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CHAPTER1

Introduction

In the last century, the relationship between physics and information has be-
come more and more tight. A famous example is inspired by the works of
several authors—Jakob Bekenstein, Stephen Hawking and Leonard Susskind
among others—concerning the thermodynamics of black holes and the entropy
of gravitational systems [1, 2, 3, 4, 5, 6, 7, 8]. In particular, they discovered that
the entropy of a black hole is proportional to the horizon area of the black hole
itself. Elaborating on this, and interpreting the entropy as a measure of the
number of degrees of freedom needed to describe the physics in a given region,
it was concluded that this number is bounded by the area that circumscribes
the region itself. This is, roughly speaking, the essential content of the so-called
holographic principle [9, 8], a property that many physicists believe should be
a tenet of a quantum theory of gravity (see [10] for a comprehensive review).
A phenomenon that is completely analogous to the latter is that of area laws
in many-body systems. A prototypical example of a many-body system is a
lattice, whose evolution is described by a local Hamiltonian, and the whole
lattice can be thought of as being in a pure state. In such a system one can de-
fine the entropy of a subregion of the lattice, which measures the entanglement
between such a region and the rest of the lattice, and it is accordingly called
the entanglement entropy. What is found is that such entropy tipically scales
with the area of the boundary of the subregion, instead of scaling with the vol-
ume, and such scaling laws are of interest for the study of critical behaviour in
complex quantum systems and for improving the efficiency of numerical algo-
rithms in quantum many-body physics (see [11] and references therein). These
two examples show that the interplay between physics and information—the
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1. Introduction

latter being represented by a suitable entropic quantity—can be very fruitful
for a deeper understanding of fundamental physical phenomena.

The strong belief in the fact that capitalising “on the findings and outlooks
of information theory” may definetely reshape our understanding of physics
was put forward—and epitomised in the motto it from bit—by John Archibad
Wheeler [12]. Such a phrase summarises a thought-provoking proposal for a
new paradigm to be pursued in physics. In his words:

“[...]every it—every particle, every field of force, even the space-
time continuum itself— derives its function, its meaning, its very
existence entirely—even in some contexts indirectly— from the
apparatus-elicited answers to yes-or-no questions, binary choices,
bits.”

A partial fulfillment of the proposal made by Wheeler is represented by the
denouement of the program, initiated by Birkhoff and von Neumann[13], of
an axiomatisation of Quantum Theory (QT) that makes no reference to the
mathematical structure of Hilbert spaces or C*-algebras, but relies on prin-
ciples that refer to operational and informational statements only. The path
of the operational approach, where the building blocks consist of preparara-
tion and measurement apparatuses, and postulates concern how these combine
to give outcome probabilities, was taken by Ludwig [14], who however failed
to completely reconstruct the Hilbert space structure from purely operational
principles. With the development of quantum information theory in the 80s
and 90s it was understood that the mathematics of QT entails startling proper-
ties, such as no-cloning and quantum teleportation, and this led to a question:
is it possible to reverse the logic and derive QT from its informational features?
This question gave rise to a new research programme which was condensed in
a sentence “quantum foundations in the light of quantum information” [15],
which, in turn, gave a positive answer [16, 17]

The principles that are adopted in the operational frameworks in which QT
is derived do not contain references to a measure of information. However, to
study statements as the aforementioned holographic principle we cannot steer
clear of defining what we mean by information content of a physical system.
The work presented in this thesis stems from this consideration, and investi-
gates how, and in which conditions, it is possible to give a proper definition
of information content in the framework of Operational Probabilistic Theories
(OPTs).

Now, more often than not, in physics the word information is associated
with the word entropy. Historically, the latter became part of the physicists’
language in 19th century, introduced by the German physicist and mathemati-
cian Rudolf Clausius, while he was developing the second law of thermody-
namics between 1850 and 1870. It was not too long before Ludwig Boltzmann,
while laying the foundations of statistical mechanics, defined the entropy as the
logarithm of the number of microstates that correspond to a given macrostate.
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Then, Willard Gibbs refined the definition of Boltzmann, furnishing a mathe-
matical formula that quantifies, to some extent, the lack of knowledge due to
the ‘coarse-graining’ of microstates, which in turn defines the thermodynami-
cal macrostate1. Around seventy years later, the same formula was proposed
by Claude Eldwood Shannon, an american mathematician and engineer, in
order to quantify the uncertainty, measured in bits2, associated with a source
of information represented by a classical system. About the name he decided
to give to this quantity, the following quotation is credited to Shannon [18]:

“My greatest concern was what to call it. I thought of calling it
‘information,’ but the word was overly used, so I decided to call it
‘uncertainty.’ When I discussed it with John von Neumann, he had
a better idea. Von Neumann told me, ‘You should call it entropy,
for two reasons. In the first place your uncertainty function has
been used in statistical mechanics under that name, so it already
has a name. In the second place, and more important, no one
knows what entropy really is, so in a debate you will always have
the advantage.’ ”

and indeed, that quantity, that shares the same mathematical expression with
the Gibbs entropy, is nowadays called the Shannon entropy (usually denoted
as H).

Shannon was well aware of the Gibbs formula from statistical mechanics;
his breakthrough was to recognise that the same formula fully characterises the
statistical nature of an information source. On the one hand, considering an
experiment whose outcomes can occur according to a probability distribution,
he posed the question: how much uncertainty do we have about the outcome?
The first justification he provided relies on an axiomatic approach, where he
defines a set of postulates that a reasonable measure of uncertainty should
satisfy (see the original work [19], and [20]). On the other hand, he also gave a
characterisation that is fully operational, in the form of a theorem that is com-
monly known as first Shannon theorem or (classical) noiseless coding theorem.
This establishes the Shannon function as a measure of the information content
of a classical source of information. The simplest description of a classical in-
formation source is in terms of a sequence X1, . . . , XN , . . . of random variables
that are identically and independently distributed, so that they all take values
in the same finite set of symbols S = {xi}. The source then produces messages
xi1 . . . xiN of variable length N . Let us further simplify the discussion by as-
suming that S = {0, 1}, namely that the messages are represented by strings of
bits. Roughly speaking, the theorem states that the smallest factor by which
the messages can be shortened without losing those ones that are most likely

1Recall that, if {pi} is the probability distribution associated with the microstates, the
Gibbs entropy is given by SG = −kB

P
pi log2 pi, where kB is the Boltzmann’s constant.

2bit, the portmanteau of binary digit, is introduced in the literature by Shannon himself,
who, however, credited the coining to John Wilder Tukey, an american mathematician.
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1. Introduction

to occur, is exactly the Shannon entropy H associated with the source. In this
sense, the theorem answers a fundamental question: how much resources do
we need in order to faithfully convey the messages of a source? Or, in other
words, to what extent can we get rid of redundancies in the messages, with-
out losing pieces of information? This kind of problem is commonly known in
the field of information theory as compression task. Needless to say that this
issue is of practical relevance, but its solution also shed a new light on what it
means to measure information from a foundational viewpoint. All that being
said, both names—uncertainty and information content—may well be applied
to the Shannon function, given the results that he proved in his work.

The problem of quantum information compression was firstly solved by a
theoretical physicist, Benjamin Schumacher3, in 1995 [21]. The idea was to
translate all the elements of the classical problems in quantum terms, “instead
of simply applying classical information theory to probabilities derived from
quantum rules”. Then: i) a source of information becomes an ensemble of
arbitrary pure states lying in a given Hilbert space, and giving rise to a signal
that can be described by a mixed state; ii) the messages, generalising the
i.i.d. classical setting, are factorised states of the form ρ⊗N , processed with
quantum channels ; iii) last but not least, the elementary unit of information,
the analogous of the classical bit, is the “quantum bit” or qubit4, namely a
2-level quantum system, such as the spin of the electron. The role of the
Shannon entropy is then played by the von Neumann entropy S, introduced by
John von Neumann as a generalisation of the Gibbs entropy[22]. This entropy
answers a slight variation of the question we posed before: to what extent can
we get rid of redundancies in the messages, without losing quantum pieces of
information? The answer is that if we have a message made of N qubits from a
source described by a density matrix ρ, then it cannot be faithfully transmitted
using less than S(ρ) qubits. This provides the von Neumann entropy with the
same operational interpretation enjoyed by the Shannon entropy in classical
theory: it is a measure of the amount of quantum information, measured in
qubits. Furthermore, Schumacher gave a profound insight, showing that in
order to achieve a reliable transmission of quantum information, one cannot
neglect quantum correlations, in a motto: preserving quantum information is
equivalent to preserving entanglement.

Now, the question the present thesis work hinges upon is how to define a
proper measure of information in a context in which the features of Classical
Theory (CT) and QT are not assumed from the beginning. The framework
adopted here is that of Operational Probabilistic Theories, that has proven
to be fruitful for the investigation of quantum features from a broader point
of view. There are three notions of entropy that have been introduced in the
literature, defined in terms of classical information quantities as follows: i)

3Curiously, notice that, as Schumacher also mentioned in [21], he has been a Ph.D.
student of Wheeler.

4The term, as reported by Schumacher himself, was coined in jest during a conversation
between him and Wootters.
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The measurement entropy of a system, namely the infimum Shannon entropy
of any possible measurement on the system, quantifies the minimum measure-
ment uncertainty, provided that the system is prepared in the state of interest.
ii) The decomposition (or mixing) entropy, namely the infimum of the Shannon
entropies over all possible ways of preparing the system’s state as a mixture
of pure states, quantifies the minimum uncertainty for a preparation of a state
with respect to pure states. iii) The supremum of the Shannon mutual infor-
mation between two random variables related respectively to measurements
on the system and decompositions of the state of interest, quantifies the max-
imum accessible information. All of these generalisations of the Shannon and
von Neumann entropies are obtained as the result of an approach that may be
considered an hybrid between operational and axiomatic. On the one hand,
as it is also clear by the above description, they have an operational meaning,
since they refer to preparations, measurements or both. On the other hand
they rely on a quantity that has its full justification as a measure of information
in a classical context, therefore their understanding as an uncertainty measure
is ultimately inherited from the interpretation of the Shannon function as such.

In the present dissertation we pursue a fully operational approach to gen-
eralise the notion of information content to probabilistic theories that do not
necessarily satisfy the laws of classical or quantum physics. In particular, we
propose a definition that stems from the insights of the classical and quantum
noiseless coding theorems. In other words, by reversing the logic, we introduce
an operational entropy as the minimal compression rate of a suitable generali-
sation of the task mentioned above in the classical and quantum scenarios. The
main assumption, that guarantees the meaningfulness of our definition, is that
of “digitisability”. As we saw, classical and quantum information content have
their own unit of measure, the bit and qubit respectively. In general, there
can be probabilistic theories that do not have the equivalent of these systems,
whereby it might be not possible to define the compression rate unambiguosly.
Precisely, our assumption consists of: i) the supposed existence of at least one
system, say B, such that any other can be encoded on a suitable array made
of a finite number of B systems; ii) if more than one of such systems exist
then they are equivalent. It is worth emphasising that this assumption is not
so limiting, in light of the fact that all the probabilistic theories known in the
literature satisfy it. This work unifies the classical and the quantum results
in a general setting, and consents to deal with problems and statements re-
lated to the information content via a top-down approach. In particular, one
can investigate its general properties, regardless of the characteristic traits of
classical and quantum theories, and study the behaviour of the information
content in specific theories to establish links between properties of the theory
and the general features of the information content.

In chapter 2 we review in detail the classical and quantum noiseless coding
theorems, since our scope is to extrapolate the operational meaning that such
results confer to the Shannon and von Neumann entropies respectively. In
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1. Introduction

order to do this, we give a summary of the mathematical structure of CT and
QT, and this will also serve to fix the notation. We will also remind the reader
of the notions of classical and quantum weak typicality, since they will be used
in chapter 6 and chapter 5 respectively.

In chapter 3 we provide an extended summary of the OPT framework, with
an account of the operational and probabilistic language. We will introduce
two properties that are relevant in our dissertation: conditioning (or strong
causality), and steering. We then provide a brief recap of fermionic informa-
tion theory, that will be treated in chapter 5, and of Bilocal Classical Theory,
considered in chapter 6. We finally review the definition and the main prop-
erties of the three different definitions of entropy already introduced in the
literature, along with a generalisation of fidelity.

In chapter 4 we introduce the notion of information content, extending
to the OPT framework the compression task. Along the path we pay the
due attention to generalise all the basic elements of a communication scheme
and the figure of merit that assesses the error in absence of the characteristic
features of CT and QT. We illustrate the “digitisability” assumption, that
delimits the class of theories in which our definition applies. Subsequently, we
analyse the impact of some additional assumptions on the definition, and derive
simplified expressions that are of great help when dealing with specific theories,
showing that in the classical and quantum case the information content exactly
reduces to the Shannon and von Neumann entropies respectively. We then
investigate some properties of the information content, such as subadditivity
and invariance under reversible transformations. We also show that, in general,
the information content is not a measure of purity for state: while it is generally
true that a state with vanishing information content is pure, the viceversa is
proved to be false. In particular, if the compositional law of the theory at
hand does not preserve purity, then there must exist pure states with strictly
positive information content. In proving this, we see that the latter is bounded
from below by one of the entropy introduced in the literature, the optimised
accessible information.

In chapter 5 we apply the machinery developed in chaper 4 to the case
of Fermionic Theory (FT). This is a case of particular interest, since it is an
example of a theory that does not satisfy the local process tomography prop-
erty. Indeed, due to the parity superselection rule that forbids superpositions
of vectors of different parity, the theory is strictly bilocal tomographic, and
this means that transformations that are locally indistiguishable can behave in
a very dissimilar way when applied locally on enlarged states. Therefore, it is
by no means obvious that the information content has to match the fermionic
von Neumann entropy of the fermionic source, represented by a state with
definite parity. Nonetheless, relying on the Jordan Wigner isomorphism that
maps fermionic systems on a suitable number of qubit systems, we are able to
prove that no differences show up with respect to the quantum case.

In chapter 6 we finally consider a toy model, named Bilocal Classical The-
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ory (BCT). This theory is also strictly bilocal, but the feature that makes it
rather peculiar is that independent preparations in pure states give rise to a
mixture when composed. This property lies at the basis of the differences be-
tween the information content and all the other entropies. This theory is an
explixit counterexample to the conjecture that one of the entropic functions
proposed so far in the literature satisfies a generalised noiseless coding theo-
rem. Remarkably, this happens in a theory where all of them boil down to the
same quantity, the Shannon entropy of the state that describes the information
source. Nevertheless, it might be true that in the presence of additional hy-
potheses, at least one of the entropies may represent the minimal compression
rate in a coding theorem.

