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Abstract

This work presents a variety of reinforcement learning applications to the
domain of finance. It composes of two-part. The first one represents a tech-
nical overview of the basic concepts in machine learning, which are required
to understand and work with the reinforcement learning paradigm and are
shared among the domains of applications. Chapter 1 outlines the funda-
mental principle of machine learning reasoning before introducing the neural
network model as a central component of every algorithm presented in this
work. Chapter 2 introduces the idea of reinforcement learning from its roots,
focusing on the mathematical formalism generally employed in every applica-
tion. We focus on integrating the reinforcement learning framework with the
neural network, and we explain their critical role in the field’s development.

After the technical part, we present our original contribution, articulated
in three different essays. The narrative line follows the idea of introducing
the use of varying reinforcement learning algorithms through a trading ap-
plication (Brini and Tantari, 2021) in Chapter 3. Then in Chapter 4 we
focus on one of the presented reinforcement learning algorithms and aim at
improving its performance and scalability in solving the trading problem by
leveraging prior knowledge of the setting. In Chapter 5 of the second part,
we use the same reinforcement learning algorithm to solve the problem of
exchanging liquidity in a system of banks that can borrow and lend money,
highlighting the flexibility and the effectiveness of the reinforcement learning
paradigm in the broad financial domain. We conclude with some remarks
and ideas for further research in reinforcement learning applied to finance.
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Introduction

Since the advent of the Black-Scholes (Black and Scholes, 1973) formula for
pricing complex derivatives, mathematical techniques have helped to solve
financial problems, aiming to capture different aspects of this world. Quant
is a word that informally indicates a quantitative financial analyst that uses
state-of-the-art mathematical and statistical tools to generate predictive sig-
nals and create trading strategies, i.e., make money in the financial market.
From the end of the 90s to the last decade, the realized technological advance-
ment sped up the research in the mathematical and computational domains,
giving rise to new effective financial analysis methods. Machine learning rep-
resents one of the research domains that has been affected by the surges in
the availability of computational power and therefore attracted the interest
of the financial sector. This field of research takes its roots from the computer
science domain but embraces concepts from mathematics and statistics that
make it truly interdisciplinary.

The last two decades have marked a shift in the various research strands in
finance because of the introduction of advanced mathematical techniques to
improve the modeling capabilities and beat the market. Nowadays, machine
learning tools have become more ubiquitous in finance research to a signifi-
cant extent than when the various projects underlying this thesis started. As
the authors, we had the priceless privilege to tackle new research questions
in an almost new set of applications and use novel techniques for the field
of finance, each with its advantages and disadvantages. We also assisted in
a massive shift towards data-driven modeling techniques by academics and
practitioners in the industry. The Organization for Economic Co-operation
and Development (OECD, 2021) has recently recognized the importance of
this emerging trend for the financial sector to help the policymakers in sup-
porting the introduction of this new strand of innovation in the industry.
Goodell et al., 2021 identifies different directions of research for machine
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learning technologies applied to finance. Big international banks such as JP
Morgan have already set up their research lab 1, and they are working on
solutions for the business with the use of machine learning and artificial in-
telligence. At Fidelity Labs, one of the major asset management companies
in the United States, they are trying to put in production a reinforcement
learning approach for the optimal solution of the best execution and portfolio
management problems (Halperin et al., 2022).

Before delving into specific use cases of machine learning for our domain
of interest, it is essential to consider its origin as a field of study and its
underlying idea. Machine learning is the development of mathematical tools
and algorithms that exploit data to learn a task, attempting to imitate hu-
man learning behavior. These algorithms repeat iterative procedures that
allow for improvement in performing a specific task gradually. For these
reasons, it is common to say that a machine learning algorithm is trained
to accomplish an objective, which the researcher sets to indicate what the
computer program should learn. Even though machine learning gained mas-
sive popularity in recent years, its long history started before the 50s when
McCulloch and Pitts, 1943 presented a mathematical model to imitate the
functioning of the human brain, called artificial neuron. The model was re-
fined later by the perceptron of Rosenblatt, 1958, which is one of the first
examples of a mathematical model able to classify a set of points into bi-
nary classes. The artificial neuron represents the ancestor of modern neural
networks. Despite the excitement caused by the novelty of their research at
that time, Minsky and Papert, 1969 severely criticized the perceptron model
for its limits because it was able to learn only linearly separable functions
of the data and struggled with more complex functions. Notwithstanding
the encouraging results of creating neuron-like models, neural networks re-
mained overlooked due to their lack of capabilities and background theory.
A period called Artificial intelligence winter followed, referring to about ten
years in which the initial promise of artificial intelligence, which is a broader
field of research including machine learning, bumped into the lack of sophis-
ticated computer programs to test their effectiveness. The overinflated hype,
which has commonly occurred for many other emerging technologies such as
the World Wide Web, exacerbates the gap between the promising academic
research and the lack of instruments to put it into practice. In the mid-
80s, Rumelhart et al., 1986 shed light on the backpropagation algorithm to

1JPM AI research
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perform automatic differentiation of complex functions. Based on previous
works (Linnainmaa, 1970; Werbos, 1982), they were the first to demonstrate
that backpropagating the gradients can yield an expressive internal represen-
tation of data in the hidden layers of neural networks. Their work helped the
subsequent popularity of these mathematical models because it efficiently
computes the enormous amount of partial derivatives required to train a
neural network. The backpropagation algorithm, together with the univer-
sal approximation theorem of Hornik et al., 1989, proved the capability of
a multi-layer neural network to learn any continuous function theoretically.
Those groundbreaking researches represented a turning point in the history
of such mathematical models. LeCun et al., 1989 provided one of the first
examples of such capabilities by teaching neural networks to recognize hand-
written zip codes of the US Postal Service. In this simple pattern recognition
problem, neural networks reached a human-level accuracy.

Not surprisingly, the central moment that marked the way for neural net-
works to become widely employed in commercial applications was the release
of the ImageNet database (Deng et al., 2009). In many cases, increasing
data availability means more possibility to exploit machine learning tools
and obtain groundbreaking results. ImageNet consists of a vast database
of different classes of images at the disposal of researchers to test and de-
velop novel machine learning algorithms. ImageNet was born with the idea
of providing an adequately organized dataset for machine learning research
and favored a renovated trust in neural networks’ capabilities. Krizhevsky et
al., 2012 deployed a multi-layer neural network that was able to outperform
in classification accuracy all the other competing models in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). This success defined
machine learning as a groundbreaking tool for solving similar computer vi-
sion and pattern recognition problems. From the decade following the work
of Krizhevsky et al., 2012 up to the recent days, neural networks have in-
crementally improved their performances thanks to the effort of a growing
community of machine learning researchers. Several alternative formulations
have taken place in order to solve many of problems in different domains,
from the pattern and face recognition (Le, 2013; Taigman et al., 2014) to
language translation (Devlin et al., 2018; Vaswani et al., 2017) and data
generation (Radford et al., 2015). These applications are generally identified
under the umbrella of deep learning applications since they employ complex
neural networks with many layers, hence the adjective deep. Neural networks
allowed for various and challenging tasks thanks to their capability to pro-
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cess a considerable amount of data and discover patterns or more meaningful
representation of the available information.

These characteristics of the neural networks have also been central to the
development of a specific paradigm of machine learning, called deep reinforce-
ment learning, which merges the mathematical advancement made through
time in the reinforcement learning field with the use of these biologically
inspired models. Reinforcement learning is a mathematical framework that
models the behavior of an agent that needs to learn how to move in a dynam-
ical system. Within the broad strand of research in artificial intelligence and
machine learning of the second part of the last century, Sutton and Barto,
2018 identifies the roots of modern reinforcement learning as the collision of
different threads of research that shares common aspects: learning by trial
and error and optimal control. The former pursues the idea of animal learn-
ing and relies on the concept of events that reinforces the selection of specific
actions by the agent. The latter optimizes a measure of the performance of
an agent who acts in a system whose dynamics is known. Optimal control
has not consistently been recognized as a form of reinforcement learning since
the class of mathematical methods used to solve these problems, referred to
as dynamic programming (Bellman, 1957), requires full knowledge of the
dynamic system. For this reason, optimal control problems resemble more
an optimization problem than a learning one. The two strands of research
followed different paths for an extended period, possibly due to the nature
of their approach, philosophy for learning, and mathematics for optimal con-
trol. Werbos, 1987 proposed the first interrelation between learning and
dynamic programming approach that culminated with the work of Watkins
and Dayan, 1992 which treats the reinforcement learning problem under the
mathematical formalism of the optimal control theory. Since then, modern
reinforcement learning has been a standalone field of research that embraces
both perspectives. The turning point for the research domain has been the
introduction of neural networks as instrumental for the learning process. Al-
gorithms and concepts of reinforcement learning (Lin, 1992; Tesauro et al.,
1995; Watkins and Dayan, 1992) have been revisited to leverage the data rep-
resentation capabilities of neural networks as in the work of Mnih et al., 2013,
which introduces the Deep Q-Network, one of the first learning algorithm able
to play video games at a superhuman level. This novel introduction to the
field of research gives rise to the so-called deep reinforcement learning, which
nowadays includes a large community of computer scientists and mathemati-
cians. AlphaGo (Silver et al., 2017b) represents a game-changer application
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to highlight the disruptive impact of neural networks for reinforcement learn-
ing. It is a computer program devised to play the game of Go and beat the
world champion of the homonymous board game by just knowing its rules.
Indeed, reinforcement learning is a machine learning paradigm that allows
solving a sequential decision-making problem without specific knowledge or
information. Even though it is just a board game, Go represents an arduous
task to solve for a computer program since it is probably the most complex
game ever devised by humans. It requires the player to have deep think-
ing and reasoning capabilities. The software programmed by DeepMind,
nowadays, a subsidiary of Alphabet Inc., was empowered with reinforcement
learning techniques and has also been improved since that time (Schrittwieser
et al., 2020; Silver et al., 2017a). Games are an appropriate testbed for re-
inforcement learning because the inherent concept of scores makes it easy to
measure incremental signs of progress. This aspect is easily generalized to
the financial world, where the concept of profit is ubiquitous, providing an
impressive number of opportunities for applying the reinforcement learning
paradigm.

Indeed, the astonishing achievements obtained by deep neural networks
for applied research in various domains are mostly the results of two impor-
tant factors:

• The large amount of data produced by modern society;

• The disposal of powerful computational machines equipped with high-
performance graphic processing units (GPUs) to efficiently run and test
modern machine learning models (Raina et al., 2009).

Combining these two factors is pivotal in the ongoing development of the
finance industry and research, opening the possibility to explore novel ideas
and test new algorithms. Machine learning creates the opportunity to analyze
and exploit the massive data production in the financial world. Nowadays,
financial firms, either on the buy or the sell side, are increasingly adopting
technology for their daily routine business, and machine learning techniques
are crucial in this shift of paradigm (Ryll et al., 2020). Even though neural
networks are not the only machine learning models employed for solving fi-
nancial problems (see (Malliaris and Malliaris, 2015; Wang et al., 2009) for
decision trees, (Ananthakumar and Sarkar, 2017; Hua et al., 2007) for logistic
regression and (Kim, 2003; Kumar and Thenmozhi, 2006) for support vec-
tor machines), they truly embody a novelty rather than standard methods
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of regression analysis commonly used in finance. Neural networks can ap-
proximate very complex functions of the data that contain different degrees
of nonlinearity. The financial markets and the whole economy in a broader
sense are known to be described by highly nonlinear relationships (Amini
et al., 2021; Brock, 2018), making neural networks appealing for modeling
economic phenomena. Machine learning techniques for finance represent a
further development beyond classical econometric analysis, which set the
basis for studying finance as a quantitative subject. López de Prado, 2019
highlights the connections and the differences between the new and the classi-
cal approach from the perspective of the current availability of more complex
and unstructured datasets, which can hardly be analyzed with econometric
tools. Despite their promises, the skepticism in the broad adoption of these
techniques for financial analysis is due to the underlying complexity that
makes it hard to interpret them. For this reason, practitioners often prefer
to adopt simpler models which may be less effective for the specific task but
whose results are easier to interpret. Therefore, the complexity of machine
learning motivates a critical approach before applying these techniques in-
stead of a more simple method of analysis because the benefits of improved
data-driven modeling capabilities have to be larger than the loss in explain-
ability. To this end, the field of explainable AI (XAI) emerged during the
last decade to guarantee a certain degree of control and awareness of what
interactions and relationships complex machine learning is retrieving from
the provided data. In this way, complex models as neural networks become
interpretable, benefiting the application to sensitive domains like finance.

The use cases for machine learning powered by neural network in finance
are multiples and touch different aspects of the subject: forecasting prices
or economic indicators (Kaniel et al., 2021; Lim et al., 2019; Ravi et al.,
2017; Sehgal and Pandey, 2015), financial trading and portfolio management
(Benhamou et al., 2020; Cong et al., 2021; Deng et al., 2016; Guida, 2020;
Heaton et al., 2017; Jiang et al., 2017; Noguer i Alonso and Srivastava,
2020), hedging (Du et al., 2020; Kolm and Ritter, 2019b) and credit scoring
evaluation (Wang et al., 2018; Zhu et al., 2018).

Among all the machine learning approaches, the reinforcement learning
paradigm assumes a central role in adopting new technologies for solving
problems in the field of finance. It provides the opportunity to model a
sequential decision-making problem with fewer assumptions than standard
optimization methods and guarantees flexibility in shaping the structure of
the problem. The important novelty introduced by reinforcement learning to

12



CONTENTS

finance concerns the possibility of letting a market participant interact with
the market itself, which is a separate entity whose characteristics and dynam-
ics might be partially or fully unknown. Many challenges faced by financial
agents are control problems, where not all the variables are observed. Rein-
forcement learning indeed represents a way to tackle this set of tasks without
relying on complex models that try to capture the financial dynamics with
restrictive or unrealistic assumptions. To this end, reinforcement learning
focuses more on analyzing the feedback produced by the agent-environment
interaction. This paradigm shifts from a model-driven to a data-driven ap-
proach to solving a sequential control problem. Due to the availability of code
repositories maintained by trusted software companies, such as DeepMind2

and OpenAI3, researchers can access ready-to-use, and bug-free implemented
reinforcement learning algorithms to use for solving control problems in fi-
nance. Due to their sequential nature and such a good adaptation to the
reinforcement learning paradigm, implementation of code libraries specific
for this domain have already emerged (Liu et al., 2020). Hambly et al.,
2021 provides a comprehensive review of financial problems tractable un-
der the light of the reinforcement learning paradigms. Some examples are
optimal execution (Dabérius et al., 2019; Hendricks and Wilcox, 2014), port-
folio optimization (Du et al., 2016; Park et al., 2020; Xiong et al., 2018),
market-making (Abernethy and Kale, 2013; Spooner et al., 2018), roboad-
vising (Alsabah et al., 2021; Wang and Yu, 2021), option pricing (Cao et al.,
2021; Halperin, 2020) and order routing (Agarwal et al., 2010; Ganchev et al.,
2010). However, most of the research contribution relies on a case-by-case
constructed dataset, posing the issue of reproducibility and generalization of
the obtained results on a different dataset and problem formulation.

Contribution

The main objective of this thesis is to offer a thoughtful application of re-
inforcement learning to a set of financial problems, such as learning how to
trade financial assets with simulations in a controlled environment to high-
light the role of the paradigm in reaching the solution. It is not an application
of ready-to-use implemented algorithms on gathered financial data. We pro-
vide instead results obtained when we know the nature of the data generating

2DeepMind
3OpenAI
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process, and we can modify it to test the robustness of the approach. In this
way, reinforcement learning becomes a valid alternative to the optimal con-
trol framework without being used as a black box. Understanding how these
algorithms work allows us to intervene and adapt them to the economic con-
text, which is highly different from other domains where machine learning has
already been applied and brings challenges. Our attempt is also to leverage
prior knowledge of the financial market to avoid an entirely data-driven ap-
plication of reinforcement learning in a noisy financial environment. The last
contribution is a novel application of reinforcement learning to an interbank
lending problem where we consider an agent to be a public decision-maker
that needs to direct the system of banks toward an exchange of liquidity that
should be profitable and guarantees systemic stability.

This thesis focuses on reinforcement learning as a framework to represent
and mimic many interactions in the financial sector among the different mar-
ket participants. Almost any problem in finance has a temporal structure
with delayed feedback for the actions that the market participants take. For
instance, consider a trader that needs to enter a position in the market and
then exit gradually from it as the signal decays over time. These temporal
choices are ubiquitous in finance and characterize many tasks that market
participants need to carry on.

We study reinforcement learning agents of two types among the different
sequential financial tasks. On the one hand, we focus on trading and portfo-
lio optimization at a microscopic level and investigate the effectiveness of a
single reinforcement learning agent that trades in a financial market. On the
other hand, at a macroscopic level, we study the influence of a regulatory
agent, which uses a reinforcement learning approach to guide an entire finan-
cial system of banks. We believe that evaluating the reinforcement learning
approach on different tasks at multiple scales is crucial to show the impor-
tance that it can have for finance as a field of research. We focus on those
set of problems that naturally reminds the importance of timing the choices.
We also firmly believe that this class of problems represents a good testbed
for reinforcement learning application. Intertemporal optimization and con-
trol methods already have a substantial presence in the financial literature
that solves problems. Hence, they serve as a proper comparison with the
reinforcement learning approach. Differently from the majority of the ap-
proaches in this regard, our first contribution studies the capabilities of the
reinforcement learning framework to solve a financial trading problem in a
known environment, where an exact solution already exists (Brini and Tan-
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tari, 2021). Simulating synthetic financial returns that move according to
a specific factor-model (Gârleanu and Pedersen, 2013) and trading them in
a financial market that admits an optimal solution is relevant for the scope
of our research. We want to decouple the performances of the tested algo-
rithms from common sources of noise in real financial applications, such as
data quality and preprocessing. The main difference from the existing liter-
ature is using a controlled environment that allows comparing different rein-
forcement learning algorithms to a dynamic programming approach, which
is standard for this optimal control problem. By performing a considerable
number of synthetic simulations, we test reinforcement learning algorithms
of three different classes by selecting the most representative for each to
enlighten their strengths and weaknesses concerning the exact benchmark
solution and each other. We aim to avoid the issues of modern reinforcement
learning algorithms by disentangling the effect of the goodness of the signal
used for trading and portfolio application from the actual increase in perfor-
mance brought by the capability of the reinforcement learning algorithms.
We investigate the performance of deep reinforcement learning traders in
a market environment with different known mean-reverting factors driving
the dynamics. When the framework admits an exact dynamic programming
solution, we can assess the limits and capabilities of different value-based
algorithms to retrieve meaningful trading signals in a data-driven manner.
This approach guarantees flexibility and outperforms the benchmark strategy
when the price dynamics are misspecified, i.e., some original assumptions on
the market environment do not hold because of extreme returns and volatil-
ity clustering effects. In the latter case, we discover that the policy-based
reinforcement learning algorithm works better than the value-based one since
it is more robust to extreme events and heteroskedastic volatility. This work
also introduces and tests a simple tabular reinforcement learning method
that helps to motivate the need for deep reinforcement learning algorithms
for a financial trading problem.

The insights obtained by such simulated analysis are further elaborated in
a currently work in progress project to leverage prior knowledge of the trad-
ing problem and use it to improve the reinforcement learning performances.
Model-free reinforcement learning is indeed fallacious in modeling complex
trading signals, as in a multi-asset trading approach. For these reasons, we
modify the training setup of a reinforcement learning algorithm to consider
known solutions to the trading problem. We leverage the neural networks’
approximation capability to learn how to trade by avoiding high transaction
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costs, which are highly nonlinear in the trades. We refer to this approach
as residual reinforcement learning, which is scalable to a large enough cross-
section of assets and applies to real financial data.

The third contribution of this work focuses on reinforcement learning in
an agent-based model setting. (Brini et al., 2022) represent a still new appli-
cation of reinforcement learning, where the agent learns a strategy to improve
the flow of liquidity through interbank lending agreements. We modeled a
public policy recommendation through a reinforcement learning approach.
We then analyze the effect of such policy on an artificial interbank market,
where financial institutions can stipulate lending agreements. In this con-
text, the reinforcement learning paradigm maximizes the system’s long-term
fitness by gathering information on the economic environment and directing
economic actors to create credit relationships based on the optimal choice
between a low-interest rate or high liquidity supply. Financial institutions
create or cut their credit connections through time via a preferential attach-
ment evolving procedure that generates a dynamic network based on the
combination of the public signal and private information.

The reinforcement learning optimal policy recommendation plays a cru-
cial role in mitigating systemic risk with respect to alternative policy in-
struments. It provides a certain amount of flexibility to solve the problem
efficiently when the underlying environment is as complex as an agent-based
model and the underlying dynamics are not fully specified. To interpret the
choices carried out by the learned public policy, we also employ a state-of-
the-art tool for enhancing the explainability of the retrieved solution and
devising insights on what has been learned by the machine learning tool
regarding the systems of banks. Moreover, our results show that the emer-
gence of a core-periphery interbank network, combined with a certain level
of homogeneity in the size of lenders and borrowers, is an essential feature
to ensure the system’s resilience.

Thesis structure

Based on the outlined contributions, this work composes of two parts. The
first part is a technical overview of the basic concepts in machine learning,
which are required to understand and work with the reinforcement learning
paradigm. These concepts are not specific to finance and are shared among
the application domains of machine learning. Chapter 1 outlines the funda-
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mental principle of machine learning before introducing the neural network
model as a central component of every algorithm presented in this work.
Then some theory regarding neural networks introduces how they work and
are trained together with the different use cases. Chapter 2 introduces the
idea of reinforcement learning from its roots, focusing on the mathematical
formalism generally employed in every application. Once we have outlined
the framework, we extend this part by introducing neural networks in a re-
inforcement learning context and explaining their critical role in the field’s
development. For this purpose, we enter into the details of the reinforce-
ment learning algorithms employed in the practical applications of our work
mentioned in the contribution section. Therefore, we provide a detailed ex-
planation of the reasoning and motivation of the two broad families of deep
reinforcement learning algorithms, i.e., value-based and policy-based.

Once we have reviewed the mathematical framework and all the concepts
underlying machine learning and reinforcement learning theory, the second
part of the work presents our work’s original contribution, which is articu-
lated in three different essays. The narrative line follows the idea of introduc-
ing the use of varying reinforcement learning algorithms through a trading
application (Brini and Tantari, 2021) in Chapter 3. Then in Chapter 4 we
focus on one of the presented reinforcement learning algorithms and aim at
improving its performances and scalability in solving the trading problem by
leveraging prior knowledge of the setting. In Chapter 5 of the second part,
we use the same reinforcement learning algorithm to solve the problem of
exchanging liquidity in a system of banks that can borrow and lend money,
highlighting the flexibility and the effectiveness of the reinforcement learning
paradigm in the broad financial domain. We conclude with some remarks
and ideas for further research in reinforcement learning applied to finance.
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Machine learning paradigms:
from the basics to

reinforcement learning

18



Chapter 1

Machine learning: basics
concepts and neural networks

Machine learning is a broad field of research that embraces tools from differ-
ent subjects such as mathematics, statistics, and computer science and fo-
cuses on developing efficient numerical approaches to solve complex problems
in various domains. It is interdisciplinary since elements of linear algebra,
probability theory, statistics, and computer programming are required to be
fully understood and tackled. Machine learning is divided into various fields
of study, each with specific scopes, such as prediction, object detection, or
data generation. At the same time, it is also a subfield of artificial intelli-
gence, commonly defined as the capability of a computer program to imitate
intelligent human behavior. Although the difference between machine learn-
ing and artificial intelligence can be subtle and sometimes confusing, the
latter is a more general concept that aims at implementing a human-like
general intelligence by using sophisticated mathematical techniques, among
which those included in machine learning.

It is important to stress that learning refers to the known ability of hu-
mans and animals to acquire the capability to carry out a task and to be able
to generalize when the context changes. The peculiar aspect differentiating
machine learning from other existent numerical techniques is the opportu-
nity to program an algorithm that learns a model from the data and hence
limits the number of required assumptions. The first step to understanding
the contribution of the machine learning approach for financial applications,
which will be the focus of our work, is to compare it to econometrics, which is
the established approach in financial academic and industry research. Both
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approaches want to build predictive models using explanatory variables, usu-
ally referred to as features in the literature. Since the development of those
research fields occurred in parallel, they often accomplish the same tasks with
different methodologies derived from the different philosophical approaches
to the problems.

On the one hand, econometrics build models based on assumptions to
describe the dynamics of the underlying variables and make inferences from
the available data. On the other hand, machine learning use algorithms that
require fewer assumptions and are data-driven without necessarily injecting
prior knowledge to the model (Charpentier et al., 2018). It is important
to remark that learning should be considered not as the task that machine
learning aims to achieve but instead as the means of reaching the proposed
task. Notwithstanding the difference in approaching the modeling problem,
machine learning and econometrics share some basic concepts that we outline
in this chapter. Using machine learning instead of econometrics generally im-
proves the modeling capability, allowing to deal with complex datasets and
discovering hidden patterns that would be hard to model and incorporate into
the latter approach. Even though econometrics can capture complex nonlin-
ear interactions with the variables, this modeling effort requires assumptions
based on prior knowledge of the problem. On the contrary, machine learn-
ing can discover relationships in the data that have not been observed yet,
relaxing the modeling effort and possibly providing more insightful analysis
driven by the data.

Whenever we need to define a machine learning algorithm, we should first
ask ourselves three questions:

1. What do we want to learn?

2. How do we learn it?

3. How do we measure the progress of learning?

A learning algorithm is a set of iterative procedures that has an answer to
all these questions. Usually, an algorithm aims at learning a general task
T through some data D according to a performance measure M . These
are the core elements that provide the structure of a learning algorithm.
Excluding one of those elements conflicts with the purpose of such algorithmic
procedures. For instance, an unclear definition of the task to perform does not
allow defining the aim of the learning algorithm. The absence, even partial,
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of the dataset does not allow having enough examples to learn. A wrong
definition of the performance measure can lead to possible misjudgments of
the learning procedure. For this reason, in the next section, we define each
of these core elements properly and connect them to present the machine
learning modeling setup.

Therefore, in this chapter, we want to outline the structure of a learning
algorithm and its main components. Then we introduce neural networks,
which are the machine learning tool employed in the second part of this
work, and provide a detailed overview of the basics, the theory, and the
optimization process underlying this family of models.

1.1 Learning paradigms

Different machine learning paradigms are defined depending on the type of
dataset that an algorithm is allowed to experience. In what follows, we as-
sume a dataset Z to be composed by a number M of vectors z ∈ RK where zi
represents the i-th feature. These vectors are generally referred to as exam-
ples or data points. We assume the dataset to be a two-dimensional matrix
with M rows and K columns. We present the different machine learning
paradigms in a general bidimensional case, even though machine learning
algorithms can also work with higher-dimensional datasets, as happens for
image recognition tasks.

Supervised learning is the prevailing machine learning paradigm at the
core of many commercial applications. These kinds of algorithms experience
a dataset composed of some data points x, which includes the values zi
up to K − 1 and the labels or targets y, which are the values zK . These
algorithms aim at learning a function of the data that returns the label given
the corresponding example, i.e. f(x) = y where x ∈ RK−1. A single label can
be either any real value y ∈ R or a value from a discrete set y ∈ {1 . . . k}. The
former output type refers to a regression problem, where the learned function
returns a real-valued output. In contrast, the latter refers to a classification
problem, where a data point maps to some category identified by numbers in
the finite discrete set. The term supervised refers to the researchers manually
labeling the dataset to specify its context for the models, e.g., stating which
objects are included in an image so that they oversee and direct the learning
process. The choice of the label is indeed the most important part in the
setting of a supervised problem because it affects the type of mapping that the
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algorithm learns from the data, i.e., the objective of the learning itself. Some
examples of supervised learning tasks are object recognition (Hu et al., 2015;
Mehdipour Ghazi and Kemal Ekenel, 2016; Wang, 2016), recommendation
systems for targeted commercials (Zhou, 2020), and prediction of housing
prices given the area’s characteristics (Truong et al., 2020).

In contrast to that, unsupervised learning algorithms want to learn valu-
able properties of the dataset, which generally resort to learning the proba-
bility distribution p(z) that produces the data points. The algorithm does
not receive any label because it should infer information from the data it-
self instead of learning a mapping to some output. Unsupervised learning
can help find a customer segment, reduce the problem’s dimensionality, com-
press the data into a new representation (Zhang and Saniie, 2021), or make
feature selections before applying supervised algorithms (Sharang and Rao,
2015; Taherkhani et al., 2018).

The main difference is that supervised learning needs to find a mapping
from x to y, while unsupervised learning searches for patterns in the data to
provide a different representation and learn some data characteristics.

It is important to remark that there is a subtle line between the two
paradigms, and there are machine learning models that perform both tasks.
However, a distinct classification helps classify different applications of the
same model and maintain an organic view of the field of machine learning.
Notwithstanding, the major shared characteristic of these two paradigms is
using a dataset that is provided in advance and does not change during the
learning process.

Reinforcement learning, the third machine learning paradigm, is different
from the previous two in its purpose and the way it exploits the dataset.
Reinforcement learning does not experience a fixed dataset Z, and it is not
focused on learning a specific relationship between some features and their
label or understanding some properties of the features. Instead, it represents
a framework in which an algorithm, referred to as the agent, interacts with
external factors, referred to and summarized under the environment, to learn
how to carry out a control task by trial and error. For this reason, every
time the agent interacts with the environment by taking action, the dataset
is possibly augmented if not entirely replaced by a new set of observations.
In addition, the dataset also presents a specific structure in which every piece
of it plays a particular role so that each vector z must contain information
about the state of the environment, i.e., the variables that characterize it,
the action carried out by the agent and the reward, i.e., the response of
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the environment to the agent’s action. Therefore, reinforcement learning is a
machine learning paradigm to perform optimal control tasks, such as teaching
a sensorimotor robot how to move in a restricted space (Ghadirzadeh et al.,
2016), optimally managing scarce resources (Mao et al., 2016), or managing
a portfolio of equity options (Buehler et al., 2019). We postpone the details
about this machine learning paradigm and the use of such a peculiar dataset
to the Chapter 2, as it represents the core of this work, and we will describe
it there accurately.

A common aspect shared by all those learning paradigms is the training
process of the selected machine learning algorithm to perform a predefined
task. Training a machine learning model consists in providing the algorithm
with the data to learn from and repeatedly updating the set of parameters
θ of the algorithm based on the information contained in such data. Hence,
the training procedure differs depending on the machine learning paradigm,
i.e., the kind of dataset experienced. Model training represents the first step
of all machine learning approaches, which results in a trained model that
can be tested and evaluated through the selected performance metric and
eventually deployed to be used in production. The term “training” is used
in the machine learning literature as synonymous with fitting, which is more
used in other branches of statistics, but it means essentially the same research
of the good set of model parameters to properly represent the data.

1.2 Generalization, fitting and estimation

The aim of a machine learning algorithm goes further than finding the model
that best fits the data. Generalizing over unseen examples is a critical concept
to distinguish between fitting and learning. We will describe these concepts
under the supervised learning framework to ease the exposition, although
they are also common to the other machine learning paradigms. Recalling
the mapping f(x) = y that a supervised learning algorithm wants to retrieve
from the dataset, the function of the input x should approximate well the
corresponding target also when a specific data point is not used for training.

The capability to teach a machine learning algorithm how to generalize
depends on organizing the data before training the model. Generally, the
dataset is divided in two parts: the training set and the test set. The eval-
uation of the training progress goes through a selected performance metric
J(θ), which depends on the model parameters θ and returns a measure of the
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difference between the predicted output and the true value. While this error
computed on the training set is important to evaluate the progress of the
learning, the discrepancy over the test set is ultimately more important in
machine learning because it represents the generalization error. The model
does not use the data points included in the test set, and therefore these
points are not previously observed by the machine learning algorithm. A
good performance on this set of examples, i.e., a low test error, signals a
good generalization.

Statistical learning theory assumes the data points in the training and
the test set to be generated by a so-called data generating process (DPG).
Therefore, each data point is considered to be independent and identically
distributed (i.i.d) since they are assumed to be drawn separately from the
same underlying distribution p(x, y). Assuming to draw both sets from the
same DGP causes the expected training error to be equal to the expected
test error for a given model. The only difference so far is the role we assign to
each set. However, this is valid only if we fix the model parameters and then
evaluate the algorithm over the training and the test set. On the contrary,
a machine learning algorithm is optimized over the training set so that the
parameters repeatedly change through iterative updates. Then the test set is
evaluated, and the expected test error ends up being greater or equal to the
expected training error. This difference clarifies the two concurrent aims of
a machine learning algorithm: to reduce the training error while minimizing
the test and training error gap. The gap between the training and test error
determines the different outcomes of the training procedure of a machine
learning algorithm. Obtaining a high training error results in underfitting
since the model is not able to capture the information in the data. The
opposite situation happens when the gap between the test and the training
error is large, which means that the model fits perfectly the training data,
but it is not able to generalize to unseen examples. This situation is called
overfitting.

One way to control the overfitting-underfitting tradeoff is to change the
model capacity, i.e., the possibility to choose the function to represent the
model and to fit the data from a broad set of functions. The model capacity
can be controlled through the magnitude of the hypothesis space H, which
is the set of possible functions that the algorithm can select as a solution to
the machine learning problem (Abu-Mostafa et al., 2012). For example, in a
linear model, the set H includes all the possible linear equations that the al-
gorithm can choose to fit the data. Therefore, a larger number of parameters
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in a linear model composes a bigger hypothesis space for the machine learn-
ing model under consideration, which in turn can find a more expressive way
to represent the function of the data. In the next section, we provide a brief
overview of the underlying background theory in machine learning, including
the choice of the algorithm capacity. Figure 1.1 visualize the tradeoff between
the model complexity and the predictive capability that a machine learning
algorithm can achieve. Usually, a range of model complexity represents a
good compromise between having a lower test error and good generalization
capability.

Figure 1.1: Representation of the relationship between train and test error
affecting the underfitting-overfitting tradeoff. Source: Al-Behadili et al., 2018

Sticking with the example of supervised learning that focuses on learning
a mapping like f(x; θ) = y, any of those algorithms is considered to perform
an estimation of the set of true parameters θ, which are unknown. Assume
to have a dataset D = {x1, . . . ,xM} of M data points, which are drawn by
an unknown DGP and are IID. We define a parameter estimator as the set θ̂
that describes a valid mapping f(x; θ̂) + ε = y for each available data points,
where ε is the part that the model is not able to explain. A large part of
the machine learning applications consists in finding the approximation of
f(x; θ) with a function estimate f(x; θ̂). In some cases, function estimate
or parameter estimate are interchangeable since estimating the parameters
is instrumental for estimating the desired mapping from x to y. Henceforth,
we will refer to it simply as the estimator. As anticipated in the previous
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section, The estimator is the result of the training process that iteratively
searches for suitable values of θ̂ so that it is as close as possible to the true
unknown values θ and minimizes the estimation error ε.

When considering an estimate, one should look at two important proper-
ties: bias and variance. The bias for an estimator θ̂N is defined as:

Bias
(
f(x; θ̂)

)
= E

(
f(x; θ̂)

)
− f(x; θ) (1.1)

where the expectation is computed over the set of training samples of length
M . We said that an estimator is unbiased if the bias is zero so that E(f(x; θ̂)) =
f(x; θ). Otherwise, an estimator is said to be asymptotically unbiased if the
bias goes to zero when the amount of training examples goes to infinity, so
that limM→∞ E[f(x; θ̂)] = f(x; θ). The bias reflects how well the estimator
approximates the actual value on average.

On the other hand, the variance of an estimator is simply the variance of
the estimated function,

Var(f(x; θ̂)) = E[(f(x; θ̂)− E[f(x; θ)])2], (1.2)

The variance measures how much one would expect the estimator to vary if
one computes it over another sample of the data from the same DGP. It is
of practical use because, generally, estimations come from a finite number of
samples, since collecting a huge amount of data points is either infeasible or
costly and time-consuming, and the variance provides a measure of how much
one would expect the estimate to vary when independently sampling multi-
ple times the dataset from the same DGP. Bias and variance represent two
different sources of error when obtaining the desired estimate and therefore
provide an evaluation criterion for the variability through a sample. While
bias measures the expected deviation from the true value to be estimated, on
the contrary, variance measure the deviation from the expected estimation,
which is likely to occur if one changes the training examples.

