we can try to formulate
an appropriate condition as an explication of a different logical constant. Since
the only connective with a constructive character is the implication, our choice
is forced. First notice that, in Miglioli and Usberti’s framework, the following
equivalence holds:

s knows that ϕ→ ψ ⇐⇒ If s knows that ϕ, then s knows that ψ. (I)

Indeed, (=⇒) is obvious. Conversely, assume that the right-hand side of (I)
holds, that is, suppose that whenever s knows that ϕ, then s also knows that
ψ. Now, consider both the sets of justifications s has for ϕ and ψ, which, by
our hypothesis, are the non-empty sets fa(ϕ) and fa(ψ), for some a-assignment
correlated to s. Let us consider a justification ϕ̂ ∈ fa(ϕ). If ϕ̂ is an evidence,
that is, χa( ϕ̂ ) = 1, then s knows that ϕ; so, by (I), it follows that s also knows
that ψ and, consequently, there exists a justification ψ̂ of ψ which is an evidence.
Thus, we let f(ϕ̂) = ψ̂. If ϕ̂ is not an evidence, then we let f(ϕ̂) = ψ̂ for some
arbitrary ψ̂ ∈ fa(ψ). Then f ∈ fa(ψ)fa(ϕ), that is, f is a justification for ϕ→ ψ
and, moreover, f is an evidence by construction. Therefore, we have that s
knows that ϕ→ ψ.

Intuitively, the right-hand side of (I) can be thought as an explanation of the
implication in the following sense: it embodies, at a “meta-theoretical” level, a
method to transform knowledge of a given proposition ϕ into knowledge of a
proposition ψ. Since this feature is exactly what a constructive explanation of
the implication should be, we may assume that any characterization of knowl-
edge must actually satisfy (I).

We can now ask ourselves which could be the logical counterpart of (I). Here
the situation is clearly more involved that in the case of (D). In fact, for the
case of disjunction, we immediately get a well defined logical property simply
by substituting “ϕ ∈ L” for “s knows that ϕ” in (D). However, such a move
does not work for (I), since the equivalence

ϕ→ ψ ∈ L⇐⇒ if ϕ ∈ L, then ψ ∈ L

makes no sense. So, let’s try to look at the issue from a different perspective. As
we noticed, the right-hand side of (I) represents a rule of knowledge according
to which, whenever s knows that ϕ, then s also knows that ψ. Such a rule allows
s to gain knowledge of ψ in the case s already has knowledge of ϕ and its use
is always permitted in the cognitive domain of s. Thus we may consider the
admissibility of the inference rule

ϕ

ψ
as the logical counterpart of the right-

hand side of (I). Furthermore, since ϕ→ ψ ∈ L is equivalent to the derivability
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of the rule
ϕ

ψ
, it follows that the logical counterpart of (I) could be the

property of structural completeness.
Structural completeness seems to be a necessary feature of that logic which is

purported to give a cognitive, or constructive, explanation of the logical connec-
tives. Indeed, along with valid principles of knowledge, one should also consider
admissible rules of inference. So we should ask ourselves when a law of inference
ϕ/ψ is valid, that is, whether its use is justified as a way of gaining knowledge of
ψ whenever one has knowledge of ϕ. Now, the only possible answer seems to be
the following: the rule ϕ/ψ is valid because the implication ϕ→ ψ is actually a
valid principle of knowledge.

Now, if that is the case, the logic of knowledge would be a Friedman logic.
But then, on the basis of Conjecture of §6.4.1, such a logic would be completely
determined, since there should exist a unique such logic, namely Medvedev’s
logic of finite problems ML. Thus, we can not say whether Miglioli and Usberti’s
account of knowledge is completely adequate, however what it can be said is
that they might have at least found the logic of knowledge.
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