We then conclude the thesis drawing our conclusions in chapter 7 and
discussing possible directions for future research.
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1. Introduction

1.1 Symbols and acronyms

In the following, some symbols and acronyms used throughout the work are
listed:

❼ H,K, . . . Hilbert space

❼ L(HB,HA) set of linear operators from HB to HA

❼ L(HA) set of linear operators on HA

❼ L(HA)> set of positive linear operators on HA

❼ σx =
0 1
1 0

, σy =
0 −i
i 0

, σz =
1 0
0 −1

Pauli matrices

❼ A,B,C, . . . systems of a probabilistic theory

❼ NF system corresponding to N Local Fermionic Modes

❼ St(A) set of states of the system A

❼ Eff(A) set of Effects of the system A

❼ StR(A) linear span of the set of states St(A)

❼ EffR(A) linear span of the set of effects Eff(A)

❼ DA size of the system A

❼ Transf(A → B) set of transformations from system A to system B

❼ H(p) Shannon entropy of the probability distribution p := {pi}

❼ S(ρ) von Neumann entropy of the density matrix ρ

❼ TNδ (p) (N, δ)-typical set associated with p

❼ HN
δ (ρ) (N, δ)-typical subspace associated with the quantum state ρ

❼ BCT Bilocal Classical Theory

❼ CT Classical Theory

❼ FT Fermionic Theory

❼ GPT Generalised Probabilistic Theories

❼ LFM Local Fermionic Mode

❼ OPT Operational Probabilistic Theories

❼ POVM Positive Operator-Valued Measures

❼ QT Quantum Theory
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CHAPTER2

Noiseless coding in classical and
quantum information theories

In 1948, with his seminal paper, Shannon gave a solid mathematical foundation
to the classical theory of information and communication [19]. In particular,
he made clear the link between the notion of entropy and the information
content of a classical source via the so called first Shannon theorem. This result
justifies our comprehension of the entropy as a quantifier of uncertainty about
the outcome of a classical probabilistic experiment, in terms of an operational
task: information compression. More precisely, the theorem establishes that
the Shannon entropy associated with the source is the minimal number of
bits per length of the received message that are necessary in order to reliably
compress the source, in the limit of long messages.

In order to prove this result, Shannon considered a block-coding strategy,
allowing for an error in the decoding of the compressed messages. This strat-
egy works in the asymptotic regime thanks to the powerful notion of typicality,
developed by Shannon himself. Imagine a source that emits messages in the
form of sequences, where each letter of the message is drawn from a finite set
of allowed symbols. For fixed length of the sequences, say N , the idea was to
recognize that there exist proper subsets of the set of all possible sequences,
say TN , that, for very long messages, have two really nice properties: i) they
contain those sequences that are more likely to be emitted (whereby they are
called typical), and ii) they have cardinality exponentially smaller than TN .
The key point is that the cardinality of the typical sets and the probabilites
of typical sequences solely depend on the Shannon entropic function, there-
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2. Noiseless coding in classical and quantum information theories

fore, the latter fully characterizes the statistical nature of the source. The
coding strategy for a given length N is then to store all the typical sequences,
and throwing away all the rest, and by taking N sufficiently large, the error
probability can be made arbitrarily small.

The analogous problem of quantum noiseless coding was succesfully solved
in 1995 for the first time, by B. Schumacher in [21] (with further refinements
considered in [23, 24]). The question he addressed is how much quantum infor-
mation can be compressed, measured in qubits per symbol. The answer turns
out to be quite simple and is, in form, essentially equal to the classical case:
the minimal rate that allows for ideal compression of quantum information is
equal to the von Neumann entropy of the density matrix that represents the
source. Therefore, the latter can be interpreted as the information content of
a quantum source of information, measured in qubits. On the one hand, Schu-
macher considered an ensemble of pure states, not necessarily orthogonal, as a
quantum souce, which gives rise to a signal represented by a mixed state; the
task is to transpose the signal faithfully, minimising the average error. But in
quantum theory, a mixed state can also be interpreted as the marginal state of
a system that is entangled with a reference one, with the whole system being
in a pure state. The insightful observation of Schumacher is that S(ρ) is the ul-
timate compression rate with which we can transmit the local messages, while
preserving quantum entanglement with a reference system. This latter fact
makes the popular motto transmitting quantum information means preserving
entanglement quite solid.

Therefore, the classical and quantum noiseless coding theorems give us two
useful insights: i) measuring how much information is carried, or contained,
in a physical system, is equivalent to asking how much redundancy we can
eliminate in a compression task; ii) preserving information does not only mean
reproducing the local messages, but also taking care of the correlations with
an environment.

In this chapter we thoroughly review the aforementioned results, since they
constitute the ground for our operational definition of information content.
Along the way, we give an overview of the mathematical structure of both
classical and quantum theory, with the purpose of fixing the notation and
the terminology that will be used throughout the work when we refer to such
theories. We will also remind the reader of the notions of classical and quan-
tum weak typicality, since they will be useful also in chapter6 and chapter 5
respectively.

2.1 Classical Shannon theory

The aim of this first section is to give a self-consistent review of the first Shan-
non theorem in its simplest form. In particular, we briefly review the setting
in which the noiseless coding theorem is proved. To this end, we will recall
the mathematical structure of classical theory and the definition of Shannon

10



2.1. Classical Shannon theory

entropy, along with some related properties. We then remind the reader of
the notion of weak typicality, a powerful tool that also finds application in
the quantum setting, as we will see later, and finally we conclude with the
statement of the celebrated Shannon’s noiseless coding theorem.

2.1.1 Summary of Classical Theory

Classical information theory regards processing of information that is stored
in classical systems by means of classical dynamics. Therefore, we must first
recall the basic facts about classical theory, namely which are the mathematical
representatives of classical states, transformations and measurements. This
overview has the main scope of fixing the notation when dealing with results
concerning CT throughout the work.

A type of classical system is associated with real vector spaces RdA , and
different types are associated with different values of the dimension dA. A
classical system is associated with a given set of symbols, X, whose cardinality
|X| equals the dimension dA

1. The set of states of a given system A, which is
denoted by St(A), is made of sub-stochastic vectors in these spaces, namely by
vectors p satisfying

kpk :=

dAX
i=1

|pi| ≤ 1. (2.1)

This norm k·k induces the following distance on the set of classical states

kp − qk1 :=
1

2
kp − qk =

1

2

dAX
i=1

|pi − qi| (2.2)

Notice that, in particular, pure states are represented by the canonical basis
vectors ei of RdA , that are those vectors with all vanishing components except
for the i-th one. Therefore the linear span of the set of states coincide with
the vector space RdA , namely

StR(A) := SpanR[St(A)] = RdA (2.3)

Moreover, we also observe that the set of states of any classical system is a
simplex, that is the convex hull of a finite set of affinely independent points.
The set of those states such that p = {pi}dA

i=1 is a probability distribution
also called the set of deterministic states, will be denoted by St1(A). Another
useful way in which we can think of a deterministic state, is as a random
variable X, which is fully specified by an alphabet X = {x1, . . . , xdA

} (also
denoted as Rng(X) and called range) on which it takes values, and a probability
distribution {p(xi)}dA

i=1.

1Clearly, different systems of the same type are associated with a different set of symbols
that have the same cardinality, but they are completely equivalent from an informational
standpoint.
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2. Noiseless coding in classical and quantum information theories

A measurement is represented by a set {xj}j∈Y of unit-dominated positive
vectors, i.e. those x ∈ RdA such that 0 ≤ xk ≤ 1 for any k = 0, . . . , dA,
satisfying the additional conditionX

j∈X

xj = (1, . . . , 1) =: e.

The elements of the measurement xj are also called effects and the vector e,
that has all components equal to 1, is called the determinsitic effect. When an
effect xj of a measurement {xj}j∈Y is applied to a state p, the probability of
the outcome is the scalar product of the two vectors xj · p. Notice that pure
states can be perfectly discriminated via the measurement whose effects are,
in fact, the canonical basis vectors.

Transformations from system A to system B are represented by dB×dA sub-
stochastic matrices (i.e. matrices whose columns are a sub-stochastic vector)
M acting on the probability vectors by multiplication p → Mp; deterministic
transformations are stochastic matrices (namely, whose columns are normal-
ized probability distributions) while reversible ones are permutations.

The action of two transformations in sequence is simply given by matrix
multiplication while the composition of two systems A and B is obtained with
the tensor product, where the pure states are the vectors of the form ei ⊗ ej.
Notice that the Krein-Milman theorem implies that any state of the joint
system AB, say Π, admits a unique pure state decomposition of the form

Π =
X
i

Πijei ⊗ ej, (2.4)

where
P

ij Πij ≤ 1.

2.1.2 A measure of uncertainty: the Shannon entropy

The main role in the field of information theory is played by the so called
Shannon entropy [19]. Its introduction in the information-theoretic context
responds to the urgency of a quantification of uncertainty about a classical
experiment that we are going to perform. Complementarily, such a quantity
can also be interpreted as the average information gain that is obtained once
the experiment is performed, and we have learnt the outcome, say i. Roughly
speaking, the quesiton is: if we have a classical system described by a proba-
bility distribution p := {pi}i∈X, where each i ∈ X can be think of as associated
with an event that may occurr, what is our uncertainty about the outcome?
The answer is provided, indeed, by the Shannon function, whose definition is
recalled in the following.

Definition 2.1.1. Let p = {pi}i∈X be a probability distribution associated with a
state of a classical system A with dimension dA. The Shannon entropy H(p)

12



2.1. Classical Shannon theory

is defined as

H(p) := −
dAX
i=1

pi log pi, (2.5)

with the convention that 0 log2 0 ≡ 0. Sometimes we will simply denote it by
H(A), without making explicit reference to the state in which the system A is
whenever it is clear from the context.

Remark 2.1.1. In his original work, Shannon also gave a heuristic motivation
that justifies the mathematical function H(p) that should describe such a
quantity, formalised in terms of three ”reasonable” assumptions:

1. H(p) is a continuous function of its variables;

2. if {pi}i∈X is the flat distributions, i.e. pi = 1
|X| , then H should be a

monotone increasing function of |X|. This is the obvious intuition that
the greater the choice, the greater the uncertainty;

3. “If a choice be broken down into two successive choices, the original H
should be the weighted sum of the individual values of H.”

The third is directly quoted from [19], and it can be rephrased in a mathemat-
ical fashion as follows: consider a probability distribution {pi}i∈X such that
there exist a partitioning {Xj}j∈Y of X, a probability distribution {qj}j∈Y and,
for any j ∈ Y, a probability distribution {qi|j}i∈Xj such that pi = qjqi|j for any
i ∈ Xj and for any j ∈ Y (see also figure 2.4). Then, assumption 3 tells us that
for any such distribution one has that H({pi}i∈X) satisfies

H({pi}) = H({qj}) +
X
j∈Y

qjH({qi|j}).

With the aforementioned hypotheses, Shannon showed that H(p) must nec-
essarily be of the form −K

P
i pi log pi, with K a constant (we refer the reader

to his work for the proof, see also the famous work by rényi [20]). Therefore,
setting K = 1, which corresponds to measure the amount of uncertainty in
terms of bits, one is led to the definition 2.1.1.

Shannon was aware of the fact that similar formulas hold for the thermo-
dynamical entropy in statistical mechanics. His intuition resides in recognising
its central role in quantifying the amount of information of a classical informa-
tion source, not only via the foregoing heuristic description, but also through
the noiseless coding theorem, one of the main result that he presented in [19].

Based on Shannon function, one can build other information-theoretic quan-
tities. Consider, for instance a joint classical system AB in a state Π =P

i Πijei ⊗ ej ∈ St1(AB). The joint Shannon entropy of A and B, which de-
scribes our lack of knowledge about the pair (i, j), is then obtained in terms

13



2. Noiseless coding in classical and quantum information theories

=

p1

p2

p|X|

...

q1

q|Y|

qi|1
i ∈ X1

...
...

... i ∈ X|Y|

qi|Yi ∈ X

Figure 2.1: Here is a pictorial representation of what is described in remark
2.1.1. On the left side, only one choice is made according to the probabil-
ity {pi}i∈X. On the right hand side, the second choice is conditioned on the
first outcome j ∈ Y, and it is made according to the probability distribution
{qi|j}i∈Xj on a set possible outcomes that is a subset Xj of X. The two-step
experiment, that is a conditional test, must give rise to same probabilities for
the whole set of outcomes X as the one on the left side.

of the probability distribution {Πij} as follows

H(AB) := −
dA,dBX
i,j=1

Πij log Πij. (2.6)

Clearly, this can be readily extended to the case of N systems in the obvious
way. Along with this one can also consider the entropy H(A) and H(B) of
the marginal states on A and B, that are given in terms of the probability
distributions {pi =

PdB

j=1 Πij}dA
i=1 and {qi =

PdA

i=1 Πij}dB
j=1 respectively via the

formula (2.5). Now, imagine that we have learnt the value of j. The last en-
tropic quantity that we can construct with the notions encountered up until
now is the mutual information. Again, consider a joint system AB in a state
Π ∈ St1(AB) and the sum of the entropies of the marginal states H(A) and
H(B). It might be the case that in this way we are overcounting some informa-
tion that is in common between A and B. If we then subtract the joint entropy
H(AB) from this sum we are left with with this shared piece of information,
that is the mutual information of A and B

H(A : B) := H(A) +H(B) −H(AB). (2.7)

The quantities that we have defined so far have several desirable properties
that we list in the following theorem

Theorem 2.1.1 (Properties of the Shannon entropy). With the notation estab-
lished above, the following hold:

1. the joint entropy and the mutual information are symmetric in their
arguments, namely H(A : B) = H(B : A) and H(AB) = H(BA);

14



2.1. Classical Shannon theory

2. (subadditivity) for any A and B and any Π ∈ St1(AB) one has H(AB) ≤
H(A) + H(B), with equality holding iff the joint state of the bipartite
system is factorized, namely Πij = piqj;

3. for any A and B and any Π ∈ St1(AB) one has H(A : B) ≥ 0 with
equality holding iff the joint state of the bipartite system is factorized;

4. for any A and B and any Π ∈ St1(AB) one has

H(A : B) ≤ min{H(A), H(B)}; (2.8)

5. (concavity) if p,q ∈ St1(A) have the same outcome set and s ∈ [0, 1]
then

H(sp + (1 − s)q) ≥ sH(p) + (1 − s)H(q); (2.9)

6. (strong subadditivity) For any tripartite classical system ABC, the fol-
lowing inequality holds

H(ABC) +H(C) ≤ H(AB) +H(BC). (2.10)

Some of these properties, such as subadditivity and concavity, are desirable
features of a quantity that aims at measuring how much information is carried
by a physical system.

2.1.3 Weak tipicality and the first Shannon theorem

Source
Transmission

Channel
DecoderEncoder

i1 . . . iN s1 . . . sm s1 . . . sm i1 . . . iN

Destination

Figure 2.2: A schematic representation of a communication setting. A discrete
source generates a sequence of N symbols that are the input of the encoder,
used by the sender to generate a string of bits that represents a compressed
version of the original message. Then a transmission channel is used to convey
the latter to the receiver, that finally decodes the message.

A communication scheme is made of three components: the information
source that produces the messages received by a first agent, say Alice; the
encoder, with which the sender compresses the messages on a smaller physi-
cal support; the channel that is used to transmit the compressed message to
a receiver, and which may introduce some noise and distortion of the com-
pressed message (but in the present case we consider noiseless coding); finally,
the decoder that decompresses the original message for a second agent, say
Bob. Thus, the first question is how to represent such basic elements of a
communication setting. In particular, one has to model the output of an
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2. Noiseless coding in classical and quantum information theories

information source, and also characterise the result of an operation that is
performed thereon. Now, an information source might give rise to signals of
any sort, that, for instance, can be represented as a continuum in the case of
the sound of a vinyl record produced by turntable speakers, or as a message
with symbols drawn from an alphabet of finite size (e.g. a telegraph).

In this section, in the spirit of keeping the discussion as simple as possible,
we will be concerned with the easiest case to handle. Imagine that we have a
classical source of information whose signals are in the form of sequences i =
i1 . . . iN of variable lentghN , where each symbol i in the sequence is drawn from
a given set X, according to a probability distribution p := {pi}i∈X. If we assume
that they are identically and independently distributed (i.i.d.), the probability
associated with a given string is the product of the individual probabilities
pi1 · · · piN =: pi. With our notation, this means that the state that represents
a possible message is associated with a classical system AN represented by
(RdA)⊗N and it has the form ρ =

P
i pi ei, where ei = ei1 ⊗ · · · ⊗ eiN are the

pure state vectors of the composite system (RdA)⊗N .