One would expect an estimator to have a low bias and a low variance.
However, in statistics and machine learning, this ideal situation is not always
achievable, and, as a consequence, there is a known tradeoff between the two
sources of error (Kohavi, Wolpert, et al., 1996). It is possible to show that
in estimating f(x; θ̂), the expected mean square error (MSE) with respect to
the labels over the test set can be decomposed as a sum of two quantities:
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E
[
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=
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]
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]
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[
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]
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[
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f(x; θ̂)

)
+
[
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(
f(x; θ̂)

)]2

(1.3)

which are respectively the variance of the function estimate and its squared
bias. The expected MSE on the test set refers to the average MSE that one
would obtain repeatedly estimating the function f using numerous training
sets and testing every time at the same test example x0. The overall expected
test MSE can be computed by averaging the expected MSE over all possible
data points in the test set. In general, a model with more parameters, hence
fewer assumptions, can obtain estimates with lower bias, i.e., to approximate
well the underlying phenomena, although with higher variance at the same
time. The relative rate of change of these two quantities, when the model
varies, produces either an increase or decrease of the MSE in Eq. 1.3. Fried-
man et al., 2001 provide a detailed explanation of this trade-off, which is
visualized in Figure 1.2 for a two dimensional case. On the one hand, models
with low bias and high variance can be easily obtained, for instance, a curve
passing through each data point as in the left panel of Figure 1.2, where the
function parameters are close to the true values, but the estimator is too
attached to a specific set of data points.

On the other hand, it is also easy to come up with a model with low
variance and high bias, i.e., a constantly horizontal line as in the central
panel of Figure 1.2, for which the function parameters are far from the true
values, although the variance of the estimate is expected to be low because
the function is not tied specifically to any sampled data points. The former
case shows a lack of generalization capability, while the latter exhibits a lack
of fitting capability. The challenge in machine learning is to find the model
which keeps both measures low, as in the right panel of Figure 1.2, where the
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estimated function does not pass precisely through each data point, but it
is close enough to each of them to represent the underlying DPG, resulting
in a model that has both modeling and generalization capabilities. In what
follows, we will present the neural networks type of models, which are highly
flexible, hence able to eliminate the source of bias, but which often exhibit
significant variance in their estimate.

Figure 1.2: Visual explanation of bias and variance concepts in a two dimen-
sional case.

1.3 Background Theory

The work of Vapnik and Chervonenkis, 1971 represents the foundation of
the statistical learning theory and provides a way to quantify the capacity
of a machine learning algorithm (see Abu-Mostafa et al., 2012 for extensive
coverage of these concepts). They introduce the Vapnik-Chervonenkis (VC)
dimension, which measures the capacity of a binary classifier. It is defined as
the largest possible size of the training set so that the model can classify any
of these data points. The VC dimension provides an upper bound for the gap
between training and test error directly proportional to the model capacity
and inversely proportional to the number of training examples. However,
such bound holds in the simple case of a binary classifier, while it is challeng-
ing to provide similar results with more complex models. There is a discrep-
ancy between representational, i.e., theoretical, and practical capacities in
many machine learning models, mainly due to the underlying optimization
algorithms, which often are not guaranteed to converge and have very little
theory supporting them. Hence, some models would, in principle, be able
to solve the proposed task, but the optimization procedure fails in reaching
the goal. Neural networks are an excellent example of this misalignment in
capacity (see Section 1.4).

28



1. Machine learning: basics concepts and neural networks

Wolpert and Macready, 1997 introduces the No Free Lunch Theorem,
which states that if it would be possible to collect an infinite amount of data,
and hence average over all data generating distributions, the performance
metric of any machine learning model over previously unseen data points
would be the same. This statement implies that a universal outperform-
ing model is impossible. A model outperforms the others only because it is
particularly suited to solve the structure of the specific problem under con-
sideration. Therefore, in principle, no model is universally better than the
other. In a more practical approach, where one can make assumptions about
the DGP and restrict the set of distributions where the training samples are
drawn, some models become better than others. The need for a model that
suits the task to perform is a motivation for the dominance of certain types
of models, such as neural networks, in the context of all the different machine
learning paradigms.

1.4 Early models for artificial neural network

In this section, we present the neural network paradigm, which has been
central in the development of modern machine learning. We begin with a
brief introduction of pioneering models that set the basis for the existence
of neural networks. Then we introduce the feedforward neural network as
the basic structure of the modern field of deep learning, and we outline all
the design decisions that one should take in dealing with this type of model.
Additionally, we briefly recap different neural network architectures, each
with their advantages and disadvantages, and the main algorithm used to
train them.

The idea of a biologically inspired model comes from McCulloch and Pitts,
1943, which presents a simple mathematical model that tries to mimic the
work of the neuron in the complex structure of the human brain. Figure 1.3
shows the method of operation of the artificial neuron, which accepts binary
values as input and produces a single binary output according to a certain
threshold. Two different functions operate on the binary inputs: a function
g (x1, x2, x3, . . . , xn) = g(x) =

∑n
i=1 xi, which sums all the binary values of

the input, and a function f(g(x)) which returns one if the aggregated sum is
greater than θ, otherwise zero.
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Figure 1.3: Artificial neuron representation of McCulloch and Pitts, 1943

An extension of this model is provided by the perceptron of Rosenblatt,
1958, shown in Figure 1.4. Such model can work with either a binary or a
non-binary vector of input values x and computes a weighted sum g(x,w) =∑n

i=1wixi using the vector of weights w, before applying a similar threshold
θ as in the artificial neuron model.

Figure 1.4: Perceptron representation of Rosenblatt, 1958

The scalar parameter θ controls the neuron’s activation and allows rep-
resenting a linearly separable function of the data. Being linearly separable
means that a hyperplane exists that splits the input space into two parts,
containing all the points of a specific class. It is said in this case that there is a
line that can perfectly separate all the data points. Minsky and Papert, 1969
criticizes this type of model because they are not able to classify data points
that are not linearly separable. In this regard, the artificial neuron and the
perceptron can model several functions of binary values, also called Boolean
functions, but they fail, for example, with the exclusive-or (XOR) function.
This operation on binary values x1 and x2 returns one when either x1 = 1 or
x2 = 1, otherwise returns zero. This set of data is not linearly separable, as
clarified from Figure 1.5, since there is no line in the two-dimensional space
that can separate the two classes of outputs.
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Figure 1.5: Representation of the XOR function in the two-dimensional space
(Goodfellow et al., 2016). The number in the figure represents the expected
model output for the pair of points x1, x2

The limitation of these models is the possibility to assume just binary
output values (0 or 1) due to the threshold θ. In the case of x1 = 0 (x1 = 1),
we should expect the model output to increase (decrease) with the other
data point x2. This is not possible with the perceptron because the model
assumes the weight w2 to be fixed independently of the value of x1. The
XOR case is often representative of a class of more complex problems that
a linear classifier is not able to solve, such as nonlinear pattern recognition
(Friedman et al., 2001), combinatorial game theory (Albert et al., 2019) and
cryptography (Tuyls et al., 2005). For this purpose, a feedforward neural
network comes in help, as outlined in the next section.

1.5 Feedforward neural networks

Feedforward neural networks represent a turning point for the development of
modern machine learning models. All the three machine learning paradigms
described in Section 1.1 widely employ these models. To provide a clear ex-
planation, we introduce the neural network models in the supervised learning
framework. Then, in the next chapter, we will describe their use in a rein-
forcement learning context.

Recalling the aim of a supervised learning model to learn the mapping
y = f(x), i.e. learning the output y by exploiting the data points contained
in x, neural networks are able to learn a parametrization of the unknown
function f(x) through a set of parameter θ, so that the mapping becomes
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y = f(x; θ).
Figure 1.6 provides a visualization of the basic structure of a multilayer

feedforward neural network. It partially resembles the structure of a per-
ceptron, hence the name multilayer perceptron, which is sometimes used in
place of a feedforward neural network. As the name suggests, one of the
differences from the model of Rosenblatt, 1958 is the presence of an inter-
mediate layer, called the hidden layer. The architecture of a neural network
includes an input layer, which is the first set of neurons on the left of the
Figure 1.6, already present in the original perceptron. Then there is a hidden
layer, whose elements are connected by directed edges to all the elements of
the input layer and all the elements of the subsequent output layer. These
edges represent the parameters θ to approximate the desired function.

We refer to this model as feedforward because of the way that information
flows from input to output since there is no recursion at any point and no
feedback loop that connects the previous outputs to the current inputs. Since
each unit, also called a neuron, receives information from all the neurons in
the previous layer, one can think of a layer as a function that takes a vector
as input and returns another vector as output. The former vector has a
dimension equal to the number of neurons in the previous layer and the
latter equal to the number of neurons in the current layer.

The formulation in terms of neurons that elaborate and aggregate infor-
mation motivates the adjective neural, because of the loose biological inspi-
ration already present in the first formulation of these models. The number
of units per layer varies depending on the task and assume different mean-
ing depending on the layer. Increasing the units in the input layer means
that the model can access more information, i.e., each vector x in the set of
training examples {x1, . . . ,xM} contains more information. The number of
units in the output layer strictly depends on what the neural network wants
to achieve. The dimension of the corresponding labels y, which can be either
a scalar or a vector, already provides information about the size of these two
layers, defining respectively a single output or a multi-output neural net-
work. On the contrary, the number of hidden layer units may increase the
model capacity, but it is not directly related to the dataset that the model
experiences.

We remark that Figure 1.6 represents a composition of different functions
like f(x) = (f3 ◦ f2 ◦ f1)(x), where f1,f2 and f3 are respectively the function
describing the input, the hidden and the output layer. The name network
comes from the opportunity to represent this expression as a directed graph.
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Many other hidden layers can be stacked to compose the function, hence
defining the depth of the model. Therefore, feedforward neural networks
with many hidden layers, and possibly wide, i.e., with many neurons, are
generally considered as deep learning models.

Figure 1.6: Representation of a feedforward neural network with three inputs,
two outputs and a hidden layer (From Fadja et al., 2018).

A feedforward neural network overcomes the perceptron’s limits, which
can only learn a linearly separable function of the data by returning only one
of two values (0 or 1) because of the hard-limit threshold function. Instead,
a neural network not only produces a different representation of the input
space through hidden layers but can also output real values. The former
characteristics allow learning a broader set of functions of the inputs that
are nonlinear in the neural network parameters.

We can think about the set of these parameters used to approximate
the function as composed of two distinct subsets: ψ that helps find the new
representation on the feature space and ω for the output layer activation. The
approximation becomes y = f(x; θ) = f(x;ψ, ω) = θ(φ(x;ψ);ω), where the
function φ is the learned mapping from the input space to the new feature
space and the function θ is the activation function applied in the output
layer. Given this general form, we can distinguish two different tasks that a
multilayer perceptron can perform. The first is the regression problem when
the function θ is linear in the parameters ω. This type of task consists of a

33



1. Machine learning: basics concepts and neural networks

generalization of a classical linear regression problem, where the linear model
is applied to the input space learned by the hidden layers φ(x;ψ). The second
one is the classification task when the function θ is nonlinear, and we need
the neural network to output the probability distribution for all the possible
outcomes of the problem.

The intermediate layers are called hidden because the training dataset
does not suggest what these layers should do to elaborate the information,
which is entirely retrieved by the mechanism used to learn the representation
function φ. Elaborating a new representation of the original input space is
known to help the model reach a better generalization on the test set and
solve previously impossible problems, such as the XOR one, by applying a
linear model to a nonlinear transformation of the original data.

Nonetheless, linear models have limited capacity since they can repre-
sent only linear functions. Generally, they are solved through closed-form
solutions or convex optimization methods. The introduction of nonlinearity
in the neural network makes these methods more effective for solving the
problem. For these reasons, neural networks are generally trained through
gradient-based algorithms, which are methods employed for various machine
learning models, especially when the dataset is quite large. Despite the dif-
ferences in the optimization procedures, training a neural network requires
some design choices similar to those required by a linear model, such as
choosing an error function, otherwise called cost function, to optimize.

1.6 Design choices

This section explores possible choices in designing a neural network model.
This exposition outlines the flexibility of this family of models that, through
minor changes, can solve very different problems.

Recalling the concept of an estimator from Section 1.2, machine learning
uses some principles to search for a proper function estimate to avoid the need
to make many possible guesses and analyze their bias and variance singularly.
We introduce the error function as the performance metric in Section 1.2
to measure the discrepancy between the estimator and the true value of the
parameters. We again assume to have a dataset D = {x1, . . . ,xM} composed
by M data points of which we can estimate a common mapping for each xi to
its respective label yi, in a supervised learning setting. In this case, a common
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choice for the error function is the mean square error (MSE) function:

JMSE(θ) =
1

M

M∑
i=1

(
f(xi; θ̂)− yi

)2

(1.4)

However, sometimes it is useful to learn a conditional distribution p(y | x)
of the labels given the input data, instead of learning the best function f that
ties x to y. In this case, the model to learn becomes probabilistic, and it is
usually treated under the maximum likelihood estimation (MLE) principle,
where the error function is

JMLE = −Ex,y∼p(x,y) log p(y | x). (1.5)

with data drawn from the joint distribution p(x, y). It is still possible to learn
the distribution p(y | x) with a neural network. If we express the conditional
distribution as a Gaussian, centered on the function estimate and with a

fixed variance σ2, p(y | x) = N
(
y; f(x; θ̂), σ2

)
, one can show that the MLE

procedure gives exactly the same result of minimizing the MSE. Given that
the sampled data points are assumed to be IID, the conditional log-likelihood
is

M∑
i=1

log p (yi | xi; θ) = −M log σ − M

2
log(2π)−

M∑
i=1

(
f(xi; θ̂)− yi

)2

2σ2
. (1.6)

It is immediate to see that maximizing Eq. 1.5 is equal to minimizing Eq.
1.4 up to a constant. This justifies the use of the MSE as an error metric
when the output of the neural network is real-valued statistics of the target
distribution.

Beyond the case of a Gaussian conditional distribution, the general for-
mulation of the error function in terms of MLE adapts to various problems
in machine learning, such as regression but also classification. One can show
that maximizing Eq. 1.5 is also equivalent to minimizing the cross-entropy
between the labels and the data points in the dataset. This expression of the
cost function is helpful when the neural network’s output is binary data and
we are solving a classification problem. The choice of the error function for
a neural network is similar to other machine learning and even econometrics
models and needs to be adapted to the type of problem we want to solve. In
this context, the MLE formulation allows for the expression of deterministic
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or probabilistic models, covering the wide space of different types of problems
in the machine learning domain.

Similar to the error function, the choice of the output layer units is con-
nected to the task type performed by the neural network. Selecting the proper
type of units in a layer means choosing whether and which type of nonlin-
earity is used to solve the problem. Recalling Figure 1.6, we interpret the
results of the last hidden layer, even though in the proposed example there
is just one, as a modified representation of the original data h = f(x, θ).
This hidden representation goes to the final layer, which, depending on the
type of unit, elaborates it and provides the model’s output. Generally, when
we want the neural network to output real-valued numbers, linear units are
employed. These units simply takes the intermediate output h and apply an
affine function, resulting in an output ŷ = WTh + b. Linear units are useful
to output the mean of a Gaussian distribution p(y | x) = N (y; ŷ, I).

If we are solving a classification problem instead of a regression one, the
choice of the output units depends on how many classes are included in the
task. In the case of a binary choice between two classes, the output layer is
composed of sigmoid units. These units still apply the affine function to the
intermediate output h and the result is passed to a nonlinear logistic sigmoid
function so that ŷ = σ(WTh + b). The conditional function to be modeled
in this case is a Bernoulli p(y = 1 | x), hence the values must lie in the
interval [0, 1] to represent a probability, as guaranteed by the sigmoid function
σ(x) = 1

1+exp−x
. Instead, when the output of a problem can be chosen among

n multiple classes, we use the softmax function as a generalization of the
sigmoid function for binary classes since, in this case, the output is a vector
y instead of a single value. Such function normalizes the values of each vector
component in the interval [0, 1] so that they sum to one. This is achieved by
computing softmax(x)i = expxi∑

j
exp{xj} .

The type of units described can be used equivalently in a hidden layer,
even though linear and softmax units are rarely used. The former does not
introduce nonlinearity, which we usually want to achieve in the intermediate
layer. At the same time, the latter is used if we want the model to choose
among n possible values for some hidden variable. While the choice of the
output units is relevant to defining the type of task we want to perform,
the choice of the hidden units describes the type of nonlinearity we want to
model. There is no guarantee that any type of nonlinearity works better in
any case than the other. Therefore the representational power of the hidden
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layers of the neural network is an active field of research based on heuristics
and extensive simulation tests.

Similar to the output units, the hidden units differ in the type of nonlinear
activation function used after calculating the affine function on the output
of the previous layer. Sigmoid functions were largely used in the first suc-
cessful deep learning implementation (Krizhevsky et al., 2012), together with
the hyperbolic tangent function, which is strictly linked to the former since
tanh(x) = 2σ(2x) − 1. Nowadays, these two type of activation functions
are less popular than rectified linear units (ReLU) and their variants that
applies the function g(h) = max{0,h} on top of the affine transformation.
Several generalizations of the ReLU exist, and it is a matter of heuristic
and case-by-case choice to find the one that performs better for a specific
task. They exist because gradient-based learning fails, for example, where
the ReLU activation outputs zero. Hence, they help obtain a gradient every-
where by providing a non-zero slope in that part of the activation function
domain. These types of units ease the model’s optimization thanks to their
similarity to linear units, whose gradient never saturates. We provide a more
detailed explanation of their benefits from sigmoid and hyperbolic tangent
activation after introducing the optimization techniques of a neural network
and its related algorithms in the coming sections of this chapter.

1.7 Architecture of a neural network

The neural network’s architecture consists of its high-level configuration: the
number of different layers, the type of such layer, and the composition, i.e.,
the type of units in each of them. The architecture somehow recaps all the
design choices carried out to prepare the model before the learning process
and deserves a special mention because it may lead to different type of neural
networks for multiple purposes.

As explored in Section 1.5, the simplest neural network organizes into a
group of units called layers, where each layer is a function of the previous
one. Hence, we can express the feedforward neural network as a chain of
affine and nonlinear functions that goes through all the network structures
up to the output layer. Defining x as the input, the first and the second layer
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can be written as

h1 = g1

(
WT

1 x + b1

)
, (1.7)

h2 = g2

(
WT

2 h2 + b2

)
(1.8)

where W1,b1 and W2,b2 represent respectively the parameter and the biases
associated with those layers. This chain may eventually continue and is long
in the case of modern deep neural networks. The depth and the width of the
neural network are task-dependent and adapt to the problem complexity, as
most of the design choices for this family of models.

Since the beginning of machine learning research, some architecture and
network types have been proposed. Feedforward neural networks represent
the primary building block and inspiration for another kind of network struc-
ture. Delving into the details of these structures is out of the scope of this
work since we are going to use just a feedforward neural network in our em-
pirical research. By the way, we refer respectively to Chapters 9 and 10 of
Goodfellow et al., 2016 to get more insights about two prevalent neural net-
work structures: convolutional neural networks (LeCun, Bengio, et al., 1995)
and recurrent neural networks (Graves, 2012; Hochreiter and Schmidhuber,
1997). The former has been extensively employed to solve computer vision
and object recognition tasks. At the same time, the latter played a huge role
in the achievement of machine translation and text recognition tasks since
they are handy for modeling data sequences.

The need for these different architectures is motivated by different struc-
tures in which the data are arranged. However, theorems state that a feed-
forward neural network with just one hidden layer is potentially sufficient to
learn a mapping in the training set. In the next section, we will detail these
theoretical statements and hence motivate the need for more complex neural
networks.

1.8 Universal approximation theorem

Neural networks exhibit a peculiar approximation capability since they need
few assumptions to learn a specific family of nonlinear functions. Hidden
layers in their structure lead to a universal approximation framework. This
characteristic eases the modeling task since we do not need prior information
on the training data’s specific nonlinear function. Instead, we can be as

38



1. Machine learning: basics concepts and neural networks

general as possible and train a neural network, giving to the hidden layers
the role of learning such nonlinearity.

The Universal Approximation Theorem (Cybenko, 1989; Hornik et al.,
1989) states that a feedforward neural network with a linear output layer and
just one hidden layer can approximate with a negligible amount of error any
continuous function on a closed and bounded subset of Rn. This theoretical
result is guaranteed if the activation function in the hidden layer units is a
function that saturates, i.e., becomes very flat, for large positive and negative
values, like the sigmoid or the hyperbolic tangent functions. The theorem is
also generalized to another type of common nonlinearity, such as the rectified
variants (Leshno et al., 1993).

However, the theoretical results only imply that a large enough feedfor-
ward neural network can represent the function we would like to approximate.
The optimization step, i.e., the model’s training, often does not result in the
negligible amount of error expected from the theorem. This issue relates
to the fact that neural networks are usually trained through gradient-based
optimizers (see Section 1.9) and may fail in finding the proper set of pa-
rameter values. In addition, there is the risk of overfitting when the model
capacity is too high, leading to local minima of the objective function and
hence to a suboptimal training result. Therefore, even if the universal ap-
proximation theorem states that a powerful universal approximator exists,
there is no guarantee to retrieve the exact parameters in a finite amount of
time, neither there is specific guidance on how to structure the model (see
Section 1.6). We refer to Goodfellow et al., 2016 for a detailed review of the
literature on the tradeoff between the neural network width, as stated by the
theorem, and the neural network depth, which in contrast, employs many
hidden layers. The latter has performed better on practical tasks since a
model with a single huge hidden layer becomes increasingly difficult to train.

In the next section, we discuss the optimization process of a neural net-
work, where we shed light on the set of calculations needed and the proper
algorithms to achieve that.
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1.9 Optimizing the neural network parame-

ters

As anticipated in the previous sections, most neural networks gather informa-
tion through the input layer and then propagate it through some hidden layer
to get the model’s output. This process is referred to as forward-propagation,
and it is commonly used to evaluate the performance of a neural network
model by computing the predicted output and comparing it to the given
target using a selected error function (see Section 1.6).

In order to find the set of parameters that allows us to approximate the
desired function closely, we need a way to change them and gradually obtain
outputs closer to the actual values. The gradient-based approach for training
a neural network consists of computing the gradient of the error function with
respect to the neural network’s parameters and changing them following the
inverse direction of such gradient to minimize the error. The optimization
process of a neural network is therefore composed of two iterative steps,
repeated until the desired convergence to the problem solution is reached:

1. calculating the gradient of the error function with respect to all the
parameters of the neural networks;

2. using such gradient to update the parameter of the neural network.

For what concerns the first step, it is simple to derive the analytical ex-
pression of the gradient of the error function. In contrast, it is tough to
evaluate such an expression and obtain the gradient to update the param-
eters. Rumelhart et al., 1986 proposed the backpropagation algorithm as
an efficient way to compute the considerable amount of partial derivative re-
quired, which is known to increase with the width and the depth of the neural
network. In this section, we explain its use to compute derivatives of the er-
ror function with respect to the neural network parameters, even though the
algorithm is general enough for differentiating any continuous function. In
the field of machine learning, it is also used for computing derivatives with
respect to the inputs of the neural networks in order to perform sensitivity
analysis of the model (Dixon et al., 2020; Huge and Savine, 2020).

Usually, the neural network weights are randomly initialized as a starting
point. Several initialization techniques are available and represent one of
the design choices for the neural network to implement. A common way
to initialize the random weights of a neural network is provided by Glorot
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and Bengio, 2010, which states that the signal needs to flow correctly in
both directions through the network architecture. To achieve that, the input
variance of each layer needs to be almost equal to the output variance. Also,
the gradients need to have equal variance before passing through a layer in
the reverse direction. This condition is not guaranteed unless each layer has
the same number of neurons, which is not always the case, although one can
have a reasonable compromise. The Glorot initialization, from the primary
author name, considers the random weights initialized equivalently as:

• Normal distribution N (0, σ2), where σ2 = 1

fan avg
;

• Uniform distribution U(−r, r) with r =
√

3

fan avg

where fan avg =
fan in + fan out

2
, being fan in and fan out respectively the

number of inputs and the number of outputs in each layer of the network.
Other parameters initialization methods works in similar way, but modifies
the scale of the variance in the Gaussian case or the width of the interval in
the uniform case. For more details and references, we refer to Géron, 2019.

The backpropagation algorithm allows the training of a neural network
through the chain rule of calculus. After each forward pass through a net-
work, backpropagation performs a backward pass that allows modifying the
neural network parameters. In the example, we delve into the optimization
process of a feedforward neural network that accepts N values as inputs,
outputs K values, and has L layers, whose L − 2 are hidden layers each
composed by M neurons.

The training examples accepted by the model are in the form of a vector
x ∈ RN . The values associated with the neurons for each hidden layer l from
1 up to L− 1 are computed as

z(l+1) = W(l)h(l) + b(l) (1.9)

h(l+1) = a
(
z(l+1)

)
, (1.10)

where W(l) and b(l) are respectively the matrix of weights and the associated
vector of biases arranged by layers. Specifically, W(l) connects the layer l to
the layer l+ 1. We remark that when l = 1 we have h(1) = x(1) since the first
layer is the input layer. The function a(·) in Eq 1.10 represents an activation
function which is typically a nonlinear function of its inputs that we explain
in more details in the next section.
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The output in the final layer, which is computed as ŷ = WL−1aL−1,
is compared to the true output y through an error function J(ŷ,y). The
backpropagation algorithm uses the values of the error function to minimize
them by adjusting the network’s weights and biases and getting closer to the
true output.

The partial derivative of the error function for a specific weight w
(l)
jk ,that

connects the j-th unit of the layer l − 1 to the k-th unit of the layer l, is
computed as

∂J

∂w
(l)
jk

=
∂J

∂z
(l)
j

∂z
(l)
j

∂w
(l)
jk

(1.11)

where z
(l)
j =

∑M
k=1w

(l)
jka

l−1
k + b

(l)
j , which derived with respect to w

(l)
jk results

in
∂zlj
∂wljk

= al−1
k . It follows that we can write the Eq. 1.11 as

∂C

∂w
(l)
jk

=
∂C

∂z
(l)
j

a
(l−1)
k . (1.12)

The same calculation applies for the partial derivative of the error function
with respect to a single bias, so that

∂C

∂b
(l)
j

=
∂C

∂z
(l)
j

, (1.13)

because
∂z

(l)
j

∂b
(l)
j

= 1.

In this way, we can retrieve any partial derivative with respect to any
weight or bias included in the neural network. We notice that the calcula-
tion proceeds backward, as the algorithm’s name suggests. For a detailed
explanation of the backpropagation algorithm and its variants, we refer to
(Goodfellow et al., 2016; LeCun et al., 1989).

Once the gradient is computed, we can use every partial derivative to
update the value of the neural network weights according to a selected op-
timization algorithm, which is commonly a gradient descent algorithms. We
refer to Ruder, 2016 for a comprehensive overview of these methods and the
different optimization algorithms available for training neural networks. The
general idea of a gradient descent method is to update the weights towards
the inverse direction of the gradient as follows,

W(l) = W(l) − η · ∇W(l)J(W(l)), (1.14)

42



1. Machine learning: basics concepts and neural networks

where the scalar η is a parameter called learning rate that scales the size
of the step to the pointed direction and ∇W(l)J(W(l)) is the gradient of the
error function with respect to the set of weights W(l) defined as

∇W(l)J(W(l)) =


∂J(w

(l)
11 )

∂w
(l)
11

. . .
∂J(w

(l)
1M )

∂w
(l)
1M

...
...

...
∂J(w

(l)
N,1)

∂w
(l)
N,1

. . .
∂J(w

(l)
N,M )

∂w
(l)
N,M

 . (1.15)

The updated equation for each set of biases in the network is analogous to
that of the weights.

1.10 Gradient issues during training

Even though it is true that no activation function is considered to be uni-
versally better than another, some of them may cause gradient issues during
the training process of a neural network. We have highlighted that neural
networks are primarily trained using a gradient-based optimizer. Therefore
it becomes crucial to avoid problems and numerical instabilities when com-
puting the gradient of the error function with respect to a large number of
parameters of the family of models. This section summarizes some of the
numerical issues one may encounter when a particular activation function is
used in place of the others and, eventually, how to avoid those issues.

As already discussed, an activation function is applied componentwise
to each unit in a single layer of the neural network architecture to get the
desired output. Its role is to scale the result of an affine function by adding
a nonlinear effect. Here we mainly compare the two groups of activation
functions from Section 1.6: the logistic sigmoid and the hyperbolic tangent
functions in contrast to the rectified linear activation functions.

The left panel of figure Figure 1.7 shows the range of values that the
logistic sigmoid and the hyperbolic tangent function assume, while the right
panel of the same figure shows their first derivatives on the same domain.
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Figure 1.7: Sigmoid and hyperbolic tangent function on the left panel and
their first derivatives on the right panel.

When computing the gradient of the error function, a significant issue
arises when these two functions are saturated, i.e., they become flat in cor-
respondence with largely negative or positive values. In order to show the
problem, we resort again to the chain rule of calculus employed by the back-
propagation algorithm. We assume we want to train a neural network with
L layers by minimizing an error function J(θ). In the following examples of
this section, we also account for the biases to propose a complete overview.
Indicating all the weights of the output layer as wL, then the general formula
for the partial derivative of J(θ) with respect to them is:

∂J

∂wL
=

∂J

∂aL
∂aL

∂zL
∂zL

∂wL
(1.16)

where zL is the output of an affine function and aL is the output of an acti-
vation function. Except for the partial derivative ∂aL

∂zL
, the other components

of the chain rule are not affected by the choice of the activation function. If
the selected nonlinear function is the sigmoid function σ(x) = 1

1+exp−x
, we

can write such partial derivative as:

∂aL

∂zL
= σ′

(
waL−1 + b

)
. (1.17)

It is easy to show with a simple calculation that the first derivative of the
sigmoid function turns out to be

σ′(x) =
e−x

(e−x + 1)2 = σ(x)(1− σ(x)), (1.18)
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which means that a large positive or negative input x into the sigmoid func-
tion returns a value that is almost zero, as it is also shown the right panel
of Figure 1.7. Hence, by computing the flow of the gradient, a value close to
zero is multiplied with the other partial derivatives in the chain rule

∂L
∂wL

=
∂L
∂aL

∂aL

∂zL︸︷︷︸
almost zero

∂zL

∂wL
. (1.19)

If there are many partial derivatives of the error function with respect to the
weights that are zero or close to zero, their updates through a gradient descent
optimizer add no information because the values of the weights do not change,
and the network cannot reach an optimal configuration by minimizing its
error function. This behavior of the gradient flow in a neural network is
referred to as the vanishing gradient problem.

A similar problem applies to the hyperbolic tangent function, whose first
derivative exhibits the same behavior as the derivative of the sigmoid func-
tion, although on a slightly different range of the domain. The problem of
the vanishing gradients exacerbates when the neural network has many hid-
den layers, because a layer on top of the architecture learns faster than a
layer at the bottom, since the former has comparably bigger gradients. As
a matter of fact, the error function depends on the variation of the weights
connected to every other layer stacked on it. Therefore, the derivative with
respect to the weights in a layer at the bottom of the network exhibits a
chain of dependence from a number of other weights in the subsequent layer
ofin the neural network architecture. For instance, in a four hidden layer ar-
chitecture, earlier layers in a feedforward neural network reuses computation
from their stacked layers as follows

∂L
∂w(1)

=
∂L
∂a(4)

∂a(4)

∂z(4)︸ ︷︷ ︸
From w(4)

∂z(4)

∂a(3)

∂a(3)

∂z(3)︸ ︷︷ ︸
From w(3)

∂z(3)

∂a(2)

∂a(2)

∂z(2)︸ ︷︷ ︸
From w(2)

∂z(2)

∂a(1)

∂a(1)

∂z(1)

∂z(1)

∂w(1)
(1.20)

while the last layer only depends on one set of changes when computing the
chain rule

∂L
∂w4

=
∂L
∂a4

∂a4

∂z4

∂z4

∂w4
(1.21)

An opposite problem appears when the value of the gradients increases
rapidly in value, which is commonly referred to as the exploding gradients
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problem. As for the previous issue, it appears when a relevant part of the
weights in the network exhibit the same behavior. A common rule of thumb
to diagnose the presence of one of these situations is to look at the magnitude
of the single weight so that the chances of running into a vanishing gradient
problem are higher when 0 < w < 1 while encountering exploding gradients
could happen when w > 1.

To understand how the exploding gradients problem works, let denote
weights and biases respectively as wi, biases bi and the error function is J .
Analogously to the previous case, the rate of change in a weight or bias is
measured in relation to the error function, by computing the partial deriva-
tive. For instance, focusing on the first bias b1 of the model, such ratio
is

∂J

∂b1

=
∂J

∂a

∂a

∂z

∂z

∂b1

(1.22)

We know that the first bias feeds into the first activation a1, recalling that
a1 = σ (z1) = σ (w1a0 + b1). If b1 changes, and we call its variation ∆b1, the
activation a1 also varies accordingly to ∂a1/∂b1 = ∂σ (z1) /∂b1. The change
of a1 is called ∆a1 and which is approximately

∆a1 ≈
∂σ (w1a0 + b1)

∂b1

∆b1 = σ′ (z1) ∆b1 (1.23)

However, variations in a1 cause variations in z2 = w2a1 + b2, which is the
input of the next layer, and we can go through the same process again to get
the change in z2

∆z2 ≈
∂z2

∂a1

∆a1 = w2∆a1 (1.24)

Iterating this process, we get ∆J as a function of all the changes in the error
function relative to every parameter in the network

∆J ≈ σ′ (z1)w2σ
′ (z2) . . . σ′ (z4)

∂J

∂a4

∆b1 (1.25)

From this, we simply plug into the ∂J/∂b1 equation and get the final chain
rule of partial derivatives with respect to the parameter of the whole network

∂J

∂b1

= σ′ (z1)w2σ
′ (z2)w3σ

′ (z3)w4σ
′ (z4)

∂J

∂a4

(1.26)
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If we assume that many weights are greater than one, the computation of
the gradients involves the multiplication of large quantities, which leads to
a considerable value for the gradients. Using a gradient descent optimizer
would update the parameter too far away from the optimal solution.

Exploding gradient issues, like the one presented here, are partially avoided
by limiting gradients to some fixed values or imposing a constraint on the
norm of the gradient itself (Géron, 2019). However, these heuristics cannot
fully control the vanishing gradients problem. For this purpose, different
activation functions such as the ReLU have been adopted for training a neu-
ral network. The equation for the ReLU activation and its derivative with
respect to the input is as follows:

ReLU(x) = max(0, x) (1.27)

ReLU′(x) =

{
1 if x > 0
0 if x ≤ 0

(1.28)

On the one hand, this type of nonlinearity fixes the vanishing gradient prob-
lem by returning zero gradients instead of minimal values corresponding to
negative inputs. On the other hand, it creates another issue, referred to
as the dead ReLU problem, since when many partial derivatives are lower
bounded at zero, the parameter updates still lack information, and the model
is not able to learn a proper configuration. More specifically, the neuron of
the network which receives a negative input is set to zero, and it is somehow
“dead”, because it is not able to provide any additional information when
partial derivatives with respect to its connected weights are computed. The
dead ReLU problem also introduces sparsity in the weight matrices, increas-
ing the efficiency of time and space complexity, which has been observed that
leads to better optimization performances.

One of the variants of the ReLU is called Leaky-ReLU which are defined
as

LReLU(x) =

{
x if x > 0
αx if x ≤ 0

(1.29)

LReLU′(x) =

{
1 if x > 0
α if x ≤ 0

(1.30)

where α is a scalar parameter commonly set between 0.1 to 0.3. The Leaky-
ReLU solves the dead ReLU problem, because the values of the gradients are
no longer be stuck at zero and at the same time still avoids the vanishing
gradient problem.

47



1. Machine learning: basics concepts and neural networks

−4 −2 0 2 4

x

−1

0

1

2

3

4

5

g(
x)

relu

leaky-relu

elu

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

x

0.0

0.2

0.4

0.6

0.8

1.0

g
(x

)′

relu′

leaky − relu′
elu′

Figure 1.8: ReLu variants activations on the left panel and their first deriva-
tives on the right panel

Another common and effective variant is the Exponential linear unit
(ELU) with such form:

ELU(x) =

{
x if x > 0
α (ex − 1) if x < 0

(1.31)

ELU′(x) =

{
1 if x > 0
ELU(x) + α if x ≤ 0

(1.32)

As for the previous ReLU variant, negative inputs assume values below zero,
even though it does not become a linear function when differentiated. Fig-
ure 1.8 provides a visualization of ReLu and the variants mentioned above,
together with their first derivative function. These kinds of activation func-
tions have been successfully employed in deep learning applications, and they
took the place of sigmoid functions as the standard activation for every neural
network implementation.

1.11 Summary

This chapter serves to introduce concepts and algorithms that are necessary
to deal with any machine learning application. Firstly, we present the three
machine learning paradigms to provide a broad perspective of the domains
of application of this field of research and what set of problems it can help
to solve. We specify the generalization purpose of the machine learning al-
gorithms, in contrast to more classical approaches, and we outlined some
background theory for the field. Then we introduce neural networks as one
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of the leading mathematical tools for machine learning tasks. The chapter
structure facilitates a clear comprehension of the origin and the motivation
of those models, the procedure to design them, and the algorithm needed
for optimization. We decided to focus only on general machine learning con-
cepts and present just a family of machine learning models, neural networks,
because we need the reader to be equipped with instrumental notions to in-
troduce reinforcement learning in the next chapter. Any detailed insights
can be retrieved in Friedman et al., 2001 for what concerns classical machine
learning and in Goodfellow et al., 2016 regarding deep learning and neural
networks.
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Chapter 2

Reinforcement learning: theory
and background

This work aims to show the role that the reinforcement learning framework
can play in the domain of finance. This chapter outlines the background
theory and the necessary concepts to understand the origin and function-
ing of such a machine learning paradigm. At the end of this chapter, the
reader should know the connection between the neural networks model family
and the reinforcement learning paradigm for applications in several domains,
whose finance is one. We complete a broad overview of the methods used in
the second part of the work.

”Reinforcement learning, like many topics whose names end with “ing”,
such as machine learning and mountaineering, is simultaneously a problem,
a class of solution methods that work well on the problem, and the field that
studies this problem and its solution methods”(Sutton and Barto, 2018). In
these words, the authors of one of the most comprehensive books on reinforce-
ment learning summarize an essential point to grasp in order to understand
the subject since the word reinforcement learning is equally used to identify
both the problem and its solution. In what follows, we will pay particular
attention to clearly defining the former and the latter.

As anticipated in the introduction, reinforcement learning tackles the
problem of sequential decision making, providing a framework to learn how
to behave in a given environment. This setting contrasts with the other
machine learning paradigm that we described in the previous chapter. In
a supervised learning framework, a fixed dataset is provided, and the se-
lected algorithm search for the desired mapping to represent an available
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relationship in the data. In an unsupervised framework, the same dataset
is investigated to retrieve its hidden structure and characteristics. Under
this perspective, both these frameworks do not resemble the human learning
paradigm because they miss the general notion of learning by trial and error.
On the contrary, reinforcement learning attempts to mathematically formal-
ize the idea of learning by interaction, which is typical for the human nature.
Simple examples are a child who receives feedback and responses from the
environment and learns what is safe and dangerous. An adult learns to drive
a car by following a set of rules and collecting experiences down the road.
Indeed, in many cases learning by interaction is at the core of any human
acquired knowledge, from driving a vehicle to using a computer.

The goal of reinforcement learning is broader, even though it shares com-
mon traits with the other two machine learning paradigms. For instance,
there is still the willingness to find a desired mapping between the situation
experienced by the agent and the result of its interaction with the external
environment. Reinforcement learning provides a different paradigm in which
an algorithm can learn from the gathered experience and is somewhat able
to solve the problem of the availability of the data, as long as it is possible to
interact with the environment and collect them. The reinforcement learning
problem is hence commonly represented by a goal-directed agent that moves
in an uncertain environment, and it is particularly suitable to tackle a variety
of problems in which the concept of sequential decision-making is crucial.

This paradigm represents one of the core research threads in machine
learning and artificial intelligence. Its modern expression is entrenched with
other mathematical disciplines such as statistics and optimization. The use
of neural networks and reinforcement learning has led to deep reinforcement
learning, which contributed to solving the curse of dimensionality problem
of the classical control theory.

2.1 Basic notions

As a learning problem, reinforcement learning refers to controlling the be-
havior of an agent, which is often stochastic, to maximize a scalar value that
represents a measure of its long-term objective. The usual interactions in this
kind of stochastic system are represented in Figure 2.1: an agent receives in-
formation about the current state of the environment, St, and it takes action
At based on that informative set. The environment responds to the action
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with a scalar reward signal Rt+1 and passes through a new state St+1 be-
fore the loop starts again. This general scheme holds for each reinforcement
learning algorithm, which differs in the details of each scheme component,
such as, for instance, the way the performances are measured, the way the
state of the environment is expressed, or the type of action performed by the
agent.

As anticipated, we always consider the environment stochastic so that
there is uncertainty in the state transitions. The first peculiarity of the
reinforcement learning problem is the absence of a supervisor, i.e., a ground
truth on which the learning problem is based. In contrast, the scalar reward
signal plays the most relevant role by providing feedback to the learning
agent. This feedback can eventually be delayed over some periods so that
an action performed now can be fruitful later in the future. This aspect
introduces the second characteristic of reinforcement learning, which is the
role of time in the learning process. All the tasks that we aim to solve
using reinforcement learning techniques are sequential decision-making tasks,
where the training data are not IID but are connected in time. It is essential
to understand that each agent’s action can affect all the following data that
he gathers while interacting with the environment.

Based on the representation of the loop of interactions, we identify the
core components of the reinforcement learning problems and give them a
clear definition. The first component is a scalar feedback signal referred to
as reward, which is helpful to indicate how well the agent is performing at
a specific time step in the learning process. Such a measure of performance
plays a similar role to the accuracy metric commonly employed in supervised
learning in the sense that they measure progress. However, more than that, it
can direct and shape the learning process itself. In reinforcement learning, the
reward hypothesis states that all of what we mean by goals and purposes can
be well thought of as the maximization of the expected value of the cumulative
sum of a received scalar signal (Sutton and Barto, 2018). Even though a
recent work of Silver et al., 2021 supports this thesis, it should not be taken
as absolute truth, and there is a substantial philosophical debate behind it,
claiming that a single scalar is not sufficient to represent multi-modal human
behaviors. Such a hypothesis may not attain the goal of general intelligence.
However, it is sufficient to express a consistent variety of specific problems
in different domains and therefore represents one of the core strengths of the
reinforcement learning approach. The formalization and the type of reward
function can change dramatically depending on the task that the agents need
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to solve. For certain board games, like Go, the reward is only given at the
end of the game, measuring if a winning performance has been achieved.
Otherwise, the agent would be encouraged to play well by cumulating its
reward, but not necessarily to win the game. In some videogames, which are
standard testbeds for reinforcement learning algorithms, the reward depends
on the increment or decrement of the score, and the game itself naturally
measures it. In other contexts, it is less trivial to formalize the reward
concepts, like when the reinforcement learning agent needs to learn how to
manage a power station: we reward the agent for producing the necessary
power, but we penalize for the waste in excess production or for surpassing
the safety thresholds. In a financial application, the reward formalization
comes very naturally with the concept of cumulated money over time, which
helps shape the problem and already gives the perception of how well the
reinforcement learning framework suits financial problems of that sort.

Since the goal is to maximize the cumulative future reward, the so-called
exploration-exploitation tradeoff balances the greediness in the behavior apt
to maximize the total reward while choosing between the two opportunities.
We know that the reward of action may be delayed and affect all future states
of the system so that the agent would sacrifice some part of the current reward
to achieve a better total reward in the long run. The role of exploration is
critical in reinforcement learning, which consists in choosing actions that are
not necessarily the most rewarding at the current time, but that could bring
a huge benefit in the future. Being the scalar signal is the only feedback
that the agents have to learn, its chances are to try different actions and
understand where they bring before acting with a whole greedy behavior
that exploits the opportunities in the short-term.

Figure 2.1: The agent–environment loop of interactions.
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Following the stylized scheme in Figure 2.1, at each discrete time step
t, the agent observes the variables that characterize the current state of the
environment St and executes an action At based on such information. As a
response, the environment provides the agent with a scalar reward Rt and
the new a state representation St+1. To underline the agent-environment
relationship from the opposite viewpoint, we can also say that at the very
same time step the environment is in a current state St, it receives an action
At and outputs a scalar reward Rt and a subsequent state representation
St+1. The relationship between the agent and the environment produces a
set of sequential information St, At, Rt+1, St+1, At+1, Rt+1, St+2 . . . which are
not IID. The transition from one state of the environment to the other is
given by the model of the environment, which provides what the next state
will be, given the current state.

Although the agent’s action can be intuitively understood as anything
that can bring value to him in the long-term, such as a smart move in a
board game or a profitable trade in a financial problem, the state of the
environment is somewhat blurred and requires some specifications. In rein-
forcement learning, we generally refer to the state St as the representation
of the state of the environment at time t. Therefore, it is the information
used by the reinforcement learning agent to decide which action to take to
maximize its cumulative reward. The state representation can include any
information that is believed to be relevant for the agent to succeed in the
defined environment.

The connection between the state of the environment and the agent’s
action is formalized by the policy of the agent, which reflects its behavior.
It is a map from the state representation to the action. A policy π can be
either deterministic, a = π(s), or stochastic, π(a | s) = P[At = a | St = s] .

Given the existence of delayed feedback, it is important to have a way
to measure the goodness of being in a certain state of the environment and
hence behaving according to a specific strategy, i.e., a policy. In reinforcement
learning, the value function plays such a role, representing an estimate of the
future rewards that depends on the agent’s policy, so that vπ(s) = E[Rt+1 +
γRt+2 +γ2Rt+3 + . . . | St = s] represents the expected cumulative discounted
sum of rewards based on behaving according to the policy π, given the current
state of the information. The next section will provide more details about
its use for solving a general reinforcement learning problem.

As we will see in the following section of this chapter, the elements de-
scribed here are always present in each reinforcement learning algorithm.
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Going beyond the high-level definition provided in this section helps in cat-
egorizing those algorithms into different families. The introduction of re-
inforcement learning taxonomy clarifies the choice of a given reinforcement
learning algorithm to solve a specific problem. In the next section, we will
present the mathematical framework that encloses all these elements and
helps make the reinforcement learning problem tractable and even solvable
in closed-form under certain conditions.

2.2 Markov Decision Processes

A Markov Decision Process (MDP) is the mathematical formalization of the
reinforcement learning problem where the agents aim at learning from in-
teractions. The interaction exists between the agent, which is the decision-
maker, and the environment, which includes everything that is not under the
direct control of the former. Our focus will be on discrete MDP so that the
interaction takes place at discrete time steps t = 0, 1, 2, 3, . . ., but the results
can be generalized also to continuous time (Bertsekas and Tsitsiklis, 1996).
A characteristic of the reinforcement learning problem formalized as a dis-
crete MDP is the possibility to consider the time steps as subsequent possible
moments in the decision-making process without necessarily assuming that
they are uniformly distributed over time.

At each time step t in a discrete MDP, the agent observes a representation
of the current state of the environment, St ∈ S, and selects and action,
At ∈ A, on the basis of such information. At the subsequent time step t+ 1,
the agent receives a scalar reward, Rt+1 ∈ R ⊂ R, together with a new state
representation, St+1. If the MDP is finite, this means that the set of possible
states, action and rewards (S,A, and R) is composed by finite elements.
Hence, the dynamics of the random variables representing the state and the
rewards, St+1 and Rt+1, is represented by discrete probability distributions
that depends on the previous value of the state and the action that causes
the transition from St to St+1

p (s′, r | s, a)
.
= Pr {St+1 = s′, Rt+1 = r | St = s, At = a} . (2.1)

This definition holds from every finite elements of the three sets (S,A, and
R). It worth noting that the probability distribution is specified for every
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possible choice of the pair (s, a) so that∑
s′∈S

∑
r∈R

p (s′, r | s, a) = 1, for all s ∈ S, a ∈ A (2.2)

The function p : S × R × S × A → [0, 1] determines the dynamics of
the MDP, so that the probability of the occurrence for St and Rt depends
only on the information available at the preceding time step, hence St−1 and
At−1. In a MDP, the state encloses all the relevant information about the
past interactions, hence it respects the Markov property.

From the very general Eq. 2.1, one can compute the state-transition
probabilities p : S × S × A → [0, 1]) simply by summing over all possible
rewards,

p (s′ | s, a)
.
= Pr {St+1 = s′ | St = s, At = a} =

∑
r∈R

p (s′, r | s, a) , (2.3)

or the expected rewards r : S ×A → R for a specific pair (s, a)

r(s, a)
.
= E [Rt+1 | St = s, At = a] =

∑
r∈R

r
∑
s′∈S

p (s′, r | s, a) . (2.4)

The scalar feedback provided to the agent by the environment allows to
describe a measure of the total performance of the agent in the learning
problem as an infinite discounted sum of rewards:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k−1, (2.5)

so that the value of receiving the reward R after k+ 1 steps is γkR. The role
of the discount factor γ is important for evaluating instantaneous reward
with respect to future rewards. A value close to zero resembles a short-
term attitude and pays more attention to immediate rewards, while a value
close to one enhances more long-term rewards. The role of the discount is
also to avoid infinite return values in infinite Markov processes and helping
to represent the human behavior preference for immediate reward. In our
financial and economic context, it is also directly involved in representing the
time value of money.

In a (stochastic) MDP, a policy is considered to be the distribution of the
actions given the states:

π(a | s) .
= Pr {At = a | St = s} , (2.6)
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so that, if the agent follows a policy π and is experiencing s as the current
state, the action a will be chosen with probability π(a | s). The ordering
of policies is guaranteed by specifying a total return function as in equation
2.5, which represents the objective function of the theoretical reinforcement
learning problem. The agent searches for the policy that maximizes the
expectation of total return

max
π

E[Gt]. (2.7)

Value functions help in searching for the optimal policy since they rep-
resent how good it is to be in a given state in terms of the expected future
cumulative sum of rewards and help estimate the future amount Gt. They
are usually defined as related to a policy that can be modified during the
learning process. The state-value function v(s) of an MDP represents the
expected future return of being in a given state and following a policy π on-
wards. An alternative to the state-value function is the action-value function,
representing the expected return function, assuming to start in the state s,
take action a and follow some fixed policy π onwards. Both concepts are
mathematically expressed as follows:

vπ(s) := Eπ[Gt | St = s] (2.8)

qπ(s, a) := Eπ[Gt | St = s, At = a]. (2.9)

For any policy π and any state s, the following consistency condition holds
between the value of the current state and the value of its possible successor
states:

vπ(s) = Eπ[Gt | St = s] =

= Eπ[Rt+1 + γGt+1 | St = s] =

=
∑
a∈A

π(a | s)

r(s, a) + γ
∑
s′∈S

p (s′ | s, a)Eπ[Gt+1 | St+1 = s
′
]

 =

=
∑
a∈A

π(a | s)

r(s, a) + γ
∑
s′∈S

p (s′ | s, a) vπ(s
′
)

 , (2.10)

which is called Bellman equation from the work of Bellman, 1966. The same
recursion can also be written for the action-value function and the two value
functions are tied by the following relationship

vπ(s) =
∑
a∈A

π(a | s)qπ(s, a) (2.11)
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We know that the state-value function allows for ranking the policies,
so that π > π

′
if vπ(s) > vπ′ (s) ∀s ∈ S. Although an optimal policy is

defined to be at least as good as any other policy and does not need to be
unique if two policies are optimal, they certainly share the same optimal
value functions:

v∗(s) = max
π

vπ(s) (2.12)

q∗(s, a) = max
π

qπ(s, a) (2.13)

Noting that v∗(s) = maxa q∗(s, a), we can conclude that the optimal action-
value function is a more general concept than the optimal state-value func-
tion. If we knew the q∗(s, a), the optimal policy would be guaranteed by
choice of a that maximizes q∗ for the current state s. This policy is called
greedy, and the reinforcement learning problem is usually reduced to find q∗
in an iterative manner.

However, the greedy policy is a particular case of a deterministic policy. In
a more general case, one can express a stochastic policy that specifies certain
probabilities π(a | s) of taking action a given the current state s. When there
are several actions at which the maximum action-value function is achieved,
a stochastic policy expresses the agent’s behavior by assigning probabilities
to each maximizing action. Any weighting scheme is suitable as long as the
suboptimal action, i.e., those that do not maximize the value function, are
given zero probabilities. Hereafter, we can alternatively use deterministic or
stochastic policies. The former is just a general case in which the weighting
scheme is chosen so that one maximizing action is given full probability and
the other is given zero. Therefore, all the results presented in this section
are extendable to the stochastic case.

The Bellman optimality equations are both satisfied by the optimal value
functions as follows:

v∗(s) = max
a

r(s, a) + γ
∑
s′∈S

p (s′ | s, a) v∗(s
′
)

 (2.14)

q∗(s, a) = r(s, a) + γ
∑
s′∈S

p (s′ | s, a) max
a′

q∗(s
′
, a
′
), (2.15)

where the recursion is not averaged over all the action in the space A as in
Eq. 2.10, but instead, it is expressed in term of the action that maximizes
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it. The optimality equation for q∗(s, a) is easily obtained from Eq. 2.11. The
majority of reinforcement learning algorithms associate a quantity q∗(s, a)
to the state-action pair (s, a). The main problem is that we are not able to
calculate q∗(s, a) since, at any current time, the optimal action-value func-
tion is unknown. Therefore, we need to resort to an approximation of the
target value, using our current best guess of the function q∗. In general,
any algorithm belonging to the reinforcement learning family consists of the
following iterative steps:

1. generate samples (s, a, r, s
′
) by running a policy

2. estimate the return of the sampled trajectory

3. improve the policy.

Depending on the way those steps are approached, different classes of rein-
forcement learning algorithms are defined.

The solution to the reinforcement learning problem formalized by an MDP
is obtained by solving the Bellman optimality equation, which is nonlinear
by nature and seldom has a closed-form solution. In the next section, we
will present different methods to solve the general problem described above,
along with their advantages and disadvantages.

2.3 Tabular Reinforcement Learning

This section enters into the details of tabular reinforcement learning algo-
rithms, which represent the first building block to understanding more so-
phisticated families of algorithms. For this purpose, it is helpful to describe
the dynamic programming approach and its differences with respect to re-
inforcement learning to fully appreciate the flexibility of the former class of
methods for sequential decision-making problems.

2.3.1 Dynamic Programming

Classical reinforcement learning, also referred to as tabular, is a discipline
related to dynamic programming, which encloses a set of methods for stochas-
tic control problems. Examining the former name, we understand that there
is the attempt to solve a sequential problem, hence dynamic, by optimizing
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a program, which in our case is the way of behaving of the agent. Un-
derstanding dynamic programming helps in grasping the basic algorithm of
reinforcement learning, which is at the core of modern and more complex
ones. The primary reference for this set of algorithms is (Bellman, 1966),
although the same material is also presented in (Sutton and Barto, 2018).

Each dynamic programming problem has a clear and defined structure.
There is an optimal solution to be found by decomposing the main problem
into subproblems that recur many times. An MDP provides a standard
framework to represent this decomposition in sub-problems.

The main characteristic of the dynamic programming approach is to as-
sume the full knowledge of the MDP, i.e., the probability distribution in Eq.
2.1 at each discrete time, which gives the possibility to compute optimal poli-
cies. Reinforcement learning methods often share some characteristics with
dynamic programming techniques, even though for the former, the dynamics
of the state transition are generally unknown and need to be discovered by
interacting with the environment. In general, since dynamic programming
exploits the knowledge of the MDP’s dynamics, it is more computationally
expensive than a reinforcement learning approach because it does not resort
to approximation.

Dynamic programming uses value functions to structure the search for
good policies since it is relatively easy to obtain optimal policies once ob-
tained the value function by solving the Bellman equation as in Eq. 2.14 or
2.15. The problem is split in two parts, of which the first is called policy
evaluation and regards the computation of the state-value function vπ for a
given policy π, to assess the goodness of the current state. When the model
of the environment is known, as it is the case of many dynamic programming
applications, the Eq. 2.14 consists in solving a system of |N | linear equations
in |N | variables, which are those composing the state space representation.
This system of equation is solved by iteration, so that an initial value v0 is
chosen, and then the subsequent approximation are obtained through the
following update rule for all s ∈ S

vk+1
π (s) =

∑
a∈A

π(a | s)

r(s, a) + γ
∑
s′∈S

p (s′ | s, a) vkπ(s
′
)

 , (2.16)

that is the Bellmann equation iteratively updated every k step. Repeated
updates of the value function are referred to as iterative policy evaluation,
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whose computational costs grows with the number of possible states in which
the environment can make its transition.

Evaluating a given policy, i.e., computing its associated value function,
also allows improving it by searching for a better one. One can wonder if
for a given state s at the time t, it would be better to choose a different
action with respect to what the policy suggests, a 6= π(s), and then follow
the policy π itself thereafter. The action value function in Eq. 2.9 evaluates
this way of behaving as

qπ(s, a) = r(s, a) + γ
∑
s′∈S

p (s′ | s, a) vπ(s
′
), (2.17)

which provides a measure of how much is convenient to change the current
policy by taking a different action. If qπ(s, a) > vπ(s), then it would be
better to take the action a in the current state s and follows the given policy
thereafter. On the other hand, the opposite case discourages changing the
policy for the current state.

The general case for the improvement of a dynamic programming policy
is formalized by the policy improvement theorem which states that, given a
pair of deterministic policies π and π′ such that for all s ∈ S holds,

qπ (s, π′(s)) ≥ vπ(s), (2.18)

then the policy π′ must be as good as, or better than, π. Being better in
reinforcement learning terminology means that the policy π′ must obtain at
least an equal amount of expected return from all states s ∈ S, i.e.

vπ′(s) ≥ vπ(s) ∀s ∈ S (2.19)

If qπ(s, a) > vπ(s), then the modified policy is indeed better than π, since
the two initial policies differ in the way of behaving only at the state s, while
are entirely equal for all the other possible states in S. The proof of the
policy improvement theorem goes beyond the scope of this section and can
be easily retrieved in Sutton and Barto, 2018. Notwithstanding the use of
deterministic policy to introduce the policy improvement theorem, all results
can also be extended to stochastic policies π(a | s) that specify probabilities
of taking actions.

The alternating process of evaluating a policy and improving it by obtain-
ing a better one produces a series of monotonically improving policies and
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value functions. Thanks to the policy improvement theorem, strict improve-
ment is guaranteed at any step. The finiteness of the MDP under which
dynamic programming works allows convergence to optimality in a finite
number of iterations. The serious drawback of such a procedure is the need
for an entire sweep, i.e., evaluating the policy for all the possible states in the
MDP. However, it has been shown that the policy evaluation step of policy
iteration can be truncated without losing the convergence guarantees of the
policy iteration algorithm. The value iteration algorithm stops the policy
evaluation exactly after one complete update of each state, which takes the
following form:

vk+1
π (s) = max

a

r(s, a) + γ
∑
s′∈S

p (s′ | s, a) vkπ(s
′
)

 , (2.20)

for all s ∈ S. The algorithm stops once the value function changes by only
a small amount in a sweep. Value iteration allows evaluating and updat-
ing the same policy in one sweep over the possible state space, allowing to
do fewer computations and achieving faster convergence. The previous al-
gorithm converges to an optimal policy if used to solve a discounted finite
MDP.

The main drawback of dynamic programming that has been discussed in
the literature is the so-called curse of dimensionality that makes this family
of methods impractical for high-dimensional problems. The time required
for a dynamic programming method to solve a policy is polynomial in the
dimensionality of the state and the action spaces. Therefore, when the num-
ber of possible states grows, dynamic programming has hard time to solve an
MDP. Even though high-performance calculus machines partially solve the
timing issues, the curse of dimensionality represents one of the main reasons
for the surge of reinforcement learning techniques.

2.3.2 Model-free Reinforcement Learning

Contrary to the need for dynamic programming to fully know the dynam-
ics of the environment, model-free reinforcement learning encloses a set of
techniques and algorithms to solve MDPs in the case of partial or absence of
information about such dynamics. The approach to solving the MDP is still
articulated in two steps, i.e., prediction, estimating the value function, and
control, to optimize the value function and eventually improve the policy.
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The difference with respect to dynamic programming refers to how these two
steps are accomplished.

The first set of model-free reinforcement learning algorithms we want to
present is Monte-Carlo reinforcement learning, which learns from an episode
of experiences. An episode is a set of consecutive time steps in which the
agent and the environment interact up to a final time step. After that, the
system is restarted, and a new episode begins. Such a definition implies
that these techniques can be applied only to episodic MDPs, representing a
sequential problem that needs to end, as it happens in almost any game.

After collecting several episodes of experience using a policy π, the goal of
a Monte-Carlo algorithm is again to learn the state-value function vπ. The ex-
perience obtained from an episode appears like a sequence of signals that goes
back and forth between the agent and the environment S1, A1, R2, . . . , Sk ∼
π. Recalling the definition of total return as the total amount of discounted
reward, which in this case is a finite sum due to the episodic MDP, we ob-
tain Gt = Rt+1 + γRt+2 + . . . + γT−1RT . From Eq. 2.8, we have defined
the state-value function as the expected return under the current policy π.
Monte-Carlo reinforcement learning aims to use the empirical mean return
over the episode instead of the expected one.

When one wants to evaluate the state s, the algorithm keeps a counter
N(s) of the number of times that such state has been visited during an
episode. The value of the state is then estimated as the empirical mean
return V (s) = S(s)/N(s), where S(s) is the aggregated return obtained
after every visit of the state s. Then we know that as long as the agent
visits such state for a sufficient amount of time, the solution of the MDP
is going to converge to the searched value function, i.e., V (s) → vπ(s) as
N(s) → ∞. This approach is called every-visit because it averages the
return after each state visit in the set of all episodes. As an alternative, the
first-visit approach averages the return only after the first appearance of such
a state in each episode. Usually the value function is incrementally updated
after each episode S1, A1, R2, . . . , ST , so that for each state St with return Gt

we have

V (St)← V (St) +
1

N (St)
(Gt − V (St)) , (2.21)

where N (St) is still the counter of the visit for the state St. The update
rule can be modified to adapt to non-stationary environment, where it could
be convenient to gradually forget past episode by giving more weights to the
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recent one, so that

V (St)← V (St) + α (Gt − V (St)) . (2.22)

Temporal-difference learning is a different model-free approach, which
still does not require knowledge of the transition function associated with
the MDP that one needs to solve. However, it can learn from incomplete
episodes. Temporal-difference reinforcement learning adopts bootstrapping
techniques that update the value function, which is a guess, towards another
guess estimated according to what has been seen so far during the agent-
environment interaction. The aim is to learn online, hence faster, without
waiting until the end of the episode and collecting a full set of sequences up
to a termination state. This allows for solving MDP, which is not expressed
episodic but eventually has an infinite time horizon. Recalling Eq. 2.22,
temporal-difference reinforcement learning updates the value function V (St)
toward an estimation of the return Rt+1 +γV (St+1) called TD target, so that

V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St)) . (2.23)

where δt = Rt+1 + γV (St+1)− V (St) is the TD error.
When it comes to comparing the two model-free approaches presented

in this section, there is no prevalent approach in terms of performance. All
that matters is the proper selection of the approach for the MDP that we
are trying to solve. In order to recap, the two approaches are not competing
but complementary since they provide algorithmic methods for solving both
finite and infinite horizon MDPs. The temporal-difference approach can learn
after every step, without going too far up to the end of the episode, using
incomplete sequences of experience. In this sense, it works for both episodic
and continuing environments, while Monte-Carlo reinforcement learning can
only solve those that are episodic.

Looking at the way the value function is updated, there is an intrin-
sic tradeoff between bias and variance since the total return Gt = Rt+1 +
γRt+2 + . . .+ γT−1RT is an unbiased estimate of vπ (St), while the TD target
Rt+1 + γV (St+1) is a biased estimate of vπ (St), but it has lower variance
than the former. This holds because the total return depends on the full set
of state-action-reward transitions, while the TD target depends only on one
of them. Monte-Carlo has high variance but low bias and usually has good
convergence properties. The main drawback is collecting an entire episode
of sequences before updating the value function. On the other hand, the
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Figure 2.2: From the left to the right, backup diagrams for dynamic pro-
gramming, Monte-Carlo and temporal-difference approach. These diagrams
represent the update operations, also referred to as backups, that are carried
out by these classes of algorithms. Source: David Silver lecture on reinforce-
ment learning available here

temporal difference is more efficient but has fewer convergence guarantees.
In this regard, temporal difference exploits the Markov property. It works
well in Markov environments where all the information is enclosed in the
system’s current state. In contrast, Monte-Carlo does not use that property
and requires the full stream of experience to update the value function.

Figure 2.2 helps to clarify these distinctions also compared to the dy-
namic programming approach. The dynamic programming update oper-
ation, commonly known as backup (see the left part of the Figure), un-
derlines that to use the update rule V (St) ← Eπ [Rt+1 + γV (St+1)], one
needs to consider all the possible successive state starting from St and com-
pute an expectation, which is possible due to the given knowledge of all
the transition probabilities in the environment. A Monte-Carlo update,
V (St) ← V (St) + α (Gt − V (St)), needs the collection of the entire path
of the episode up to a terminal state denoted with a T in the figure. A
temporal-difference approach requires a truncated version of the same path,
which does not go beyond the first successive step, as highlighted on the right
end side of the Figure, and it is commonly referred to as TD(0).

There are available options between the two model-free approaches that
move the tradeoff between bias and variance and allow using temporal dif-
ference up to several steps in the future. Algorithms like eligibility traces or
n-step temporal difference are treated in more detail in Sutton and Barto,
2018, and we omit their details in this work since they are not primarily used.

Indeed, the temporal difference algorithm with a single step, also called
TD(0), has been shown to work well. It is simple to implement, representing
the basis of most of the complex deep reinforcement learning algorithms that
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we will describe in the next section.
In order to conclude our exposition of the tabular reinforcement learning

method, we want to present Q-learning, which is one of the most known
algorithms, originating from a seminal work of (Watkins and Dayan, 1992).
After introducing the prediction approach in a model-free context, we will
use Q-learning as a representative example of model-free control.

Q-learning

Q-learning is an off-policy learning control method, which means learning a
policy π using experience gathered from the interaction with the environ-
ment through a different policy. This contrasts with the so-called on-policy
learning, where the policy used to sample experience is the same one that
wants to optimize. The equivalent algorithm of Q-learning in an on-policy
setting is called SARSA, whose name precisely refers to the sequence that
needs to be collected to perform an update. In this section, we just outline
the off-policy approach, while the on-policy can be retrieved in Sutton and
Barto, 2018; Szepesvári, 2010.

Off-policy learning consists in evaluating a policy π(a|s), that we want
to learn, by computing either the value functions vπ(s) or qπ(s, a), while in
the meantime, following a different policy µ(a|s). The off-policy concept is
important because it allows learning situations where we can observe different
behaviors than strictly the one that the agent is taking, and it is also more
efficient in the use of collected data. Off-policy learning offers a way to
circumvent the known issue of the exploration and exploitation tradeoff in
reinforcement learning by allowing to learn optimal policies while following
policies that tend to explore the action space.

Q-learning consider off-policy learning of action-values Q(s, a) by choos-
ing an action At according to a behavior policy µ (At | St) and updating
towards Q(s, a) computed with a greedy target policy. This means picking
the action that maximizes the action-value function given the current state
so that the iterative update of the learning algorithm is

Q (St, At)← Q (St, At)+α
(
Rt+1 + γmax

a′
Q (St+1, a

′)−Q (St, At)
)
. (2.24)

In this setting the agent can behave according to a stochastic policy µ (At | St)
to learn a deterministic policy π(St) = arg maxa′ Q (St+1, a

′). The balance
between exploration and exploitation is usually guaranteed by a behavior
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policy that is ε-greedy with respect to Q(s, a), representing a simple but ef-
fective idea for ensuring constant exploration in this setting. It allows trying
all the possible actions in the space A with nonzero probability by choosing
the greedy action with probability 1− ε or picking an action at random with
probability ε. In a more complex algorithm, the parameter ε that controls
exploration can be tuned and decreased as the learning process progresses,
becoming more greedy towards the end of the update process.

According to the greedy target policy, the Q-learning target takes the
form of:

Rt+1 + γQ (St+1, A
′)

= Rt+1 + γQ

(
St+1, arg max

a′
Q (St+1, a

′)

)
= Rt+1 + max

a′
γQ (St+1, a

′) (2.25)

and therefore the iterative update is

Q(S,A)← Q(S,A) + α
(
R + γmax

a′
Q (S ′, a′)−Q(S,A)

)
. (2.26)

Looking at the Eq. 2.26, Q-learning is a TD(0) algorithm so that it is
sufficient to collect one step of experience to perform an update, which makes
the use of such an algorithm very appealing for its efficiency and ease of use.
A detailed outline of the algorithmic routine is provided below. Q-learning is
also backed up by some theoretical guarantee around the convergence to the
optimal solution, as is shown in the seminal paper of Watkins and Dayan,
1992.
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Algorithm 1 Q-learning algorithm pseudocode

Q(s, a),∀s ∈ S, a ∈ A initialized arbitrarily and
Q(terminalstate, ·) = 0
for each episode do

Initialize S
for each step of episode do

Choose A given S using policy Q(s, a) e.g. epsilon-greedy
Take action A, observe R,S ′

Q(S,A)← Q(S,A) + α (R + γmaxa′ Q (S ′, a′)−Q(S,A))
S ← S ′

until S is terminal
end for

end for

Nonetheless, the theoretical convergence guarantee, Q-learning is a tabu-
lar reinforcement learning method, which means that it only works when the
state space S and the action space A are finite-dimensional. Every tabular
reinforcement learning algorithm expresses its value function as a table that
has an entry for each possible state-action pair (s, a). Hence, these methods
are suitable when both the state and the action space can be discretized in
a finite number of elements. However, even a fine-grained discretization may
cause a loss of information in problems whose state variables or actions are
naturally expressed as real values. A similar issue verifies when the state
variables and the action can be expressed as discrete variables, but the num-
ber of the possible state-action pair is so large that it is computationally
expensive to maintain a huge table with all such entries. To this end, tabu-
lar methods still share the curse of dimensionality drawback of the dynamic
programming approach. Therefore in the next section, we introduce the con-
cept of function approximation for reinforcement learning, which is crucial
to overcoming the issue mentioned above.

2.4 Approximate Reinforcement Learning

Tabular model-free approaches, such as Q-learning, are scaled up by using
function approximation to solve high-dimensional problems, which otherwise
would require a huge table to be represented. Some examples of intractable
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problems with tabular methods are the game of Go, which has 10170 possible
states or even maneuvering a truck, which is a problem in continuous state
space.

The straightforward approach is to approximate the previously defined
value functions using a convenient parametrization to overcome the curse of
dimensionality

V̂ (s,w) ≈ vπ(s) (2.27)

q̂(s, a,w) ≈ qπ(s, a), (2.28)

instead of relying on a huge table of values, which also cause memory storage
problems when it comes to putting it into practice. The principle of func-
tion approximation in reinforcement learning is based on generalization over
previous unseen states, without the need to have an exact value for every
state-action pair. Algorithmic methods such as Monte-Carlo or TD are still
useful when the value functions are properly approximated, as we will see in
the next subsections.

Among the several possible function approximators, we are going to use
neural network models described in Section 1.4, which have been proven to
be powerful and effective in solving reinforcement learning problems. In the
literature, one can retrieve different approaches, such as linear approximators
(Baird, 1995; Melo et al., 2008; Zhou et al., 2020), Fourier bases (Konidaris
et al., 2011), regression trees (Uther and Veloso, 1998; Zhou et al., 2020) and
nearest neighbors (de Lope, Maravall, et al., 2011; Shah and Xie, 2018). Neu-
ral networks, differently from simpler linear approximators, are differentiable
function approximators that are usually in competition. However, neural
networks have the superior capability in solving high-dimensional sequential
decision-making problems, so they contribute to the rise of a relatively re-
cent field of research called deep reinforcement learning, from deep neural
networks to solve complex MDPs.

Before introducing the deep reinforcement learning models that we will
use in the second part of our work, it is worth giving a broad perspective
on how an approximate reinforcement learning algorithm is updated, either
using a linear or a nonlinear type of approximation. Since we are referring to
functions differentiable in the parameter vector w, gradient descent methods
as described in Section 1.9 are of practical use.

Let denote J(w) a differentiable function of parameter vector w, then
its gradient with respect to such parameters is ∇wJ(w). To find the local
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minimum of the objective function, the parameters are updated towards the
negative direction of the gradient, according to the following update function

∆w = −1

2
α∇wJ(w) (2.29)

being α a step-size parameter.
When the objective function J(w) is the mean-square error between the

approximate value function v̂(s,w) and the true value function vπ(s), i.e.

J(w) = Eπ
[
(vπ(S)− v̂(S,w))2] , (2.30)

gradient descent allows then to find a local minimum by computing the fol-
lowing gradient

∆w = −1

2
α∇wJ(w) (2.31)

= αEπ [(vπ(S)− v̂(S,w))∇wv̂(S,w)] .