Remark 2.1.2. [25] A proper way of mathematically modeling the output of
a source is as a stochastic process, namely as a sequence of random vari-
ables I1 . . . IN , . . . with an associated probability distribution P (N)(I1 . . . IN =
i1 . . . iN) for any N , and assuming that the source is discrete means that the
symbols ik are drawn from a discrete set X, usually called alphabet. A rea-
sonable assumption is that the probability distributions PN satisfies the com-
patibility condition

P
i∈X P

(N+1)(i1 . . . iN i) = P (N)(i1 . . . iN), in this case one
can safely omit the apex N with no risk of confusion and write P (i1, . . . , iN)
whatever N is. It is then clear that there is a huge variety of options that
one might consider. For instance, one can model a source as a Markov chain,
where the probability of having the symbol iN after N steps, given that the
preceeding symbols are i1 . . . iN−1, is actually dependent on the last symbol
iN−1 only, or as a generalizion of this in which conditioned probabilities de-
pend on the last two, or three, or k symbols. In order to avoid a huge amount
of technicalities that may cloud the concepts, as we have already said, we will
make the simplest assumption on the nature of the source, namely that the
random variables I1, . . . , IN , . . . are identically and indipendently distributed;
in this case, the source is said to be stationary and memoryless.

Once the messages are emitted we can adopt different strategies in order
to digitise them. A possibility is to use a variable-length code, where each
symbol is coded on strings of bits of different lentgh, via an injective function
(so that all the symbols can be recovered without errors). According to the
occurence probability of the symbols, the most likely can be encoded onto just
one bit, while for the unlikely ones longer bit strings can be chosen. As a
simple example, let us consider a source that emits sequences made of symbols
drawn from the set X = {a, b, c, d}, with probability

p(a) =
1

2
, p(b) =

1

4
, p(c) = p(d) =

1

8
.
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2.1. Classical Shannon theory

One can encode the symbols according to a bijective function that uses two
bits for each symbol, so that the expected number of bits per symbol is, indeed,
two. But if we want to exploit the information on the occurrence probability
of the symbols, we can use the following injective encoding

a→ 1, b→ 10, c→ 110, d→ 111.

In this case the average number of bits per symbol is 7/4, so that this encoding
scheme has a better compression rate.

Shannon considered two differences with respect to the simple scenario
that we have described so far. In the first place, instead of considering symbol
coding, Shannon adopted a block-coding strategy. In this case, we wait until
the source has emitted a message made of a large number of symbols. Then,
we encode the entire strings, instead of the symbols they are made of. The idea
behind this approach is that, for fixed N , there is a subset of all the sequences
that, while having cardinality which is exponentially smaller than the set of all
sequences, it retains almost all the probability. These sets are called ”typical”
and they are formally defined as follows.

Definition 2.1.2 (Typical set and typical sequences). For any δ > 0, the (N, δ)-
typical set TNδ (p) is a subset of all the possible strings of lentgh N and it is
defined as follows

TNδ (p) = i :
1

N
log2

1

pi

−H(p) ≤ δ ,

where H(p) is the Shannon entropy of p. Accordingly, any i ∈ TNδ (p) is called
(N, δ)-typical sequence, or simply typical sequence (whenever N and δ are
clear from the context).

The quantity −1/N log pi is also called the sample entropy of the string
i = i1 . . . iN , thus the set TNδ (p) contains those sequences whose sample entropy
is close to the Shannon entropy within δ. It is worth mentioning a simple
rephrasing of this definition, which is called equipartition property of the typical
sequences, namely that their probability is almost uniform in the following
sense

2−[NH(p)+δ] ≤ pi ≤ 2−[NH(p)−δ]. (2.11)

The following is a summary of the relevant properties of typical sequences.

Theorem 2.1.2. Let p be a probability distribution, and for δ > 0 let TNδ (p)
denote the (N, δ)-typical set. Then

1. Let η > 0. Then there exists N0 such that for any N ≥ N0

P (i ∈ TNδ (p)) ≥ 1 − η;
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2. Noiseless coding in classical and quantum information theories

2. Let η > 0. Then there exists N0 such that, for any N ≥ N0, the cardi-
nality of TNδ (p) is bounded as follows

(1 − η)2N [H(p)−δ] ≤ |TNδ (p)| ≤ 2N [H(p)+δ].

These two properties formalize in a rigorous way what we have already
mentioned: first, for any given δ > 0, the set of typical sequences has all
the probability in an asymptotic sense; moreover, the number of typical se-
quences for N sufficiently large and δ sufficiently small is approximetely equal
to 2NH(p), that is exponentially smaller than |X|N . The notion of weak typi-
cality is a powerful tool for proving results in classical information theory, and
it will suffice for the purposes of the present work. It is relevant not only for
problems in classical information theory, but it turns out to be crucial also in
the quantum setting, where a notion of typical subspace has been developed
relying on that of typical sequences, as we will discuss in the next section.

Insofar we have discussed the nature of the source, and the form of the
message that arrives at the input of the Alice’s encoder. According to section
2.1, the mathematical form of a possible encoding channel E is given by a
stochastic matrix Es,i that contains the information on how the input strings
i ∈ TN are mapped onto strings of, say, M bits s ∈ SM , and it is fully specified
by its action on the pure states ei. In other words, any pure state ei is mapped
onto a state of the form

P
sEs,ies. Once the bit strings are sent to Bob (by

means of an ideal channel), the latter tries to recover the original message
by applying his decoding channel D , represented by a stochastic matrix Di,s,
so that he converts the bit string s to a sequence i of symbols in X. There-
fore, if the input was the pure state ei, then this has been distorted by the
compression-decompression operation, and Bob now has

P
j,s Dj,s Es,i ej as

output from its decoder. Now, if the mapping is made deterministically, that
is to say if each string i is mapped onto a unique s through Es,i and similarly
for Di,s (Es,i = 1 for some s for any i and correspondingly for Di,s), the final
state is a pure state ej. If the number of available bits is such that 2M ≥ dN ,
then the encoding-decoding scheme can be chosen in such a way that j = i for
any choice of i2.

Clearly, Alice can save each string i on a different bit string s only if the
number of bits M that she has at her disposal is sufficiently high, whence Bob
can recover correctly any message. Here comes the second idea of Shannon,
that is to use less bits but allow for an error in the decoding. Such an error is
quantified by the error probability, namely the probability that the final string
is different from the original one. Letting Cj,i :=

P
sDj,sEs,i be the transition

matrix (representing the classical channel C := DE ), if the state of the source
is ρ =

P
i piei, each string is produced with probability pi, and the probability

of having the string j after the encoding-decoding operation is Cj|ipi. The error

2In other words, in this case the encoding and decoding functions can be described by
an injective function h : TN → SM and a function that inverts the action of h on h(TN ).
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A(1)

A(N)

... E Dei

B(1)

B(M)

...

A(1)

A(N)

...

Figure 2.3: A diagrammatic representation of the communication setting. For
fixed N , each sequence is represented by the pure state ei ∈ (RdA)⊗N . After
the coding-decoding operation, the resulting string can be different from the
original one, according to the probability distribution

P
s Dj,s Es,i. The final

state on AN is represented by
P

j,s Dj,s Es,i ej.

probability p(C , ρ⊗N) is then computed according to the following formula

p(C , ρ⊗N) :=
X

i

X
j6=i

p(j|i)pi =
X

i

X
j6=i

Cj|ipi. (2.12)

Remark 2.1.3. Notice that the error probability can also be written in terms
of the distance in equation (2.2) as follows

p(C , ρ⊗N) =
1

2

X
i

pikC (ei) − eik1, (2.13)

where C (ei) =
P

jCj|iej. This is a straightforward computation that follows
by the normalization condition

P
jCj|i = 1, that holds for any i. Indeed, first

observe that the normalization condition implies

p(C , ρ⊗N) :=
X

i

X
j6=i

p(j|i)pi = 1 −
X

i

Ci,ipi. (2.14)

As we have recalled at the beginning of this section, the set of states of CT
is given by a simplex, and any probability vector representing a state can be
uniquely decomposed in terms of pure states ei, corresponding to vectors with
all zero components except the one at the i-th position: (ei)j = δi,j. Again,
the normalization condition on the columns of C implies the following chain
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of equalities X
i

pikCei − eik1

=
X

i

pi

X
j

|Cj,i − δij|

=
X

i

pi(
X
j 6=i

Cj,i + 1 − Ci,i)

=
X

i

2pi(1 − Ci,i) =

= 2
X

i

pi(1 − Ci,i) = 2(1 −
X

i

piCi,i) = 2p(C , ρ⊗N),

namely

p(C , ρ⊗N) =
X

i

pi
1

2
kCei − eik1.

Thus, a small error probability corresponds to asking a small average distortion
of the state that represents the message emitted by the source.

For fixed N and a given tolerance ε on the error decoding, the efficiency of
a given compression scheme is measured by its rate, that is given by the ratio
M/N between the number of bits M used for the encoding and the length N
of the messages. The natural question that now arises is: what is the minimal
rate such that a family of compression schemes with asymptotically vanishing
error exist in the limit of long messages? Shannon answered to this question,
and its result is summarized in the following statement.

Theorem 2.1.3. Let p ∈ St1(A) be a classical state describing an i.i.d. (clas-
sical) source of information. Then for any δ > 0 and ε > 0 there exists
N0 such that for any N ≥ N0 there exists a compression scheme with rate
R ∈ (H(p), H(p) + δ] and p(C , ρ⊗N) < ε. Moreover, for any rate R < H(p)
and ε > 0 there exists N0 such that any compression scheme with rate R and
N ≥ N0 is such that p(C , ρ⊗N) ≥ ε.

The first part tells us that we can consider transmission rates arbitrarily
close to the Shannon entropy H(p) of the source, and, as long as we are
concerned with a sufficiently large length N of the messages, we can achieve
an error as small as we wish. This part is usually referred to as the direct part,
and it establishes the achievability of H(p) as a compression rate. The other
part tells us that no compression schemes with rate smaller than H(p) can
have arbitrary small error probability, and this establishes the minimality of
H(p). The full operational intepretation of the Shannon entropy is guaranteed
by the fact that H(p) is both achievable and minimal.

Remark 2.1.4. Given the notion of weak tipicality introduced in the preceeding
subsection, it is clear how to devise a sequence of compression schemes that
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works: taking M = dN [H(p) + δ/2]e, one can consider an encoding channel
that deterministically saves the typical strings and maps the others on a fixed
string of bits. The decoding is required to precisely invert the bit strings
corresponding to the typical one; in this way, the error probability can be
made arbitrarily small for sufficiently large N , and the rate M/N is in the
required range for N sufficiently high.

2.2 Quantum Shannon theory

While in the previous section we gave an account of the first Shannon the-
orem, together with all the apparatus needed for its statement, the purpose
of this section is to review its quantum analogue. First, we briefly recall the
mathematical structure of quantum theory, and the relevant distinguishability
measures that are commonly used in quantum information theory, together
with the definition of the von Neumann’s entropy. We then proceed with a
thorough exposition of the quantum noiseless coding theorem, for the case of
a source described by a pure state ensemble, also reminding the reader of the
main tool necessary for its proof, the notion of typical subspace.

2.2.1 Compendium of Quantum Theory

The description that follows is standard as it is presented in any book on
quantum information theory (such as [26, 27]). In quantum theory systems
are associated with complex Hilbert spaces, and the type of a system is identi-
fied by the dimension d of the associated Hilbert space (we will assume d <∞
whenever we will refer to results relative to quantum theory). Therefore, dif-
ferent types are described by different dimensions, and systems of the same
type are equivalent for information-theoretic purposes.

The convex set of states of a system A is mathematically represented by
the set of sub-normalized matrices ρ on the associated space HA, and it is
denoted by St(A). Normalized states correspond to the convex set of density
matrices, which is denoted by St1(A)

St(A) := {ρ ∈ L(HA)>|Tr(ρ) ≤ 1},
St1(A) := {ρ ∈ L(HA)>|Tr(ρ) = 1}.

Pure states are defined as those elements of St1(A) that are rank-one, and,
accordingly, all the other states are called mixed. The size D of a quantum
system A is the dimension of the linear space StR(A) spanned by the set of
states, therefore it is given by d2, where d is the dimension of the Hilbert space
associated with the system.

For a given quantum system A, the convex set of effects Eff(A) is given by
functionals (acting on the set of states) of the form Tr(·E), where E is a positive
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operator dominated by the identity 0 ≤ E ≤ I and the (unique) deterministic
effect is represented by the trace Tr(·). The observation tests, that in quantum
theory are commonly called Positive Operator-Valued Measures (POVM), are
represented by collections of operators {Ei} satisfying the condition

P
iEi = I,

namely, they must sum to the deterministic effect.

Quantum operations, whose set is denoted by Transf(A → B), are mathe-
matically represented by Completely Positive Trace non-Icreasing maps, namely,
if C ∈ Transf(A → B), then

1. (trace non-increasing) ∀ρ ∈ St(A), Tr[C (ρ)] ≤ Tr(ρ);

2. (complete positivity) for any ancillary sistem E, (C ⊗ IE)(Γ) ≥ 0, for
any Γ ∈ St(AE).

When in the first condition the equality is satisfied for any ρ ∈ St(A), C is
said to be Trace Preserving (TP); in particular, determinisitc transformations
are all and only those maps that are Completely Positive and Trace Preserving
(CPTP). For any quantum transformation C ∈ Transf(A → B) there exists a
set of operators {Ci} ⊆ L(HB,HA), called Kraus operators, such that

C (ρ) =
X
i

C†
i ρCi ∀ρ ∈ St(A) (2.15)

and satisfying the condition
P

iC
†
iCi ≤ I, as a consequence of the Trace

non-Increasing condition that must hold for C . Accordingly, reversible trans-
formations are all and only CPTP maps with a single Kraus operator that is
also unitary, while left reversible transformations are represented by isometric
operators, namely V : HB → HA such that V †V = IHB

.

Quantum operations can be performed sequentially, as long as the output
system of the first operation corresponds to the input system of the second
one. This operation is mathematically represented by the composition of maps.
Quantum systems A and B can also be composed in parallel to obtain a bipar-
tite system AB. Then, the tensor product space HA ⊗HB is the Hilbert space
associated with the new system AB. In the latter case, when one is interested
to only one of the subsystems, either the partial trace TrA or TrB must be
applied in order to discard the corresponding system.

A distinctive trait of quantum theory is that, given any quantum system
A, any mixed state ρ ∈ St1(A) can be purified. We state this property in the
following theorem for future reference.

Theorem 2.2.1 (Existence and essential uniqueness of purification). For any ρ
there exists a reference system R, also called the purifying system, and a pure
entangled state Ψ ∈ St1(AR) such that

ρ = TrR(Ψ). (2.16)
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Moreover, given two different purifications of the same state ρ, say Ψ and Ψ0,
there always exists a quantum channel C ∈ Transf(R → R0) such that

Ψ0 = (IA ⊗ C )(Ψ). (2.17)

When R and R0 are of the same dimension, then C is reversible.

Equation (2.16) affirms the existence of a purification for any A and any
state ρ ∈ St(A), while equation (2.17), in the case of systems R, R0 of the same
type, asserts the essential uniqueness of purification up to reversible channel
applied to the purifying system.