The gradient descent update is known to be inefficient because it requires
to average over the whole set of collected states in order to update the pa-
rameter of the value function according to Eq. 2.31. This type of update is
referred to as a full gradient descent update. A sophisticated reinforcement
learning algorithm uses variants of the stochastic gradient descent that does
not require to average over all states and at the same time has been proven
to be efficient. On the extreme opposite in terms of approach, there is the
stochastic gradient descent update which samples a single state transition
from the collected experience and performs the following update

∆w = α (vπ(S)− v̂(S,w))∇wv̂(S,w). (2.32)

Between the two approaches the batch gradient descent samples a set D
of transition of a given size and perform a gradient update by averaging those
samples as

∆w = αED [(vπ(S)− v̂(S,w))∇wv̂(S,w)] . (2.33)

Almost all the commonly used deep reinforcement learning algorithms use the
batch version of the gradient descent, which is more computationally efficient
than a full update and leads to less oscillation and noise with respect to the
stochastic update because it still averages the gradients over some samples
rather than a single value. Despite the efficiency, a noisy step of a stochastic
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update can be beneficial to avoid being locked in the local optima of the
objective function. Therefore, the size of the batch for the gradient descent
update is a crucial hyperparameter to consider in reinforcement learning, as
much as it is for supervised and unsupervised learning applications.

When using function approximation, it is still easy to write the temporal-
difference update rule for the approximated state-value function. Let the
TD target be Rt+1 + γv̂ (St+1,w), which is a biased sample of the true value
vπ (St), then the update rule takes the following form:

∆w = α (R + γv̂ (S ′,w)− v̂(S,w))∇wv̂(S,w). (2.34)

A similar approach can be taken to approximate the action-value function
q̂(S,A,w) ≈ qπ(S,A), so that a squared error measure between the approxi-
mate action-value function q̂(S,A,w) and true action-value function qπ(S,A)
is minimized

J(w) = Eπ
[
(qπ(S,A)− q̂(S,A,w))2] , (2.35)

where the true value function is usually replaced by a biased sample as above.
The minimization is carried out via a stochastic gradient descent approach,
so that

−1

2
∇wJ(w) = (qπ(S,A)− q̂(S,A,w))∇wq̂(S,A,w)

∆w = α (qπ(S,A)− q̂(S,A,w))∇wq̂(S,A,w). (2.36)

The main drawback of the function approximation with the temporal
difference approach is that the gradient updates do not follow the gradient of
an existing function since we update a guess towards another guess using a
bootstrapping approach. The update of the approximated q̂(S,A,w) points
towards a biased sample of the true qπ(S,A) which is obtained in terms of
the same parametric approximator, i.e., a neural network, as it happens for
the state-value function in Eq. 2.34. This update rule implies that the target
moves at each step since the parameters w express both the current value and
the target at the same time. The consequence is that there is no convergence
guarantee that the biased sample of the true value leads the update of the
value function towards the correct value. This explains the divergence issues
that function approximation with reinforcement learning is known to have, as
summarized in the deadly triad of reinforcement learning (Sutton and Barto,
2018).
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The set of algorithms shown so far in this section approximates the value
function and generates a policy accordingly, for example, adopting an ε-
greedy behavior for selecting actions.

A more direct approach is to parametrize the policy πθ(s, a) = P[a | s, θ],
which has beneficial effects in the case of MDPs with continuous actions
spaces. The policy πθ(s, a) can be represented in different ways, as long as it
is differentiable with respect to its parameters θ. This implies that ∇θπθ(a, s)
exists for all the states and actions respectively in S and A. Another impor-
tant aspect to consider when choosing the parametric form of the policy is
that it is desirable for exploration purposes that the policy never becomes
fully deterministic. Given these two properties, the parametric form of the
policy is generally chosen according to the MDP that the policy itself is trying
to solve. When the MDP has a discrete action space A that is not too large,
a common form is to parametrize the policy with a softmax distribution.

πθ(a, s) =
eφ(s,a,θ)∑

a′∈A e
φ(s,a′,θ)

, (2.37)

where φ(s, a, θ) ∈ R are numerical preferences for each state-action pair
(s, a). In this way, the actions with the highest preferences in each state
are associated with higher probability. The numerical preferences can be
obtained through a neural network, that computes the softmax function in
the last layer and directly output the probabilities associated to the actions.
On the contrary, when the space A of the MDP is continuous, the policy is
commonly parametrized as a Gaussian, so that a ∼ N (φ(s, a, θ), σ2), where
φ(s, a, θ) is the single output of a neural network that learns the mean of
the Gaussian policy. The variance can be fixed or learned together with the
mean.

From the introduction provided in this section, we can characterize two
different families of algorithms that exploit the function approximation method-
ology within the reinforcement learning framework. We will refer to these
algorithms as deep reinforcement learning since they use neural networks as
a function approximation tool. These algorithms allow overcoming the curse
of dimensionality problems shared by dynamic programming and tabular re-
inforcement learning algorithms in Section 2.3 and are largely used because
they allow for solving and generalizing over problems in continuous state
and action spaces. We introduce one representative algorithm for both sets
of methods in deep reinforcement learning, according to the common taxon-
omy used in the literature. However, several algorithms compose each group,
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and each of them can be either a slightly variant of another algorithm or can
be very specific for the solution of a particular class of problems. In general,
deep reinforcement learning methods are divided into two distinct groups

1. value-based methods, which solves an MDP by approximating a value
function through the use of neural networks. As presented above, the
function to be approximated can be either a state-value function or an
action-value function. Once the value function is approximated, the
optimal policy for the given problem is inferred from it.

2. policy-based methods, which solves the MDP by directly approximating
the policy function without going through a value function.

Even though the policy-based approach could appear more natural in learn-
ing a good way to behave in a given environment, value functions are still
beneficial. Several successful methods in reinforcement learning are hybrid
so that they approximate both a value function and a policy function. This
hybrid class is referred to as an actor-critic, as we are going to see in the
following sections. To summarize, recalling the no free lunch theorem in ma-
chine learning, there is no optimal choice for the algorithm in reinforcement
learning. The choice depends on the type of problem and the setting required
by the MDP. Therefore, we will present both sides of the landscape to give
a broad perspective of the possibilities provided by the deep reinforcement
learning framework.

2.4.1 Value-based methods

The use of a neural network to approximate a function that depends on
the current state of the environment allows for a continuous state repre-
sentation so that s ∈ RN , where N represents the number of state-space
variables. Arguably the most known deep reinforcement learning algorithm
in the value-based class has been proposed by Mnih et al., 2015, which ob-
tained ground-breaking results in learning how to play arcade video games
at a superhuman level. It also set the basis for the subsequent development
of new algorithms in deep reinforcement learning. It is widely recognized as
the first successful application in this relatively new field of research. Mnih
et al., 2015 proposed an extension of the Q-learning approach explored in
Section 2.3.2 by approximating the action-value function with a neural net-
work. The algorithm is commonly referred to as Deep-Q-Network (DQN),
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but it is sometimes called Deep Q-learning. It represents a natural exten-
sion of the former tabular approach since a neural network can receive real
values as input, giving rise to new opportunities for reinforcement learning
applicability.

Value-based methods estimate the action-value function by using the Bell-
man equation as an iterative update,

Qi+1(s, a) = E
[
r + γmax

a′
Qi (s

′, a′) |s, a
]

(2.38)

where i is the number of iteration.
Value iteration algorithms should, in principle, converge to the optimal

function (Watkins and Dayan, 1992), Qi → Q∗ as i → ∞, but this simple
approach lacks any kind of generalization, i.e., it must be run with a table of
all the possible state-actions pairs. Using a neural network to parametrize the
value function helps to avoid the use of a table, which would be infeasible
for high dimensional state space or in the case of real-valued states. This
approach aims to generalize over previous unseen states so that the learning
process consists in finding the right set of parameters for the neural network
in a way that it will be able to recognize similar states without storing an
entire database of possible occurrences. In DQN, the approximated action-
value function Q(s, a; θ) is a multi-layer neural network that for a given input
state s returns a vector of action values. Hence, the state space S becomes
continuous with respect to the Q-learning, while the action space A remains
discrete. Indeed, the benefit introduced by DQN is the possibility to do
discrete control in an environment that is properly represented by continuous
state variables.

However, a nonlinear function approximator to estimate the action-value
function, Q∗(s, a) ≈ Q(s, a; θ) is known to produce unstable behavior during
the training process and lacks background theory to guarantee convergence.
Deep reinforcement learning methods are prone to diverge because of the
deadly triad (Sutton and Barto, 2018) whenever function approximators are
combined with an off-policy algorithm and learning by current estimates as
in classical Q-learning. Like Q-learning, DQN is an off-policy method, and
it can use any behavioral policy while learning the greedy behavior, so it is
subjected to the deadly triad.

A Q-network can be trained by sampling uniformly sequences of experi-
ence (st, at, rt+1, st+1) ∼ D from a buffer D = e1, . . . , eN of fixed dimension-
ality N . The dataset D represents the replay memory of the agent, which

74



2. Reinforcement learning: theory and background

can generate sample streams of experience collected through the behavioral
policy and perform minibatch updates of the network. After D reaches its
maximum dimension N , new streams are stored in place of the oldest, or
alternatively one can keep the dataset growing in size. Sampling experiences
from a previously filled buffer represents a training heuristic referred to as
experience replay (Lin, 1992) to help with the stability of the learning pro-
cess. Indeed, suppose the gradient is updated using batches of sequential
data. There is the risk of diverging from the optimum because the samples
are repeatedly collected using the current policy, which could become subop-
timal during training and collect misleading sequences of experience for the
learning algorithm. Instead, the experience replay allows each sequence to
be potentially involved in many updates and be sampled several times. Ran-
dom sampling between a stream of experiences that also occurred at a very
distant point tends to break the correlation between consecutive samples in
an online algorithm and reduce the variance of the update.

Recalling the structure for the gradient update with action-value function
approximation in 2.35, DQN uses an estimate yi = r+ γmaxa′ Q (s′, a′; θi−1)
as the target for the true value function. At each time step i, the target yi is
time-varying because it depends on the parameter θi−1 at the previous time
step. To avoid the problem of learning by current estimates because the true
value target is expressed in terms of the current value function approxima-
tion, DQN fixes the neural network’s weights to compute the target for the
action-value function updates. The target weights can be fixed for a certain
number of iterations, a single step in the simplest case. This heuristic helps
gain stability during training, although theoretical proof does not back it.
This mechanism is put into practice by concurrently maintaining two neu-
ral networks while training the algorithm, one for the current value function
estimate and one for the target estimate, whose parameters are fixed.

It follows that the algorithm minimizes a loss function Li (θi) that changes
at each iteration i

Li (θi) = E(s,a,r,s′)∼D
[
(yi −Q (s, a; θi))

2] (2.39)

The parameters θi−1 of the target value function are held fixed to cast the
problem as in a supervised setting, where the targets are fixed from the
beginning of the learning process.

The loss function differentiated with respect to the network weights re-
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sults in the following gradient,

∇θiLi (θi)

= E(s,a,r,s′)∼D

[(
r + γmax

a′
Q (s′, a′; θi−1)−Q (s, a; θi)

)
∇θtQ (s, a; θi)

]
(2.40)

As outlined in the previous section, it is more efficient to compute the gradi-
ent of the Eq. 2.40 through a batch method that samples a certain amount
of sequences et, rather than averaging over all of those included in D at each
time.

DQN shares a significant problem with standard Q-learning, which is an
overestimation of the action-value function that has been investigated by Van
Hasselt et al., 2016. The estimation of the action-value function performed by
DQN produces a much larger value than the real one. In the bootstrapping
estimates there are two sources of noise which are correlated. Indeed, we
recall that the target for the DQN update is computed as

yDQN
i = r + γmax

a′
Q (s′, a′; θi−1) . (2.41)

Then we know that

(2.42)max
a′

Q (s′, a′; θi−1) = Q

(
s′, arg max

a′
Q (s′, a′; θi−1) ; θi−1

)
,

which shows that the same noise affect the maximization over the action
space and the value function estimates. Decoupling these two sources of
noise helps obtain an estimate which is less biased, although with more vari-
ance, hence avoiding the overestimation problem. The proposed solution is
called Double Q-learning, formulated by Hasselt, 2010 for the tabular case
and then extended by Van Hasselt et al., 2016 in the deep reinforcement
learning framework. The main novelty of Double Q-learning relies on the
calculation of the target yi for each iteration in the Eq. 2.39. The maximiza-
tion in the Eq. 2.41 uses the same value function to select and evaluate an
action, whereas Double DQN decouples the selection of the action from the
evaluation:

yDouble DQN
i = r + γQ

(
s′, arg max

a′
Q (s′, a′; θi) ; θi−1

)
(2.43)

The original Double Q-learning algorithm employs two tabular value func-
tions to compute the update. At each step in the learning process, one
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Q-table is used to determine the greedy action and the other to determine
its value. To keep the algorithm simple and similar to the original DQN,
Double DQN still employs two neural networks: one computes the target,
and the other computes the current action-value function. In the deep rein-
forcement learning algorithm, the computation of the target is split between
the current neural network that selects greedily the action and the target
neural network that evaluates such action. The selection of the action in
equation 2.43 is still due to the current weights θi, whereas the fixed set of
weights of the target network is only used to evaluate that selected policy.
The pseudocode for the original version of the DQN algorithm is provided
below.

Algorithm 2 Deep Q-learning with experience replay pseudocode

Initialize replay memory D to capacity N
Initialize action-value function Q(s, a; θ0) with random weights θ
Initialize target action-value function Q(s, a; θ′) with random weights
θ′ = θ
for episode = 1,M do

Initialize sequence s
for each step of episode t = 1, T do

With probability ε select a random action a
otherwise select a = arg maxaQ(s, a; θ)
Execute action a in the environment, observe reward r and next
state s′

Store transition e = (s, a, r, s′) in D
Sample random batch of P transitions {e1 . . . eP} from D
Set y = r if episode terminates at step t+ 1
Otherwise set y = r + γmaxa′ Q (s′, a′; θ′)
Perform a gradient descent step (y − Q(s, a; θ))2 on with respect
to network parameters θ
Every c steps reset θ′ = θ

end for
end for

Other known algorithms in the value-based family of deep reinforcement
learning are Hindsight Experience Replay (Andrychowicz et al., 2017), which
proposes a different use of the replay memory with respect to DQN, distribu-
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tional variants of value-based such as Quantile Regression DQN (Bellemare
et al., 2017) or Dabney et al., 2018, where they attempt to learn the en-
tire distribution of the value function, instead of just an estimate. For what
concern hybrid actor-critic algorithm, deep deterministic policy gradient (Lil-
licrap et al., 2015) and their improvements (Fujimoto et al., 2018) represents
extensions of DQN that also use a policy function approximation. More
details about these techniques are given in the next section.

2.4.2 Policy-based methods

The policy-based methods directly parametrizes a policy without inferring it
from a value function and represent a possible different approach for the same
set of reinforcement learning problems. Once chosen the parametric form of
the policy, the goal of each policy-based algorithm is to find the optimal set
of parameters θ for the policy πθ(s, a). The first important point to stress is
the choice of the metrics used to measure the quality of a policy. Depending
on the type of MDP, one can use the initial value in the first state s1

J1(θ) = V πθ (s1) = Eπθ [v1] (2.44)

when the environment is episodic, or use the average value instead

Javg(θ) =
∑
s

dπθ(s)V πθ(s) (2.45)

when the environment is continuing, with dπθ(s) the stationary distribution
over the state associated to the MDP given πθ.

Solving an MDP through a policy-based method is essentially an opti-
mization problem where one has to find the set of parameters θ that max-
imizes J(θ). Among the possible different approaches, such as hill climbing
(Wardell and Peterson, 2006), simplex algorithm (Lee et al., 2017), Nelder-
Mead (Sarakhsi et al., 2016), genetic algorithm (Daniel and Rajendran, 2005)
and conjugate gradient (Baxter and Bartlett, 2001; Cohen et al., 2019), we
are going to focus on gradient descent methods, which have proven to be
effective in optimizing the neural network family of models (Engstrom et al.,
2020; Goodfellow et al., 2016).

After choosing an objective function J(θ) for the problem that we want
to solve through a policy-based method, the algorithm search for a local
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maximum of J(θ) by ascending the gradient of the policy with respect to its
parameters θ, so that the parameter update is

∆θ = α∇θJ(θ), (2.46)

where α is a step-size parameter, also referred to as learning rate.
Although some methods tends to approximate the gradient of the func-

tion J(θ), as happens for the finite difference methods (Peters and Bagnell,
2010), such gradient can be analytically computed. The policy gradient theo-
rem provides a way to compute the gradient of the selected objective function
using the likelihood ratio approach. It is widely applicable to different objec-
tive, either the start state objective in Eq. 2.44 or the average value objective
in 2.45. The theorem, which derives from two independent works of Sutton
et al., 1999 and Marbach and Tsitsiklis, 2001, provides an analytical expres-
sion for the gradient of J(θ) so that for any differentiable policy πθ(s, a) and
for any of the policy objective functions described in this section, the policy
gradient is

∇θJ(θ) = Eπθ

[∇θπθ(s, a)

πθ(s, a)
Qπθ(s, a)

]
(2.47)

= Eπθ [∇θ log πθ(s, a)Qπθ(s, a)] ,

The derivation of Eq. 2.47 follows from the proof of the policy gradient
theorem. We present the episodic formulation of the theorem, although there
is also the version for continuing tasks. We recall that in an episodic problem,
the on-policy distribution depends on the initial state of the single episode.
We denote h(s) as the probability for the episode to begin in a state s and
η(s) the average number of steps spent by the agent in that specific state.
Therefore we consider an agent as spending time in a state s, if the start of
the episode is exactly that or if there is a transition to s from a preceding
state s̄. The time spent in a state is hence written as

η(s) = h(s) +
∑
s̄

η(s̄)
∑
a

π(s̄, a)p(s | s̄, a), for all s ∈ S. (2.48)

It follows that the on-policy distribution is the amount of time spent in each
state normalized to sum up to one:

µ(s) =
η(s)∑
s′ η (s′)

, for all s ∈ S (2.49)
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Then we remark that the gradient of the state-value function can be
written in terms of the action-value function ∀s ∈ S as

∇θvπθ(s) = ∇θ

[∑
a

πθ(s, a)qπθ(s, a)

]
,

=
∑
a

[∇θπθ(s, a)qπθ(s, a) + πθ(s, a)∇θqπθ(s, a)]

=
∑
a

[
∇θπθ(s, a)qπθ(s, a) + πθ(s, a)∇θ

∑
s′,r

p (s′, r | s, a) (r + vπθ (s′))

]

=
∑
a

[
∇θπθ(s, a)qπθ(s, a) + πθ(s, a)

∑
s′

p (s′ | s, a)∇θvπθ (s′)

]

=
∑
a

[
∇θπθ(s, a)qπθ(s, a) + πθ(s, a)

∑
s′

p (s′ | s, a)

∑
a′

[
∇θπθ (a′ | s′) qπθ (s′, a′) + πθ (a′ | s′)

∑
s′′

p (s′′ | s′, a′)∇θvπθ (s′′)

]]

=
∑
x∈S

∞∑
k=0

Pr(s→ x, k, πθ)
∑
a

∇θπθ(a | x)qπθ(x, a). (2.50)

After repeated unrolling, as in the second last step above, where Pr(s→
x, k, πθ) is the probability of transitioning from state s to state x in k steps
under policy πθ, it follows that

∇θJ(θ) = ∇θvπθ (s0) =

=
∑
s

(
∞∑
k=0

Pr (s0 → s, k, πθ)

)∑
a

∇θπθ(s, a)qπθ(s, a)

=
∑
s

η(s)
∑
a

∇θπθ(s, a)qπθ(s, a)

=
∑
s′

η (s′)
∑
s

η(s)∑
s′ η (s′)

∑
a

∇θπθ(s, a)qπθ(s, a)

=
∑
s′

η (s′)
∑
s

µ(s)
∑
a

∇θπθ(s, a)qπθ(s, a)

∝
∑
s

µ(s)
∑
a

∇θπθ(s, a)qπθ(s, a) � (2.51)
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In the episodic case, the constant of proportionality in the above derivation is
the average length of an episode, while in the continuing case the relationship
becomes an equality.

The analytical expression of the policy gradient theorem can be evaluated
if we are able to sample experiences whose expectations approximate the
analytical expression. In other words, we need a way to approximate the
true value Qπθ(s, a) with an estimate so that the resulting policy gradient is
proportional to Eq. 2.47. The REINFORCE algorithm, whose pseudocode
is provided below, is one of the simplest policy-based algorithm that exploits
the policy gradient theorem by replacing the true value function with the
total return of the episode

∆θt = α∇θ log πθ (st, at)G, (2.52)

where G =
∑T

k=t+1 γ
k−t−1Rk. REINFORCE represents one among differ-

ent policy gradient methods proposed in the literature and its need of the
total return as estimate for the true value function makes it only suitable
for episodic MDPs. A comprehensive overview of different policy gradient
methods is provided in Peters and Bagnell, 2010.

Algorithm 3 REINFORCE pseudocode

Require: A differentiable policy parametrization πθ(s, a)
Set a scalar step size α > 0
Initialize policy parameter θ ∈ Rd, e.g. to 0
for each episode = 1,M do

Generate an episode s0, a0, r1, . . . sT−1, aT−1, RT following πθ(·, ·)
for each step of the episode t = 0, 1, . . . , T − 1 do
G←∑T

k=t+1 γ
k−t−1Rk

θ ← θ + α∇θ log πθ (st, at)G
end for

end for

The major drawback of each policy gradient algorithm is the presence of
high variance in the estimation of the action-value function. It is common
for this family of algorithms to reduce such variance using a critic, i.e., an
additional parametrization for the action-value function so that

Qw(s, a) ≈ Qπθ(s, a). (2.53)
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This approach is called actor-critic, which maintains two sets of parameters
to approximate both the action-value function through the set w and the
policy function through the set θ. Such a hybrid approach is placed between
the value-based and policy-based methods since it exploits both techniques
to solve the MDP. However, it is generally presented as an extension of the
policy-based family, i.e., as a way to drive the learned policy toward a solution
closer to the optimum. An actor-critic algorithm follows an approximate
policy gradient of the form

∇θJ(θ) ≈ Eπθ [∇θ log πθ(s, a)Qw(s, a)] (2.54)

∆θ = α∇θ log πθ(s, a)Qw(s, a) (2.55)

where the critic is helpful to solve the problem of policy evaluation that we
described in the first part of this chapter.

The approximation of the policy gradient could potentially introduce a
bias in the policy optimization process, which prevents the possibility of
reaching an optimal solution. A theoretical result derived in Sutton et al.,
1999 helps ensure a proper approximation for the value function in the actor-
critic setting so that no bias is introduced. The theorem proves that a
parametrized action-value function that satisfies certain conditions can be
used in an actor-critic policy gradient setting because the resulting policy
gradient is unbiased with respect to the true policy gradient in Eq. 2.47. We
refer to the original paper for the detailed statement and proof. Therefore,
we can approximate the value function without the risk of introducing a bias
in the policy gradient.

In an actor-critic setting it is also common to subtract a baseline func-
tion B(s) from the value function estimate in order to reduce the vari-
ance of the estimate without adding a bias. Indeed one can show that
Eπθ [∇θ log πθ(s, a)Qw(s, a)] = Eπθ [∇θ log πθ(s, a)(Qw(s, a)−B(s))] because

Eπθ [∇θ log πθ(s, a)B(s)] =
∑
s∈S

dπθ(s)
∑
a

∇θπθ(s, a)B(s)

=
∑
s∈S

dπθB(s)∇θ

∑
a∈A

πθ(s, a)

= 0, (2.56)

which therefore does not change the expectation of the policy gradient as
stated in Eq. 2.54.
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A commonly used baseline is the state-value function B(s) = V πθ(s),
which transform the policy gradient to

Aπθ(s, a) = Qπθ(s, a)− V πθ(s) (2.57)

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Aπθ(s, a)] , (2.58)

where Aπθ(s, a) is called advantage function. In this way, the critic would
consist in estimating both V πθ(s) and Qπθ(s, a) with two different estimator
at the same time, resulting into

Vv(s) ≈ V πθ(s) (2.59)

Qw(s, a) ≈ Qπθ(s, a) (2.60)

A(s, a) = Qw(s, a)− Vv(s). (2.61)

However, some approaches in the literature allow estimating the advantage
function for the policy gradient by using a critic with a single set of parame-
ters, as with the generalized advantage estimation (GAE) (Schulman et al.,
2015b).

Proximal Policy Optimization

This subsection presents a deep reinforcement learning policy gradient algo-
rithm that follows the framework presented above. Before introducing the
algorithm we will use in the practical application of this work, it is worth
remembering some pioneering policy gradient methods that adopted neu-
ral networks as function approximators to understand the novelty and the
problem that such an algorithm proposes to solve.

If we assume the policy function to be deterministic, the output of the
policy µ(s) is a single scalar value that depends on the state. The determin-
istic policy gradient (DPG) algorithm (Silver et al., 2014) parametrize such
a policy as µθ(s) and optimizes the following objective:

J(θ) =

∫
S
ρµ(s)Q (s, µθ(s)) ds (2.62)

where ρµ (s) is the discounted state distribution. To compute the gradient of
the objective above, we firstly compute the gradient of the function Q with
respect to the action a and then we take the gradient of the deterministic
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policy function µ with respect to θ as follows:

∇θJ(θ) =

∫
S
ρµ(s)∇aQ

µ(s, a)∇θµθ(s)ds (2.63)

= Es∼ρµ [∇aQ
µ(s, a)∇θµθ(s)] , (2.64)

where a = µθ(s). The deterministic policy gradient is considered a partic-
ular case of the stochastic policy gradient explored in the previous section
when the probability distribution represented by the policy contains only
one nonzero value over one action. Silver et al., 2014 show that one can
parametrize a stochastic policy πθ(a | s) by learning a deterministic pol-
icy µθ and an additional parameter σ which represents the variance, i.e.
the confidence around the deterministic choice of the policy µθ. Hence, the
stochastic policy is equivalent to the deterministic one when the variance σ
approaches zero. The advantage of focusing on a deterministic policy rather
than a stochastic one is that the latter is known to require more samples
of experience because it needs integration over the entire state and action
spaces.

However, a deterministic policy suffers from a lack of exploration dur-
ing training because it always acts greedily according to the current µθ(s)
that maximizes the objective in Eq. 2.62 when the agent interacts with the
environment. Two solutions are viable to overcome the exploration prob-
lem. Either the deterministic policy is perturbed with a noise, which results
in transforming the original policy into a stochastic one, or alternatively, a
noisy policy is directly used as a behavior to collect experience in an off-
policy setting. Hence, in the former approach, the trajectories are generated
by a policy β(a | s), and the state distribution follows the state density ρβ

Jβ(θ) =

∫
S
ρβQµ (s, µθ(s)) ds (2.65)

∇θJβ(θ) = Es∼ρβ [∇aQ
µ(s, a)∇θµθ(s)] . (2.66)

Since we are learning a deterministic policy, we require Qµ (s, µθ(s)) instead
of the average

∑
a π(a | s)Qπ(s, a) as an estimate for the reward of a given

state s.
Although the exploration issue can be weakened by the off-policy set-

ting, policy gradient methods in general exhibit training instability when
the policy and eventually the value function, if in an actor-critic setting, are
parametrized by neural networks. It becomes important to limit the updates
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of the parameters that could move the policy too far from the current one
in just one step of the updating process. The Trust Region Policy Optimiza-
tion (TRPO) (Schulman et al., 2015a) is one of the first developed methods
that attempts to solve the instability problem for deep reinforcement learning
by using a Kullback-Leibler divergence constraint on the size of the policy
update.

Assuming we are still in the off-policy setting and the behavioral policy
β which gathers experiences is different from the policy π that needs to
be learned, the objective function is expressed as a measure of the total
advantage over states and actions

J(θ) =
∑
s∈S

ρπθold
∑
a∈A

(
πθ(a | s)Âθold (s, a)

)
=
∑
s∈S

ρπθold
∑
a∈A

(
β(a | s)πθ(a | s)

β(a | s) Âθold (s, a)

)
= Es∼ρπold ,a∼β

[
πθ(a | s)
β(a | s) Âθold (s, a)

]
(2.67)

where ρπθold is the state distribution according to the policy πθold before the
update and β(a | s) is the behavior policy for collecting trajectories. An
advantage estimator Â(s, a) replaces the true advantage because the true
rewards are unknown at the time of the update.

Training the same algorithm in an on-policy setting means that the be-
havioral and the target policies collapse into the same. The behavior policy
is hence denoted as πθold (a | s), since it is just the current policy before
the newest parameter update so that the objective function of the problem
becomes

J(θ) = Es∼ρπθold ,a∼πθold

[
πθ(a | s)
πθold (a | s)Âθold (s, a)

]
. (2.68)

TRPO employs a trust region constraint, hence the name of the algorithm,
which enforces the distance between the old policy distribution and the new
policy distribution to be small by computing the Kullback-Leibler divergence,

Es∼ρπθold [DKL (πθold (. | s)‖πθ(. | s)] ≤ δ] , (2.69)

where the parameter δ represents the tolerance for the distance between the
two distributions. The constraint helps in keeping the old and the new policy
close enough to avoid large update of the parameters. TRPO still guarantees
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a monotonic improvement of the policy (Schulman et al., 2017), but it is
complicated to implement the constraint and compute it in practice. For
this reason, Schulman et al., 2017 developed an algorithm called Proximal
Policy Optimization (PPO), which still enforces the policy update to be small
without the need of a constraint, while instead clipping the objective function
of the problem.

To understand how this algorithm works, let denote the probability ratio
between old and new policies as:

r(θ) =
πθ(a | s)
πθold (a | s) , (2.70)

which allows writing the objective function of the on-policy TRPO algorithm
as

JTRPO(θ) = E
[
r(θ)Âθold (s, a)

]
. (2.71)

However, we already know that the maximization of this objective function
could result in serious instability issues because we are not constraining the
distance between the policies, parametrized respectively by θold and θ. PPO
circumvents the problem by imposing the ratio r(θ) to be within a small
interval around 1, precisely [1− ε, 1 + ε], where ε is a scalar parameter,

JCLIP(θ) = E
[
min

(
r(θ)Âθold (s, a), clip(r(θ), 1− ε, 1 + ε)Âθold (s, a)

)]
.

(2.72)
The operator clip(r(θ), 1−ε, 1+ε) has the role to maintain the ratio between
1 + ε and 1 − ε. Therefore, the objective function of the PPO algorithm
takes the minimum one between the original value and the clipped version.
Since the PPO algorithm is usually applied within an actor-critic framework,
although it can also be used in a policy-based setting, and the parameters
of the policy and the value network are shared, we can write an augmented
objective function as

JCLIP’ (θ) = E
[
JCLIP (θ)− c1 (Vθ(s)− Vtarget )2 + c2H (s, πθ(.))

]
(2.73)

which accounts for the error term in the value estimation and the entropy
term that ensures sufficient exploration during training. The parameter c1

and c2 are constant and regulate the contribution of each term to the whole
objective.
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Other than the policy gradient algorithms presented in this chapter, there
are other known variants of the similar approximation task, such as Asyn-
chronous Advantage Actor-Critic (A3C) (Mnih et al., 2016), where a single
critic network learn the value function. At the same time, multiple actors
are trained in parallel and are synced with global parameters for a more ef-
ficient training runtime. The same work also shows the synchronous version
of the same algorithm, where the global parameters of the actor are updated
once each of the multiple actors has finished collecting experiences. Phasic
policy gradient (PPG) (Cobbe et al., 2021) is an on-policy actor-critic policy
gradient algorithm, which resembles a PPO algorithm with separate training
phases for policy and value functions. The actor-critic with experience replay
(ACER) (Wang et al., 2016) is an off-policy algorithm that uses experience
replay, significantly increasing the sample efficiency and decreasing the data
correlation, and represents the off-policy counterpart of the A3C algorithm.
Soft Actor-Critic (SAC) (Haarnoja et al., 2018) can incorporate the entropy
measure of the policy into the reward to encourage exploration, making the
policy learned highly random. It is an off-policy actor-critic model following
a maximum entropy approach. However, this set of algorithms is not exhaus-
tive since many slight variants come out to tackle the specific disadvantages
of each setting.

2.5 Summary

This chapter introduced reinforcement learning through its common root
within the dynamic programming framework. First, some basics notion about
the mathematical formalization of the control problem is given so that we
introduce the agent-environment interaction within the MDP framework. On
top of that, we presented the tabular algorithms, which still suffer the curse
of dimensionality of dynamic programming in the case of high dimensional
control problems. For that reason, detailed exposure to deep reinforcement
learning algorithms is provided. We introduced two families of algorithms,
value-based and policy-based, that provide a broad view to solve problems of
a different nature. The entire chapter is instrumental to the empirical part
of this work, where we employ the described algorithms to solve problems in
finance and economics.
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Part II

Reinforcement learning:
simulation analysis with
applications to finance
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This part of the work contains three essays regarding different applica-
tions of reinforcement learning to the field of finance. Chapter 3 explores the
use of reinforcement learning algorithms, either from the value-based and
the policy-based family, to solve a financial trading problem in a controlled
environment. Through an extensive series of simulations, we show that rein-
forcement learning algorithms are more flexible in solving the trading problem
with respect to a dynamic programming approach, which we use as a bench-
mark solution, especially when the underlying dynamics of the simulated
assets are misspecified. Chapter 4 extends this idea to a multi-asset trading
framework, where returns are still simulated according to known dynamics,
but there is no closed-form solution. We show that a model-free reinforcement
learning approach has a hard time finding the solution to the trading prob-
lem in a finite amount of training time, and we resort to a different approach
to leverage prior knowledge of the financial problem. Finally, Chapter 5
explores the application of reinforcement learning to an agent-based model
of banks that exchanges liquidity to fulfill their obligations. We conclude
by highlighting the importance of the reinforcement learning paradigm in
finance for improving existing solutions to problems in the financial domain
by leveraging the need for fewer modeling assumptions.

89



Chapter 3

Deep Reinforcement Trading
with Predictable Returns

3.1 Introduction

The important milestone represented by modern portfolio theory of Markowitz,
1952 has set the basis for the beginning of financial portfolio optimization
as an active field of research. Its original formulation suffers several draw-
backs (Kolm et al., 2014) and has been extended from a single-period to a
multi-period framework to capture intertemporal effects and to allow dynam-
ical portfolio rebalancing (Engle and Ferstenberg, 2007; Grinold, 2006; Kolm
and Maclin, 2012; Kolm and Ritter, 2014; Tutuncu, 2011). However, the
addition of the time dimension makes even more complicated the estimation
of an optimal strategy, which requires forecasting financial quantities such as
risks and returns for several periods in the future. Single-period models are
often still adopted because their dynamic counterpart is not practical and the
forecasting step may lead to systematic errors due to the uncertainty about
the chosen model or the inherent presence of a low signal-to-noise ratio in
the financial data. Even when a multi-period model is effective in capturing
the market impact or alpha decay, classical optimal control techniques lay
over a set of restricting assumptions which cannot properly represent the real
financial world.

In this work, we use reinforcement learning (RL) (Sutton and Barto,
2018; Szepesvári, 2010) as a convenient framework to model sequential deci-
sion problems of a financial nature without the need of directly modeling the
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underlying asset dynamics. RL finds its roots in the optimal control theory
along with the dynamic programming literature (Bertsekas, 2005) and has
gained a huge revival after the last decade improvement of deep learning
(DL) as a field of research. This gave rise to the so-called deep reinforcement
learning (DRL) that has already obtained relevant results in application do-
mains such as gaming (Mnih et al., 2015; Silver et al., 2017b) and robotics
(Levine et al., 2016). For a comprehensive overview of DRL methods and its
fields of application, see Arulkumaran et al., 2017.

The RL approach is not new to the financial domain, and there are exam-
ples of practical applications for trading and portfolio management (Jiang et
al., 2017; Zhang et al., 2020). However, recent DRL algorithms are very often
home-made recipes without theoretical control. For this reason, the study of
their performances in real financial trading problems is always an intricate
combination of different effects, some of them related to the goodness of the
dataset and the signals used to predict returns, some others related to the
specific algorithm and its trainability issues.

To the best of our knowledge, there is a lack of research works that
investigate DRL performances in financial trading problems besides the issues
coming from market efficiency: the search for a good signal to predict returns
or the possible lack of any signals in the dataset. For this reason, we consider
a controlled environment in which a signal is known to exist and study the
capability of DRL agents to discover profitable opportunities in the market.

Similarly to Chaouki et al., 2020; Kolm and Ritter, 2019a, we simulate
financial asset returns which contain predictable factors, and we let the agent
trade in an environment whose associated optimization problem admits an
exact solution (Gârleanu and Pedersen, 2013). The optimal benchmark strat-
egy allows us to evaluate strengths and flaws of a DRL approach, both in
terms of accuracy and efficiency.