We conclude by introducing the double-ket notation [28]. Denoting by
{ei}dA

i=1 and {fj}dB
j=1 a pair of orthonormal bases of the Hilbert spaces HA and

HB respectively, we define the linear operator Vec : L(HA,HB) → HB ⊗ HA

as follows

Vec : A→ |Aii :=

dAX
i=1

dBX
j=1

Aj,i |fji hei| . (2.18)

This operator is an isomorphism with obvious inverse given by

Vec−1 : |Ψii → Ψ :=

dAX
i=1

dBX
j=1

Ψj,i |fji hei| . (2.19)

The following theorem collects some computational properties of the double-
ket notation that will be useful in chapter 5

Theorem 2.2.2. The following identity holds for any C : HA → HB, A : HB →
HC and B : HA → HD.

A⊗B|Cii = |ACBT ii. (2.20)

Moreover, for any pair A,B : HA → HB the following hold

TrA[|AiihhB|] = AB†,

TrB[|AiihhB|] = ATB∗,

Tr[|AiihhB|] = hhB|Aii = Tr[B†A] = Tr[B∗AT ].

Remark 2.2.1. The usual mathematical description of QT presented so far can
also be derived as a consequence of three Hilbert-space postulates. The first
two ones concern the nature of the systems and the way they compose, while
the third indirectly tells us what are the transformations of the theory.

Postulate 1. We associate each quantum system A with a complex Hilbert space
HA. The composition of two systems A and B, denoted by AB, is associated
with the tensor product HAB = HA ⊗HB.

Postulate 2. Any state ω ∈ St(A) is in a one-to-one correspondence with pos-
itive operators ρω ∈ L(HA) satisfying the condition Tr(ρω) ≤ 1. Such a corre-
spondence preserves convex combination.
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Postulate 3. All the maps that satisfy all the mathematical requirements for
representing a transformation within the theory (that are called admissible
maps) will be actual transformations of the theory.

The third postulate implicitly defines the form of effects and transforma-
tions. First of all, one can derive the fact that any effect is represented by an
operator E ∈ L(HA) that is positive and dominated by the identity; moreover,
any such operator gives rise to a probability functional, and postulate 3 then
entails that it is an actual effect. Concerning the transformations, a map is
admissible if it is linear, completely positive and trace non increasing, and the
postulate implies that any map satisfying these requirements is a legitimate
quantum operation.

2.2.2 Distinguishability measures in quantum theory and the
von Neumann entropy

Given two states ρ and σ, we can assess how much these are different by using
the so called trace-norm distance (or schatten 1-norm). This is well defined
for every linear operator M ∈ L(HA,HB) between finite dimensional Hilbert

spaces. If we set |M | =
√
M †M , called the modulus of M , the trace-norm of

M is defined as follows

kMk1 := Tr |M |, (2.21)

and the trace-norm distance is the one induced by this norm. The obtained
distance is commonly normalized, so that one defines the normalized trace
distance between quantum states as

d(ρ, σ) :=
1

2
kρ− σk1. (2.22)

This is called normalized in that d(ρ, σ) ≤ 1 for any pair of quantum states.

Remark 2.2.2. The distance defined in equation (2.22) has also the following
characterization

d(ρ, σ) = max
0≤E≤I

Tr[E(ρ− σ)]. (2.23)

This formula allows for an operational interpretation of the normalized dis-
tance, that we now recall. Suppose that an agent, say Bob, prepares one of
two quantum states, ρ0 and ρ1, with equal probabilites 1

2
. A second agent,

say Alice, can perform a measurement {E0, E1} at her wish and then guess
which state has been prepared by Bob. In particular, she guesses that the
state prepared by Bob is ρ0 if the outcome of the measurement is ”0”, and ρ1

otherwise. Therefore, given the condition E0 + E1 = I, the maximum success
probability is found to be
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psucc =
1

2
1 +

1

2
kρ0 − ρ1k1 . (2.24)

Namely, the greater is the success probability for Alice, the greater is the
distance between states, and viceversa.

Another quantity that is commonly used in quantum information theory, in
order to establish how much two quantum states are different, is the Uhlmann
fidelity. For any pair of density matrices ρ and σ this is defined as follows [29]

F (ρ, σ) := Tr
p
ρ1/2σρ1/2 = k√ρ

√
σk1. (2.25)

Notice that for pure states ρ = |ψi hψ| and σ = |φi hφ|, F measures the overlap
between the vector states, F (ρ, σ) = |hψ|φi|. Moreover, if ρ = |ψi hψ| and σ is
a density matrix, one has

F (|ψi hψ| , σ) = hψ|σ |ψi1/2 . (2.26)

From the definition it is clear that F is symmetric in its arguments, and that
F (ρ, σ) = 1 whenever ρ and σ coincide, while F (ρ, σ) = 0 if and only if they
have orthogonal support. Mathematically, this quantity is not a distance, but
it is equivalent to d(ρ, σ) thanks to the well-known Fuchs-van der Graaf [30]
inequalities

1 − F (ρ, σ) ≤ 1

2
kρ, σk1 ≤

p
1 − F 2(ρ, σ). (2.27)

The fidelity F (ρ, σ) also has an alternative characterization: given two density
matrices ρ, σ ∈ St1(A) and a POVM {Ej}, one can define the probability
distributions {pj} := {Tr(ρEj)} and {qj} := {Tr(σEj)} and compute the
classical fidelity between them. It turns out that a minimization over all the
possible POVMs leads to the Uhlmann fidelity between ρ and σ

F (ρ, σ) = min
{Ej}

q
Tr(ρEj) Tr(σEj). (2.28)

Remark 2.2.3. The proof of this charactersation of the Uhlmann fidelity can
be found in [26]. It is worth mentioning that the minimum is achieved when
the elements of the POVM correspond to the eigenvector of the operator

M := ρ−
1
2

q
ρ

1
2σρ

1
2ρ−

1
2 . (2.29)

This observation turns out to be of great importance when we will deal with
FT in chapter 5.

Finally, from the Uhlmann fidelity we can define another quantity that is
called entanglement fidelity. This Measures how much entanglement between
two quantum systems A and B is preserved by a quantum channel when the
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2. Noiseless coding in classical and quantum information theories

latter is applied to A (or B). To be more precise, let ρ be a density matrix on
A and C a quantum channel acting on A. Let Ψ be a purification of ρ and B
denote the ancillary system. The entanglement fidelity (formerly introduced
by Schumacher [31]) is then defined in the following way

F (ρ,C ) := hhΨ|(C ⊗ I )(Ψ)|Ψii. (2.30)

This quantity is well defined since it is independent of the particular chosen
purification. Now, let {Ci} be the kraus operators of the channel C , then
F (ρ,C ) can also be rewritten in terms of the operators {Ci} as follows

F (ρ,C ) =
X
i

|Tr(ρCi)|2. (2.31)

This is a useful representation that will be used in this work, specifically when
we will deal with FT. We also notice that the entanglement fidelity can be
computed as the square of the Uhlmann one between the purification Ψ and
the state obtained after the application of C , C ⊗ I (Ψ)

F (ρ,C ) = F 2[|ΨiihhΨ|, (C ⊗ I )(|ΨiihhΨ|)]. (2.32)

The quantum notion of entropy has been formerly introduced by John
von Neumann in the first german edition of [22], as a generalization of the
Gibbs entropy of statistical mechanics. It also generalizes to the quantum
scenario the Shannon entropy (despite its earlier introduction). We recall here
its mathematical definition.

Definition 2.2.1. Given a state on a quantum system A represented by a density
matrix ρ, the von Neumann entropy of ρ is defined as:

S(ρ) := −Tr(ρ log2 ρ). (2.33)

Whenever the state is clear from the context, we will simply write S(A).

When we consider the spectral decomposition of ρ, S(ρ) reduces to the
Shannon entropy of the probability distribution defined by its eigenvalues.
More precisely, if ρ =

P
i pi |xii hxi|, where pi are the eigenvalues of ρ (sat-

isfying
P

i pi = 1) and |xii are the corresponding eigenstates, then it holds
S(ρ) = −

P
i pi log2 pi. The definition also applies when bipartite systems AB

are considered: if Π is a density matrix representing a state of AB, its von
Neumann entropy is simply given by S(Π) = −Tr(Π log2 Π), and the marginal
entropies are obtained as the von Neumann entropies S(ρA) and S(ρB) of the
marginal states ρA = TrB Π and ρB = TrA Π respectively. The Quantum mu-
tual entropy is defined as S(A : B) = S(A) + S(B) − S(AB), analogously to
the classical case (see formula (2.7)). The von Neumann entropy and quan-
tum mutual entropy satisfy all the properties listed in theorem 2.1.1 for the
Shannon entropy.
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2.2.3 Quantum weak typicality and the noiseless coding theo-
rem

A communication scheme, as we have already described before, is essentially
given by four elements: an information source, an encoder, a decoder, and the
quantum channel that is used in order to transmit the compressed messages,
received by the source, from the encoder to the decoder. The latter is assumed
to be noiseless, whence it is mathematically described by the identity map,
and the encoding and decoding operations are the only source of noise. In [21]
the quantum source is modeled as an ensemble of pure states {pi, |φii hφi|}i∈X,
not necessarily orthogonal, in such a way that the message for a single usage is
given by the density matrix ρ =

P
j∈Y pj |φji hφj|. Therefore, an information

source is essentially defined by a quantum system A and a density matrix
ρ ∈ St1(A) on that quantum system. On the other hand, a mixed state also
arises when we are in the presence of a bipartite quantum system that is in
entangled pure state. This second point of view, already considered in [21],
is particularly enlightening, since it makes manifest that transposing quantum
information faithfully means preserving quantum entanglement between the
source and a reference.

The aim of a compression protocol is to use a limited number of resources
in order to store information from a quantum system and transmit it from a
sender to a receiver. To this end one can encode the message ρ, by means
of a quantum operation E , on another system, say B, that has a dimension
that is smaller than the orginal one. But, unless the quantum operation is
reversible, the original message is unlikely to be recovered in a perfect way,
once the decoding operation D is applied to the compressed message E (ρ).
Since what we are actually interested in is preserving the entanglement, the
natural measure for assessing the goodness of the scheme, defined by the pair
(E ,D), is the entanglement fidelity. If we let d be the dimension of the Hilbert
space HB associated with system B, the following scenarios may occur:

a. if the message ρ has a small overlap with all projectors P onto d-dimensional
subspaces of HA, that is to say Tr(Pρ) < ε, then the fidelity is bounded
from above, i.e. F (ρ,DE ) < ε;

b. if there exists at least one projector P onto a d-dimensional subspace that
has a high overlap with the message ρ, namely Tr(Pρ) > 1− ε, then the
fidelity can be made correspondingly high, precisely F (ρ,DE ) > 1 − 2ε.

The first fact follows by the Cauchy-Schwarz inequality and formula (2.31)
for the entanglement fidelity. The second one is proven by using the simple
protocol proposed by Schumacher. First, we perform a two outcome test, where
we project onto the subspace K defined by P , corresponding to the outcome
”0”, or onto the orthogonal complement K⊥, corresponding to outcome ”1”.
Conditioned on this test, we apply a partial isometry V that embeds in HB

the projection of ρ onto K (there is enough room in HB for this) if ”0” occurs,
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otherwise, if the outcome is ”1”, we a apply measure and prepare channel with
a fixed target state σ ∈ St1(B). The encoding E can then be explicitly written
as follows

E (ρ) = V PρPV † + Tr[(I − P )ρ]σ, (2.34)

while the decoding simply inverts the isometry V

D(τ) = V †τV. (2.35)

This yields the desired bound on F (ρ,DE ), provided that Tr(ρP ) > 1 − ε.

Remark 2.2.4. These statements can be rephrased in terms of the eigenvalues
of the message ρ. Indeed, if we denote by {|xii}i∈X the eigenvectors of ρ and
{pi}i∈X the corresponding eigenvalues, then one has

Tr(ρP ) =
X
i∈X

pi Tr[|xii hxi|P ] =
X
i∈X

pi hxi|P |xii ,

that is maximized when P projects onto the subspace spanned by those eigen-
vectors corresponding to the d greatest eigenvalues {λi}i∈G. Let Λ denote the
projector onto such a subspace. Then, one has

Tr(Pρ) ≤ Tr(Λρ) =
X
i∈G

λi

for any projector P of rank d. Therefore, consider

a*. if the message ρ is such that
P

i∈G pi < ε, then the fidelity is bounded
from above, i.e. F (ρ,DE ) < ε;

b*. if the the message ρ is such that
P

i∈G pi > 1 − ε, then the fidelity can
be made correspondingly high, precisely F (ρ,DE ) > 1 − 2ε.

a* and b* are conditions equivalent to a and b.

As in the classical setting, also in the quantum case block-coding is con-
sidered. A message of lentgh N consists of an integer number N of letters,
each extracted from the same ensemble of pure states, i.e. it is represented by
a factorized state of the form ρ⊗N := ρ⊗ · · · ⊗ ρ on the extended system AN

(associated with the Hilbert space H⊗N
A ). While classical information is mea-

sured in terms of bits, quantum information is quantified through its analogue,
the qubit. Accordingly, a compression scheme is given by a pair of quantum
channels E : AN → QM and D : QM → AN , where M is a suitable integer
number M of qubits intended to store the message. The task is to preserve the
quantum entanglement between the quantum system AN and some reference
system R, and the efficiency in accomplishing this goal is measured by the rate,
M/N .

The problem addressed by Schumacher was to find the smallest achiev-
able rate that allows for a faithful transposition of the entanglement, at least
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A(1)

A(N)

... E D

Ψ

Q(1)

Q(M)

...

A(1)

A(N)

...

R

Figure 2.4: A diagrammatic representation of the communication scheme in
the quantum setting, as described in the main text. The message ρ⊗N , that
lies on the system AN , to which we have local access, is the marginal of an
entangled pure state that purifies it, with R being the purifying system. We
encode the system AN on a number M of qubits with a quantum channel E ,
then they are transmitted to the receiver, who finally applies a decoding D .
The goal is to have a high entanglement fidelity.

asymptotically. As discussed in remark 2.2.4, the problem is connected to
the eigenvalues of the messages. The idea of typical subspace considered by
Schumacher can be summarised as follows: First, notice that the eigenvalues
of ρ⊗N are of the form pi1 . . . piN , where ik ∈ X for any k ∈ {1, . . . , N}, and
pi can be regarded as a probability distribution associated with a classical
random variable with X as outcome set; the corresponding eigenvectors are
|xii := |xi1i ⊗ · · · ⊗ |xiN i, with i := i1 · · · iN . Therefore, formally, the situation
is analogous to what we had in the classical scenario, where pi1 . . . piN can be
seen as the probability associated with the sequence i1 . . . iN . It is then nat-
ural to distinguish between ”typical eigenvectors” and ”atypical eigenvectors”
whenever the corresponding sequence is either typical or not, respectively; the
former set of vectors will then span a subspace that has a dimension approxi-
mately equal to 2NS(ρ) (since S(ρ) = −

P
i∈X pi log2 pi) and such that the sum

of the eigenvalues is close to 1. The formal definition of typical subspace then
follows.