As a main novelty of our work, we exploit a data-driven setting of DRL
in which the agents not only compete against classical strategies but can
also leverage on their experience to optimize the state-action space and in-
crease the learning speed. We test different DRL approaches on a variety of
financial data with different properties to investigate their flexibility when
the simulated dynamics is misspecified with respect to the assumptions of
the benchmark model. We show that DRL algorithms can reach the perfor-
mance of the benchmark strategy, when it is optimal, and also outperform
it in the case of model misspecifications like the presence of extreme events
and volatility clustering. We also show that classical strategies can help DRL
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agents by giving them information about the typical scale of a good strategy
to start and adjust.

3.2 Financial Market Environment

The agent operates in a financial market where at each time t ∈ Z it can
trade N securities whose excess returns yt+1 = pt+1 − (1 + rf )pt are given by

yt+1 = Bft + ut+1, (3.1)

where ft is a K×1 vector of return-predicting factors, B is a matrix of factor
loadings and ut+1 is a noise term with E[ut+1] = 0 and Var[ut+1] = Σ.

The factors can be either value factors, which describes the profitability
of the asset relatively to some fundamental measure, or momentum factors,
which rely on past price movements to predict the future (Moskowitz et
al., 2012). We assume they evolve according to a discretization of a mean-
reverting process (Uhlenbeck and Ornstein, 1930)

∆ft+1 = −φft + εt+1, (3.2)

where φ is a K×K matrix of mean-reversion coefficients and εt+1 represents
a stochastic shock component with E[εt+1] = 0 and V ar[εt+1] = Ω.

Trading in this environment produces transaction costs which we assume
to be a quadratic function of the traded amount ∆ht = ht − ht−1, i.e.

C(∆ht) =
1

2
∆hTt Λ∆ht, (3.3)

where Λ is a symmetric positive definite matrix ensuring transaction costs
convexity as generally required by empirical literature (Gârleanu et al., 2008;
Lillo et al., 2003) and is consistent with the assumption of a linear price
impact. In the following, we also assume that Λ = λΣ, i.e. that trading costs
are actually the compensation for the dealer’s risk that takes the other part
of the transaction. In this context, λ can be interpreted as the dealer’s risk
aversion and controls the degree of liquidity of the asset.

The agent’s goal is to find a dynamic portfolio strategy (h0, h1, . . .) by
maximizing the present value of all future returns, penalized for risk and net
of transaction costs, i.e.

max
(h0,h1,...)

E0

[∑
t

ρt+1(hTt yt+1 −
γ

2
hTt Σht)−+

ρt

2
∆hTt Λ∆ht

]
, (3.4)
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where ρ ∈ (0, 1) is a discount rate and γ is the risk aversion coefficient.
When the noise terms ut and εt are assumed to be distributed as a Gaus-

sian, the model coincides with Gârleanu and Pedersen, 2013 that has a closed-
form solution as

ht =
(

1− a

λ

)
ht−1 +

a

λ
haimt . (3.5)

The optimal strategy is then a convex combination of holding the previous
portfolio and trading towards the objective portfolio haimt with trading rate
a/λ. Such trading rate a

λ
< 1, where

a =
−(γ(1− rf ) + λrf ) +

√
(γ(1− rf ) + λrf )2 + 4γλ(1− rf )2

2(1− rf )
(3.6)

is a decreasing function of the transaction costs by the effect of λ and in-
creasing in the risk aversion γ. The objective portfolio haimt is defined by

haimt = (γΣ)−1B(I +
a

γ
Φ)−1ft, (3.7)

being a generalization of the well-known Markowitz portfolio (Markowitz,
1952)

hMt = (γΣ)−1Bft, (3.8)

which is optimal only in the static case and in absence of transaction costs.
Instead, the aim portfolio in Eq. (3.5) represents a dynamic strategy and
can be shown to be a weighted average of all future Markowitz portfolios.

If the matrix Φ is diagonal, the aim portfolio become

haimt = (γΣ)−1B

(
f 1
t

1 + Φ1 a
γ

, . . . ,
fKt

1 + ΦK a
γ

)T

, (3.9)

where the K factors are scaled down by their speed of mean-reversion Φ.
A factor i with slower speed of mean-reversion is scaled less than a faster

factor j and the relative weight of f i with respect to the weight of f j,
1+Φj a

γ

1+Φi a
γ

increases with the transaction cost λ. In fact, the cost friction leads the
investor to slow down the rate of portfolio rebalancing and faster factors
require closing out the position in a shorter time frame.

In the following we will use the optimal strategy (3.5) of the Gaussian
model as a benchmark for the DRL performance in solving the problem
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(3.4) but we also consider other possible model specifications for which an
explicit optimal solution is not available. In particular, we introduce fat-
tailed distributed shocks and heteroskedastic volatility as interesting model
misspecifications that reflect general properties of empirical asset returns
(Cont, 2001).

A riskier environment with many extreme events is constructed by as-
suming the asset noise to depart from a Gaussian distribution. In particular,
we consider ut and εt distributed as a Student’s T distribution with ν degrees
of freedom. On the other hand, heteroscedasticity is introduced according
to a generalized autoregressive conditional heteroskedastic (GARCH) pro-
cess (Bollerslev, 1987) for the variance of asset returns to model volatility
clustering. In the case of a single asset, it means that ut = σtzt where

σ2
t = ω +

p∑
j=1

αj | uj−i |2 +

q∑
k=1

βkσ
2
t−k (3.10)

and zt is a noise term that can be either a standard Gaussian or a Student’s
T with ν degrees of freedom.

3.3 Deep Reinforcement Learning Methods

The aim of RL is to solve a decision-making problem in which the timing of
costs and benefits is relevant. Financial portfolio optimization comprises a
set of problems where current actions can influence the future, even at a very
distant point in time. RL approaches the resolution of this problem by trial
and error, learning by obtaining feedback after each sequential decision.

A RL problem can be formulated in the context of a Markov Decision
Process (MDP), which is defined by a set of possible states St ∈ S, a set of
possible actions At ∈ A and a transition probability Pass′ = P [St+1 = s′ |
St = s, At = a]. Therefore, it is the (stochastic) control problem of finding

max
{π}

E

[
∞∑
t=0

ρtRt+1(St, At, St+1)

]
(3.11)

where π defines the agent’s strategy that associates a probability π(a | s) to
the action At = a given the state St = s. A RL agent aims at maximizing
the expected sum of (discounted) rewards by finding the best action given
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the current state. We consider the model-free context in which the agent has
no knowledge of the internal dynamics of the environment, i.e. the transition
probability is not known, and the only source of information is the sequence
of states, actions and rewards.

Value based methods are defined by introducing the action-value function

Qπ(s, a) ≡ E

[
∞∑
k=0

ρkRt+1+k | St = s, At = a, π

]
, (3.12)

which reflects the long-term reward associated with the action a taken in the
state s if the strategy π is followed hereafter. The estimation of (3.12) allows
deriving a deterministic optimal policy as the highest valued action in each
state. Depending on how the agent estimates the action-value function (3.12),
different classes of value-based algorithms can be introduced. Conversely,
direct policy search approaches are alternative methods that try to explore
directly the policy space (or some subset of it), being the problem a particular
case of stochastic optimization.

3.3.1 Tabular Reinforcement Learning

Tabular RL methods are practical when the possible states and actions are
few enough to be represented in a table, which has an entry for every (s, a)
pair. In this case, the agent can explore many possible state-action pairs
within a reasonable amount of computational time and obtain a good ap-
proximation of the value function.

Q-learning (Watkins and Dayan, 1992) is a tabular method in which at
each time step the agent tries an action At, receives a reward Rt+1 and
updates the current estimate of the action-value function Q(St, At) as

Q(St, At)← Q(St, At) + α(TQt −Q(St, At)), (3.13)

where α is a learning rate and the target

TQt = Rt+1 + ρmax
a
Q(St+1, a) (3.14)

is a decomposition of the value function in terms of the current reward and the
current estimate of the future value discounted by ρ. At the end of the learn-
ing process, the optimal policy is the greedy strategy At = arg maxaQ(St, a)
but Q-learning is trained off-policy because the agent chooses the action At
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following a ε-greedy policy that ensures adequate exploration of the state-
action space.

When states and actions are continuous, as it is for a realistic financial en-
vironment, Q-learning barely obtains good estimates of the value function in
a feasible computational time. Moreover, the discretization of the state space
itself may cause loss of relevant information depending on its granularity. In
this context, the DRL framework becomes particularly necessary.

3.3.2 Approximate Reinforcement Learning

DRL algorithms tackle previously intractable problems by approximating
Eq. (3.12) through a neural network that allows a continuous state space
representation.

Deep Q-Network (DQN) (Mnih et al., 2015) is an extension of Q-learning
and allows learning a parametrized value function Q∗(s, a) ≈ Q(s, a; θ).
Q(s, a; θ) is a multi-layer neural network that for a given input state s re-
turns a vector of action values. The standard update of Eq. (3.13) therefore
becomes,

θt+1 = θt + α(TDQN
t −Q(St, At; θt))∇θtQ(St, At; θt) (3.15)

which resembles a standard gradient descent toward the target

TDQN
t = Rt+1 + ρmax

a
Q(St+1, a; θt). (3.16)

Even if tabular methods converge to the optimal function (Watkins and
Dayan, 1992), they fail to generalize over previously unseen states. Instead,
DRL has good generalization capabilities, but produces unstable behaviors
during the training whenever function approximation is combined with an
off-policy algorithm and learning by estimates (Sutton and Barto, 2018).
The issue of training instability is partially solved by adding two ingredients:
an experience replay buffer and a fixed target. An experience buffer is a
finite set D = {e1, . . . , eN} of fixed cardinality N , where at each time t the
agent’s stream of experience et = (St, At, Rt+1, St+1) is stored, replacing one
of the old ones. The replay buffer is then used to perform a batch update
of the network parameters. A fixed target is exactly as the online target,
except that its parameters θ− are updated (θ−t = θt) and then kept fixed for
τ iterations. Combining the two ingredients, the gradient step of Eq. (3.15)
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becomes

Ee[(r + ρmax
a′

Q
(
s′, a′; θ−t

)
−Q (s, a; θt))∇θtQ(s, a; θt)] (3.17)

where e = (s, a, r, s′) is uniformly sampled from D.
In what follows we adopt a variant of the algorithm called double DQN

(DDQN) (Van Hasselt et al., 2016) which prevents some overestimation issues
of the value function. For convenience, we still refer to the chosen value based
algorithm as DQN, even if the implementation follows the variant of DDQN.
In the appendix, we recap the technical details of the value based algorithms
used in the numerical experiments.

The optimization problem in Eq. (3.11) can be equivalently solved using
a policy gradient algorithm like the Proximal Policy Optimization (PPO)
(Schulman et al., 2017). A policy gradient algorithm directly parametrizes
the optimal strategy within a given policy class πθ = π(At | St; θ), for ex-
ample a multilayer neural network with the set of parameters θ. The opti-
mization problem is approximately solved by computing the gradient of the
performance measure J(θ) =

∑∞
t=0 ρ

tRt+1(St, At, St+1; πθ) and then carrying
out gradient ascent updates according to

θt+1 = θt + α∇θJ(θt), (3.18)

where α is still a scalar learning rate. The policy gradient theorem (Marbach
and Tsitsiklis, 2001; Sutton et al., 1999) provides an analytical expression
for the gradient of J(θ) as

∇θJ(θ) = Eπθ

[∇θπ (At | St; θ)
π (At | St; θ)

Qπθ(St, At)

]
(3.19)

= Eπθ [∇θ log π (At | St; θ)Qπθ(St, At)] ,

where the expectation, with respect to (St, At), is taken along a trajectory
(episode) that occurs adopting the policy πθ. It can be proven that it is
possible to modify the action value function Qπ(s, a) in (3.19) by subtracting
a baseline Vπ(s) that reduces the variance of the empirical average along the
episode, while keeping the mean unchanged. A popular baseline choice is the
state-value function

Vπ(s) ≡ E

[
∞∑
k=0

ρkRt+1+k | St = s, π

]
, (3.20)

97



3. Deep Reinforcement Trading with Predictable Returns

which reflects the long-term reward starting from the state s if the strategy
π is adopted onwards. The gradient thus can be rewritten as

∇θJ(θ) = Eπθ [∇θ log π (At | St; θt)Aπθ(St, At)] (3.21)

where
Aπ(s, a) ≡ Qπ(s, a)− Vπ(s), (3.22)

is called advantage function and quantifies the gain obtained by choosing a
specific action in a given state with respect to its average value for the policy
π.

Different policy gradient algorithms depend on how the advantage func-
tion is estimated. In PPO, the advantage estimator A (s, a;ψ) is parametrized
by another neural network with parameters ψ. This approach is known as
actor-critic: the actor is represented by the policy estimator π(a | s; θ) that
outputs the mean and the standard deviation of a Gaussian distribution
which the agent uses to sample actions, the critic is the advantage function
estimator A (s, a;ψ) whose output is a single scalar value. The two neural
networks interact during the learning process: the critic drives the updates of
the actor, which successively collects new sample sequences that will be used
to update the critic and again evaluated by it for new updates. The PPO
algorithm can therefore be described by the extended objective function

JPPO(θ, ψ) = J(θ)− c1L
AF(ψ) + c2H (π (a | s; θ)) . (3.23)

The second term is a loss between the advantage function estimator A (s, a;ψ)
and a target Atarg, represented by the cumulative sum of discounted reward,
needed to train the critic neural network. The last term represents an entropy
bonus to guarantee an adequate level of exploration. Details about the spe-
cific choice of the losses, the target and the neural network parametrization,
together with additional information about the general algorithm implemen-
tation, are given in the appendix.

3.4 Numerical Experiments

In this section, we conduct synthetic experiments in the controlled financial
environment outlined in Section Section 3.2. We present two different groups
of experiments where the agents observe financial time series that come from
different data generating processes. The first group is related to the case
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where the return dynamics is driven by Gaussian mean reverting factors, as
in Eq. (3.2) and the optimal strategy is known to be Eq. (3.5). The second
group includes a set of cases where the model that generates the dynamics
allows for a bigger amount of extreme events and heteroskedastic volatility.
In this case, Eq. (3.5) is still used as a representative classical strategy of
dynamic portfolio optimization.

In all experiments, the agents trade a single asset, but the framework
is general enough to allow for multi asset trading. We test Q-learning and
DQN in parallel in the same environment, while PPO training is slightly
different. The first two algorithms are trained in-sample for a number of
updates equal to the length Tin of the simulated series, while the learned
policy is evaluated out-of-sample at several intermediate training moments
on different series of length Tout. The same logic operates for PPO, which
however works in an episodic way: the algorithm is trained in-sample and
evaluated out-of-sample respectively for Ein and Eout number of episodes of
length equal to 2000 time steps. Each agent operates in a model-free context
so that no prior information about the data generating process is provided.

In order to bring the RL formalism to the portfolio optimization problem
of Eq. (3.4) we choose the actions as the amount of shares traded At = ∆ht,
while the state is defined as the pair return-holding St = (yt, ht−1). We in-
clude the asset return to the state representation instead of the predicting
factors because it is our interest to assess DRL as a pure data-driven ap-
proach. The choice of financial factors is known to be a non-trivial task,
and it can be highly discretionary. For every experiment, we also adapt the
boundaries of the action space A according to the magnitude of the action
performed by the benchmark. More specific details about this heuristic are
provided in the appendix.

After taking an action and causing a change in portfolio position, the
agent observes the next price movement and the reward signal that is

Rt+1(yt+1, ht−1,∆ht) = hTt yt+1 −
γ

2
hTt Σht −

1

2
∆hTt Λ∆ht. (3.24)

Note that we decided to allow the benchmark agent to be perfectly informed,
so that it knows exactly the predicting factors of the price dynamics. On the
contrary, RL agents can just gather information from the observed return,
which is affected by an additional source of noise. This choice allows the RL
agent to be completely agnostic with respect to the price dynamics. This
represents a clear disadvantage for the RL agent, but it is a step towards a
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more flexible approach when the dynamics is not known and the performance
is strongly dependent on the factors selection. Alternatively, one can assume
that the RL agents are completely informed by replacing yt with ft in the
definition of the state variables. For the purpose of comparison, we highlight
that the value-based algorithms in this study perform discrete control, while
the benchmark solution can adopt a continuous strategy according to Eq.
(3.5). Although PPO can express both discrete and continuous policies, we
test the continuous version to allow for a more expressive policy and compare
the differences of the two settings.

The details about the parameters used to simulate the financial data and
the hyperparameters setting for training the neural networks are provided
in the appendix. The experiments are run in parallel on a 64-cores Linux
server which has an Intel Xeon CPU E5-2683 v4 @ 2.10GHz. The training
runtime for a single value-based method experiment of length Tin = 300000
ranges from two to four hours when the neural network architecture is not
deeper than two hidden layers. Approximately the same runtime is needed
for the PPO algorithm when Ein = 300. The source code written in Python
is available on GitHub1. The following subsections discuss the results of the
two groups of experiments.

3.4.1 Tracking the Benchmark

From Figure 3.1 we observe the evolution of the out-of-sample performance of
several Q and DQN agents in the case of a return dynamics driven by one or
two Gaussian factors. After about half of the training runtime, DQN reaches
on average a close-to-optimal cumulative net PnL, which is expressed as the
gross return of the portfolio deducted from the transaction costs, i.e.

PnLnet
t+1(yt+1, ht,∆ht) = htyt+1 −

1

2
∆htΛ∆ht. (3.25)

The trained DQN agents are then able to retrieve the mean reverting signals
in the data and to control the amount of transaction costs without knowing
the data generating process of the underlying dynamics. On the other hand,
Q-learning agents hardly reach half of the cumulative net PnL of the optimal
benchmark in the same training time.

1https://github.com/Alessiobrini/Deep-Reinforcement-Trading-with-Predictable-
Returns
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Figure 3.1: Results for DQN and Q-learning in the case of Gaussian dynam-
ics driven by one (first row) and two (second row) mean-reverting factors.
Cumulative net PnL (first column) and SR (second column) are displayed
as the size of the training time series increases up to Tin = 300000 on the
x-axis. Every dot represents the average over 10 out-of-sample tests of length
Tout = 5000 for a specific agent out of the 20 tested in total. The horizontal
dashed line represents the optimal benchmark, while the solid lines repre-
sent the average performance of all the agents in relative percentage to the
benchmark.

The performances of the tabular algorithm are strictly dependent on the
granularity of the state discretization. Q-learning can reach the benchmark
performance only when Tin →∞ and S is dense enough to closely represent
the continuous trading environment. However, even if we keep the Q-table
relatively small, usually below 100000, it can still be very sparse for this range
of Tin. This is particularly evident in the case of two Gaussian factors, where
many agents have a negligible cumulative net PnL simply because they do
not perform any buy or sell actions. Increasing the size of the Q-table for
experiments of fixed length Tin leads to even worse results.

DQN avoids the inefficient tabular parametrization of the action-value
function by using fewer parameters with respect to the amount of entries
in the Q-table. The use of a neural network as an action-value function
approximator is crucial in this financial environment because the agent learns
faster when the state space is entirely observable and the parameters can be
updated by batches of experience.

In order to compare the risk of different strategies, we use the annualized
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Figure 3.2: Learned action-value function for a DQN agent when the asset
return varies and the holding is fixed at 0. Different colors represent different
actions.

Sharpe ratio (SR) (Sharpe, 1994) which is computed as

SR =
E[PnLnet]√
Var[PnLnet]

∗
√

252, (3.26)

defining the expected return of the portfolio per unit of risk on a yearly basis.
It is a common metric to evaluate the trade-off between risk and return of
financial strategies, especially in a mean-variance optimization framework.

The second column of Figure 3.1 showcases the evolution of the SR of
the agents and highlights that DQN obtains on average the same level of
benchmark profit adjusted for risk since the beginning of the training. The
performances of Q-learning in this case are strongly biased, since often the
tabular agents choose not to trade and avoid increasing the risk of its portfolio
position. The DQN agents first learn how to obtain low-risk portfolios, then
they start making higher profits, as it is shown from the faster convergence
of the SR with respect to the cumulative net PnL.

Figure 3.2 provides insights about the learned behavior of the DRL agents,
showing the learned action-value function of the best performing DQN agent
at the end of the period of training represented in Figure 3.1. The agent
is trained over a return dynamics driven by one predicting factor, but the
findings are valid also in the case of multiple factors. The estimated action-
value function Q((y, h), a; θ) is displayed for all the actions in the discrete
space A and implicitly represents the behavior of the agent when different
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Figure 3.3: Results for PPO in the case of Gaussian dynamics driven by
one (first row) and two (second row) mean-reverting factors. Cumulative net
PnL (first column) and SR (second column) are displayed as the training
episodes increases up to Ein = 300 on the x-axis. Every dot represents
the average over 10 out-of-sample tests of length Tout = 2000 for a specific
agent out of the 20 tested in total. The horizontal dashed line represents the
optimal benchmark, while the solid line represents the average performance
of all the agents in relative percentage to the benchmark.

levels of returns are experienced. If the agent acts greedily and chooses the
highest Q-value for every level of y, positive actions appear prevalent when
returns are positive, while the opposite holds for negative actions.

Figure 3.3 shows analogous experiment results for PPO trained with fi-
nancial returns driven by mean-reverting Gaussian dynamics. PPO retrieves
the signal in the data and converges to the benchmark, but exhibits higher
variance in the Net PnL measure compared to DQN. This is motivated by the
different type of policy that the algorithm is describing. Working in a contin-
uous action space allows the possibility to trade any fraction of the synthetic
asset, but also complicates the exact convergence to the benchmark because
the sampling space is large. In practice, there is no theoretical guarantee to
find the proper way to sample actions from A in a finite time.

Figure 3.4 represents the average greedy policy learned by the agents for
DQN and PPO presented in Figure 3.1 and Figure 3.3. Both algorithms can
discover the inherent arbitrage introduced in the market, since the average
policy follows the sign of the returns by buying low and selling high. The
learned policies appear to be monotonic as the one of the benchmark.
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Figure 3.4: Greedy policy function for a DQN and a PPO agent together with
the policy of the benchmark when the asset return varies and the holding is
fixed at 0. Different colors represent different algorithms. The curves present
a confidence interval because the average maximum action is obtained from
the results of 20 trained agents for each algorithm.

3.4.2 Outperforming the Benchmark

In order to show the flexibility of the DRL approach, we study its perfor-
mances with respect to the benchmark when the return dynamics depart
from the original model specification. In particular, we introduce two types
of model misspecifications: the presence of extreme events and noise het-
eroscedasticity. In both cases the strategy in Eq. (3.5) is no more optimal,
but since it performs well, and it is often used in practice, it can be consid-
ered as a benchmark representing a broader class of factor trading strategies.
It is therefore natural to investigate whether DQN and PPO are able to
outperform the benchmark other than just reaching it.

We consider two different reference strategies that are respectively re-
ferred to as fully informed when the benchmark is provided with the simu-
lated factors and partially informed when instead it needs to extract them
from the observed returns. These different settings should not affect the DRL
performance, except for the boundaries of the action space A that we decided
to adapt to the benchmark for a better comparison (see the appendix).

The fully informed benchmark agent can directly use Eq. (3.5) to trade,
just by estimating the speeds of mean reversion and factor loadings from the
observed return predicting factors. Instead, in the partially informed case,
the benchmark agent does not know exactly which are the best predicting
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Figure 3.5: Results for Student’s T dynamics in the case of one mean-
reverting factor. DQN is tested over Student’s T distributed returns with
ν = 6 (first row) and ν = 8 (second row) respectively. The figure should be
read with the same logic of Figure 3.1 since the number of agents and the
length of in-sample and out-of-sample experiments are equal. The solid lines
represent different PPO performances with respect to different benchmark
strategies, which in this context are not optimal anymore.

factors and needs to guess or extract them from what is observed in the state
space. One of the typical choices in financial literature is to use lagged past
returns (Asness et al., 2013) as factors to predict future returns. We resort
to a simple heuristic to select the best possible lagged variables by fitting
the Eq. (3.1) to a set of candidate lags. Then, we select the best one by
minimizing the average squared residuals.

From Figure 3.5 we note that in presence of extreme events (T-student
noise) the DQN agents are able to control the trading costs and obtain equal
or superior cumulative net PnL with respect to the two benchmark agents, es-
pecially for lower degrees of freedom where the misspecification has a greater
impact and extreme events are more frequent. The SR fairly outperforms
the benchmark towards the end of the training process in both the cases.
The RL agents learn how to control the higher amount of risk introduced
in the environment, while model based strategies like the benchmark should
have considered this in advance. Figure 3.6 shows the same misspecified
case for PPO agent, which is able to consistently manage the transaction
costs and obtain higher net PnL than the benchmark, still exhibiting greater
variance than DQN. We note that PPO performs better with respect to the
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Figure 3.6: Results for Student’s T dynamics in the case of one mean-
reverting factor. PPO is tested over Student’s T distributed returns with
ν = 6 (first row) and ν = 8 (second row) respectively. The figure should be
read with the same logic of Figure 3.3 since the number of agents and the
length of in-sample and out-of-sample experiments are equal. The solid lines
represent different PPO performances with respect to different benchmark
strategies, which in this context are not optimal anymore.

benchmark when the latter is provided with partial information and needs
to discover the persistence of the signal on its own.

The second proposed misspecification introduces heteroscedasticity in the
asset returns by considering a GARCH process with p = 1 and q = 1 for the
asset variance. For simplicity, we assume the predictable component of the
returns to be an autoregressive model with lag of order 1.

Figure 3.7 showcases that DQN obtains on average a higher cumulative
net PnL with respect to the benchmark. We compare the difference, instead
of the ratio, between the two cumulative net PnLs because in some cases the
net PnL obtained by the benchmark agent is negative. Differently from the
previous set of experiments, the increment of performance in the presence
of heteroscedasticity regards the control of the amount of transaction cost.
Looking at the SR, DQN mostly tracks the benchmark and outperforms it
only in the case of Gaussian noises. The increased amount of extreme events
in the Student’s T case causes a worsening in the DQN performance relative
to the benchmark. It has to be noted that we use the same set of hyper-
parameters for all these experiments. This is a signal that the performance
in the fat-tailed case could be improved by tuning a more effective config-
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Figure 3.7: Results for AR-GARCH return dynamics when the noise is dis-
tributed as a standard Normal or a Student’s T distribution (ν = 8). The
performance of DQN is compared with the dashed line benchmark. On the
y-axis of the left plot, there is the cumulative net Pnl difference between
DQN and the benchmark, so that the dashed line is set at 0. Then, the
figure should be read with the same logic of Figure 3.1 since the number of
agents and the length of in-sample and out-of-sample tests are equal.

uration. Figure 3.8 further confirms that PPO deals more effectively with
model misspecifications with respect to DQN. When trained over GARCH
dynamics, PPO achieves better than the benchmark performance, controlling
associated risks and costs.

Figure 3.9 shows the realized out-of-sample holdings for some DQN agents.
When the underlying dynamics can be predicted by mean reverting factors,
as for the Gaussian and Student’s T cases, the inversion of the factor sign
causes the inversion of the sign of the portfolio itself. The oscillation be-
tween short and long positions confirms that the DRL algorithm has learned
to follow the signal present in the data. In particular, when compared with a
partially informed benchmark agent, as in the bottom left plot of Figure 3.9,
the DQN algorithm obtains a higher cumulative net PnL by anticipating
the reverting movement of the returns. Figure 3.10 presents out-of-sample
holdings for PPO in the same cases already shown for DQN. When the re-
turns are driven by a Gaussian or a Student’s T dynamics, PPO tracks the
portfolio benchmark well and in the partially informed case seems to antici-
pate the mean-reversion of the signal as DQN does. In the case of GARCH
dynamics, both the algorithmic approaches show a portfolio holding which
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Figure 3.8: Results for AR-GARCH return dynamics when the noise is dis-
tributed as a standard Normal or a Student’s T distribution (ν = 8). The
performance of PPO is compared with the dashed line benchmark. On the
y-axis of both sub figures there is the difference between PPO and the bench-
mark respectively for cumulative net PnL and the Sharpe ratio. Then, the
figure should be read with the same logic of Figure 3.3 since the number of
agents and the length of in-sample and out-of-sample tests are equal.

greatly differs from the benchmark. In both figures, we have two different
y-axes for the bottom right panel. In order to visualize portfolio holdings
that are on different scales, we let the left y-axis be associated with the al-
gorithm and the right y-axis be associated with the benchmark. The latter
does not adapt well to heteroskedastic peaks in the time-series of simulated
returns, and it happens that the benchmark portfolio is more sensitive to
extreme events. On the other hand, RL is able to limit the trading even
in the presence of heteroscedasticity and obtain a lower portfolio size that
produces less transaction costs when it needs to be rebalanced.

It is important to check the robustness of the RL performance with respect
to the choice of the dynamics parameters, or conversely its sensitivity with
respect to some of them. Figure 3.11 and Figure 3.12 show the level of SR
for DQN and PPO agent as a function of dynamics half life, factor loading
and fat-tailed return distribution parameters. The result is an average over
10 different agents for each parameter configuration, this also allows creating
confidence intervals around the average performance. In the top row of both
figures, the effect of variation in half-life of mean-reversion and in the factor
loading b of a one-factor Gaussian dynamics is similar for DQN and PPO.

108



3. Deep Reinforcement Trading with Predictable Returns

0

2

1e5 Gaussian

2

0

2
1e5 Stud fully inf

DQN
benchmark

0 200 400

0

5
1e4 Stud partially inf

0 200 400

0

5

1e3 Garch

2.5

0.0

2.5

1e4

out-of-sample iterations

ho
ld

in
g

Figure 3.9: Portfolio Holdings for a snapshot of length 500 for some out-of-
sample tests performed. The DQN agents selected are the best performing
for each group in terms of cumulative net PnL: the Gaussian case with one
factor, the Student’s T case with 6 degrees of freedom (fully and partially
informed) and the GARCH(1,1) with normal noise.
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Figure 3.10: Portfolio Holdings for a snapshot of length 500 for some out-of-
sample tests performed. The PPO agents selected are the best performing
for each group in terms of cumulative net PnL: the Gaussian case with one
factor, the Student’s T case with 6 degrees of freedom (fully and partially
informed) and the GARCH(1,1) with normal noise.

They both tend to obtain the same SR of the benchmark strategy, which is
in both cases an increasing function. This is due by one side from the fact
that a higher half life produces a more persistent return sign that agents can
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more easily exploit to make profit. From the other side, when the factor
loading is small, then the return dynamics contains no meaningful signal and
the Eq. (3.1) is driven purely by noise. The left panel in the bottom row of
Figure 3.11 and Figure 3.12 proposes the same sensitivity analysis when we
simulate one factor Student’s T dynamics with increasing degrees of freedom
ν. All the strategies get worse as the percentage of extreme events increases,
but both PPO and DQN deal with riskier events effectively and consistently
achieve a greater SR than the benchmark strategy. The right panel in the
bottom row of both figures presents the variation of the performance when
the kurtosis of the GARCH(1,1) process distribution increases. The fourth
standardized moment for the stochastic volatility process in Eq. (3.10) is
computed as

E (σ4
t )

[E (σ2
t )]

2 =
3
[
1− (α1 + β1)2]

1− (α1 + β1)2 − 2α2
1

(3.27)

knowing that when 1− 2α2
1 − (α1 + β1)2 > 0, the tails in the distribution of

the GARCH(1,1) are heavier than a Gaussian. A GARCH(1,1) model with
heavy tails represents a consistent misspecification of the original conditions
and only PPO consistently outperforms the benchmark while the tails of the
simulated return distribution become thicker.
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Figure 3.11: DQN performances measured by percentage or differential SR
with respect to the benchmark when some relevant parameter of the simu-
lated dynamics varies. The top row shows the one Gaussian mean-reverting
factor dynamics when the level of half-life of mean-reversion and factor load-
ings increases. The bottom row shows the one mean-reverting Student’s T
factor dynamics and the GARCH dynamics when respectively the degrees of
freedom (dof) and the kurtosis of the returns distribution increase.
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Figure 3.12: PPO performances measured by percentage or differential SR
with respect to the benchmark when some relevant parameter of the simu-
lated dynamics varies. The top row shows the one Gaussian mean-reverting
factor dynamics when the level of half-life of mean-reversion and factor load-
ings increases. The bottom row shows the one mean-reverting Student’s T
factor dynamics and the GARCH dynamics when respectively the degrees of
freedom (dof) and the kurtosis of the returns distribution increase.
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3.5 Conclusions

In this work, we have used different RL algorithms to solve a trading problem
in a financial environment where trading is costly. When the optimization
problem is known to have an exact solution, DQN and PPO are able to
track this benchmark, but they can also adapt to variations of the original
environment setting and find a way to control portfolio risks and costs in
a data-driven manner. While value-based DRL results to be accurate in
following the trading signals and controlling the market frictions, policy-
based DRL appears to be more robust to extreme events and heteroskedastic
volatility.

Although DQN is able to learn the direction of the trades, the discretiza-
tion of the action space still represents a major concern because the traded
size is a multiple of a fixed quantity chosen in advance. Instead of moving
towards actor-critic frameworks, which usually shares the instability issues
with DQN, PPO helps in solving this issue by expressing the policy in a
continuous action space.

RL algorithms are demanding in terms of training data that can be quite
scarce, especially at low frequencies. We believe that the use of a financial
model with a known optimal solution can offer a workaround to this prob-
lem by allowing to pretrain DRL agents on synthetic data and then to fine
tune them on real time series. Moreover, classical strategies can facilitate
the training of DRL agents by providing information about good (even if
suboptimal) strategies. This can help in terms of a rationalization of the
state-action space, which results in the lightening of the training process
itself.

3.6 Appendix : Algorithms and Hyperparam-

eters

In this appendix, we provide some details regarding the implementation of
Q-learning and DQN algorithms used in the numerical experiments. Then
we outline the choice of the parameters for simulating the financial data and
of the relevant hyperparameters to set up the training of the algorithms.
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3.6.1 Q-learning

Q-learning requires the discretization of the state space S and the action
space A, which affects the dimensionality of the Q-table that produces es-
timates Q(St, At) of the optimal action-value function. For every possible
state and action variable, we need to choose a proper discrete range that we
believe is adequately large to capture the relevant information and solve the
problem.

Since real traders usually operate by trading quantities of assets that
are multiples of a fixed size called lot, the dimensions of the Q-table are
bounded by setting the traded quantity ∆ht to be at most K round lots and
the portfolio holding ht to a maximum of M round lots. The discrete set of
returns is represented by an upper and lower bounded set of values that are
linearly spaced by the size of a basis point, denoted as bp. The bounded sets
and their dimensionality are respectively:

A = {−K,−K + 1, . . . , K} ,
∣∣∣A∣∣∣ = 2K + 1 (3.28)

H = {−M,−M + 1, . . . ,M} ,
∣∣∣H∣∣∣ = 2M + 1 (3.29)

R = bp · {−T,−T + 1, . . . , T} ,
∣∣∣R∣∣∣ = 2T + 1 (3.30)

In our financial environment, the basis point and the lot are respectively
the size of minimum return movement and the minimum tradable quantity
of the asset at each discrete time. The sizes of the three sets are defined
respectively by the hyperparameters K, M and T , which are a crucial choice
to define the magnitude of the synthetic financial problem.

Denoting the size of the table as d = |R| × |H| × |A|, our simulated
experiments show that Q-learning is not even able to reach a positive profit
when d approaches the length of the simulated series Tin. The more the
dimensionality of the table increases, the worse are the cumulative net PnLs
and rewards obtained, when the Tin is fixed.

If Tin is not sufficiently long to allow the agent to visit the entire state
space and update the Q-table in each corresponding entry, the algorithm
approximates the action-value function with a sparse Q-table. Thus, it is
not able to represent the effect of slight changes in the state space variables.
Such a bottleneck becomes even worse if we increase the number of actions
that the agent can perform.

In principle, we could let Q-learning experience longer simulated series to
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partially avoid the exploration issue, but this would not be of any practical
use for two reasons: (i) it requires an increasingly long training runtime to
match the benchmark performance and still this result would be obtained
under a discretized state-space of a more complex financial environment;
(ii) training for a high number of iteration the experiment would not even
resemble a real financial application since there is no way to retrieve such a
massive amount of financial data, especially at a daily frequency.

To ensure proper exploration of the state space, the agent acts according
to a ε-greedy policy, such that at each time a greedy action a = arg maxaQ(St, a)
is selected with probability 1− ε, while occasionally with probability ε a ran-
dom action is sampled from the set A. As a common approach in the RL
literature, the value of ε decays linearly during training until it reaches a
small value that is kept fixed until the end.

3.6.2 DQN

DQN requires a discretization of the action space A, which is approached
as for the tabular case. This discretization could represent an issue when
one wants to represent the choice of the agent at a more granular level.
The more one increases the size of A, the more the computational cost of
the algorithm increases and its efficiency in solving the financial problem
decreases. However, we believe the discrete control can still be adequate
for a set of financial problems since usually market orders are executed in
multiples of a fixed quantity.

Since the agent learns offline by choosing past batches of experience from
a buffer with fixed size, we set this dimension as a percentage of the total
updates in-sample Tin. We have found that letting the buffer size to increase
can improve the performance, therefore we do not discard any sequence.
The exploration-exploitation trade-off is balanced as in Q-learning, using a
ε-greedy policy where the ε decreases linearly to a low value towards the end
of the training. Despite the original DQN implementation (Mnih et al., 2015)
suggests updating the target network parameters at every fixed discrete step,
we choose to continuously update the target parameter so that they slowly
track the learned networks as follows:

θ−t ←− τθ−t + (1− τ)θt (3.31)

where τ is the chosen step size for the update, θ−t are the target network
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parameters and θ are the parameters for the current action-value function
estimator.

A problem of the overestimation of the action-value function is known to
arise in the classical DQN algorithm (Hasselt, 2010; Van Hasselt et al., 2016).
Thus, we adopt the double DQN (DDQN) variant suggested in Van Hasselt
et al., 2016. Recalling that the target of a DQN update is computed as

TDQN
t = Rt+1 + ρmax

a
Q(St+1, a; θ), (3.32)

where we can write

max
a′

Q (s′, a′; θ) = Q

(
s′, arg max

a′
Q (s′, a′; θ) ; θ

)
,

it happens that the same noise affects both the maximization over the action
space and the value function estimates. Removing the correlation between
the sources of noise coming into these two operations is beneficial to avoid
an overestimation of the value function.

Double Q-learning decouples the selection of the action from the evalua-
tion as,

TDDQN
t = Rt+1 + ρQ(St+1, arg max

a′
Q (St+1, a

′; θ1) ; θ2), (3.33)

i.e., DDQN uses two neural networks: one computes the target and the other
computes the current action-value function. The computation of the target
is split between the current neural network that greedily selects the action
and the target neural network that evaluates such action. Therefore, the
selection of the action in Eq. (3.33) is due to the current weights θ1 = θt,
while the target network is used to evaluate the value function for that action
θ2 = θ−t .

We have found that DDQN outperforms DQN in all the tests we carried
out, meaning that also in this specific financial application it is a profitable
procedure.

Regarding the shape of the loss function, a common choice for the DQN
family of algorithms is the Huber loss rather than the mean squared error
(MSE), which is typical for regression tasks. The Huber loss is less sensitive
to the presence of outliers, and it is expressed as

Lδ(y, ŷ) =

{
1
N

∑N
i=1 (yi − ŷi)2 for | yi − ŷi |≤ δ

δ 1
N

∑N
i=1 | yi − ŷi | −1

2
δ2 otherwise

(3.34)
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The Huber loss is quadratic for small values of the squared difference and
linear for larger values. This kind of loss function adds a lower penalty to
large errors, and it is better than MSE for this kind of problems because
learning by estimates as in DQN could produce unexpectedly high errors.
Even if in the main we showed the case of an MSE loss, in practice our
implementation utilizes a Huber loss. This choice does not change the update
rule of the presented algorithms, but the computation of the gradient will
differ in the presence of large quadratic errors.

The neural networks used to approximate the action-value function are
2-layer fully connected networks with ELU (Clevert et al., 2015) activation
and uniform weight initialization as in He et al., 2015. We have tried with
different types of rectified nonlinear activation, but ELU outperforms a more
usual choice as ReLU. The sizes of the hidden layers are 256 and 128 for the
first and the second respectively, but also smaller hidden layers have proven
to be effective (Xu et al., 2015).

The gradient descent optimizer is Adam (Kingma and Ba, 2014), which
performs a batch update of size 256. The original implementation proposes
default values for β1, β2, and εadam, which are respectively the exponential
decay rates for the first and the second moment estimates of the true gradient
and a small constant for numerical stability. Those parameters required some
tuning for improving performances, so that we set them as β1 = 0.5, β2 = 0.75
and εadam = 0.1 for all experiments. The learning rate α usually starts around
0.005 and then decays exponentially towards the end of the training.

Since in a RL setting the data are not all available at the beginning
of the training, we can not normalize our input variables as usual in the
preprocessing step of a supervised learning context. Hence, we add a Batch
Normalization layer (Ioffe and Szegedy, 2015) before the first hidden layer to
normalize the inputs batch by batch and obtain the same effect.

3.7 PPO

PPO allows expression continuous policies through an algorithm which is
easier to implement than a trust-region method (Schulman et al., 2015a) and
easier to tune with respect to the continuous counterpart of DQN (Lillicrap et
al., 2015). In principle, continuous policies are more expressive than discrete
policies, but are also harder to learn. Our implementation of PPO follows
Andrychowicz et al., 2020 which performs a large empirical study of the effect
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of implementation and parameters choices on the PPO performances. Even
if our financial problem is different from their test bed, we also follow the
direction of their results in order to tune our hyperparameters, since we have
limited computational resources to do this search from scratch. Another
relevant source for an effective implementation is Engstrom et al., 2020.

As described in the main, we implement PPO in an actor-critic setting
without shared architectures. Differently from the standard implementation,
the actor outputs a single scalar value, which is the mean of a Gaussian dis-
tribution, while the standard deviation is then learned as a global parameter
in the optimization process and updated using the same gradient optimizer.
Learning a global standard deviation for all the state representation has
proven to be as much as effective as learning a state dependent parameter,
with the benefit of being slightly less computational expensive (Andrychow-
icz et al., 2020). Policy gradient methods like PPO allow inserting some prior
knowledge on the form of the policy with respect to value-based methods.
The real-valued output of the actor usually passes through a hyperbolic tan-
gent function in order to bound the action in the interval [−1, 1]. Then is
rescaled to directly express a range of possible trading actions, whose extreme
values are selected according to a heuristic described in the next subsection.
Exploration during training is guaranteed by the learned standard deviation
parameter and by the entropy bonus in the objective function. When do-
ing out-of-sample tests, the PPO policy is tested as if it were deterministic
by just picking the mean of the Gaussian instead of sampling from it. We
take this choice because we do not want the test results to be affected by
stochasticity.

The on-policy feature of PPO makes the training process episodic, so
that experience is collected by interacting with the environment and then
discarded immediately once the policy has been updated. The on-policy
learning appears in principle a more obvious setup for learning, even if it
comes with some caveats because it makes the training less sample efficient
and more computationally expensive since a new sequence of experiences
need to be collected after each update step. In this process, the advantage
function is computed before performing the optimization steps, when the
discounted sum of returns over the episode can be computed. In order to
increase the training efficiency, after one sweep through the collected sam-
ples, we compute again the advantage estimator and perform another sweep
through the same experience. This trick reduces the computational expense
of recollecting experiences and increases the sample efficiency of the training
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process. Usually we do at most 3 sweeps (epochs) over a set of collected
experiences before moving on and collecting a new set.

The optimizer and the normalization of the inputs through a Batch Nor-
malization layer are the same used for DQN, with the only exception that in
the PPO case we do not tune the hyperparameters of the Adam optimizer.

Maximizing the objective function that returns the gradient in Eq. (3.21)
is known to be unstable, since updates are not bounded and can move the
policy too far from the local optimum. Similarly to TRPO (Schulman et al.,
2015a), PPO optimizes an alternative objective to mitigate the instability,

JCLIP(θ, ψ) = Eπθ
[
min

(
r(θ)Â (s, a;ψ) , clip (r(θ), 1− ε, 1 + ε) Â (s, a;ψ)

)]
(3.35)

where r(θ) = π(At|St;θ)
π(At|St;θold)

is a ratio indicating the relative probability of an

action under the current policy with respect to the old one. Instead of intro-
ducing a hard constraint as in TRPO, the ratio is bounded according to a
tolerance level ε to limit the magnitude of the updates. The combined objec-
tive function in Eq. (3.23) can be easily optimized by PyTorch’s automatic
differentiation engine, which quickly computes the gradients with respect to
the two sets of parameters θ and ψ. The implemented advantage estimator
depends on the parametrized value function Vψ and is a truncated version of
the one introduced by Mnih et al., 2016 for a rollout trajectory (episode) of
length T :

Ât = δt + (γτ)δt+1 + · · ·+ · · ·+ (γτ)T−t+1δT−1 (3.36)

where δt = rt+γVψ (st+1)−Vψ (st), γ is a discount rate with the same role as
ρ in DQN and τ is the exponential weight discount which controls the bias
variance trade-off in the advantage estimation. The generalized advantage
estimator (GAE) uses a discounted sum of temporal difference residuals,
similarly to the one-step target value of DQN in Eq. (3.16).

3.7.1 Environment choices

In all the simulated experiments we set |A| = 5 for both Q-learning and
DQN, so that every agent can perform two buy actions, two sell actions and
a zero action. In order to make the results comparable with those of the
benchmark solution, we adopt a systematic way to choose the size of the
action space A from which we obtain the possible actions. Basically, we let
the dynamic programming solution run for some iterations before starting
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the training of the RL algorithms, and we look at the distribution of the
continuous action performed. Then we select the lower and upper boundary
of A as respectively the quantiles located at the 0.1% and the 99.9

For what concerns the simulated environment, the cost multiplier λ is
chosen equal to 0.001 for all experiments. Then we assume zero discount rate
and all the starting positions for the holding are zero. For any experiment
involving mean-reverting factors, we compute the speed of mean reversion
φ as φ = log(2)

log(h)
where h is known as the half-life of mean-reversion and

represents the time it is expected to take for half of the trading signal to
disappear. This allows to simulate the predicting factors and aggregate their
effect to compute the asset returns. We tried many set up for the half-lives,
factor loadings and volatility of simulated assets and the findings are quite
robust. The half-lives of the mean-reverting factors are 350 for the case of
a single factor and (170,350) for the case of two factors. Factor loadings are
chosen of the order of magnitude of 10−3, specifically as 0.00535 and 0.005775
in the proposed cases. The volatilities of the factor are respectively 0.2 and
0.1, while the volatility of the unpredictable part of the asset return is always
set to 0.01. Suitable ranges for these hyperparameters are [0.5, 0.05] for the
former and [0.05, 0.005] for the latter. In general, DQN is also able to retrieve
the underlying dynamics in the case of two concurrent factors with different
speeds, as long as those factors do not include one which is really fast (e.g.
half-life of mean reversion lower than 10 days) and also highly noisy with
a volatility above 0.2. This is acceptable because the signal-to-noise ratio
would be very low, and it may require more sophisticated layers for feature
extraction, other than a feedforward network structure. The parameters for
the AR-GARCH simulation are ω = 0.01, α1 = 0.05 and β1 = 0.94 which
are common GARCH parameters to simulate a stable financial market. The
autoregressive parameter is set to φLr = 0.9 and the degrees of freedom in
the Student’s T case are ν = 10.
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Chapter 4

Reinforcement learning for
trading in a market with
frictions: a residual approach

4.1 Introduction

Portfolio optimization represents selecting the best allocation of capital in a
given universe of financial assets out of all the available asset combinations
while maximizing a utility objective that reflects the investor preferences. It
has been a well-known and studied problem in the field of finance since the
introduction of the modern portfolio theory in the seminal work of Markowitz,
1952 that first presented the concept of diversification in a portfolio of assets
by trading-off risk and return. From there, financial literature has proposed
several approaches to find an efficient way to optimize a financial portfolio,
using advanced mathematical techniques and accounting for realistic aspects
of the financial markets. Kolm et al., 2014 provides a comprehensive survey
of the development of portfolio optimization techniques where they present
and discuss the significant drawbacks of classical Markowitz’s framework.
One main point is overcoming the single-period optimization (SPO) setting,
which performs poorly when the trader incurs transaction costs. A proper
framework that accounts for the costly portfolio rebalancing is represented
by a multi-period optimization (MPO) framework, as proposed by Merton,
1969 where the investors seek to maximize the total utility over time. Boyd
et al., 2017 provides a detailed definition of the framework under the MPO
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setting.
MPO portfolio problems have been generally solved by quadratic pro-

gramming under the mean-variance framework (Çelikyurt and Özekici, 2007;
Mei et al., 2016), stochastic programming (Gondzio and Grothey, 2007;
Samuelson, 1969) and dynamic programming (Cai et al., 2013; Gârleanu
and Pedersen, 2013; Wang et al., 2015). Beyond these common approaches,
reinforcement learning (RL) (Sutton and Barto, 2018; Szepesvári, 2010 is
a convenient framework for financial MPO problems with a mathematical
formalization that resembles the optimal control theory and dynamic pro-
gramming (Bertsekas, 2005). RL obtained benefits from the last decade’s
improvement of deep learning (DL) (Goodfellow et al., 2016) as a field of
research that use neural networks as powerful function approximators (Cy-
benko, 1989). The recent technological advancement favored the develop-
ment of sophisticated algorithms to solve high-dimensional problems, among
which deep reinforcement learning (DRL) that became an active field of re-
search in many domains of applications, such as gaming (Schrittwieser et al.,
2020; Silver et al., 2017b) and robotics (Levine et al., 2016).

The model-free setting is generally adopted in the financial literature to
solve financial portfolio problems through RL. Sato, 2019 provides a broad
overview of the literature at the intersection between finance and RL. Some
works are worth mentioning to understand the current state of the financial
RL literature. Du et al., 2016 optimizes a portfolio with a risky and a risk-
less asset using a policy search method, whereas Jin and El-Saawy, 2016 uses
the Deep-Q-Network algorithms to select a portfolio between high and low
beta companies. One of the most-cited applications of RL in finance is Jiang
et al., 2017, which proposes a policy-based framework with an ensemble of
neural networks to discover the optimal way of trading a portfolio of cryp-
tocurrencies. Liang et al., 2018 use the same framework to build portfolios in
the equity space. Similar works are also Bertoluzzo and Corazza, 2012; Gao
et al., 2020; Hu and Lin, 2019; Park et al., 2020; Wang et al., 2019; Xiong
et al., 2018; Zhang et al., 2020.

The major drawback of the model-free approach for financial reinforce-
ment learning is the training instability due to the difficulty of devising the
underlying dynamics of the problem without knowing its structure. As al-
ready tackled on a single asset level by Brini and Tantari, 2021 and Chaouki
et al., 2020, synthetic experiments in a controlled environment can help in
understanding the effectiveness of reinforcement learning algorithm when it
comes to trading a single or a portfolio of assets. Disentangling the problem’s
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outcome from the quality of the data and performing controlled experiments
using a known closed-form solution represent the first step to understanding
the proper use of model-free RL methods. However, model-free methods of-
ten fail at learning the optimal solution because of their training instability,
partially due to the insufficient information provided to the RL algorithm,
which cannot devise the underlying dynamics of the problem. Another known
issue is the algorithmic approximation performed by the deep RL algorithms,
which exacerbates when the problem’s dimensionality increases by solving
multi-asset portfolio optimization problems.

At the other end of the spectrum of RL techniques, model-based RL
represents the class of algorithms that learn an optimal policy when provided
with a model of the environment. Hence, differently from model-free learning,
they exploit prior knowledge of the environment or the problem to help the
agent succeed faster. Han et al., 2019; Wei et al., 2019; Yu et al., 2019
represent some of the attempts to learn profitable trading actions through
model-based RL. However, the literature lacks approaches that can guarantee
the flexibility of a model-free setting while still converging faster as in a
model-based environment.

Our work aims to investigate how to adapt a model-free reinforcement
learning approach to leverage domain knowledge of the problem without
imposing restricting assumptions on the policy that the agent should learn
by providing a complete model of the environment. Since the novelty of
the model-free RL approach rather than the optimal control literature is
avoiding the modeling of the underlying dynamics of the system, we want to
maintain our approach as close as possible to this setting without adopting a
comprehensive model-based approach. Gruenstein et al., 2021; Johannink et
al., 2019; Silver et al., 2018 study reinforcement learning approach for robots
and controllers for which it is difficult to obtain a proper model, and they
propose a way to leverage approximate models by learning only partially the
underlying dynamics of the environments. This approach, called residual RL,
helps in reducing the sample complexity associated with learning an accurate
robot model and leads to faster convergence. In this work, we similarly tackle
the MPO problem by leveraging available solutions to the portfolio trading
problem to learn how to deviate from it and reach the optima. We propose
a domain-specific approach for our selected policy learning algorithm, and
we also provide some other solutions at the end of the analysis as topics for
further research.

The paper is structured as follows: the Section 4.2 presents the classical
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multiperiod framework for portfolio optimization common to RL and optimal
control problems. In Section 4.3 we introduce the financial model used to
simulate alpha return. The Section 4.4 presents the numerical experiments
conducted to prove the effectiveness of the residual RL approach in contrast
to a simple model-free framework. The last section introduces ideas for
further research in RL for portfolio optimization and trading and draws some
conclusions on the results obtained so far.

4.2 Multiperiod problem

This section explores the structure of the multiperiod portfolio problem and
describes the essential elements of the MDP for linking it to RL. The frame-
work is general enough to be adapted to various problem structures by prop-
erly choosing the risk and the cost functions.

Let a financial agent trades in a universe of N assets by allocating a
fixed amount of initial capital c0 that represents the cash asset. Trading
occurs at several equally-spaced steps t, t + 1, t + 2, . . . in an infinite time
horizon, where the time step t denotes the entire time spanning between t
and t + 1. The holding amount of each asset at time t is expressed as a
vector of dollar values ht = (h1

t , h
2
t , . . . , h

N+1
t ) ∈ RN+1 whose first N terms

are the dollars invested in the risky assets and the last term is the risk-free
cash asset. Positive entries of the vector ht represent long positions, while
negative entries represent short positions in the corresponding asset. The
holding vector is evaluated for each asset i using the reference price pit that
usually is the average quote between the best bid and the best ask at the
time t.

The net asset value (NAV) of the portfolio is vt = 1Tht and the gross
exposure of the portfolio is the sum of all position in absolute value et =
N∑
i=1

|hit|, excluding the asset cash position. Therefore, the leverage of the

portfolio is lt = et
vt

. The portfolio returns is then the percentage variation of

portfolio value through time RP
t = vt+1−vt

vt
One can also express the portfolio

holding as a vector of weights wt = ht
vt

with the usual constraint that they

sum up to one, 1Twt = 1.
The agent rebalances the portfolio at the beginning of each period t ac-

cording to a vector of trades at ∈ RN+1. They moves the portfolio holding
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according to
ht+1 = (1 + rt) ◦ ht + at (4.1)

where the vector rt represents the percentage returns rit = pt−pt−1

pt−1
for each

security i with pt as the current price and ◦ indicates the element-wise prod-
uct. The update rule in Eq. 4.1 assumes that the trade is carried out an
instant before t+1, so the additional part of each holding at doesn’t earn
or lose value. The return for the cash asset is the risk free rate of return
available on the market.

The total variation of the portfolio value on a subsequent time step is

∆vt = 1Tat + 1T (rt ◦ ht) (4.2)

which composes of the traded value and the additional portfolio variation
caused by the portfolio holding at the beginning of the period. While trading,
the agent incurs in some costs that arises from two sources: market frictions
and holding short positions. The first set of cost is parametrized by the
following function

ctrade
t (at) =

N∑
i=1

ctrade
t (ait),

which is separable, since trading costs arise from each asset independently.
One should note that the trading costs do not depend on the variation of
the cash asset. The holding costs are instead parametrized by a function
chold
t (ht+1) that depends on the portfolio holdings after the trades occurs.

This function can take into account holding costs related to the short position
contained in the portfolio or the borrowing cost for additional cash when
leveraging the position is possible.

The portfolio is rebalanced according to the following self-financing con-
dition,

1Tat + ctradet (at) + choldt (ht+1) = 0, (4.3)

which means that the expenses for trading the risky assets are entirely covered
by the variation of the cash asset value without any other external cash
inflows.

We frame the portfolio optimization as an MPO problem, where the agent
plans a set of decisions for the future given all the current information at
disposal. An MPO problem requires forecasting relevant quantities to make
a future trading decision, typically the asset returns and their covariance
matrix. As outlined in Kolm et al., 2014, these estimates are, in practice, hard
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to obtain with a high degree of accuracy since a good model for the underlying
dynamics of returns is required. Therefore, a model-free RL approach would
be appealing because it does not require a considerable modeling effort for
the problem. The quality of the forecasts highly influences the solution of an
MPO and represents a challenging problem on its own.

We employ the MPO framework to better deal with transaction costs and
assess their impact on the multiple rebalancing of the asset holdings. The
SPO setting, as in the framework of Markowitz, 1952, consists in planning
the trades just for the subsequent period without assessing any impact on
the future state of the portfolio. Therefore, in the presence of transaction
costs, SPO results are not optimal because the approach could cause large
portfolio movements that create a massive amount of transaction costs if the
trader needs to unwind the position in the following few rebalancing periods.

The MPO problem consists in planning the sequence of trades at for each
t over an infinite horizon. We denote the estimate of future quantities as r̂t
conditioned on all the information available up to time t. The objective of
the problem is the risk adjusted PnL of the portfolio

PnLt = r̂Tt ht − κψt (ht)− ctrade
t (at)− chold

t (ht) (4.4)

where ψ is a general function of the portfolio holding that accounts for the
risk, κ is a risk aversion coefficient and ctrade

t and chold
t are the estimated cost

functions.
The MPO problem is then,

max
h0,h1,...

E0

[
∞∑
t=0

γtPnLt

]
(4.5)

where γ ∈ [0, 1) is a discount factor for the infinite sum of values. In this
objective only the initial h0 is known, while h1,h2, . . . depend on the future
trades a1, a2, . . . and the returns estimate through the Eq. 4.1. The problem
in Eq. 4.5 is convex, as long as the risk and cost functions are all convex.
In that case, the problem is solved by convex optimization techniques as
described in Boyd and Vandenberghe, 2009 and Boyd et al., 2017. The Eq.
4.5 represents an optimization problem where a trading plan at, at+1, . . . is
chosen so that it generates a series of portfolio holdings ht,ht+1, . . .. Only
the first trade in the series is executed in practice because the trading plan
is optimized again at the subsequent step. The purpose of optimizing the
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whole sequence of trades is to evaluate the effect of a single trade in a longer
time horizon. For instance, a trader could have difficulty dismissing a huge
trade carried out at time t in a relatively short period. On the contrary, he
can adequately balance the movement of its portfolio by obtaining the whole
path of trades up to the end of the trading horizon.

The flexibility of the RL framework is beneficial for solving the problem in
Equation 4.5, especially when the choices for the risk and the cost functions
make the problem not convex. In such cases, optimal control algorithms
cannot find any closed-form solutions due to the curse of dimensionality. We
refer to the Chapter 2 and Chapter 3 for a detailed description of the MDP
framework that mathematically formalizes the RL problem.

4.3 Financial model for the excess return

This section outlines the underlying assumptions of the financial model we
use to simulate synthetic excess return with respect to the risk-free market
rate and test the RL approaches. We refer to these returns as alpha returns
or alphas, as it is common in the financial literature (Schneeweis and Spurgin,
1999). We start from the model of Kolm and Ritter, 2014, and we present
a multiperiod problem for a single asset that is easily extendable to a multi-
asset framework. Our proof of concept example employs a stylized dynamics
consisting of an exponential decay with rate τ from a starting level r0, so

that the excess return is expressed as rt = r0e
− log(2)

τ
t. Beyond this simple

case, the alpha return can also be expressed as a sum of exponential decays
with a different initial starting point and halflives of decay. In what follows,
we assume these alpha returns to be the forecasted return provided by a
portfolio manager’s model. Therefore, the RL agent needs to determine the
portfolio’s size and trading rate by using previously generated forecasts. We
believe that an exponential decay is a stylized representation of an alpha
return predicted by a portfolio manager that inevitably approaches zero over
time due to the market that arbitrage out the profitable opportunity.

The reward function for our RL problem is obtained from the risk adjusted
PnL in Eq. 4.4

Rt = r̂tht −
κ

2
h2
tσ

2 − ct (at) (4.6)

where the risk function is quadratic, the risk aversion parameter is chosen
κ = 1e − 5 as in Kolm and Ritter, 2014 and the cost function follows the
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model of Kyle and Obizhaeva, 2016

ct (at) = κ1 |at|+ κ2a
2
t/(0.01pV ) (4.7)

being p the average daily price of the synthetic asset and V its average daily
traded volume. For the purpose of transaction costs, the price of the asset is
fixed as the daily trading volume, which is also rescaled of by the number of
simulated periods in a day.

As a comparison for the performance of our RL approach, we use the
solution of Gârleanu and Pedersen, 2013, as in Brini and Tantari, 2021, since
it is based on a renowned model in the financial literature and it is also
optimal when the excess returns are modeled as a sum of mean reverting
dynamics. To be consistent in computing the solution under our setting, we
need to choose the parameter λ (cost multiplier) for Eq. 3.3 according to
our choice for the cost function. Indeed, we assume that Λ = κ2

0.01pV
. From

Gârleanu and Pedersen, 2013, we know that Λ = λσ2, so we set λ = κ2
0.01pV σ2 .

In this way, we can compute the trading rate a/λ according to Eq. 3.6.
Calibrating the quadratic cost function of our problem to the total cost

function in Kolm and Ritter, 2014 is necessary to let the financial agent bear
the same amount of transaction costs, which we believe to be realistic enough.
At the same time, it allows the learned trading policy to be compared with
the solution of Gârleanu and Pedersen, 2013. For these reasons, we choose
the parameter κ2 so that the amount of quadratic trading costs equals the
sum of the linear and the quadratic part in that work according to Eq. 4.7.
We simply neglect the absolute part of the cost function in Eq. 4.7 by
posing κ1 = 0. Then we create an equally spaced interval, [1e+ 2, 1e+ 5], of
N = 10000 possible trades at. Considering κ1 = 2.89E−4 and, κ2 = 7.91E−4
as in Kolm and Ritter, 2014, we compute the corresponding costs ct (at)
through Eq. 4.7. To approximate the same amount of transaction cost
with the quadratic part of the function only, we use OLS to estimate the
cost parameter so that ct (at) = κ2a

2
t/(0.01pV ). The resulting parameter

is κ2 = 0.0009 = 9 bps. Figure 4.1 presents the different cost functions
according to the model of (Kyle and Obizhaeva, 2016) and our fitted cost
function.
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Figure 4.1: The blue represents the transaction cost function used in Kolm
and Ritter, 2014. The green and the orange accounts only for the quadratic
part with different parameter κ2. The red line is the quadratic cost function
with the fitted κ2, which best approximates the full cost function.

4.4 The residual RL approach: empirical re-

sults

This section introduces the residual RL approach and presents its perfor-
mance compared with the model-free approach. As stated in Section 4.3, we
use the solution provided in Gârleanu and Pedersen, 2013 as a benchmark
to reach, and we motivate the need of the RL agent to point toward such a
solution in solving the outlined problem under the MPO setting.

4.4.1 Residual RL approach

We know from the empirical experiments presented in Chapter 3 that the
portfolio problem described in Eq. 4.5 can be solved through the solution
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of Gârleanu and Pedersen, 2013. The application of dynamic programming
for MPO problems is crucial to account for transaction costs that may burn
the trader’s profit due to large portfolio rebalancing. On the other hand, the
Markowitz portfolio theory (Markowitz, 1952) solves the same problem in an
SPO setting as

hMt = (γΣ)−1 rt, (4.8)

where Σ is the covariance matrix of the assets. One can see the benchmark
solution of Gârleanu and Pedersen, 2013 as an extension of Markowitz’s so-
lution in an MPO, where it becomes necessary to consider the opportunity
cost of entering a trade and then modify the position according to the decay
of the alpha returns over time. If transaction costs are neglected, as in an
SPO setting, a strong signal for specific assets may result in a considerable
exposure for the trader. However, suppose the term structure of the alphas
quickly decays to zero. In that case, the trader will find trouble in the sub-
sequent time steps trying to liquidate its position that became unprofitable
and incurring consistent transaction costs. Considering the decay of the sig-
nal help improve the management of position sizes and avoid the erosion of
profitable trades.

The intuition behind the residual approach is to leverage prior knowledge
of the problem by exactly exploiting the optimality of the Markowitz solution
in Eq. 4.8 in the absence of transaction costs. Since the trader acts in a
dynamic setting where transaction costs play a relevant role, we reduce the
problem by learning the nonlinear impact these costs have on the profitability
of the Markowitz trades. Knowing that Eq. 4.8 optimizes the mean-variance
part of the reward function in Eq. 4.6, RL corrects the solution to reflect the
impact of the market frictions. Therefore, we express the quantity to trade
at each time step as a residual part

ht = hMt−1(1− at) (4.9)

where at is a real-numbered action between 0 and 1 that helps express the
percentage of the Markowitz portfolio, which is better not to buy for the
current time t to contain the cost and follow the optimal path. The aim of
the RL agent is then to learn how to trade a residual version of the Markowitz
portfolio in Eq. 4.8 to match the solution in Eq. 3.5. Indeed, we know from
Gârleanu and Pedersen, 2013 that the trader needs always to slow down the
trade with respect to what is suggested by the Markowitz solution. It is
equivalent to saying that the agent learns to move towards the Markowitz
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portfolio at a rate defined by the decay of the signal. If the decay is too
fast, the agent will slow down the trade because the profitable opportunity
is not supposed to be durable. On the contrary, if the decay is slow, the
agent trades more closely to Markowitz since the profitable opportunity is
long-lasting. The impact of this whole mechanism is lowering the price paid
to rebalance the portfolio at every period with respect to an approach that
does not account for the effect of the frictions, which we know from (Guéant,
2013; Kyle and Obizhaeva, 2016; Patzelt and Bouchaud, 2018) to be highly
nonlinear. Hence, the important role of the transaction costs in discovering
a profitable opportunity and their functional form makes RL with nonlinear
approximators an appealing framework for solving these classes of problems.

The following sections provide some results of the synthetic experiment
performed to show the approach’s effectiveness. We will present the simplest
case of the single asset level.

4.4.2 Simulation results

We show the first proof of concept of the residual RL approach by assuming
to be a fund manager that already developed a robust model to forecast ex-
cess returns. The forecasting step represents a complex problem on its own,
so we focus on using the generated forecast to trade. Simulating an alpha
term structure with an exponential decay over the horizon of the simulation
resembles the capacity of the forecasting model of the manager to produce
valuable alpha at a distant point in time. As already anticipated, we con-
sider the simulated exponential decay is a suitable structure to represent the
shrinking of the excess returns through time.

The generation of synthetic data allows focusing on testing the RL ap-
proach in a controlled environment with a benchmark solution. It will enable
understanding when the RL agent retrieves the benchmark solution and as-
sesses the possible causes when it is not the case. The generated alpha term
structure is then used as the input signal of the RL agent that needs to
determine how to trade according to the given information.

For our synthetic experiments, we use the proximal policy optimization
(PPO) algorithm (Schulman et al., 2017), which is a policy-based deep RL
algorithm renowned for its performance in a variety of control problems. It is
specifically suitable for continuous control so that it is easily comparable to
the continuous-time solution provided by the benchmark. For more details
about the PPO algorithm, we refer to Section 3.7.
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We train the PPO algorithm episodically, and we simulate alpha term
structure with starting level r0, a halflife of decay τ , and a fixed-length
T . For the experiment results proposed in the section these parameters
are respectively r0 = 30 bps, τ = 240 time steps and T = 1200 time
steps. Considering the simulation period as a month, we have approximately
1200/21 = 57.14 ∼ 57 time steps per trading day. One can divide each day
of such a month into D = 57 time steps to better interpret the time horizon.
We express the alpha decay in these terms to help choose the daily volatility
to account for in our financial model, which can be scaled linearly with the
time steps.

We run the algorithm for 3000 episodes by adopting two approaches: the
residual RL approach described in the previous subsection and the standard
model-free approach. In the former, the agent chooses the action according
to Eq. 4.9, while in the latter the action is chosen as a real-value in a given
interval. For each in-sample episode, we keep track of the cumulative episodic
reward, which is the sum of Eq. 4.6 for all the time steps T in an episode, and
we present the training progresses in Figure 4.2. The policy network takes as
input, i.e., the agent’s state, the excess return rt, the current portfolio holding
ht, and the time remaining to the end of the forecasting horizon T − t. We
appreciate that the residual RL approach converges faster to a stable solution
equal to the benchmark one. On the other hand, the model-free approach
struggles to find a solution close to it and requires more training episodes to
reach in-sample performance stability.
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Figure 4.2: convergence to the benchmark solution for the residual RL and
the model-free approach trained using PPO with alpha term structure sam-
ples. For each approach, we train several agents and calculate their average
cumulative reward in-sample to choose the best performing one. Then a
rolling average of the relative difference in reward with respect to the bench-
mark is computed to compare them.

Recalling that r0, τ are respectively the starting point and the halflife of
decay of the alpha term structure, the relative difference in average rewards
presented in Figure 4.2 is obtained as

EPPO[Gr0,κ]− Ebnch[Gr0,κ]

Ebnch[Gr0,κ]
≈

1
N

∑
iG

r0,κ
PPO(i)− 1

N

∑
iG

r0,κ
bnch(i)

1
N

∑
iG

r0,κ
bnch(i)

(4.10)

=

∑
i (G

r0,κ
PPO(i)−Gr0,κ

bnch(i))∑
iG

r0,κ
bnch(i)

where i denotes a particular path, EPPO[Gr0,κ] is the average cumulative
reward G, i.e., the sum of Eq. 4.6 for all the time steps, obtained by the PPO
strategy over an alpha term structure characterized by a specific r0 and τ .
The figure highlights the effectiveness of selecting a reasonable starting point
and learning the remaining part of the trading solution, i.e., the residual.
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Figure 4.3: The left panel shows holding path obtained by the residual RL
algorithm at the end of the training convergence of Figure 4.2, whereas the
right panel shows the same for the model-free approach.

We remark then that as a measure of in-sample performance, we use the
difference in average reward relative to the reward benchmark instead of
using the average relative difference in reward, as in the last part of Eq.
4.10. The former is more efficient for our purpose and is not distorted by
possible negative rewards obtained by the PPO algorithm over some alpha
term structure paths.

Once we acknowledge that the residual RL approach converges faster
in our controlled environment, we pick the best performing trained agents
that we use to produce Figure 4.2, and we test them out-of-sample on a
different alpha term structure. Figure 4.3 shows the trading paths realized
by the residual RL and the model-free together with the benchmark and the
Markowitz paths, where the last one represents the starting point solution for
the residual RL. The converged and stable solution learned by the residual
PPO can closely track the benchmark holding path, trading towards a peak
and then slowly moving out of that position until the end of the generated
trajectory. On the other hand, the struggle of the model-free approach in
converging to a solution close to the benchmark is evident when looking at
its generated trading path. The model-free algorithm trades less towards the
peak and move out from the position too quickly, resulting in suboptimal
performance.

One can look at the same result from the perspective of the learned poli-
cies in Figure 4.4. The figures present the traded amount by the learned
strategy in correspondence to different levels of the alpha term structure
when the other two parameters of the model, the current holding and the
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Figure 4.4: Trade size (in dollars) conditional on a current holding of zero
in the risk security and remaining time to end equal to 1100 time steps (top
panel) and 100 time steps (bottom panel) for the residual PPO approach and
the benchmark solution as a function of the predicted alpha term structure.

time by the end of the simulated alpha term structure, are fixed. While
residual RL closely tracks the monotonic benchmark policy for the simulated
problem, the model-free cannot learn its slope, trading suboptimally. The
result holds both when the traded are carried out with many time steps T − t
remaining or at the end of the trading period when T − t is small.

However, only looking at Figure 4.4 does not provide any information
about the performance obtained by the learned policies themselves since
the evaluation needs to be tested for robustness and carried out over many
different generated alpha returns paths. To this end, Figure 4.5 presents
the cumulative distribution functions (CDFs) of the cumulative reward on
a set of simulated alphas with different starting levels and halflives for the
two PPO training methods. We still observe that the CDF of the residual
PPO closely tracks the distribution of the benchmark solution. At the same
time, the CDF of the model-free PPO presents noticeable differences and
performs worse than Markowitz for a considerable part of the distribution.
To statistically analyze these distributions, we use the Kolmogorov-Smirnoff
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Figure 4.5: The left panel shows the empirical cumulative distribution func-
tion for the cumulative reward distribution for the residual RL approach
over 250 alpha-term structure simulations of length 1200 time steps each.
The same is shown on the right for the model-free approach. The benchmark
solution and the Markowitz solution for the same problem are represented in
each figure.