Definition 2.2.2. Let ρ ∈ L(H) be a quantum state given by a density matrix.
The (N, δ)-typical subspace of ρ is the subspace spanned by the following set
of vectors in H⊗N

TNδ (ρ) := |xii :
1

N
log2

1

pi

− S(ρ) < δ . (2.36)

Accordingly, any vector |xii ∈ TNδ (ρ) will be called a (N, δ)-typical vector, and
the typical subspace is given by

HN
δ (ρ) := Span(TNδ (ρ)). (2.37)
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In other words, a vector |xii is (N, δ)-typical iff the string i ∈ TNδ (p), given
that S(ρ) = H(p). The projector on the (N, δ)-typical subspace, that we
accordingly call the (N, δ)-typical projector, is simply given by

P δ
N(ρ) :=

X
i∈TNδ (p)

|xii hxi| . (2.38)

The overlap between the message ρ⊗N and the (N, δ)-typical projector is given
by the sum of the eigenvalues associated with the typical sequences in TNδ (p),
according to the following formula

Tr[P δ
N(ρ)ρ⊗N ] =

X
i∈TNδ (p)

pi.

As we have already observed, the typical subspaces have almost all the overlap
with ρ⊗N for sufficiently high N , and their dimension is roughly given by
2NS(ρ). Moreover, when the dimension of a subspace is strictly smaller than
2NS(ρ), the overlap of ρ⊗N can be made small for largeN . All these observations
are collected in the following theorem (see [26] or [27] for the proof).

Theorem 2.2.3. Let ρ ∈ L(H) be a quantum state described by a density matrix.
Then the following statements hold:

1. For every > 0 and δ > 0 there exists N0 such that for every N ≥ N0

Tr[P δ
N(ρ)ρ⊗N ] ≥ 1 − . (2.39)

2. For every > 0 and δ > 0 there exists N0 such that for any N ≥ N0 the
dimension of the typical subspace HN

δ is bounded as follows

(1 − )2N [S(ρ)−δ] ≤ dim[HN
δ (ρ)] ≤ 2N [S(ρ)+δ], (2.40)

3. For given N , let SN denote an arbitrary orthogonal projection on a sub-
space of H⊗N with dimension Tr(SN) < 2NR, and with R < S(ρ) fixed.
Then for every > 0 there exists N0 such that for every N ≥ N0 and
every choice of SN

Tr[SNρ
⊗N ] ≤ . (2.41)

We have set up all the terminology that is needed for stating the quantum
version of the noiseless coding theorem, and we have recalled all the stuffs
useful for its proof.

Theorem 2.2.4. Let ρ be a density matrix describing an i.i.d. quantum infor-
mation source. Then, for any δ > 0 and ε > 0 there exists N0 such that for
any N ≥ N0 there exists a compression scheme with rate R ∈ (S(ρ), S(ρ) + δ]
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and F (ρ⊗N ,C ) > 1 − ε. Moreover, given any rate R < S(ρ) and ε > 0 there
exists N0 such that any compression scheme with rate R and N ≥ N0 is such
that F (ρ⊗N ,C ) ≤ ε.

The statement, mutatis mutandis, is exactly the same as its classical anal-
ogous; the quantum entropy S(ρ) replaces the Shannon one, and the entan-
glement fidelity is used in place of the error probability for establishing the
goodness of compression protocols. The direct part, namely that S(ρ) is an
achievable compression rate, is proven by exhibiting explicitly a family of com-
pression schemes, whose construction is based on the quantum notion of weak
typicality.

Remark 2.2.5. Since the quantum protocol for achievability serves as a basis
for the fermionic case, it is worth describing it in a little more detail, and it
has essentially the form given by equations (2.34) and (2.35), where we use the
projector onto the typical subspace. Given δ > 0, for fixed N one can take a
number of qubits M = dN [S(ρ) + δ/2]e, and for N sufficiently large M/N falls
in the desired interval. With this number of qubits, there exists a family of
compression schemes that, for any ε > 0 and sufficiently large N , are such that
Tr[P δ

N(ρ)ρ⊗N ] > 1−ε. The theorem on typical subspaces immediately suggests
the working strategy: first, by item 1 we deduce that a measurement that asks
whether the message has support on the typical subspace yields an answer
that is almost ”yes” as N becomes large. Given the choice of M and the bound
in 2 on dim[HN

δ/2(ρ)], there is enough room in order to store all the typical
subspace on M qubits. Therefore, a successful protocol is obtained by encoding
all the support of ρ⊗N that lives in the typical subspace and throwing away
all the rest. In other words, first a test is performed where ρ⊗N is projected
either onto the typical subspace, via the typical projector P

δ/2
N (ρ), or onto its

orthogonal complement, by means of I − P
δ/2
N (ρ). Then, if the outcome of

the test corresponds to the projection onto HN
δ/2(ρ), we isometrically embed

the projected state onto M qubits, otherwise we discard and we prepare some
fixed state in the typical subspace. The decoder D then simply inverts the
isometry. Formally, the quantum channel corresponding to the encoding acts
as

E (σ) := V P δ
N(ρ)σP δ

N(ρ)V † + Tr[(I − P δ
N(ρ))σ] |xii hxi| , ∀σ (2.42)

where V : H⊗N
A → H⊗M

Q is the partial isometry with support on HN
δ/2(ρ),

namely

V †V = P
δ/2
N (ρ). (2.43)

The decoding is simply given by D(τ) := V τV †. With this protocol, 1 guaran-
tees that the entanglement fidelity will be definitely close to 1, and the compres-
sion schemes have the desired rate. The converse part is proven by considering
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the most general encoding-decoding pair (E ,D) allowed by quantum theory,
and using item 3, along with the fact that F (ρ⊗N ,DE ) ≤ Tr(SNρ

⊗N)3.

Remark 2.2.6. Here we have exposed the problem of quantum coding for the
transmission of ensembles of pure states, that historically was the first to be
solved in the literature. The proof in the original reference [21] for the converse
part was given considering unitary decodings only. In [24], the authors pointed
out that, by using non unitary decodings, one can obtain a better fidelity, but
they proved that, even if we allow for general decoding channels, S(ρ) is the
optimal compression rate. For further refinements on results concerning the
case of pure state ensembles, see also the Ph.D. thesis of Andreas Winter [32]
(in particular, chapter 1). The case of quantum sources modeled as an ensemble
of mixed states was considered in [33, 34, 35] and finally solved in [36]. Further
generalizations can be considered, as those described, for instance, in the more
recent works [37, 38].

3This is a consequence of the Cauchy-Schwarz inequality applied with formula (2.31)
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CHAPTER3

The Operational Probabilistic
Theories framework

Over the last two decades, the operational approach to foundations of physics
has been revitalised by a deeper comprehension of QT, mostly due to theo-
retical results that have been discovered in the field of quantum information
theory. This knowledge have been used in the Generalised Probabilistic Theo-
ries (GPT) [39, 40, 41, 42] and OPT [43, 44] frameworks, where various authors
have studied the borders of QT from a more general perspective. In the first
place, several axiomatisations of QT have been proposed, where the Hilbert
space formulation has been derived by a set of information-theoretic axioms1

[16, 17]. Moreover, several features that characterises quantum information
theory have been studied in such frameworks, and it has been proven that
they actually show up in more general scenarios, that are not strictly quan-
tum. Notable examples are no-cloning [50], quantum teleportation [51] and
the tradeoff between information and disturbance [52], just to mention a few.
OPTs also allow for the study of conceptual facets of physics. For instance,
in [53] the authors exhibited a probabilistic toy-theory that disentangles the
notion of determinism from that of causality, while in [44] it is shown that
the presence of entanglement does not necessarily imply complementarity in a
physical theory.

In this chapter we summarise such a framework, starting from a description
of the operational and probabilistic language. We recall a set of axioms [17]

1See also [45, 46] and [47, 48, 49] for different mathematical approaches.
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that pick out QT as a special instance of the framework, and, in particular,
we introduce two features that are relevant in our treatement, in particular
in chapter 4 with consequences for chapters 5 and 6 also: conditioning (or
strong causality), and steering. We then provide a brief recap of fermionic
information theory, that will be treated in chapter 5, and Bilocal Classical
Theory, considered in chapter 6. We finally review the definition and the main
properties of the three different definitions of entropy already introduced in
the literature [54, 55, 56], along with a generalisation of fidelity [54].

3.1 General description

The mathematical framework of OPTs can be conceived as an abstraction of
the basic elements and operations of an experimental setting. A complete ex-
perimental apparatus consists of a preparation of a physical system in some
state, a sequence of operations performed thereon, and finally making an ob-
servation. Preparations, operations and observations, are therefore the events
of a physical experiment, each extracted from a test and connected by sys-
tems. These are the primitive entities of an operational theory. Then, defining
the latter, means declaring what are the tests, whence the events, and the
systems, and giving a prescription for composing systems, in sequence or in
parallel. Probabilities finally come into play, since we are dealing with scien-
tific experiments, and what we are actually interested in is making predictions
on what may happen when we have a complete experiment, that starts with a
preparation and ends with an observation.

In this section we briefly remind the reader of the basic structures of OPTs,
following the presentation of [43, 57]. A detailed account that partially links
the framework with category theory can be found in [44].

3.1.1 Primitive notions and the operational language

The primitive notions of an operational theory are those of test, event and
system. A test {Ai}i∈X is given by a collection of events, where i labels the
elements of the outcome space X (which will be assumed to be finite), that
contains the outcomes associated with the test. The systems allow for the
connection between different tests, and are denoted by capital Roman letters
A,B, . . . . Therefore, a test is completely determined by its input and output
systems, and the events associated with the outcome space X. In order to
represent a test and its events {Ai}i∈X we use the usual diagrammatic notation

A
{Ai}i∈X

B
,

A
Ai

B
,

and we will call A, B the input and the output system of the test, respectively.
Accordingly, the set of events from the input system A to the output system B
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will be denoted by Event(A → B). If {Ai}i∈X and {Bj}j∈Y are two tests, one
can define their sequential composition as the test {Ci,j}(i,j)∈X×Y, with events
Ci,j ≡ BjAi that are diagrammaticaly represented by

A
Ci,j

C
:=

A
Ai

B
Bj

C
.

Notice that this definition requires the output system of the events on the left
to be necessarily the input system of the events on the right. Since the order
in which different operations are sequentially composed does not correspond to
an actual physical process, this operation is required to be associative, namely,
for all tests {Ai}, {Bj}, {Ck} and systems A, B, C, D, the following holds

A
{BjAi}

B
{Ck}

D
=

A
{Ai}

B
{CkBj}

D
. (3.1)

A singleton test is a test whose outcome space set X is a singleton, and the
unique event contained in it is called deterministic. For any system A there
exists a unique deterministic identity test {IA} such that

A
{IA}

A
{Ai}i∈X

B
=

A
{Ai}i∈X

B
, (3.2)

C
{Bj}j∈Y

A
{IA}

A
=

C
{Bj}j∈Y

A
, (3.3)

for any system B and C and any test {Ai}i∈X, {Bj}j∈Y from A to B and C to
A respectively. Diagrammatically, the identity test will be represented simply
by a wire, according to the fact that they can be understood as doing nothing
on the system at hand.

A
IA

A
=

A
. (3.4)

Another operation that can be performed on tests is parallel composition.
Given two systems A and B we call AB the composite system of A and B. Then,
if {Ai}i∈X and {Cj}j∈Y are two tests, we define their parallel composition as
the test {Ai Cj}(i,j)∈X×Y, with outcome space given by the cartesian product
X×Y. Diagrammatically, the new test is represented by vertical juxtaposition
of the composing tests

A

Ai Cj

B

C D :=

A
Ai

B

C
Cj

D
.

The symbol is used in order to avoid confusion with the symbol ⊗, which
denotes the tensor product of vector spaces. As for sequential composition,
also parallel composition is required to be an associative operation. Moreover,
the parallel composition operation commutes with the sequential one, namely,
for all tests {Ai}i∈X, {Bj}j∈Y, {Ck}k∈Z, {Dl}l∈L, the following equation holds
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A

{Ai Ck}
B

{Bj Dl}
C

D E F =

A
{BjAi}

C

D
{DlCk}

F
, (3.5)

or, in formula

(Bj Dl)(Ai Ck) = (BjAi) (DlCk). (3.6)

There is a special kind of system, the trivial system I, satisfying AI = IA =
A for every system A. Tests with I as input system and A as the output one are
called preparation tests of A, while tests with input system A and I as output
are named observation tests of A. The events of a preparation test {ρi}i∈X and
of an observation test {aj}j∈Y are represented through the following diagrams

ρi
A

:=
I

ρi
A

,

A
aj :=

A
aj

I
.

In the following we will always use Greek letters to denote preparation tests
and Latin letters for the observation tests. Preparation and observation events
will also be denoted by using round brackets, respectively |ρ)A and (a|A, and
we will not make explicit the system whenever it is clear from the context.

We say that U ∈ Event(A → B) is reversible if there exists V ∈ Event(B →
A) such that V U = IA and U V = IB, namely

A
U

B
V

A
=

A
, (3.7)

B
V

A
U

B
=

B
. (3.8)

Accordingly, two systems A and B are called operationally equivalent if there
exists a reversible transformation U ∈ Event(A → B). Finally, we say that
a transformation V ∈ Event(A → B) is left-reversible if there exists V −1 ∈
Event(B → A) such that V −1V = IA (only the equation (3.7)). We also
notice that both reversible and left-reversible operations must be necessarily
deterministic.

For any pair of systems, we want their agents to be allowed to exchange
their systems. This requirement is captured by the notion of braiding, that is
a family of reversible transformations SAB, defined for any pair of systems of
the theory, and denoted as follows
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3.1. General description

A

SAB

B

B A =

A B

B A , (3.9)

A

S −1
AB

B

B A =

B A

A B . (3.10)

Generally, SAB and S −1
AB are different transformations. When they are equal,

e.g. in the case of QT, where SAB is represented by the swap operator2 ,
the theory is called symmetric. These transformations must obey a sliding
property, which asserts that two agents can equivalently perform their trans-
formations and then exchange their output systems, or first exchange their
input systems and then perform the transformations. In diagrams

A

B

A B

C D B

D

=
B

A

A

C

C D

BA . (3.11)

Finally, a circuit is a diagram representing an arbitrary test that is obtained
by sequential and parallel composition of other tests. We say that a circuit is
closed when the input and output systems are both the trivial one, namely,
when it starts with a preparation test and it ends with an observation test.

Now that we have outlined all the essential elements, we are in the position
to give the definition of operational theory.

Definition 3.1.1. An Operational Theory is defined by a collection of systems,
that is closed under composition, and a collection of tests (including all the
family of tests SAB for any A and B) closed under a pair of associative oper-
ations of sequential and parallel composition.

3.1.2 The probabilistic structure

Any closed circuit clearly represents a complete experimental apparatus. Since
a physical theory is required to predict the probabilites with which outcomes
occurr, we impose that closed circuits correspond to joint probaiblity distri-
butions on the outcomes, conditioned by the tests of which the circuits are
made.

Definition 3.1.2. An Operational Probabilistic Theory is an operational theory
where any closed circuit or, equivalently, any test from the trivial system to

2More precisely, in QT SAB is the quantum channel whose Kraus operator is given by
the unitary operator S : HA ⊗ HB → HB ⊗ HA such that S |ψi ⊗ |φi = |φi ⊗ |ψi for all
ψ ∈ HA and φ ∈ HB.
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3. The Operational Probabilistic Theories framework

istelf, is given by a joint probability distribution conditioned by the tests building
the circuit.

The simplest example of a closed circuit is given by a preparation test
{ρi}i∈X sequentially followed by an observation test {aj}j∈Y:

{p(i, j|{ρi}, {aj})} := ρi
A

aj , (3.12)

with
P

i,j p(i, j) = 1. Thus, one has a joint probability distribution, which
is conditioned by the chosen tests {ρi}i∈X and {aj}j∈Y. From now on we will
simply omit this dependence whenever the tests are clear from the context. The
probability associated with the closed circuit where a preparation ρi is followed
by an observation aj will also be denoted by a pairing, p(i, j) = (aj|ρi).

Moreover, compound tests from the trivial system to istelf are independent,
namely, the joint probability distribution is simply given by the product of the
probability distributions of the composing tests. This means that, if {ρi}i ∈ X
and {σk}k∈Z are two preparation tests, {aj}j∈Y and {bl}l∈L are observation
tests, then

ρi
A

aj

σi
A

bl
= p(i, j)q(k, l). (3.13)

Given any system A of an OPT, one can define an equivalence relation on
the set of preparation events by declaring that

ρ ∼ σ ⇐⇒ (a|ρ) = (a|σ), ∀a ∈ Event(A → I). (3.14)

The set of equivalence classes with respect to this relation is called the set of
states of system A, and it is denoted by St(A). We then set

St(A) := Event(I → A)/ ∼ . (3.15)

Similarly, one can define the set of effects as the set of equivalence classes of
the observation events such that (a|ρ) = (b|ρ) for any preparation event ρ, so
that we can analogously define

Eff(A) := Event(A → I)/ ∼ . (3.16)

By definition, it is clear that the set of states is separating3 for that of effects,
and viceversa. The sets of deterministic states and effects will be denoted by
St1(A) and Eff1(A) respectively.

Consider an arbitrary state of the theory, say ρ, and an observation test
{aj}j∈Y. Upon marginalisation over the observation test, one can define the
preparation probability conditioned by the test {aj}j∈Y as

p(ρ|{aj}) :=
X
j

(aj|ρ). (3.17)

3Generally, let S be a set, S∗ be the set of real functionals on S and G ⊆ S∗. We say that
G is separating for S if for any s1, s2 ∈ S there exists g ∈ G such that g(s1) 6= g(s2).
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3.1. General description

Generally, one has that p(ρ|{aj}) ≤ 1, unless the preparation test {ρi}i∈X is
the singleton, i.e. the state is deterministic. Moreover, it is worth noticing
that it can also depend on the observation test we are marginalising over.

Given the probabilistic structure, states can be seen as functionals on the
set of effects and viceversa, and then one can consider linear combinations of
them, thus defining two linear spaces, St(A)R and Eff(A)R, which are dual to
each other assuming that they are finite-dimensional

St(A)R = [Eff(A)R]∗, Eff(A)R = [St(A)R]∗. (3.18)

The size DA of a given system A is simply the dimension of the linear space
StR(A), that is equal to that of EffR(A) in the finite-dimensional case.

DA := dim[StR(A)]. (3.19)

A transformation event from system A to system B induces a linear map from
StR(AC) to StR(BC) for any ancillary system C. Also the set of transformation
events can be endowed with an equivalence relation.

Definition 3.1.3. Given two events A and B, we say that they are opera-
tionally equivalent, and write A ∼ B, if the following identity holds

Ψ

A
A

B

AC = Ψ

A
B

B

AC , (3.20)

for any Ψ ∈ St(AC), A ∈ Eff(BC) and any ancillary system C.

In other words, two transformation events are operationally equivalent if
they induce the same linear map for any ancillary system C, and it is clear that
this is an equivalence relation on the set Event(A → B) for any pair of systems
A and B. We then denote the set of all the equivalence classes of events with
Transf(A → B), whose elements are simply called transformations. Namely,
we formally set

Transf(A → B) := Event(A → B)/ ∼ (3.21)

Notice that this definition boils down to the case of states and effects when
we set A = I and B = I respectvely, i.e. St(B) = Transf(I → B) and Eff(A) =
Transf(A → I). The set of deterministic transformations will be denoted by
Transf1(A → B). Given a transformation A ∈ Transf(AC → BC) is said to be
local from A to B if it is of the form A = T IC, for some T ∈ Transf(A →
B). Similarly, a transformation A ∈ Transf(CA → CB) is said to be local from
A to B if it is of the form A = IC T , for some T ∈ Transf(A → B).

The linear space StR(A) can be endowed with a metric structure by means
of the following norm, which has an operational meaning related to optimal
discrimination schemes [43] (see also remark 2.2.2).
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3. The Operational Probabilistic Theories framework

Definition 3.1.4 (Operational norm). The norm of an element ρ ∈ St(A)R is
defined as

kρkop := sup
{a0,a1}⊆Eff(A)

(a0 − a1|ρ),

where {a0, a1} is any binary observation test.

For the proof of the fact that this is, indeed, a norm see also [57]. This
norm satisfies a monotonicity property, as stated in the following lemma.

Lemma 3.1.1 (Monotonicity of the operational norm). For any δ ∈ StR(A) and
C ∈ Transf1(A → B) the following inequality holds

kC δkop ≤ kδkop, (3.22)

with the equality holding if C is reversible.

Now we set up some terminology and we introduce pure and mixed states,
as well as the definition of state dilation.

Definition 3.1.5 (Refinement and convex refinement of an event). Let C ∈
Transf(A → B).

1. A refinement of C is given by a collection of events {Bj}j∈Y ⊆ Transf(A →
B) such that there exists a test {Bi}i∈X with Y ⊆ X and C =

P
j∈Y Bj.

We denote by Ref(C ) the set of all the refinements of C . We say that
a refinement {Di}i∈Y is trivial if Di = λiC , λi ∈ [0, 1] for every i ∈ Y.
Conversely, C is called the coarse-graining of the events {Di}i∈Y.

2. A convex refinement or decomposition of C is given by a collection of
pairs {(pj,Bj)}j∈Y ⊆ R× Transf(A → B) where {pj}j∈Y is a probability

distribution and Bj are events, such that there exist tests {B(j)
i }i∈X, with

B(j)
i0

= Bj for all j ∈ Y, for which the collection {pjB(j)
i }(i,j)∈X×Y is a

legitimate conditional test, and C =
P

j∈Y pjBj. We say that a convex
refinement is trivial if Bj = C for any j ∈ Y.

Definition 3.1.6. Given two events C ,D ∈ Transf(A → B) we say that D
refines C , and write D ≺ C , if there exists a refinement {Di}i∈X of C such
that D ∈ {Di}i∈X.

Definition 3.1.7 (Atomic, refinable, and extremal events). An event C is called
atomic if it admits only trivial refinements. An event is refinable if it is not
atomic. Finally, an event is extremal if it admits only trivial convex refine-
ments.

The notion of convex refinement and extremal events can be used in order
to define the notions of pure and mixed states.
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3.1. General description

Definition 3.1.8 (Pure and mixed states). ρ ∈ St(A) is called pure if it is
extremal and deterministic, and we will denote by PurSt(A) the set of all the
pure states of system A. ρ ∈ St(A) is said to be mixed if it is neither atomic
nor pure, and if Ref(ρ) = St(A), then it is said to be completely mixed.

In the literature, the terms “atomic” and “pure” are often used interchange-
ably. In quantum theory, the atomic states are all and only those of the form
λ |φi hφ|, with λ ∈ [0, 1], therefore, they are all proportional to a pure state.
However, as pointed out in [44], these two notions must be kept distinct, since
there exist state spaces with pure states that are not necessarily atomic. The
correspondence is meaningful in those theories in which every state is propor-
tional to a deterministic one. Moreover, in the state spaces exhibited in [44]
there can be extremal states that are not deterministic, so that they are exam-
ples of states spaces which show that the set of extremal states can generally
be bigger that the set of the pure ones.

Definition 3.1.9 (State dilation). Let ρ ∈ St(A) and Ψ ∈ St(AB). We say that
Ψ is a dilation of ρ if there exists a deterministic effect e ∈ Eff(B) such that

ρ
A

= Ψ

A

B
e
.

We denote by Dρ the set of all dilations of the state ρ. If Ψ is also pure,
then we say that it is a purification of ρ and B is called the purifying system.
Finally, we denote by Pρ the set of all the purifications of ρ.

Trivially one has that Pρ ⊆ Dρ. Moreover, if Ω ∈ Dρ, then one has DΩ ⊆
Dρ, as it can be easily verified.

The notion of entangled state is easily generalised to OPTs by substituting
the tensor product with the operation of parallel composition.

Definition 3.1.10 (Separable and entangled states). Consider a bipartite system
AB and let Σ ∈ St(AB). We say that Σ is a separable state if there exist
{ρi}i∈X ⊆ St(A) and {σi}i∈X ⊆ St(B) such that

|Σ)AB =
X
i∈X

|ρi)A |σi)AB.

By negation, entangled states are those that are non-separable. States of the
form |ρ)A |σ)B are called factorised.

3.1.3 Different degrees of locality: n-local discriminability

As we deduce from the definition of operationally equivalent transformation
events, definition 3.1.3, in order to distinguish two transformations belonging
to distinct equivalence classes, it is necessary to test them on all possible states
and effects with any conceivable ancilla. A way of reconciling this holistic trait
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3. The Operational Probabilistic Theories framework

of the OPT framework with a reductionist scientific approach is to say that a
theory is, in some sense, local [58]. Here we consider the following definition
[59, 60].

Definition 3.1.11 (n-local discriminability). Let n ≤ m. The effects obtained
as a conic combination of the parallel composition of effects a1, . . . , an where
aj is kj-partite with kj ≤ n for all values of j, are separating for m-partite
states.

Clearly, a theory that is n-locally discriminable, it is also n0-locally dis-
criminable for any n0 ≥ n. So that it makes sense to define a strictly n-locally
discriminable theory as one that is n0-locally discriminable only for n0 ≥ n.

Actually, the case with n = 1, simply known as local discriminability [43,
17, 57], was already considered in the literature on GPTs and OPTs, and it is
a property of QT. This feature is equivalent to another property, named local
tomograhy, or tomographic locality, corresponding to the possibility of state
reconstruction via local effects [61, 47, 45, 62]), and it also has remarkable
consequences that are collected in the following proposition

Proposition 3.1.1. In any OPT the following facts are equivalent:

1. local discriminability holds;

2. For any pair of systems A and B, given A , B ∈ Transf(A → B), if
A |ρ)A = B|ρ)A for all ρ ∈ St(A) then A = B;

3. DAB = DADB.

Notice that the tensor product rule with which systems are composed in
QT trivially implies DAB = DADB. In general, the linear space spanned by
the set of states of a bipartite system can be decomposed in a local and a
non-local part as StR(AB) := [St(A) St(B)]⊕StNL

R (AB), where StNL
R (AB) de-

fines the subspace containing the non-local contributions to states. But in the
presence of local discriminability, one simply has StR(AB) := St(A) St(B),
and the operation of parallel composition can actually be understood as a
tensor product ⊗. The second condition, also called local process tomography,
is quite remarkable. Indeed, as we have already said, from the definition of
operationally equivalent events, in order to actually distinguish two transfor-
mations it might be necessary to consider all the possible ways in which our
local system is correlated with any ancilla. However, the condition of item 2,
also known as local process tomography, simplifies the task of discriminating
A and B to evaluating their action on states of the local system A only. In
mathematical terms, given A ,B ∈ Transf(A → B),

A = B ⇐⇒ A |ρ)A = B|ρ)A ∀ρ ∈ St(A), (3.23)

whenever the theory satisfies local discriminability.
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classical theories

Another case that has been extensively studied in the literature is that of
strictly bilocal theories, corresponding to n = 2. In such a case there exist two
distinct states Ψ,Φ ∈ St(AB) that: i) are equal on all the local effects; ii) any
m-partite state, with m ≥ 3, can be distinguished from any other by an effect
which is a conic combination consisting of the parallel composition of, at most,
2-partite effects. Namely, whenever Γ,Σ ∈ St(ABC) are such that Σ 6= Γ there
exists an effect E ∈ Eff(ABC) of the following form

A

E
B

C
=
X
j

qj

A
aj

B
bj

C
cj

+pj

A

djB

C
ej

+rj

A
fj

B

gjC

+sj

A

hj
B

ij

C

(3.24)
with all qj, pj, rj, sj ≥ 0 and such that

Σ

A

E
B

C
6= Σ

A

E
B

C
. (3.25)

Given the conic decomposition of a 2-local effect as in (3.24), one has the
following relation for system sizes [59, 60].

DAB ≥ DADB, (3.26)

DABC = DADBDC +DA∆BC +DB∆AC +DC∆BC, (3.27)

Where ∆AB := DAB −DADB. In a strictly bilocal theory, inequality in (3.26)
must hold without equality for at least a pair of systems. Real quantum
theory, fermionic theory, that will be reviewed in later in this chapter, and
bilocal classical theory, that wil be discussed in subsection 3.2.3, are examples
of strictly bilocal theories.

3.2 Special instances of the framework: Quantum

Theory, Fermionic Theory and classical theories

Up to now we have presented a summary of the structure of the framework, in
particular we have declaired what are the primitive notions of an OPT, along
with the possible operations that we naturally admit thereon, and we have
seen how probabilities define a linear structure on the sets of events. CT and
QT and FT are two particular instances of this framework.
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3.2.1 The axioms of Quantum Theory

In section 2.2 we revised the mathematical structure of QT, in its Hilbert
space formulation. Such a description can also be derived in the OPT frame-
work described in the previous section, in an axiomatic fashion inspired by the
insights emerging from the experience of quantum information theory. In [17]
the Hilbert space formalism was derived from the following set of axioms.

Axiom 1 (Weak causality). Let ρ ∈ St(A) and {ai}i∈X, {bj}j∈Y be two obser-
vation tests. Then an OPT is said to be weakly causal if the following holdsX

i∈X

p(ρ|{ai}) =
X
j∈Y

p(ρ|{bj}). (3.28)

This is a common notion of causality considered in the literature and it ex-
presses a no-signalling from the future principle, namely it asserts that prepa-
ration probabilities are actually independent of the chosen observation test; it
is also equivalent to state the uniqueness of the deterministic effect. It is clear
that this is a property of QT, given that any observation test, represented by
a POVM {Ei}, sums to the identity operator I. A remarkable fact is that, in
a bipartite scenario, this also implies a no-signalling in space, unless the two
parties decide to exchange their systems [43]. A simple example of a non-causal
OPT can be obtained as the dual theory of a causal one (such as CT), namely
that obtained by exchanging the role of states and effects. Indeed, in this case
there can be more than one deterministic effect, therefore weak causality is
violated. Other more elaborated examples can be found in [57, 53]

Axiom 2 (Perfect discriminability). Any state that is not completely mixed can
be perfectly distinguished from some other state.

Axiom 3 (Ideal compression). For any A and ρ ∈ St1(A) there exist a system C
of size DC ≤ DA and a pair of maps E ∈ Transf(A → C), D ∈ Transf(C → A)
such that DE (σi) = σi for any {σi} ⊆ Ref(ρ).

Axiom 4 (Local discriminability). For any pair of systems A and B, two states
Σ and Γ in St(AB) are different iff there exists a pair of effects a ∈ Eff(A) and
b ∈ Eff(B) such that

Γ

A
a

B
b

6= Σ

A
a

B
b

. (3.29)

We have already discussed this feature at the end of the previous section,
together with some of its consequences. Here we have made it explicit in
mathematical terms.

Axiom 5 (atomicity of sequential composition). If A ∈ Transf(A → B) and
B ∈ Transf(B → C) are atomic transformations, then so is C := BA ∈
Transf(A → C).
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Axiom 6 (Existence of purification). We say that an OPT satisfies purification
if for any ρ ∈ St(A) the set of purifications of ρ in not empty, i.e. Pρ 6= ∅.