(KS) test for comparing the shape of the distribution and the Student’s T-
test for comparing their average values with respect to the distribution of
the benchmark solution. In the residual PPO case, the values for both tests
are close to the unit, and the null hypothesis is not rejected. There is no
statistical evidence that the residual RL and the benchmark distributions of
the cumulative rewards differ in shape and mean. The opposite holds for the
model-free case where the test confirms that the distribution differs, as the
reader can appreciate visually.

The results highlighted in this subsection clarify the importance of simpli-
fying the process of sampling actions when algorithms like PPO are applied to
financial trading problems, and the continuous space of actions is enormous.
In our first proof-of-concept, the residual PPO allows us to leverage prior
information about the financial environment, i.e., knowing that Markowitz
is optimal without transaction costs, and significantly speed up the learning
process. When model-free cannot even find the solution, residual PPO is
robust enough to guarantee an approximate solution close to the GP one.

4.5 Further directions

The synthetic experiments presented in the previous section are the first
proof of concept of the adaptation of the model-free reinforcement learning
approach to the financial trading problem. Since these models are known
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to require a long training runtime and to suffer from instability during the
training process, the approach we have presented is beneficial for both is-
sues. However, residual RL is just one of the nuances of model-free RL that
still guarantees the flexibility of being model-free while being driven by prior
knowledge of the financial environment. The following subsections will ex-
plore two directions of research that can improve the model-free approach
toward a more efficient and effective training process while maintaining its
original flexibility.

4.5.1 Residual approaches

One of the first proposals for modifying the model-free approach is to learn
just a residual part of the total solution. This method, which we preliminary
explored in our synthetic experiments, changes the RL algorithm at the ac-
tion level. The agent’s action is no longer expressed as a real-valued amount
reflecting the trade to perform, but it is expressed as a difference from a
known solution. As already mentioned in the introduction of this section,
this approach is helpful in domains such as robotics, where it is difficult to
describe an exact model of the environment. However, some of its properties
are known and can be used to outperform a fully model-free approach.

The residual approach still guarantees a certain degree of flexibility in
choosing the prior knowledge to leverage. We based the agent’s residual
action on the Markowitz portfolio in our experiments, but different choices
are available in the financial landscape. The residual approach is also suitable
for learning a variation of risk-based allocation methods such as the global
minimum variance portfolio (Kempf and Memmel, 2006) or the risk parity
portfolio (Asness et al., 2012). The adoption of the Markowitz solution as
a baseline is motivated by the comparison with the benchmark solution of
(Gârleanu and Pedersen, 2013) which modifies the Markowitz solution by
accounting for the transaction costs effect.

4.5.2 Regularization approaches

A different approach to improve the model-free RL performance is to use some
regularization method. Regularization in RL has not been considered yet at
the same level as the deep learning field, although some relevant empirical
testing in that direction appears (Liu et al., 2019b). Other works are specific
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to either value-based algorithms, such as Farebrother et al., 2018 for Deep-
Q-network or Liu et al., 2019a for policy-based methods.

Differently from the residual approach, regularization methods act at the
policy level by imposing constraints to the objective function to penalize
certain behaviors or by imposing specific training conditions on the policy
network, such as the Batch Normalization (Ioffe and Szegedy, 2015), Dropout
(Srivastava et al., 2014) or weight decay (Zhang et al., 2018).

Among all of those regularization methods, the possibility of constraining,
hence directing the policy towards having specific characteristics, is the most
appealing for the financial problem. Constraining the learned policy with a
soft penalty is interesting for enforcing specific properties that we know the
optimal policy has, such as the monotonicity with respect to the alpha signal
as in Figure 4.4.

4.6 Conclusions

In this work, we presented an initial proof-of-concept of the residual RL
approach, which aims to leverage prior knowledge of the domain and improve
the model-free RL efficiency in solving financial problems. The approach
has proven beneficial for learning a known solution in a synthetic financial
market.

The work will extend in two directions by proving the effectiveness of the
residual method over a large cross-section of assets, either synthetic or real,
and by adopting different regularization methods that constrain the learned
policy and have already been employed in the classical RL literature.

The former will be challenging because of the runtime required when
the cross-section of assets increases. However, the residual approach learns
only the nonlinear part of the solution relative to transaction costs, which is
usually considered separable and asset-dependent. Therefore, from our next
series of experiment we expect the approach to be scalable over a large cross-
section of assets since the neural network policy would be able to generalize
and learns how to trade assets with different costs level. In other words, there
is no need to train a large neural network that accounts for all the different
assets, but it will be enough to train a simple network that generalizes over
the cross-section.

The latter method will be challenging for devising a proper functional
form of the constraint that enforces known characteristics of the optimal
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policy without conflicting with the existent training algorithm.
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Chapter 5

Reinforcement Learning Policy
Recommendation for Interbank
Network Stability

5.1 Introduction

The increasingly recurrent and impactful crises affecting the socio-economic
system have called for a deep rethinking of the economic theory. Firstly,
the literature has made an effort to understand and include in the economic
models the sources of contagion. Regardless of the modeling approach used,
which ranges from New Keynesian models solved globally or using reduced
functional form (see, for instance, Boissay et al., 2016, Gertler et al., 2020,
Svensson, 2017) to agent-based models and the most recent network-oriented
approaches (see Battiston et al., 2012a; Battiston et al., 2012b, Georg, 2013,
Haldane and May, 2011, Upper, 2011, Capponi et al., 2020, Calice et al.,
2020), there is a general agreement that identifies interaction and heterogene-
ity as the drivers of endogenous crises. Moreover, the post-Lehman studies
have placed particular emphasis on the propagation of contagion, determin-
ing the direction of the attack from financial to real markets and its fuse
in the portfolio structure of financial institutions (see Brunnermeier et al.,
2012). Many interesting studies, for example, have identified the source of
contagion in the asset or liability side of banks’ balance sheets. Among them,
the effect of the fire-sale price and the (re)payment system between creditors
and debtors have proven to be particularly important in generating financial
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instability (see Acharya and Yorulmazer, 2008a, Angelini et al., 1996, Das-
gupta, 2004 Rochet and Tirole, 1996). In this vein, maturity transformation,
sharing risk, herding behavior, and interbank linkages are just some various
components able to trigger instability or collapse in financial markets (see
Acharya and Yorulmazer, 2008b, Allen and Gale, 2000 and Tedeschi et al.,
2021, among the many).
Once the origin of the disease and the channels through which it spreads have
been identified, the literature has turned to treatment, that is the identifica-
tion of the best tools to mitigate financial contagion. Probably spurred on by
the words of the former governor of the European Central Bank, Trichet, who
said that he felt abandoned by conventional tools during the sovereign debt
crisis and advocated the development of alternative instruments borrowed
from different disciplines (see Trichet, 2010), the scientific community has
heavily focused on the development of new tools aimed at overcoming sys-
temic instability. In this regard, several conventional and non-conventional
monetary policies, as well as other alternative tools, have been proposed,
but their effects on financial stability are controversial and depend on the
overall economic condition (see Goldberg et al., 2020 and Altavilla et al.,
2021). A strand of literature, for example, has emphasized the importance
of a strict, rule–based and predictable monetary policy to tame systemic risk
(see Jiménez et al., 2014 and Taylor, 2011). On another side, instead, dif-
ferent studies have bet on alternative rules, compatible with the underlying
economic conditions (see Boissay et al., 2021, De Grauwe, 2011 and Gaĺı,
2015). Unfortunately, the weak empirical evidence, due to the fairly recent
development of these alternative techniques, which also include the so-called
macro-prudential policies, makes it difficult to prove the supremacy of one
approach over the other. While the empirical facts are still uncertain, recent
theoretical models have attempted to resolve this “certamen”. An interesting
contribution in this direction is the model of Boissay et al., 2021. The au-
thors use a globally solved New Keynesian model with heterogeneous agents
to generate endogenous crises. The paper compares two monetary policy in-
struments, one that follows a strict inflation targeting rule and the other that
allows the central bank to curb financial booms and busts. The authors show
how the policies that mitigate output fluctuations, by acting on agents’ ex-
pectations, help in preventing financial crises. In support of cyclical policies
determined by the economic background, there are also many agent-based
models (see, Cincotti et al., 2012, Giri et al., 2019 and Riccetti et al., 2018,
among the many). The approach of generating complex dynamics in evolv-
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ing systems is an ideal environment for testing the effect of (un)conventional
policies/measures on the financial stability.

Following this last line of research, in this paper we are explicitly inter-
ested in understanding the effect that an unconventional and environmentally
dependent policy recommendation has on the stability of the interbank sys-
tem. From the point of view of the functioning of the interbank market,
our work follows Berardi and Tedeschi, 2017, where financial institutions es-
tablish preferential lending arrangements to insure themselves against the
unexpected withdrawal of deposits. Financial connections might change over
time via a preferential attachment evolving procedure (see Barabási and Al-
bert, 1999) such that each agent can enter into a lending relationship with
others with a probability proportional to a fitness measure. Specifically, the
attractiveness of agents is based either on their high supply of liquidity or
on their low interest rate. The authors show how the implementation of one
or the other strategy generates different architectures of the credit network,
which impacts on the spread of systemic risk differently.

The originality of this work with respect to the above-mentioned one con-
cerns the mechanism that drives banks to choose between the two strategies.
Where in Berardi and Tedeschi, 2017 the choice is exogenous and fixed, here
we introduce a time dependent, reinforcement learning based policy recom-
mendation that directs banks to optimize the entire banking system long
term fitness. Specifically, the regulator directs the interbank system towards
an optimal strategy that chooses between favoring a high liquidity supply
with respect to a low interest rate, by collecting information from the envi-
ronment. Once the policy recommendation is made public, each bank signals
itself in the interbank market according to its optimal level of liquidity sup-
ply or interest rate, which are used to establish credit agreements via the
above-mentioned preferential attachment mechanism.
Compared to Berardi and Tedeschi, 2017, therefore, the reinforcement learn-
ing mechanism allows us both to endogenize and identify the optimal strat-
egy and to model a policy recommendation useful to tame systemic risk.
Although this tool is very useful for modeling reward-seeking behavior of
agents in complex systems1 (see(Osoba et al., 2020)), to the best of our
knowledge it is barely employed in the agent-based framework. Interesting

1We refer the reader to Charpentier et al., 2021 and Mosavi et al., 2020 for compre-
hensive reviews of different use cases of reinforcement learning in financial and economic
context.
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exceptions are Liu et al., 2018 and Lozano et al., 2007, which uses reinforce-
ment learning to model the credit allocation strategy of financial institutions
in the interbank market. Apart from the modeling differences - omitted
here - that distinguish us from those works, it is instead important to point
out the methodological distinction. Where these works use a tabular rein-
forcement learning algorithm, as proposed by (Watkins and Dayan, 1992),
we use a state-of-the-art deep reinforcement learning algorithm with neural
network approximators (Schulman et al., 2017), which describe the complex
reward-seeking behavior. While the advantages and disadvantages of these
algorithms are well documented and concern issues such as the computa-
tional efficiency, the curse of dimensionality and the convergence (Bellman,
1956), what is certain is the better performance of the algorithm with neural
network in solving complex problems where the underlying environment not
only changes rapidly, but it is also defined by the different forces that relate
and compete with each other. These capabilities have already demonstrated
effective in solving complex financial and economics problems (see (Du et al.,
2020; Jiang et al., 2017; Lin and Beling, 2020; Zhang et al., 2020)).
Without delving into technical details, some clarifications on how the pro-
posed algorithm works should be made. The selected reinforcement learning
algorithm optimizes an objective function, which in our context corresponds
to the aggregate fitness of the interbank system. The optimization is car-
ried out by training a neural network model. The neural network receives as
input variables concerning the economic conditions of the interbank system
and return as output the strategy, i.e. the policy recommendation directing
the system towards competing on liquidity supply rather than on the interest
rate.

One of the criticisms to this family of algorithms concerns the inter-
pretability and measurability of the impact that inputs have on outputs. The
output, in fact, often appears as a black box whose determinants remain hid-
den to the user. To avoid this problem, we act in the following way. Firstly,
we limit the choice of inputs to variables easily available to the regulator. To
this end we use aggregate systemic variables such as minimum, maximum
and average interest rate and liquidity supply of the interbank system. The
choice of a limited set of input variables allows us not only to understand
their effects in determining the output, but also to model a system with in-
complete and asymmetric information (see Bernanke et al., 1999). Secondly,
we directly study the impact that each input has on the determination of
the output through the SHapley Additive exPlanation (SHAP) framework
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(Lundberg and Lee, 2017).
The introduction of the previous reinforcement learning framework into

the interbank market model proposed by Berardi and Tedeschi, 2017 allows
us to draw some important conclusions about the systemic stability of the
system and to determine some policy interventions capable of curbing con-
tagion. Firstly, the proposed algorithm fully endogenizes the evolution of
the interbank network, whose architecture therefore changes over time. In
this way, we are able to identify that the topology that emerges when the
policy recommendation suggests a high supply of liquidity is more resilient in
the face of exogenous shocks. Also, at individual level, this policy produces
better microeconomic performance. In this circumstance, banks are less het-
erogeneous, which generates a uniform risk exposure among counter-parties
able to favor the resiliency of the system. The negative impact of hetero-
geneity on systemic stability is in line with various theoretical and empirical
studies (see Caccioli et al., 2012, Iori et al., 2006 and Tedeschi et al., 2012).
On the other hand, the worse performance of a system dominated by low
interest rates reflects the empirical evidence. Indeed, it is well documented
that a credit market dominated by ”low-for-long” interest rates adversely
affects both the banks and the stability of the economy. For financial insti-
tutions, low rates might reduce resilience by lowering profitability, and thus
their ability to replenish capital after a negative shock. For the system, this
strategy would encourage risk-taking which undermines systemic stability
(see Bindseil, 2018, for a general overview on the topic). Finally, our results
suggest that the policy recommendation implemented via the reinforcement
learning is more able to mitigate systemic risk in comparison with alternative
tools.

The rest of the work is organized as follows. In Section Section 5.2 we
present the functioning of the interbank market, placing particular emphasis
on the evolution of the credit network and the implementation of the rein-
forcement learning algorithm. In Section Section 5.3 we show the results.
Specifically, we follow three steps: firstly, we verify performances and ro-
bustness of the reinforcement learning algorithm; secondly, we investigate its
implication on the interbank network morphology and on the performances
of the financial institutions; thirdly, we present the effect on the interbank
systemic stability of the policy recommendation. Finally, Section Section 5.4
concludes with some remarks on the achieved results and the provided con-
tribution.
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5.2 Model

In this section, we describe the formation and evolution of credit relation-
ships between financial institutions. Due to unexpected deposit movements,
banks face liquidity surpluses or shortages, which induce them to enter the
interbank market as lenders or borrowers. Each bank own its preferential
credit channels and the set of all relationships among institutions defines the
interbank network where banks try to fulfill their liquidity needs, establishing
bilateral lending agreements. Within the market, banks signal their credit
conditions through an attractiveness measure. We model the bank fitness
as a combination of a policy recommendation and private information. The
first ingredient is a signal obtained via a reinforcement learning mechanism,
through which the regulator directs banks to choose the best strategy given
the underlying environmental conditions. In particular, the regulator recom-
mends the weight to assign to high liquidity supply rather than to low interest
rates, thus directing the competition. The second ingredient is a private sig-
nal, based on the bank’s capital structure, consisting of the actual interest
rate and credit provision offered. Credit relationships, then, might change
over time via a preferential attachment evolving procedure that depends on
bank fitnesses.

5.2.1 The interbank market microstructure

We consider a sequential economy operating in discrete time, which is de-
noted by t = {0, 1, 2, . . . , T}. At any time t, the system is populated by a
large number N of active banks i, j, k ∈ Ω = {1, . . . , N}. Financial institu-
tions interact to each other through credit relationships represented by the
set Vt, whose elements are ordered pairs of different banks. Banks (nodes or
vertices) and their connections (edges or links) form the interbank network
Gt = (Ω, Vt). The daily balance sheet structure of each bank is defined as

Lit + Ci
t +Ri

t = Di
t + Ei

t , (5.1)

where assets are on the left-hand side and liabilities on the right-hand one.
In particular, L,C and R represent long term assets, liquidity and reserves,
while D and E deposits and equity of bank i at time t. Reserves are a
portion of deposits, Ri

t = r̂Di
t, where the required reserve rate, r̂, meets the

legal requirement of 2%.
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At every time period t, deposits are exogenously shocked and the balance
sheet in Eq. 5.1 modifies accordingly. Specifically, deposits evolve as

Di
t = Di

t−1(µ+ ωU(0, 1)), (5.2)

with U(0, 1) a uniformly distributed noise between 0 and 1 and µ and ω
modelling the expected number of negative shock and thus different market
conditions. On the one hand, financial institutions with a negative change in
deposits and subject to a complete erosion of their liquidity, ∆Di

t + Ci
t ≤ 0,

become potential debtors in the interbank market. On the other hand, banks
which suffer a small negative shock or an increase in deposits that raises
their liquidity, ∆Di

t + Ci
t > 0, become potential creditors in the system.

Consequently, the respective demand dit and supply sit of liquidity of potential
borrowers and lenders are given by{

dit = |∆Di
t + Ci

t |
sit = ∆Di

t + Ci
t .

Since we do not assume a walrasian tâtonnement mechanism, the system
may endogenously generate a mismatch between credit supply and demand.
Moreover, since the interbank network is not fully connected, even at a micro
level the demand for liquidity of a borrower bank might not match the credit
supply offered by the lender banks connected to it. Specifically, we define
the granted loan from a generic lender i to a generic borrower j as li,jt =
min(sit, d

j
t). Borrowing banks that are rationed in the interbank market can

sell their long-term assets at a fire-sale price as a method of last resort. The
amount of loan the borrower has to sell for covering its residual liquidity need

is equal to ∆Ljt =
djt−sit
ρ

, where ρ is the ’fire-sale’ price
At the beginning of the next day, the repayment round takes place. Fi-

nancial institutions encounter a new deposit movement that increases or
decreases their liquidity. On the one hand, lending banks facing a positive
(negative) change in deposits remain potential creditors (became potential
debtors). On the other hand, borrowing banks face different scenarios de-
pending on whether the deposit shock is positive or negative. Specifically, in
the case of a positive shock, it can happen that: i) the change in deposits is
sufficient to repay the principal and the interest, or ii) the deposit variation
is not sufficient to cope with the loan. In the first case, the debtor can easily
meet her obligations, but in the second case, she must sell, at a ’fire-sale’
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price, an amount of long term assets sufficient to fully repay the creditor.
On the other hand, in the case of a negative shock, banks must sell their
long-term assets to pay for previous interbank borrowings and meet the new
liquidity needs. All institutions that do not raise enough liquidity to meet
their obligations via the fire sale fail, thus creating a bad debt on the lender.
The creditor’s loss, Bi,j

t , is simply equal to the granted loan after the liquida-
tion of the debtor assets. Hence, the equity of the bank i obeys the following
law of motion:

Ei
t = Ei

t−1 +
∑
j

li,jt−1r
i,j
t−1 −

∑
j⊆θit

Bi,j
t − (1− ρ)L̂jt , (5.3)

where the second term on the right-hand side is the repayment, at the agent-
specific interest rate ri,j, of the granted loan li,j, the third term is the bad
debt of the subset of the bank i clients, θit, unable to repay their debts back
because they go bankrupt and the last term represents fire sales. If the bank
has not fulfilled the loan requirements (i.e., if she is unable to repay the
principal and interest in full), the lender does not provide credit any longer,
forcing her to exit the market. Thus, the borrower exits the market when
assets fall short of liabilities, that is Ei

t < 0. The failed banks leave the
market. The banks exiting in t are replaced in t+ 1 by new entrants, which
are on average smaller than incumbents. So, entrants’ size is drawn from
a uniform distribution centered around the mode of the size distribution of
incumbent banks (see Bartelsman et al., 2005).

5.2.2 Banks microfoundations: the dynamics of lend-
ing agreements and trading strategies

In order to meet their liquidity needs, at the beginning of each day, agents
meet in the interbank market and sign bilateral potential lending agreements
representing the directed links (i, j) ∈ Vt. These agreements can be inter-
preted as credit lines, which are valid during t, and can be used at the request
of the borrower j in case of the lender i available liquidity. The set of all
potential lending agreements reproduces the interbank network topology.
Let us now explain in detail the mechanism that governs the formation/evolution
of credit relationships between financial institutions. We assume that banks
are risk neutral agents operating in a perfect competition environment with
the purpose of optimizing their expected profit. The bank i expected profit
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for a loan provided to j is given by

E[Πi,j
t ] = pjt(r

i,j
t c

i,j
t ) + (1− pjt)(ξAjt − ci,jt ) + φAjt − χAit, (5.4)

where pjt is the probability that the borrower does not fail, ri,jt the interest
rate asked by the lender i to the borrower j, ci,jt the maximum amount i
is willing to lend to j. Moreover, ξ is the liquidation cost of assets, Ajt ,
pledged as collateral, and φ and χ the screening costs of creating a credit
link that decrease with the debtor dimension and increase with the creditor
size (see Dell’Ariccia and Marquez, 2004 and Maudos and De Guevara, 2004,
for empirical evidence). Specifically, Eq. 5.4 captures the lender’s expected
revenue in the event that the borrower does or does not meet her obligations
(first and second term on the right side, respectively), and the opportunity
cost of the agreement (last two variables in Eq. 5.4). Moreover, to model
a proxy for the debtor’s j survival probability, we apply a heuristic rule.
Recalling that the borrower fails if her equity becomes negative, Ej

t < 0, the
probability of surviving is simply given by the closeness between j’s equity
and the highest net-worth in the system, i.e.

pjt =
Ej
t

Emax
t

. (5.5)

Finally, the maximum amount that the lender i is willing to lend to j, that
is the lending capacity, ci,jt , in Eq. 5.4 is defined as{

ci,jt = (1− hjt)Ajt > 0, if (i, j) ∈ Vt,
ci,jt = 0 otherwise,

with hjt ∈ (0, hmaxt ) to be the borrower haircut, defined as the j’s leverage,

λjt , with respect to the maximum one. Hence hjt =
λjt
λmax
t

, with λjt =
Ljt
Ejt

. By

setting Eq. 5.4 equal to zero and rewriting it as a function of ri,jt , we get the
interbank rate that guarantees zero expected profit:

ri,jt =
χAit − φAjt − (1− pjt)(ξAjt − ci,jt )

pjtc
i,j
t

. (5.6)

As the reader can verify, in line with the assumption of asymmetric infor-
mation and costly state verification (see Bernanke et al., 1999), the lender
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applies an interest rate that increases with her own size (that is, her assets)
and the financial vulnerability of the borrower (that is j’s leverage). This
last implication derives from the budget identity (see Eq. 5.1) from which

we can derive that Ajt =
Ljt
λjt

+ Dj
t , where λjt =

Ljt
Ejt

. In addition, the interest

rate in Eq. 5.6 is not linearly related to the bank probability of surviving
and capacity.

We now have all the elements to describe how traders select their coun-
terpart in the interbank system, i.e. how lending arrangements are formed
and evolve. We develop a measure of agent attractiveness to generate an
endogenous mechanism of preferential attachment. Specifically, banks try to
signal themselves in the interbank market by offering low interest rates or
conspicuous supplies of liquidity. Although all agents start from the same
initial conditions, as time goes by financial institutions are characterized by
heterogeneous levels of their agent-specific variables. In line with this, the
fitness of each agent µit is a combination between her liquidity relative to
the highest liquidity provided in the market, Cmax

t , and her interest rate
compared to the cheapest one, rmint , i.e.

µit = ηt

(
Ci
t

Cmax
t

)
+ (1− ηt)

(
rmint

rit

)
. (5.7)

The parameter ηt reflects a policy recommendation at time t, addressing the
choice of the banking sector towards one of two possible strategies. On the
one hand, η approaching zero identifies an interbank system moving towards
the cheapest interest rates, on the other hand, η close to one highlights a
liquidity-based system. We refer the reader to the Subsection Section 5.3.1
for a detailed explanation on the policy recommendation evolution: one of
the main contribution of our work is to assume ηt endogenously evolving over
time through a reinforcement learning mechanism, modeling the will of the
regulator to address the banking system toward the best credit strategy for
system stability.

Coming back to the interbank network, in our model credit links are
directional because they are created and deleted by the agent j who looks
for a loan and points to the agent i that provides credit. The loan flows in the
opposite direction. In general local interaction models, the agent interacts
directly with a finite number of counter-parties in the population. The set of
nodes with whom a single node is linked is referred to as its neighborhoods. In
our model, the number of out-going links is constrained to be a small number

148



5. Reinforcement Learning Policy Recommendation for Interbank Network
Stability

d̂, thus borrowers can only get loans from d̂ lenders. With this assumption of
network sparsity the topology is always locally tree-like, avoiding loops that
would preclude us from fully understanding the impact that the network
architecture has on economic dynamics such as systemic risk, failures and
liquidity diffusion.
At time t = 0, each bank j starts having d̂ random outgoing links (i.e.
potential borrowing positions), and possibly with some incoming links from
other agents (i.e. potential lending position). At the beginning of each
period, links are rewired in the following way. For any outgoing link i, each
borrower j randomly selects a new bank k. Comparing the fitness of the new
financial institution with the one of its previous lender i, the borrower j cuts
her old link with i and creates a new one with k according to the probability

P j
t =

1

1 + e−β(µkt−µit)
, (5.8)

or keep its previous link with probability 1− P j
t . The proposed mechanism

for reviewing credit agreements ensures that the most attractive lenders get
the highest number of borrowers (i.e. incoming links) and, consequently,
earn the highest profits. Nevertheless, the degree of randomness included in
the algorithm guarantees that some links with very high performing agents
may be cut in favor of less attractive creditors. The amount of randomness
is regulated by β and has a double purpose: from a practical point of view,
it prevents the system from being centralized around a single financial hub;
from a theoretical perspective, it allows us to model incomplete information
and bounded rationality.

The evolution of the banking system: determining the
policy recommendation

As anticipated in the previous section, we use the reinforcement learning
paradigm to move the parameter ηt and obtain an optimal policy recommen-
dation in the described banking system. The aim of reinforcement learning
is to solve a decision-making problem in which the timing of costs and ben-
efits is relevant. In an interbank market that follows the specified dynamics
for the creation of lending agreements, reinforcement learning can help in
determining the policy recommendation that better identifies the optimal
attachment strategy to follow in Eq. 5.7, even when partial information
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about the system is provided. Hereafter, we refer to the reinforcement learn-
ing algorithm simply as the learning algorithm. A Markov Decision Pro-
cess (MDP) is the mathematical formalism under which the reinforcement
learning problem is usually defined. An MDP consists of a set of possible
states St ∈ S, a set of possible actions At ∈ A and a transition probability
P [St+1 = s′ | St = s, At = a]. At each time t, a learning agent that is in
state St, takes an action At and receives a reward Rt+1 (St, At, St+1) ∈ R
from the environment before moving to the next state St+1. We define the
agent strategy π : S × A 7→ [0, 1] as the conditional probability π(a | s) of
taking the action At = a being in the state St = s. The reinforcement learn-
ing problem is the stochastic control problem of maximizing the expected
discounted cumulative reward

Eπ

[
∞∑
t=0

γtRt+1 (St, At, St+1)

]
, (5.9)

where γ ∈ [0, 1) is a discount factor and the expectation is w.r.t. the sequence
of states and actions reached following the strategy π.

In our MDP, the sequential economy in which the banking system oper-
ates plays the role of the environment. Banks interact with the environment
by changing their credit lines: each day they can adapt their attachment
strategy between liquidity supply and interest rate discount, which is regu-
lated through Eq. 5.7, with the choice of ηt, playing the role of the action
At. We assume the agent is the system as a whole rather than the sin-
gle bank and that the optimal strategy is realized at the system level, i.e.
that the regulator directs financial institutions towards the correct combi-
nation of the two strategies. This assumption has a twofold purpose. On
the one hand, it helps us to model a system with incomplete/asymmetric
information, where the central bank has a richer information set than the
single economic actor (see, for instance, Hoff and Stiglitz, 1990 and Thakor,
2020). On the other hand, it allows us to incorporate economic policy, seen
as the optimal indication that the regulator gives to the system with the
aim of reducing the interbank market vulnerability (see Trichet, 2010, for
a global overview) 2. The state St includes information on both the liq-

2Considering η as a system variable allows us to reduce the mathematical and compu-
tational complexity of the problem and to study the behavior of the banking system as a
whole. Making η bank specific leads towards multiagent reinforcement learning applica-
tions (Buşoniu et al., 2010) which consider agents that compete with each other and are
out-of-the scope of the present paper.
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avg
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i
t/N , being x the variable of interest. We

believe that this setting of the state space is realistic enough to model the
regulator partial information about the banking system: it would be difficult
and costly to retrieve detailed and specific data on all the banks included in
the system at each time step. It is easier indeed to gather information about
the best and the worst liquidity provider in the interbank network, as much
as average estimates of the entire market.

Finally, the reward function we consider is the system’s total fitness

Rt (St, At, St+1) =
N∑
i=1

µit (5.10)

and the problem in Eq. 5.9 becomes a maximization of the discounted cumu-
lative bank’s total fitness. From the definition of bank fitness, this means not
only to guarantee a better flow of liquidity through the banking system, but
also an efficient allocation at a more convenient interest rate. The learning
algorithm operates in a model-free setting because it only receives partial in-
formation on the relevant variables of the system, while it has no knowledge
of the internal dynamics (i.e. transition probability) with which the balance
sheets of the banks moves and lending agreements are generated. This piece
of information has to be inferred through the sequence of states, actions and
rewards during the learning process.

5.2.3 The optimization algorithm: Proximal Policy Op-
timization

The optimization problem in Eq. 5.9 can be solved using a policy gra-
dient algorithm like the Proximal Policy Optimization (PPO) (Schulman
et al., 2017). A policy gradient algorithm directly parametrizes the opti-
mal strategy πθ = π(a | s; θ), for example using a multilayer neural net-
work with parameters θ. The optimization problem is approximately solved
by computing the gradient of the cumulative fitness of the system J(θ) =∑∞

t=0 γ
tRt+1(St, At, St+1; πθ) and then carrying out gradient ascent updates

according to
θt+1 = θt + α∇θJ(θt), (5.11)

151



5. Reinforcement Learning Policy Recommendation for Interbank Network
Stability

where α is a scalar learning rate. The policy gradient theorem (Marbach and
Tsitsiklis, 2001; Sutton et al., 1999) provides an analytical expression for the
gradient of J(θ) as

∇θJ(θ) = Eπθ

[∇θπ (At | St; θ)
π (At | St; θ)

Qπθ(St, At)

]
(5.12)

= Eπθ [∇θ log π (At | St; θ)Qπθ(St, At)] ,

where the expectation, with respect to (St, At), is taken along a trajectory
(episode) that occurs adopting the strategy πθ and the action-value function

Qπ(s, a) ≡ E

[
∞∑
k=0

ρkRt+1+k | St = s, At = a, π

]
, (5.13)

represents the long-term reward associated with the action a taken in the
state s if the strategy π is followed hereafter. It can be proven that it is
possible to modify the action value function Qπ(s, a) in (5.12) by subtract-
ing a baseline that reduces the variance of the empirical average along the
episode, while keeping the mean unchanged. A popular baseline choice is the
state-value function,

Vπ(s) ≡ E

[
∞∑
k=0

ρkRt+1+k | St = s, π

]
, (5.14)

which reflects the long-term reward starting from the state s if the strategy
π is adopted onwards. The gradient thus can be rewritten as

∇θJ(θ) = Eπθ [∇θ log π (At | St; θt)Aπθ(St, At)] (5.15)

where
Aπ(s, a) ≡ Qπ(s, a)− Vπ(s), (5.16)

is called advantage function and can be interpreted as the gain obtained by
choosing a specific value of a in a given state with respect to its average value
for the strategy π.

Different policy gradient algorithms derive from the way the advantage
function is estimated. In PPO, the advantage estimator A (s, a;ψ) is pa-
rameterized by another neural network with parameters ψ. This approach
is known as actor-critic: the actor is represented by the policy estimator
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π(a|s; θ) that outputs a probability for each possible value of a ∈ A, which
the learning algorithm uses to sample actions, while the critic is the advan-
tage function estimator A (s, a;ψ) whose output is a single scalar value. The
two neural networks interact during the learning process: the critic drives the
updates of the actor, which successively collects new sample sequences that
will be used to update the critic and again evaluated by it for new updates.
The PPO algorithm can therefore be described by the extended objective
function

JPPO(θ, ψ) = J(θ)− c1L
AF(ψ) + c2H (π (a | s; θ)) (5.17)

where the second term is a loss between the advantage function estimator
A (s, a;ψ) and a target Atarg, represented by the cumulative sum of dis-
counted reward, needed to train the critic neural network, and the last term
represents an entropy bonus to guarantee an adequate level of exploration.
Details about the specific choice of the target together with additional in-
formation about the general algorithm implementation are given in the App
Section 5.6. In what follows, PPO can be generally referred to as the learning
algorithm.

5.3 Simulation Results

In this section, we perform numerical experiments to test the capability of
the learning algorithm to identify an optimal strategy for selecting η and
trading-off the two competing ways of establishing credit relationships. In
this respect, we analyze the effects of the η dynamics on agents’ economic
performances, the interbank network topology and its resilience in the face
of exogenous shocks. Finally, we study the effect of the policy recommen-
dation obtained through reinforcement learning in controlling credit crunch
phenomena and mitigating systemic risk.

The results provided in the following subsections are obtained from sim-
ulated tests which shares some choices for the parameter involved in the
dynamic simulation of the system. The number of Monte Carlo simulations
performed is M = 200 and each simulation is T = 1000 periods long. We
simulate a system with N = 50 banks whose out-degree is d̂ = 1, so each
bank can obtain at most one outgoing link at each time step, while can have
many possible incoming links. Each bank is subjected to an initial probabil-
ity of being isolated, which is set at 0.25. The parameters of the screening
costs χ and φ that enters in Eq. 5.6 are set respectively at 0.015 and 0.025,
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while the liquidation cost of collateral ξ is 0.3. The parameters µ and ω
shifting the uniformly distributed noise that shocks the bank deposits are
set at 0.7 and 0.55. All the banks starts with the same initial interest rate
equal to 2% and are endowed with the same initial balance sheet C0 = 30,
L0 = 120, D0 = 135 and E0 = 15. The price of fire sale ρ = 0.3 and the
intensity for breaking the connection between banks β = 5 in Eq. 5.8 are
other parameters common to all the agents in the network. In the App.
Section 5.5 we check the robustness of our qualitative results by changing
some key parameters. Specifically, we vary the intensity of choice, β, from 0
to 40 with steps of 2; the fire-sale price, ρ, from 0.1 to 0.5 with steps of 0.1
and, finally, the parameter ω regarding the volatility shock on bank deposit.
We have then studied the moments of the distributions of the statistics of
interest. Results confirm that our findings are robust to some variation of
the banking system simulation.

The PPO algorithm parametrizes a discrete strategy function so that the
learning algorithm can choose the value of η among a finite set of actions
A = {0, 1}3. The choice of a discrete strategy with respect to a continuous
strategy on the interval (0, 1) is motivated by the willing to learn a strategy
that clearly discriminates between an interest rate strategy (η = 0) and a
liquidity strategy (η = 1). Learning a continuous strategy that can pick
any real value in the given interval is known to be more difficult and make it
harder to interpret whether the learned dynamic strategy is pointing towards
an objective rather than the other.

5.3.1 Training the PPO algorithm

As a first step in our numerical analysis, we evaluate the performance of
the strategy learned by the PPO algorithm. We train four PPO instances
on Ein = 1000 consecutive episodes, which are independent simulations of
the banking system. The PPO instances differ for the random seed used
to initialize the neural networks and to train them using a stochastic gra-
dient descent approach. Multiple concurrent training of different instances
is needed in order to provide an average performance together with a confi-

3Under the same setting, we also trained PPO instances that are allowed to pick discrete
values between 0 and 1 as a possible action. The distributions of the η provided by these
discrete strategies present a negligible amount of non-extreme values in the interval (0, 1)
and are similar to those visualized in the left-hand side of Figure 5.1. We resort then to
the binary case, which is more interesting for our analysis.
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dence interval that highlights the robustness of the learning process. Each
training episode consists of a simulation of the banking system for T periods
that allows the learning algorithm to collect samples of data with which it
can perform updates of the model parameters. During the learning phase, we
evaluate the learning progress of each instance at several intermediate steps.
We fix the weights of the neural networks that parametrize the η public sig-
nal and perform Eout = 5 out-of-sample test episodes before carrying on the
training process to assess the learned behavior up to that point. We refer to
the App. Section 5.6 for the technical difference between an in-sample and
an out-of-sample test episode.