Axiom 7 (Essential uniqueness of purification). We say that an OPT satisfies
essential uniqueness of purification if, for any ρ ∈ St(A) such that Pρ 6= ∅,
∀Φ,Ψ ∈ Pρ with Ψ,Φ ∈ St(AB), there exists a reversible transformation U
such that

Ψ

A

B = Φ

A

B
U

B . (3.30)

Axioms 6 and 7 were formerly introduced in [43] and actually they were
stated as a unique one; together, they constitute the formalisation of a char-
acteristic trait of quantum theory, recalled in theorem 2.2.1. Axioms 6 states
that any state can be simulated as the marginal of a pure state that lies on a
larger system. Axiom 7 tells that the purifying state Φ is unique up to uni-
tary quantum operations on the ancillary system E. CT satisfies the first five
axioms listed above, except for axiom 6, that singles out the quantumness in
the axiomatisation of [43].

Remark 3.2.1. A separate statement for these two properties is mandatory,
since, as pointed out in [44], they are actually independent features, in the
sense that there exist theories satisfying axiom 6 but not 7 and viceversa; in
poor words, none of them implies the other.

In QT, not only sequential composition is atomicity-preserving, but also
the parallel composition operation. In particular, composition of pure states
trivially yields another (factorised) pure state. The latter property plays an
important role in our treatment, and it is worthy of a statement in its own
right.

Property 1 (Atomicity and purity of parallel composition of states). We say
that an OPT satisfies:

1. atomicity of parallel composition of states whenever, for any pair of sys-
tems A and B, given two atomic states φ ∈ St(A) and ψ ∈ St(B), their
parallel composition φ ψ is atomic. Accordingly, we say that the parallel
composition is atomicity-preserving;

2. purity of parallel composition of states whenever, for any pair of systems
A and B, φ ∈ PurSt(A) and ψ ∈ PurSt(B) implies φ ψ ∈ PurSt(AB).
Accordingly, we say that the parallel composition is purity-preserving.

When Axiom 7 is used along with item 2 of property 1 one can prove [43]
that any two purifications of the same state are always connected by a suitable
channel. When also 6 holds, then any dilation can be obtained by a fixed
purification, as stated in the following propositions
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Proposition 3.2.1. Let ρ ∈ St(A) be a state of an OPT satisfying existence and
uniqueness of purification (axioms 6 and 7) and item 2 of property 1. Then,
given a purification Φ ∈ PurSt(AR), for any dilation Γ ∈ St(AB) there exists
a channel C ∈ Transf(R → B) such that

Γ

A

B = Φ

A

R
C

B . (3.31)

The notion of causality expressed in axiom 1 is related to a stronger prop-
erty satisfied by quantum theory, the possibility of conditioning, that is defined
as the possibility of choosing a test in a given collection conditioned on the
outcome of another test.

Property 2 (Conditioning). An OPT satisfies strong causality if for every test
{Ai}i∈X and every collection of tests {Bi

j}j∈Y labelled by j ∈ Y, the collection
of events {Ci,j}(i,j)∈X×Y with

A
Ci,j

C
:=

A
Ai

B
Bi
j

C
(3.32)

is a test of the theory.

This feature represents a stronger form of causality, since it implies unique-
ness of the deterministic effect [57, 43], whereby it is also known as strong
causality. Indeed, if by contradiction there exist more than one deterministic
effect, with conditioning one would be able to construct a test that violates
the rule of probability. In strongly causal theories, one can always assume that
any state is proportional to a deterministic one without introducing any sort
of inconsistency (see [63]).

Another feature of QT is the so-called Steering property [64, 65], that can
be generalised as follows for a generic OPT.

Property 3 (Steering). We say that an OPT satisfies steering if the following
statement holds: Let ρ ∈ St(A) and {σi}i∈X ⊆ St(A) be a refinement of ρ.
Then there exist a system B, a state Ψ ∈ St(AB), and an observation test
{bi}i∈X such that

σi
A

= Ψ

A

B
bi

, ∀i ∈ X.

Notice that the state Ψ in the statement must be a dilation of ρ, as one
can easily verify upon summing over i ∈ X. In QT, a stronger formulation of
this property holds: given a state ρ ∈ St(A) and a purification Φ ∈ PurSt(AB)
of ρ, for any decomposition

P
i∈X piσi of ρ there exists an observation test

{bi}i∈X ⊆ Eff(B) such that

pi σi
A

= Φ

A

B
bi

. ∀i ∈ X.
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The stronger steering feature satisfied by quantum theory can actually be
proven to hold in any OPT satisfying local discriminability, existence and
uniqueness (up to reversible channels) of purification and perfect discriminabil-
ity as axioms [57].

3.2.2 Review of Fermionic Theory

We now briefly review fermionic information theory [60, 66], which will be
considered in chapter 5. The systems of the theory are made by local fermionic
modes (LFMs). A LFM is the counterpart of the qubit in quantum theory, and
can be thought of as a cell that can be either empty or occupied by a fermionic
excitation. An L-LFMs system, denoted LF, is described by L fermionic fields
ϕi, satisfying the canonical anticommutation rule (CAR)

{ϕi, ϕ†
j} = δijI, {ϕi, ϕj} = 0 where i, j = 1, . . . , L.

With these fields one constructs the occupation number operators ϕ†
iϕi,

which can be easily proved to have only eigenvalues 0 and 1. The common
eigenvector |Ωi of the operators ϕ†

iϕi, i = 1, . . . , L with eigenvalue 0 defines
the vacuum state |Ωi hΩ| of LF, representing the state in which all the modes
are not excited. The fermionic vacuum state in terms of the field operators is
given by

|Ωi hΩ| =
LY
i=1

ϕiϕ
†
i . (3.33)

By applying the operators ϕ†
i to |Ωi the corresponding i-th mode is excited

and, by raising |Ωi in all possible ways, we get the 2L orthonormal vectors
forming the Fock basis in the occupation number representation: a generic
element of this basis is

|n1, . . . , nLi := (ϕ†
1)n1 . . . (ϕ†

L)nL |Ωi , (3.34)

with ni = {0, 1} corresponding to the occupation number at the i-th site. The
total occupation number of a basis vector is defined as

P
i ni. The linear span

of these vectors corresponds to the antisymmetric Fock space FL of dimension
dFL = 2L. Notice that the Fock space FL is isomorphic to the Hilbert space
HL of L qubits, by the trivial identification of the occupation number basis
with the qubit computational basis. This correspondence lies at the basis of
the Jordan-Wigner isomorphism [67, 68, 69] typically used in the literature to
map fermionic systems to qubits systems and vice-versa. We recall here the
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definition of the Jordan-Wigner map

JL(ϕi) =

 
i−1O
l=1

σzl

!
⊗ σ−

i ⊗

 
LO

k=i+1

Ik

!
,

JL(ϕ†
i ) = JL(ϕi)

†,

JL(XY ) = JL(X)JL(Y ),

JL(aX + bY ) = aJL(X) + bJL(Y ),

(3.35)

with X, Y linear combinations of products of field operators on the L-LFMs,
and where we used the standard notation for Pauli sigma operators. In the
following we will drop the dependence on the number of LFMs in the Jordan-
Wigner map, namely we will write J(X) in place of JL(X), when it will be clear
from the context. Notice that the Jordan-Wigner isomorphism is implicitly
defined in Eq. (3.34), and, as such, it depends on the arbitrary ordering of the
modes. All such representations are unitarily equivalent.

Differently from standard quantum systems, fermionic systems satisfy the
parity superselection rule [70, 71, 72, 73, 60], namely, states commute with the
parity operator.

P =
1

2
(I +

LY
i=1

(φiφ
†
i − φ†

iφi). (3.36)

One can decompose the Fock space FL of system LF in the direct sum FL =
F e
L ⊕Fo

L, with F e
L and Fo

L the spaces generated by vectors with even and odd
total occupation number, respectively. The convex set of states St(LF) corre-
sponds, in the Jordan-Wigner representation, to the set of density matrices on
FL of the form ρ = ρe+ρo, with ρe, ρo ≥ 0, Tr[ρo]+Tr[ρe] ≤ 1 and with ρe and
ρo having support on F e

L and Fo
L, respectively, and pure states are represented

by rank one density operators. Any admissible fermionic state is represented
by a density matrix given by a linear combination of products of an even num-
ber of field operators. Conversely, every linear combination of products of an
even number of field operators that gives rise to a density matrix is an admis-
sible state. Analogously, effects in the set Eff(LF) are represented by positive
operators on LF of the form a = ae + ao, with ae and ao having support on F e

L

and Fo
L, respectively. Notice that set of states and effects of system LF have

dimension

DLF
:= dim[StR(LF)] = d2

FL/2 = 22L−1, (3.37)

compared to the quantum case where the set of states and effects associated
to the Hilbert space HL of L qubits has dimension d2

HL
= 22L.

Given two fermionic systems LF and MF, we introduce the composition of
the two as the system made of K ≡ L + M LFMs, denoted with the sym-
bol KF := LF MF, or simply KF := LFMF. We keep using the symbol
to distinguish the fermionic parallel composition rule from the quantum one,
corresponding to the tensor product ⊗.
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Given a state Ψ ∈ St(LFMF), one can discard the subsystem MF and con-
sider the marginal state, which we denote by σ := TrfMF

(Ψ). We use the symbol

TrfMF
to denote the fermionic partial trace on the subsystem MF. This is com-

puted by performing the following steps (see ref. [60] for further details): (i)
drop all those terms in Ψ containing an odd number of field operators in any
of the LFMs in MF; (ii) remove all the field operators corresponding to the
LFMs in MF from the remaining terms. The fermionic trace Trf (ρ) of a state
ρ ∈ St(MF) is then defined as a special case of the partial one, corresponding
to the case in which L = 0.

Fermionic transformations in Transf(LF → LF) and effects are characterised
according to the following proposition and its subseqeuent corollary.

Proposition 3.2.2 (Fermionic transformations). All the transformations in the
set Transf(LF → LF) with Kraus operators being linear combinations of prod-
ucts of either an even number or an odd number of field operators are admissible
fermionic transformations. Conversely, each admissible fermionic transforma-
tion in Transf(LF → LF) has Kraus operators being superpositions of products
of either an even number or an odd number of field operators.

Corollary 3.2.1 (Fermionic effects). Fermionic effects are positive operators
bounded by the identity operator that are linear combinations of products of
an even number of field operators. Conversely, every linear combination of
products of an even number of field operators that is represented by a positive
operator bounded by the identity is a fermionic effect.

The corollary follows immediately from Proposition 3.2.2, since an effect
A is obtained as a fermionic transformation A followed by the discard map,
i.e. the trace. Thus

Tr[ρA] = Tr[A (ρ)] =
X
i

Tr[KiρK
†
i ] = Tr[ρ

X
i

K†
iKi],

namely A =
P

iK
†
iKi. Having the polynomial Ki a definite parity (though

not necessarily the same for every i), A is an even polynomial.

Remark 3.2.2. The description of FT given above, together with the parity
superselection rule, is derived in [60] as a consequence of the following as-
sumptions, concerning states and effects of fermionic systems and the local
charactersation of fermionic transformations:

1. FT is causal;

2. the states of system LF are represented by density matrices on the anti-
symmetric Fock space FL;

3. the transformations on LF are represented by linear Hermitian preserving
maps;
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4. the map Ai with kraus operators Ai := ϕi+ϕ
†
i is an actual transformation

of the theory;

5. let IL = {1, . . . , L} and LF the system corresponding to L-LFMs. Trans-
formations with Kraus operators in the algebra of field operators ϕi, ϕ

†
i

with i ∈ I ⊂ IL are local on the subsystem of the LFMs associated with
I;

6. local transformations on a system retain the same Kraus representation
when other systems are added or discarded:

7. the pairing between states and effects is given by the Born rule (a|ρ) :=
Tr(aρ);

8. on a single LFM the pairing with the deterministic effect is represented
by (e|ρ) := Tr(ρ).

In particular, proposition 3.2.2 and corollary 3.2.1 follow by this set of assump-
tions, along with the fact that states are represented by linear combination of
an even product of field operators, whence they commute with the parity op-
erator P (equation (3.36)).

Finally, the set of transformations from LF to MF Transf(LF → MF), is
given by completely positive maps from St(LF) to St(MF) in the Jordan-Wigner
representation, and deterministic transformations, also called channels, from
LF to MF, correspond to trace-preserving completely positive maps. Like in
quantum theory, any fermionic transformation C ∈ Transf(LF → MF) can be
expressed in Kraus form

C (ρ) =
X
i

CiρC
†
i , (3.38)

with deterministic transformations having Kraus operators {Ci} such that
J(
P

iC
†
iCi) = IHL

, IHL
denoting the identity operator on HL. For a map

C ∈ Transf(LF → MF) with Kraus operators {Ci}, we define its Jordan-Wigner
representative J(C ) as the quantum map with Kraus operators {J(Ci)}. Now,
given two transformations C ∈ Transf(LF → MF) and D ∈ Transf(KF → NF),
we denote by C D ∈ Transf(LFKF → MFNF) the parallel composition of C
and D , with Kraus operators {CiDj}, where {Ci} are Kraus operators for C
and {Dj} for D . We observe that in the Jordan-Wigner representation one
generally has

JL+K(CiDj) 6= JL(Ci) ⊗ JK(Dj), (3.39)

JL+K(C D) 6= JL(C ) ⊗ JK(D). (3.40)

If C is a transformation in Transf(LF → MF), its extension to a composite
system LFNF, is given by C I , with I the identity map of system NF—
whose Jordan-Wigner representative is the quantum identity map—and its
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Kraus operators involve field operators on the LF modes only. It is worth noting
that, despite the Jordan-Wigner representative of this map is not necessarily
of the form JL(C )⊗I , upon suitable choice of the ordering of the LFMs that
defines the representation, one can always reduce to the case where, actually,

JL+N(C I ) = JL(C ) ⊗ I . (3.41)

As a special case of the above composition rule, one has ρ σ = ρσ ∈
St(LFMF) for the parallel composition of states ρ ∈ St(LF) and σ ∈ St(MF),
and similarly a b = ab ∈ Eff(LFMF) for the parallel composition of effects
a ∈ Eff(LF) and b ∈ Eff(MF).

3.2.3 Classical Theories

We briefly described CT in the first chapter, where we recalled what are the
mathematical representatives of states, effects and transformations. From such
a description of CT we readily see that is satisfies the first five axioms 1-5
encompassed by QT. Indeed, weak causality follows by the uniqueness of the
determinstic effect, and since the parallel composition is given by the tensor
product, the size of the composite system is the product of the sizes of the
composing systems, thus local discriminability holds (see proposition 3.1.1).
As we have already observed, axiom 6, among those mentioned in subsection
3.2.1, is the sole that is not satisfied by CT, thus it can considered the genuinely
quantum feature in such a formalisation.

Now, a common way of thinking about classicality, in the literature on
GPTs and OPTs, is connected to the geometric structure of the set of states.
Usually, a system is called “classical” when the pure states are jointly perfectly
discriminable, according to the following definition.

Definition 3.2.1 (Joint perfect discriminability). Let A be a system of the the-
ory. A set of states {|ρi)A}ni=1 is jointly perfectly discriminable if there exists
an observation test {(ai|A} such that:

(ai|ρj)A ∝ δij, ∀i, j ∈ {1, . . . , n}.

Remark 3.2.3. In [52], it has been proven that the notion of full information
without disturbance (FIWD), a typical classical feature, indeed implies in full
generality that all the systems of the theory must be classical. In [74], the
notion of compatibility is studied and extended to strongly causal OPTs (i.e.
satisfyting property 2), and another feature considered distinctively classical,
full compatibility, is thoroughly scrutinised. In particolar, in addition to be
equivalent to FIWD, it also implies that all the systems of the theory must be
classical.