We compare the PPO performance with respect to a dynamic random
baseline that picks the value of η according to a Bernoulli distribution with
parameter equal to 0.5. This random policy that chooses between 0 and 1
with equal probability represents a meaningful benchmark, as we observe in
the left-hand side of Figure 5.1, where the values of η in both scenarios are
identically distributed over the M performed Monte Carlo simulations. The
Kolmogorov-Smirnoff test statistically confirms up to the 1% confidence level
that the distribution of the η values generated by the selected4 PPO instance
is not significantly different from the one of the random baseline. The right-
hand side of Figure 5.1 summarizes the results of the learning process, where
the average cumulative fitness of the system in Eq. 5.10 is represented on
the y-axis. Every PPO instance is tested Eout = 5 times using Monte Carlo
simulations of length T . We notice that the performance metric is always
greater for PPO than for the random recommendation, signaling that the
banks in the system generated by the PPO signal tend to be more attractive
for the borrowers by exhibiting a higher aggregated fitness through time.
Moving η randomly causes banks to be less attractive for the borrowers in
their interbank market. This result implies that the PPO instances learn
to choose the value of η by leveraging the information available about the
system, without changing the distribution of the values with respect to the
random case. The learning procedure allows us to discover when it is exactly
convenient to pick a side in this trade-off. A further comparison with some
fixed signals is provided in the App. Section 5.5. However, fixing the η for all
time steps has an evolutionary impact on the system which has already been

4It is common in reinforcement learning applications to train different instances of the
same algorithm and then select the best performing one over some out-of-sample tests
(Andrychowicz et al., 2020)
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Figure 5.1: The left panel shows the discrete distributions of the η values
selected respectively by PPO (in black) and by a Bernoulli distribution (in
red) with parameter equal to 0.5 over M Monte Carlo simulations of the
system. The right panel shows the average cumulative fitness of the system
as a function of the number of training episodes for the trained PPO instances
(in solid black) and the Bernoulli distribution of η (in dashed red) with the
corresponding confidence intervals.

studied by Berardi and Tedeschi, 2017 and it is not centered on studying the
effect of any η that changes through time.

In order to shed light on the decisions taken by the best performing
trained PPO instance, we use the SHapley Additive exPlanation (SHAP)5

framework (see Lundberg and Lee, 2017, Shapley, 2016). This approach
allows explaining a complex nonlinear model like a neural network by shed-
ding light on the contribution of each input feature to the output formation.
For each input vector x ∈ RK and a model f , the SHAP value φi(f, x),
i = 1, . . . , K quantifies the effect (in a sense, the importance) on the output
f(x) of the i-th feature. To compute this effect one measures, for any subset
S ⊆ {1, . . . , K}, the effect of adding/removing the i-th feature to the set, i.e.
fS∪{i}(x)− fS(x). The SHAP value is defined as the weighted average

φi(f, x) =
∑

S⊆{1,...,K}\{i}

|S| ! (K − |S| − 1) !

K!

[
fS∪{i}(x)− fS(x)

]
, (5.18)

where the weights ensure that
∑

i φi = f(x).
Figure 5.2 shows the magnitude of the Shapley values for the policy rec-

ommendation learned by the best performing PPO instance, referred to the
two possible outcomes η = 0 and η = 1. The left-hand side shows that high

5For the implementation we use the Python package linked to Lundberg and Lee, 2017
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Figure 5.2: SHAP values relative to the strategy outputs η = 0 (left panel)
and η = 1 (right panel). The cloud of colored dots for each input variable
expresses the importance and the correlation with respect to the model out-
put. Features are ordered on the y-axis by relevance, so the first on the top
influences the most the model output.

values for the maximum liquidity available in the system tends to favor the
choice of a η based on the interest rate. Also, a low average interest rate
and a high maximum interest rate point to the choice of η = 0. The right-
hand side shows an opposite input relevance, with a dominant role for high
values of the average interest rate and low values of the maximum interest
rate. The two figures show that the trained learning algorithm chooses one
of the two signals by looking at the main characteristics of the opposite one.
When it chooses η = 0, it is more interested to know if there are participants
in the network which are large, while when it chooses η = 1, it looks for
homogeneity of interest rate, that is a common feature obtained by always
playing towards the interest rate. The learning algorithm suggests a switch
towards the other competing recommendation in order to avoid extreme cases
in which a disadvantage of one or the other choice exacerbates, i.e. a huge
financial institution that gather all the demand of the borrowers when η = 1
could not be sustainable in the long term, so the algorithms suggests switch-
ing to the other option. On the other hand, a majority of banks of medium
size that offer medium rates when η = 0 could not be able to gather enough
liquidity to deal with deposit shocks and would be better to resort to the
opposite signal.
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Figure 5.3: Network configuration at time t=0 (left side), and t=800 (right
side).

5.3.2 Micro and macro consequences of the policy rec-
ommendation

In this subsection, we deal with the implications that the dynamics of the η
parameter has on the interbank network morphology and on resulting per-
formances of the financial institutions. Finally, we study the effects that the
emerging network topology has on the stability of the market.

Topology and evolution of the interbank network

Before starting the analysis, it is worth remembering the dynamics of η, that
appears in the banks’ fitness (see Eq. 5.7), determines the probability of
creating credit links in the system as shown in Eq. 5.8. Therefore, it is
appropriate to begin the analysis by describing the topology of the interbank
network.

In Figure 5.3 we plot the configuration of the endogenous interbank net-
work at two different time steps of a single simulation of the system. As
the reader can appreciate, the market configuration goes through different
phases, ranging from a random topology with isolated agents to a highly
centralized architecture where a few hubs compete for credit supply. A more
detailed analysis on the evolution of the interbank network architecture over
time can be found in the left-hand side of Figure 5.4, where we show the time
series of network degree centrality

CNet
t =

∑
i (k

max
t − kit)

N(N − 1)− |Vt|
, (5.19)
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Figure 5.4: Time series of interbank network centrality (left side). The de-
cumulative distribution (DDF) of the in-degree (right side).

where N is the number of banks, |Vt| is the total number of incoming links
in the system, kit is the number of incoming links for the i-th bank and kmax

t

is the number of incoming links hold by the hub of the network.
The dynamics of network centrality shows how the morphology of the

credit market evolves over time, going from periods in which the network is
decentralized and made of many small components to periods in which more
than 45% of banks are connected to a single hub. In addition, the topology of
the emerging network as a whole is different from that of the random graph,
where the in-degree distribution decays exponentially. Similar to real credit
networks, in our system some banks are found to have a disproportionately
large number of incoming links while others have very few (see Iori and Man-
tegna, 2018, for a survey of the relevant literature). This result is shown in
the right-hand side of Figure 5.4 where we plot the decumulative distribution
function of the in-degree. As the reader can observe, this distribution is in
keeping with that of scale-free networks and displays a ’fat tail’.
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Figure 5.5: Top Panel: Time series of η cumulative values over the simulation.
Bottom Panel: Estimated results with the respective T-test in brackets for
Eq. 5.20. b0 is the estimated mean value of y when η = 1 and b1 the deviation
from this mean value when η = 0. Data are obtained through M Monte Carlo
simulations of the system.

To conclude the analysis on the interbank market architecture, we deal
with the effect of the η parameter on the credit network topology. In the
top panel of Figure 5.5 we plot a single realization of the cumulative value
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of η through time. The figure shows how the reinforcement learning algo-
rithm generates a time evolution in the choice of policy recommendations.
Specifically, increasing (decreasing) values in the curve correspond to a signal
that directs the system towards high liquidity supply (low interest rate), i.e.
η = 1 (i.e. η = 0).

The effect of the signal in shaping the topology of the interbank network
is, instead, shown in the lower panel of Figure 5.5, where we estimate a
categorical regression model

yt = b0 + b1(1− ηt), (5.20)

where b0 is the estimated mean value assumed by the dependent variable y
when η = 1 and b0 + b1 is the mean when η = 0. As shown in the bottom
panel of Figure 5.5, when the system selects low interest rates, the interbank
network is less centralized, more sparse and with a larger diameter. Moreover,
the graph is fragmented into many scarcely-populated islands.

Having described the architecture of the interbank network, let us now
examine its evolution over time. It is worth remembering that banks signal in
the market their attractiveness µ according to the recommendation received
from the regulator, i.e. whether to compete more on low interest rates,
η = 0, or on high liquidity supply, η = 1. While the regulator’s signal
is market specific, liquidity supplies and interest rates (based on Eq.6 ) are
bank specific variables. This mechanism creates competition among financial
institutions for credit allocation. The war in the granting of credit, modeled
through the possibility of redefining lending agreements via Eq. 5.8 is shown
in Figure 5.6.
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Figure 5.6: Time series of the evolution of the most connected lender (hub)
along the time T. The black solid line identifies the normalized hub id, the
red dashed line her number of clients ( incoming links) and the green dotted
line the hub’ fitness. Colors are available on the web side version.

The black solid, red dashed and green dotted lines represent the normal-
ized id of the lender with the highest number of clients (i.e. the hub), her
incoming links (i.e. number of clients) and her fitness, respectively. As the
reader can appreciate, the simulation presents periods of hub stability and
periods of alternation and competition between different hubs. When the
hub succeeds in standing out from her competitors and signaling a signifi-
cantly higher fitness (i.e. the green dotted line approaches the unit), she is
able to attract numerous clients as shown by her high number of incoming
links. However, the attractiveness of the hub may work against her. A large
portfolio of customers increases the likelihood that some of them may fail.
This either decreases the attractiveness of the hub herself6 or even causes
her failure. In any case, the drop in the agent’s fitness gradually reduces
her number of clients and makes other lenders more attractive. These agents
can replace the unsuccessful hub and so become in turn the most appealing
lenders.

6The reduction of the hub’s fitness due to one of her clients’ failure works in the
following way. On the one hand, when the fitness uses a strategy based on a low interest
rate, the client’s approach to the bankruptcy threshold increases both the borrower’s
financial fragility and probability of bankruptcy. Both these effects produce an increase in
the lending interest rate, which makes the hub less attractive (see Eq. 5.6). On the other
hand, when µ moves towards a high liquidity supply, the borrower’s bad debt is absorbed
by the lender’s net-worth. The fall in the latter causes a parallel reduction in the hub
liquidity, as shown by the balance sheet identity (see Eq. 5.1).
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Figure 5.7: Density distributions over M Monte Carlo simulations of maxi-
mum period of hub stability in which the strategy doesn’t change. The black
solid and red dashed lines show η = 0 and η = 1, respectively.

Micro consequences of the reinforcement learning policy

In this subsection, we investigate how the dynamics of η affects the perfor-
mance of the hub and other financial institutions.

In Figure 5.7 we show how the choice between a low interest rate and a
high liquidity supply strategy affects the hub longevity. The figure shows the
distribution, over M simulations, of the maximum period of hub stability in
which the strategy doesn’t change, respectively for η = 0 (black) or η = 1
(red). As the figure shows, the hub is in general more stable if the regula-
tor recommends a high liquidity supply (red dashed line in Fig Figure 5.7).
Moreover, also at a micro level, we show that η = 1 seems to produce better
individual performances. This result is shown in the top panel of Figure 5.8,
where we report the effect of the two possible values of η on some key indi-
vidual variables.
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Figure 5.8: Top Panel: Estimated results with the respective T-test in brack-
ets for Eq. 5.20. b0 is the estimated mean value of y when η = 1 and b1 the
deviation from this mean value when η = 0. Data are obtained through M
Monte Carlo simulations of the system. Bottom Panel: Density distributions
of aggregated liquidity over times and over M Monte Carlo simulations. The
black solid and red dashed lines show η = 0 and η = 1, respectively.
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Specifically our results, estimated via the categorical regression model in
Eq. 5.20, shows that a signal that directs the system towards an abundant
supply of liquidity (i.e. η = 1) produces better results on controlling leverage,
rationing, bad debt and bankruptcies. Moreover, in line with the hypothesis
that the failure of banks occurs as net-worth falls below a minimum thresh-
old, the equity is higher in the case of η = 1.
The result on the liquidity is, however, less intuitive. In fact, the system that
competes on the interest rate level is significantly more liquid than the one
adopting a high liquidity, with an average liquidity value of 3291 in the case
of η = 0 and 2960 in the opposite case. The reason for the apparent better
performance on liquidity in the case of η = 0 lies in the competition that
arises among banks when they use interest rates. As clarified by Eq. 5.6, the
financial institutions applying the lowest interest rates are the smallest ones.
This implies that the biggest banks are less attractive to borrowers because
they charge higher rates. The system, therefore, excludes these economic
agents from trading, while it encourages small institutions to provide liquid-
ity. This mechanism of selection has a twofold effect. On the one hand, it
generates a strong heterogeneity between lenders and borrowers. Creditors,
which are much smaller than debtors, are overwhelmed in the event of their
clients’ bankruptcy. On the other hand, the exclusion from the exchanges
of the largest institutions leaves a lot of unallocated liquidity in the system.
The first effect, i.e. agents’ heterogeneity, determines the worst performances
under η = 0, while the second effect, i.e. exclusion, determines the highest
level of unallocated liquidity in the system. In contrast, a signal that directs
the system towards an abundant liquidity supply produces a more homo-
geneous distribution among the liquidity of banks, as shown in the bottom
panel of Figure 5.8. This homogeneity between economic agents generates a
uniform risk exposure among counter-parties, which favors the resiliency of
the system in front of shocks. This result is in line with other studies showing
that agents’ heterogeneity is a leading force in generating propagation of sys-
tematic failure (see, for instance, Caccioli et al., 2012, Berardi and Tedeschi,
2017, Iori et al., 2006, Lenzu and Tedeschi, 2012 and Tedeschi et al., 2012).

Systemic impact of the network

To conclude the section, we combine the results on network topology and
individual performance as a function of η in order to capture the overall ef-
fect of the interbank architecture on systemic stability. To this end, in Tab.
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Indep. Variable Dep. Variable
Rationing Failed banks Leverage

Net centrality
-0.25****** -2.09****** -0.016******

(-6.04) (-41.82) (-55.69)

Density
-1.32****** -9.14****** -0.051******

(-52.64) (-254.08) (-235.33)

Diameter
0.011****** 0.032****** 0.0002******

(8.95) (21.69) (27.02)

Components
0.029****** 0.020****** 0.0004******

(5.28) (3.09) (10.57)

Avg nodes per comp
-0.0011****** -0.0022****** -0.00002******

(-4.18) (-6.97) (-13.19)

***p < 0.01, **p < 0.05, *p < 0.1

Table 5.1: Regression results between indicators of the interbank stability and
network measures. T-stats for each coefficient are provided in parentheses.
Data are obtained through M Monte Carlo simulations of the system.

Table 5.1 we report the results of a linear regression estimated through or-
dinary least squares where the independent variables are some measures of
the interbank network topology and dependent variables are some indicators
of the market systemic stability. In line with what has been observed so far,
when the network tends to be centralized, i.e. denser towards the hub and
with a smaller diameter, the risk of contagion decreases, i.e. bankruptcies, ra-
tioning and leverage are reduced. Obviously, this architecture corresponds to
a graph composed of a few highly populated components. It is worth noting
that this topology emerges when the interbank system is oriented towards an
abundant supply of liquidity, which generates a certain homogeneity among
agents able to compensate for the imbalance between lenders and borrowers
present in the case of η = 0. In this respect, a clarification is important:
η = 1 is not the absolute best signal. This is the best strategy given the
individual and aggregate conditions of the system at the time of the choice.
In fact, the algorithm is designed to identify one or the other recommenda-
tion as optimal on the basis of the underlying environmental conditions. The
robustness of this observation is shown in Sec. Section 5.3.3 and in the App.
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Section 5.5. In the former, we show that the system governed by a regulator
that directs the choice via the implemented reinforcement learning algorithm
outperforms a system based on a random selection between the two signals.
In the latter, we demonstrate the better performances of the reinforcement
learning with respect to keeping constant the two values of η.

5.3.3 The reinforcement learning based recommenda-
tion for taming systemic risk

In this subsection, we study the effect on the interbank systemic stability
of the policy recommendation obtained through the reinforcement learning
mechanism solved by the PPO algorithm.

Specifically, we answer the following question: how would the interbank
system perform in terms of aggregate resiliency when the regulator direct
financial institutions as a whole to choose the optimal strategy between com-
peting on low interest rate, η = 0, or on high liquidity, η = 1? Again, we
compare the effects of the learned strategy on the market stability with those
of a random strategy.

A common finding in several theoretical and empirical works is that the
interbank market works properly when credit flows efficiently through the
system, thus ensuring it against liquidity shocks (see, for instance, Allen and
Gale, 2000; Carlin et al., 2007; Freixas et al., 2000).
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Figure 5.9: Liquidity of the system (left panel) and number of credit channels
(right panel). Black solid and red dashed lines refer to the best performing
reinforcement learning optimal strategy and to the random strategy, respec-
tively. The curves reproduce the mean and the standard deviation over M
simulations of the system and a rolling window of 100 time steps.

Starting from this consideration and recalling the severity of liquidity
crises, we show in Figure 5.9 (left side) the effectiveness of the implemented
reinforcement learning strategy in spreading liquidity through the system.
In the figure, once selected the best performing learned strategy as shown
in the right-hand side of Figure 5.1, the aggregated average liquidity of M
simulations over a rolling windows of 100 time steps is shown through time.
Although in some time periods the learned strategy strongly competes with
the random one, its supremacy becomes evident from the time step 700
on-wards. In addition, the average liquidity, over all time periods and simu-
lations, of the learned strategy is statistically higher than the one obtained
with the random strategy (i.e. 3129.98 (std. 1.5128) vs 3091.51 (std. 4.4258),
respectively).

A possible explanation for this phenomenon can be seen in the right-hand
side of Figure 5.9, where we plot the active credit links in the two frameworks.
As the reader can appreciate, the number of activated credit channels is
higher when the system follows the learned strategy with respect to the case
of random strategy, and this guarantees a higher circulation of liquidity in
the system. In detail, the average number of credit channels, over time and
simulations, in the first scenario is 9.9823 (std. 0.4321), while in the second
case is 8.5464 (std. 0.3596). On the whole, this result reveals the ability
of the reinforcement learning optimal policy to design an interbank network
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Figure 5.10: Rationing of the system (left panel) and number of failed banks
(right panel). Black solid and red dashed lines refer to the best performing
reinforcement learning optimal strategy and to the random strategy, respec-
tively. The curves reproduce the mean and the standard deviation over M
simulations of the system and a rolling window of 100 time steps.

architecture promoting an efficient credit allocation and, therefore, reducing
liquidity shortage phenomena. As a consequence, the emerging topology
of the credit network effectively controls rationing and avoids failures due
to credit crunch phenomena, as shown in Figure 5.10, left and right panel,
respectively.

The robustness of the two latter results is confirmed by the average values
of these variables over all times and simulations. Specifically, the mean and
standard deviation of the rationing in the case of the learned strategy (resp.
random strategy) are 0.4024 and 0.0375 (resp. 0.5671 and 0.08465), while
the mean and standard deviation of the number of failed banks in the case of
the learned policy (resp. random policy) are 3.2101 and 0.0410 (resp. 3.2931
and 0.0423).

It is important to note the ability of the reinforcement learning mecha-
nism to generate an interbank network whose architecture is resilient in the
face of financial attacks. This characteristic provides on the one hand, an ad-
ditional monetary policy tool that can be implemented in times of economic
adversity, and on the other hand, enriches the vast literature that empha-
sizes the importance of credit network architecture in dealing with systemic
shocks (see Grilli et al., 2017, for a survey of the relevant literature).

We conclude this section by analyzing the effect of the reinforcement
learning optimal policy on the market financial (in)stability. The approach
followed here in explaining the materialization of financial frictions is very
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close in spirit to the Minskyan financial instability hypothesis, and there-
fore uses the leverage of banks as the main indicator (see Minsky, 1964).
In our stylized market, the link between leverage and systemic instability
works as follows. Given our naive banks’ balance-sheet (see Eq. 5.1), the
leverage is defined as assets on equity. Moreover, credit costs (i.e. interest
rates) are strongly positively affected by the leverage (see Eq. 5.6). When
a lender grants a loan to a bank with a low probability of surviving (i.e. an
over-leveraged borrower) she charges higher interest rate via the financial ac-
celerator. This, in turn, exacerbates the financial condition of the borrower
herself, pushing her towards the bankruptcy state. If one or more borrowers
are not able to pay back their loans, even the lenders’ equity is affected by bad
debts. Therefore, lenders decrease their credit supply and increase the bor-
rowers’ rationing. In this way, the profit margin of borrowers decreases and
a new round of failures may occur. The leverage dynamics when the system
follows the reinforcement learning recommended policy and in the random
case are shown in the left-hand side of Figure 5.11. The figure highlights two
important features. First, the recommended learned policy keep the leverage
below the values obtained with the random policy. Specifically, the average
leverage, over time and simulations, in the first scenario is 1.59 (std. 0.042),
while in the second case is 1.69 (std. 0.031). Second, the leverage fluctuates
over time, thus recalling the different phases of lending suggested by Minsky.
In fact, there are periods when financial institutions grant more loans without
considering the overall financial fragility. However, it can happen that banks
underestimate their credit risk, making the system more vulnerable when
default materializes. This ambiguous effect of the leverage, first positive and
then negative, on interbank stability, is clearly shown in the right-hand side
of Figure 5.11, where the correlation wave between bankruptcies and agents’
leverage first decreases from lag τ = −21 up to τ = −11 , then increases
from τ = −8 up to τ = 9 , and finally, returns to decrease from τ = 15.
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Figure 5.11: Left side: Leverage of the system. Black solid and red dashed
lines refer to the best performing reinforcement learning optimal strategy
and to the random strategy, respectively. The curves reproduce the mean
and the standard deviation over M simulations of the system and a rolling
window of 100 time steps. Right side: Average correlation between number
of bankruptcy and lagged leverage, at a 1% confidence level.

5.4 Concluding remarks

In this work, we have shown the effects of a policy recommendation obtained
through a reinforcement learning mechanism in an artificial interbank mar-
ket. Specifically, we assume that the financial institutions receive a signal
from the regulator regarding the best strategy to adopt for the creation of
their lending agreements. Depending on the underlying economic conditions,
the signal directs the system towards the provision of a high liquidity supply
or a low interest rate. The use of a reinforcement learning approach to pro-
vide this public signal has proven to be effective since the method exploits
the available information and redirects the system towards an efficient flow
of liquidity, when compared to other different static and dynamic policies.
Moreover, through the use of the SHAP framework, that dissects the contri-
bution of each piece of information to the recommended policy, we have been
able to interpret what is the main input that drives the choice of the policy.
We have acknowledged that the occurrence of one or the other circumstance
(liquidity vs interest rate) generates important consequences affecting either
the agents’ performances and either the topology and resiliency of the inter-
bank network. Specifically, when the signal directs the system towards an
abundant liquidity provision, the interbank network, composed by a few pop-
ulated communities, is more centralized and dense towards hub banks than in
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the low interest rate scenario. This network architecture is accompanied by
better individual performances and higher resilience of the system in the face
of exogenous shocks. Our results have shown that the better general condi-
tions underlying this signal are due to the homogeneity between lenders and
borrowers, which generates a uniform risk exposure among counter-parties
able to favor the resiliency of the system.

Leaving aside the results on the comparison between the two signals, in
the second part of the paper we have analyzed the general effect of the policy
recommendation implemented via the reinforcement learning procedure. Our
results have shown how systemic risk is mitigated by such a tool and how
this outperforms other alternative policy instruments.

5.5 Appendix: A sensitivity analysis on model

parameters

In this appendix, we investigate the performances of the learning algorithm
by varying some key parameters. The first investigated parameter, β, governs
the network topology (see Grilli et al., 2014, for a mathematical explanation).
As the intensity of choice increases, the interbank architecture ranges from
a random configuration to a star one. The effect of the network topology on
the interbank system is studied by changing β from 0 to 40 with steps of 2.
The second parameter we consider is fire sale price ρ. An increase in ρ has an
impact on both lenders and borrowers. On the one hand, it compensates the
losses that lenders incur due to the failure of their clients (see Eq. 5.4). On
the other hand, a higher fire-sale increases the likelihood that the borrower,
rationed in the interbank market, can face deposit repayments. Here we
vary the fire-sale price, ρ, from 0.1 to 0.5 with steps of 0.1. Thirdly, we
modify the skewness of the distribution of the random shock affecting the
bank deposit at the beginning of each period. Recalling the equation for the
deposit movements as Di

t = Di
t−1(µ+ ωU(0, 1)), we remark that it allows us

to reproduce bearish and bullish market periods. The uniformly distributed
noise component can be shifted towards more negative or positive shocks at
convenience in order to represent different market situations. Having fixed
µ = 0.7 in our simulations, we let ω vary from 0.52 to 0.6 with steps of 0.02,
which corresponds respectively to a highly negative skewed and to a perfectly
symmetrical shock distribution. This specific choice of the noise structure
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Figure 5.12: Average cumulative fitness of the system as a function of changes
in β, ρ and ω, in the first, second and third panel, respectively. The rein-
forcement learning algorithm is in solid black, while the random strategy is
in dashed red.

allows us to perturb the system with shocks that are mainly negative and
generate situations where more banks ask for cash in the interbank market.

The last part of this appendix is dedicated to the comparison between η
evolving via the reinforcement learning mechanism and the two fixed strate-
gies, i.e. a constant η equal to 0 and 1, respectively.

In all these experiments, we run our model 100 times for different values
of the initial seed, generating the pseudo-random numbers over a time span
of T = 1000 periods. Moreover, all the agents’ initialization parameters,
except for the variations studied here, coincide with those presented in Sec.
Section 5.3.

Let us begin the analysis by focusing on the implications that the three
parameters variations have on the model’s results. Each variation of a pa-
rameter represents a different configuration of the banking system, which
is used to test the different strategies over M simulation. The cumulative
reward of these simulations is then averaged to obtain the mean values and
the respective confidence interval for the reinforcement learning strategy and
the random strategy. Figure 5.12 shows the average cumulative reward over
the M simulation as a function of a single parameter variation. We notice
that the performance of the reinforcement learning algorithm solved with the
PPO procedure is still superior with respect to the random strategy for all
the three sensitivity cases presented. Therefore, we can conclude that the ef-
fect analysis in the main paper still holds if one modifies some characteristics
of the underlying financial system.

In Figure 5.13 we show the sensitivity of the average values, over all the
M simulations and a rolling window of 100 time steps, of relevant quantities
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at the systemic level with respect to the three parameters described above7.
The reinforcement learning strategy consistently outperforms the random
strategy over all parameters and variables considered.
In the first column of Figure 5.13, we show the effects that the intensity of
choice, β, has on the systemic variables. When β increases from 0 to 40, the
liquidity and the credit channels increase up to β = 10 and then stabilize.
The underlying reason for this dynamic is as follows: a β value greater than
or equal to 10 generates a stable topology in the interbank network, which
makes the investigated values insensitive to further changes in the parameter.
Similar to the trend of the previous variables is the dynamics of the leverage,
which increases with β but at a decreasing rate. Indeed, the more liquidity is
available in the system, the more exchange of loans between banks happens.
Finally, an increasing β causes the amount of rationing of the system to
decrease, while the failures of the agent happen to be stable over the period.
In the second column of the Figure 5.13, we focus on the effects produced
by a variation in the fire-sale price. An increase of ρ protects both lenders
and borrowers from losses, and it is beneficial when looking at the liquidity
up to ρ = 0.3. From that level, borrowers do not enter the interbank market
very frequently, because they can cover their needs by selling their long-
term assets at a satisfactory price. This is reflected also in the amount
of rationing and failures that decrease when ρ is above 0.3. The leverage
immediately decreases with ρ, because the increase in liquidity of the system
is more than compensated by the increase in equity, since lenders are usually
repaid by borrowers and do not lose parts of their equity. Finally, in the last
column of the figure, the impact of the deposits’ motion is investigated. The
increase of the ω parameter causes an increase in liquidity, since the shocks
become gradually less and less negative. This explains also the decrease in
the leverage and the rationing, because banks are less negatively impacted
by the deposit shock and, consequently, need to gather less money from
the market. For the same reason, the amount of credit channels decreases
with a more symmetric shock distribution, while the amount of failures is
substantially stable, except for a higher variability when ω describes a highly
asymmetric shock.

7We refer the reader to Sec. Section 5.3.3 for a detailed explanation on the implemen-
tation of Figure 5.13
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Figure 5.13: Sensitivity analysis on system variables in the face of changes
in β, ρ and ω, in the first, second and third columns, respectively. The
reinforcement learning algorithm is in solid black, while the random strategy
is in dashed red.
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In the last part of our analysis, we compare the results of the η obtained
with the reinforcement learning algorithm with those of the two strategies,
η = 0 and η = 1, kept fixed during the evolution of the system. This
experiment allows us to verify the resilience of our simulated system with
respect to the one obtained by implementing a fixed mechanism of parameter
choice as in Berardi and Tedeschi, 2017.
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Figure 5.14: Average cumulative fitness of the system as a function of the
number of training episodes for the trained PPO instances with the corre-
sponding confidence intervals (in solid black), and the fixed strategies η = 0
(in dashed green) and η = 1 (in dashed yellow).

As already outlined in the main part of this work, the benchmark strat-
egy adopted for comparing our results is a random one given the similarity
between the two cases in the distribution of η as discussed above (see Fig-
ure 5.1, left panel). In Figure 5.14 we show that the reinforcement learning
algorithm outperforms the two fixed signals in terms of aggregated fitness of
the system. This result indicates that a dynamic selection of the η by looking
at the available information allows for more attractive banks in the system
than maintaining a fixed η. Finally, in Tab. Table 5.2 we show the results
on the economic performance of the three different signals.

It is worth noting that, when the regulator adopts an η evolving through
reinforcement learning, the system is more liquid and absorbs shocks bet-
ter than in the other two cases (as shown by the lower leverage and lower
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Ave. value η = 0.0 η = 1.0 η = RL

Liquidity
302405.63 280389.40 312998.02

(173.84) (146.69) (151.28)

Leverage
1.75 1.72 1.59

(0.054) (0.064) ( 0.042)

Rationing
57.40 48.51 40.24
(2.90) (2.27) (3.75)

Failed banks
332.49 325.21 321.01

(4.86) (4.81) (4.10)

Credit channels
1032.21 1260.51 998.23

(18.66) (120.67) (43.21)

Table 5.2: Average values with standard deviations in parentheses, over times
and all M Monte-Carlo simulation, of the aggregated economic variables ob-
tained for η = 0, η = 1 and η evolving via the reinforcement learning algo-
rithm, i.e. η = RL.

rationing and failures associated with endogenous η). Furthermore, in line
with what has been described in Sec. Section 5.3.2, the η = 1 strategy always
outperforms the η = 0 one, with the only known exception for the liquidity.

5.6 Appendix: Algorithms and Hyperparam-

eters

The PPO algorithm is easier to implement than a trust-region method (Schul-
man et al., 2015a) and easier to tune with respect to of Deep-Q network
(DQN) Mnih et al., 2015 or its continuous counterpart (Lillicrap et al., 2015).
Our implementation of PPO follows Andrychowicz et al., 2020, which per-
forms a large empirical study of the effect of implementation and parameters
choices on the PPO performances. Even if we use the algorithm in a different
context than their test bed, we follow the direction of their results in order
to tune our hyperparameters.

As described in the main, we implement PPO in an actor-critic setting
without shared architectures. When used to parametrize discrete strategies,
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policy gradient methods like PPO output a set of logits which are then nor-
malized to get the corresponding probabilities. Then, a greedy strategy se-
lects the action which obtains the maximum probability. Exploration during
training is guaranteed by the entropy bonus in the objective function.

The on-policy feature of PPO makes the training process episodic, so
that experience is collected by interacting with the environment and then
discarded immediately once the strategy has been updated. The on-policy
learning appears in principle a more obvious setup for learning, even if it
comes with some caveats because it makes the training less sample efficient
and more computationally expensive since a new sequence of experiences
need to be collected after each update step. In this process, the advantage
function is computed before performing the optimization steps, when the
discounted sum of returns over the episode can be computed. In order to
increase the training efficiency, after one sweep through the collected sam-
ples, we compute again the advantage estimator and perform another sweep
through the same experience. This trick reduces the computational expense
of recollecting experiences and increases the sample efficiency of the training
process. Usually we do at most 3 sweeps (epochs) over a set of collected
experiences before moving on and collecting a new set.

The gradient descent optimizer is Adam (Kingma and Ba, 2014), which
performs a batch update of size 100 with a learning rate equal to 0.005.
Since in a reinforcement learning setting the data are not all available at the
beginning of the training, we can not normalize our input variables as usual
in the preprocessing step of a supervised learning context. Hence, we add a
Batch Normalization layer (Ioffe and Szegedy, 2015) before the first hidden
layer to normalize the inputs batch by batch and obtain the same effect.

Maximizing the objective function that returns the gradient in Eq. 5.15
is known to be unstable, since updates are not bounded and can move the
strategy too far from the local optimum. Similarly to TRPO (Schulman et
al., 2015a), PPO optimizes an alternative objective to mitigate the instability

JCLIP(θ, ψ) = Eπθ
[
min

(
r(θ)Â (s, a;ψ) , clip (r(θ), 1− ε, 1 + ε) Â (s, a;ψ)

)]
(5.21)

where r(θ) = π(At|St;θ)
π(At|St;θold)

is a ratio indicating the relative probability of an

action under the current strategy with respect to the old one. Instead of
introducing a hard constraint as in TRPO, the ratio is bounded according
to a tolerance level ε to limit the magnitude of the updates. The combined
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objective function in Eq. 5.17 can be easily optimized by the PyTorch’s
automatic differentiation engine, which quickly computes the gradients with
respect to the two sets of parameters θ and ψ. The implemented advantage
estimator depends on the parameterized value function Vψ and is a truncated
version of the one introduced by (Mnih et al., 2016) for a rollout trajectory
(episode) of length T :

Ât = δt + (γτ)δt+1 + · · ·+ · · ·+ (γτ)T−t+1δT−1 (5.22)

where δt = rt+γVψ (st+1)−Vψ (st), γ is a discount rate with the same role as
ρ in DQN and τ is the exponential weight discount which controls the bias
variance trade-off in the advantage estimation. The generalized advantage
estimator (GAE) uses a discounted sum of temporal difference residuals.
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Chapter 6

Conclusions: main results

This work contributes to the financial literature by considering the applica-
tion of reinforcement learning to such domain under a different lens. Instead
of applying state-of-the-art algorithms to known financial problems, we per-
form simulations in controlled environments where we can quickly evaluate
the advantages and the drawbacks of this class of methods. We present
different applications of reinforcement learning from the micro perspective
of a trader to the macro view of a policymaker. The frequent use of ad-
hoc simulated environments helps our work stand back from other pieces of
financial literature where the application is blindly carried out over prepro-
cessed datasets, hence being more prone to biases and false discoveries in
their analyses.

The first part of the work focuses on providing basic structures and con-
cepts shared by all machine learning algorithms. Chapter 1 introduces the
different machine learning paradigms and elaborates on the neural network
as a leading machine learning model employed in this work. Chapter 2 out-
lines the fundamentals of reinforcement learning and its integration with
neural networks in a relatively recent thread of research called reinforcement
learning.

In the second part of the work, Chapter 3 tests multiple reinforcement
learning algorithms to demonstrate their capability to retrieve known signals.
Our results have shown that these methods can capture mean-reverting sig-
nals and trade accordingly, although they are sometimes unstable during
their training process and require long training runtime.

For such reason, in Chapter 4, we extend the same line of research by
adopting a hybrid approach that merges the model-free setting of the rein-
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6. Conclusions: main results

forcement learning algorithm applied in Brini and Tantari, 2021 with prior
knowledge of the portfolio problem. Using a residual approach, we let the
agent learn a deviation from the renowned Markowitz portfolio solution to
capture the friction of the market caused by transaction costs. We prove
that the residual approach is beneficial to stabilizing the training process
and reaching a faster convergence to benchmark solution.

Our third contribution in Chapter 5 showed the flexibility of the reinforce-
ment learning framework, which is extendable to a wide variety of sequential
decision marking problems, especially in finance and economics. (Brini et al.,
2022) represent a still new application of reinforcement learning, where the
agent learns a strategy to improve the flow of liquidity through interbank
lending agreements. Modeling a public policy recommendation through a
reinforcement learning approach is a new application of machine learning in
finance. We found that the learned policy plays a crucial role in mitigating
systemic risk with respect to alternative policy instruments.
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