In CT, pure states, in addition to being jointly perfectly discriminable, they
also feature another geometrical property: for any classical system, the pure
states together with the null state are the vertices of a simplex. In this sense,
CT is an example of a simplicial theory, according to the following definition.
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Definition 3.2.2 (Simplicial theories). A simplicial theory is a finite dimen-
sional OPT where the extremal states of every system A are the vertices of a
DA-simplex.

In [59], simplicial OPTs have been studied thoroughly. It has been shown
that any simplicial theory which is n-locally discriminable (definition 3.1.11)
contains states that do not admit a purification, thus generalizing the well-
known result that holds true for CT. Another consequence of the simpliciality
condition expressed by this definition, is that the theory is necessarily weakly
causal (axiom 1). Below we recall a lemma from [59] (precisely, lemma 1) on
the characterisation of the parallel composition of states in simplicial theories
satisfying n-local discriminability for some positive integer n, since it will be
useful in chapter 6.

Lemma 3.2.1. Consider a simplicial OPT staisfying n-local discriminability
for some positive integer n. Then, for all systems A,B and non-null extremal
states |k)AB, there exists a unique product of non-null extremal states |ik)A

|jk)B such that |k)AB convexly refines |ik)A |jk)B.

In CT, local discriminability and the uniqueness of the pure state decom-
positon entail that states on bipartite systems are all and only of the form (2.4),
thus separable. On the one hand, the presence of entanglement is considered
as one of the sharpest quantum feature, that definitely marks the departure
of QT from CT. However, in [59] the authors studied simplicial theories that
are n-local discriminable with n ≥ 2, proving that, in such a case, simplicial
OPTs admit the existence of bipartite entangled states according to definition
3.1.10. More precisely, one has the following theorem.

Theorem 3.2.1. Consider a simplicial OPT. The following fact are equivalent:

1. the theory admits entangled states;

2. purity of parallel composition of states is violated;

3. the theory does not satisfy local discriminability.

In particular, while in general it is always true that local discriminabil-
ity implies that the compositional law is purity-preserving, the converse can
generally be false, a trivial example being Fermionic Theory, which is bilocal.

As we have already said, simpliciality implies weak causality. For the
present purposes, defining classical theories starting from simplicial ones is
sufficient, therefore, we leave aside the problem of defining what a classical
theory is in a non-causal setting, which is beyond our scope.

Definition 3.2.3 (Classical theories). A weakly causal classical theory is a sim-
plicial theory where the pure states of every system are jointly perfectly dis-
criminable.
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A classical theory called Bilocal Classical Theory, that violates purity of
parallel composition of states and, according to theorem 3.2.1, admits of the
presence of entangled states has been exhibited in [44]. BCT is a fully-fledged
operational probabilistic theory that has been constructed with the aim of
showing the independence of two fundamental notions: entanglement and com-
plementarity. As its name suggests, BCT is a strictly bilocal theory, in the
sense described in subsection 3.1.3, and as such it represents a good test to
analyse the behaviour and the properties of the operational definition of in-
formation content that we will discuss in the next chapter. Here we outline
the features of the theory that are relevant for the present work, in partic-
ular we recall the postulates regarding the structure of state spaces and the
characterization of channels. For a detailed account we refer the reader to [44].

Postulate 4. Bilocal Classical Theory is classical and convex. For every integer
D > 1 there exists a type of system with size D.

Postulate 5 (Parallel composition). For any two systems A,B, the size of the
composite system AB is given by the following rule:

DAB = DBA =

(
2DADB, if A 6= I 6= B,

DA, if B = I.
(3.42)

Let I 6= A,B,C. We denote the set of pure states of any composite system
AB as PurSt(AB) = {|(ij)−)AB, |(ij)+)AB | 1 ≤ i ≤ DA, 1 ≤ j ≤ DB}, so
that for all pure states |i)A ∈ PurSt(A), |j)B ∈ PurSt(B) the following parallel
composition rule holds:

i
A

j
B =

1

2

X
s=−,+

(ij)s

A

B . (3.43)

When a third system is added the association satisfies the following law:

((ij)s1k)s2 = (i(jk)s1s2)s1 , (3.44)

for all local indices i, j, k and signs s1, s2.

The following proposition is actually a consequence of other defining postu-
lates that we have not mentioned here (the interested reader can find all details
in the original reference [44]). It tells us how channels are characterised, and
it is of fundamental importance when we will discuss the coding problem in
this theory (which is connected to the information content, as we will describe
in-depth in chapter 4), since it essentially defines how compression schemes
can be constructed in this theory

Property 4 (Channels). C ∈ Transf1(A → B) iff for every i ∈ {1, . . . , DA}
there exists a probability distribution {λ(i)

m,τ}(m,τ)∈I , with I = {1, . . . , DB} ×
{+,−}, such that the following holds for all |(ij)s)AE ∈ PurSt(AE):

(ij)s

A

E
C

F =
X
m,τ

λ(j)
mτ (im)τs

A

F .
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3.3 Fidelity and entropic-like quantities in OPT

Several information-theoretic quantities find their place in this framework and
all the ones that are summarized in this section rely on their classical counter-
parts. For instance a notion of fidelity can be suitably defined based on the
classical fidelity4 (or Bhattacharyya coefficient) [54, 75]. Moreover in the liter-
ature, three notions of entropies have been introduced and studied for GPTs
and OPTs [54, 55, 56, 76, 77, 78], and each of them has its own operational
interpretation that is directly inherited from the intuitive understanding of the
Shannon entropy as a measure of uncertainty. While it is known that they all
collapse to the same quantity in CT and QT, the Shannon and von Neumann
entropies respectively, it has also been noticed that they are not equivalent
for generalised probabilistic models. In this section we recall and discuss their
definitions and we remind the reader of some of the relevant properties they
satisfy.

3.3.1 Fidelity

The fidelity is an alternative way of quantifying the distance between states
that is widely used in information theory. In QT, we have seen that the
fidelity F between two density matrices ρ and σ is defined via the formula
F (ρ, σ) = Tr(

p
ρ1/2σρ1/2), but can also be obtained as the minimization over

all the possible POVMs of the classical fidelity, as expressed in equation (2.29).
By reversing the logic, one can use this characterization of F that holds true
for QT and use it as a definition in the context of OPT.

Definition 3.3.1. Let ρ, σ ∈ St1(A). For any observation test {ai}i∈X ⊆ Eff(A)
denote by p := pi and q := qi the probability distributions defined by

pi := ρ
A

ai ,

qi := σ
A

ai .

Then one can define the Fidelity between ρ and σ as

F (ρ, σ) := inf
{ai}i∈X

Fc(p,q), (3.45)

where Fc(p,q) =
P

i

√
piqi.

Since the classical fidelity is bounded by 1, and is equal to 1 only for p = q,
one clearly has 0 ≤ F (ρ, σ) ≤ 1, with equality if and only if ρ = σ; moreover,
it is symmetric in its arguments, namely F (ρ, σ) = F (σ, ρ). Fidelity satisfies
the following property, that generalises the Fuchs-van de Graaf inequality [30]
and establishes the equivalence with the operational distance as a measure of
closeness on the set of deterministic states.

4Given two probability distributions p := {pi}i∈X and q := {qi}i∈X one can define the
classical fidelity as Fc(p,q) =

P
i

√
piqi.
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Proposition 3.3.1. Let ρ, σ ∈ St1(A). The following inequalities hold

1 − F (ρ, σ) ≤ 1

2
kρ− σkop ≤

p
1 − F (ρ, σ)2. (3.46)

Proposition 3.3.2 (Monotonicity). Let ρ, σ ∈ St1(A) and C ∈ Transf1(A,B).
The following inequality holds

F (C (ρ),C (σ)) ≥ F (ρ, σ). (3.47)

Beyond these two properties, that have their own statement just for future
reference, we notice that this generalized fidelity is also strongly concave (hence
concave and jointly concave) [54].

3.3.2 Measurement entropy

A characterisation of the Shannon entropy in QT can be given in terms of a
minimization procedure of the Shannon entropy. In more precise terms, take
an arbitrary rank-one POVM {Λi}i∈X and, for a given state ρ, consider the
Shannon entropy of the probability distribution p := {Tr(ρΛi)}. Then, it can
be shown that the von Neumann entropy of the state ρ can be computed by
taking the infimum over all such POVMs, namely S(ρ) := infΛi H(p). Actually,
one can replace the infimum with the minimum since S(ρ) can be achieved by
a projective measurement associated with the eigenstates of the quantum state
ρ.

As for fidelity, one can consider this as a definition of entropy. Hence,
given any state ρ ∈ St1(A), one can consider all the possible atomic measure-
ments {ai}i∈ X that can be performed thereon, each one defining a probability
distribution p = {(ai|ρ)}i∈X. Therefore, the uncertainty associated with this
measurement is obtained by computing the Shannon entropy of p, and then
optimizing by taking the infimum.

Definition 3.3.2. Let ρ ∈ St1(A) for some system A, denote by Oat(A) the set
of atomic observation test of A. We then define

S1(ρ) := inf
{ai}∈Oat(A)

H(ai(ρ).) (3.48)

Now the infimum is mandatory, since it could be the case that an obser-
vation test that achieves it does not exist. Notice that an optimization over
all the set of masurements would give a trivial result, since one can always
choose the measurement corresponding to a deterministic effect {eA}, so that
S1(ρ) = 0; as it is clear from the definition, this can be interpreted as the
least uncertainty among all the possible atomic measurements. Concerning its
properties, S1(ρ) is a non-negative concave function, and if the parallel com-
position of atomic measurements yields a measurement which is still atomic,
then it is also subadditive. However, it is also shown [56] that there exists a
tripartite state of non-local boxes for which strong subadditivity (see item 6
of theorem 2.1.1) is violated.
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Remark 3.3.1. In [56] the authors considered a compression task and analyse,
under certain additional assumptions, the connection of the compression rate
with this definition entropy. In the first place, for a subset of S of a set
of states St(A), they define a notion of dimension as d = min{ai}i∈X∈Oat |{i ∈
X|∃σ ∈ S, (ai|σ) > 0}|. In other words, d is computed by considering an atomic
measurement {ai}i∈X, then counting the number of outcomes in X such that
at least one state in S that is different from zero, and eventually minimising
this number over all the atomic measurements. Then they define an i.i.d.
source as an ensemble {qi, σi}i∈X which emits sequences of states of the form
σi := σi1 · · · σiN . These states lie in the product space St(A⊗N) and
the encoding maps these to states σN in a subset SN ⊆ St(A⊗N). After the
decoding we end up with a state σ̃i, and the compression scheme has rate R if
the dimension of SN satisfies dSN ≤ 2NR. The reliability is assessed by means
of the average error distance between the original state and the decoded one,P

i qikσi − σ̃ikop. Thus, setting ρ =
P

i qiσi, they prove that if R > S1(ρ) then
the source can be reliably compressed, namely that S1(ρ) is an achievable rate
for this task.

3.3.3 Accessible information

Given any ρ ∈ St(A), for any convex decomposition {pi, σi}i∈X one can define
the accessible information associated with it by optimising over all the possible
measurements that can be performed thereon as

I({pi, σi}) := sup
{aj}j∈Y

H(X : J),

where the mutual information is computed via the joint probability distribution
defined as p(i, j) := pi(aj|σi)A. Then, one can define an entropy by optmis-
ing over all the possible convex decompositions of ρ. However, one obtains
the same result if pure convex decompositions and atomic measurements are
considered, so that one can equivalently take the following as a definition.

Definition 3.3.3. Let ρ ∈ St1(A) for some system A, denote by Oat(A) the set
of atomic observation test of A. We then define

S2(ρ) := sup
(pi,{φi})∈P(ρ)

sup
{ai}∈Oat(A)

H(X : J) (3.49)

where the mutual information is computed according to the joint probability
distribution pi(aj|φi)A.

Non-negativity of S2 directly follows by non negativity of the Shannon
mutual information. An important feature of this entropy is that it can be
understood as a measure of pureness, in the sense that S2(ρ) is vanishing if
and only if ρ is a pure state.
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Remark 3.3.2. Contrary to the measurement entropy, S2 is generally not con-
cave but, if {σi}i∈X is a collection of states and p = {pi}i∈X is a probability
distribution, then the following inequalities hold in any probabilistic model

S2(
X
i

piσi) ≥
P

i p
2
iS

2
2(σi)P

i piS2(σi)
,

S2(
X
i

piσi) ≥
X
i

p2
iS2(σi),

S2(
X
i

piσi) ≥
1

|X|
X
i

piS2(σi),

S2(
X
i

piσi) ≥max
i∈X

piS2(σi).

These relations express a weaker form of concavity, since they are a straight-
foward consequence of the latter.

3.3.4 Mixing entropy

Let ρ ∈ St(A). This state may be decomposed in terms of pure states in several
ways. If ρ =

P
i piφi with p = {pi}i∈X a probability distribution and {φi} a set

of pure states, then one can compute Shannon entropy H(p) associated with
such a pure decomposition, which measures the uncertainty associated with it.
By minimising over all the possible decompositions we are led to the following
definition.

Definition 3.3.4. Let ρ ∈ St1(A) for some system A. We then define

S3(ρ) := inf
{(pi,φi})∈P(ρ)

H(pi). (3.50)

As for S2, also the mixing entropy is vanishing on all and only the pure
states [54]. S3(ρ) measures the least uncertainty over all the possible way
of decomposing ρ in pure states and it exhibits the weirdest behaviour. For
instance, it is proven to be not subadditive, and when the set of states is not
a simplicial polytope it is not concave. However, if {σi}i∈X is a collection of
states and p = {pi}i∈X is a probability distribution, then it holds that

S3(
X
i

piσi) ≤ H(p) +
X
i

piS3(σi),

which is an upper bound that is also satisfied by the von Neumann entropy.
As mentioned at the beginning of this section, there are probabilistic mod-

els where the mixing entropy differs from the ones we have already described.
In [55] the authors provide a definition of mutual information in terms of the
measurement entropy, which is just the same definition of classical information
theory, where S1(ρ) replaces the Shannon entropy, and they provide a suffi-
cient condition for information causality based on this mutual information. In
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particular, they show that a theory where i) the mixing entropy is equal to
the measurement entropy, ii) the mutual information satisfies a Holevo bound
and iii) the measurement entropy is strongly subadditive, then satisfies the
information causality principle introduced in [79].
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CHAPTER4

The information content in OPT

In this chapter we introduce a notion of information content for the OPT
framework, based on a compression task that generalises both the quantum
and the classical setting that we revised in chapter 2. The requirement that
we impose on compression schemes featuring in the definition of information
content is that their effect on any preparation of ensembles that average to
the considered state must be indistinguishable from leaving the preparation
untouched. Thus, besides considering any refinement of the state under dis-
cussion, we consider the action of the compression scheme on decompositions
of its dilations, i.e. joint states of the system and an arbitrary external system
such that the state that one obtains after averaging and discarding the exter-
nal system is precisely the one of interest. The importance of considering the
effect of transformations on external systems has been already pointed out in
other contexts, e.g. in assessing information vs disturbance [52].

In classical and quantum Shannon theories the amount of information is
measured in bits and qubits respectively. For a generic theory, with no further
restrictions on its structure, in principle, one may not be able to identify an
elementary information carrier. For this reason, we will consider theories that
we name “digitisable”. Roughly speaking, we assume the existence of at least
one elementary system, which we call obit1, such that an agent can always
encode an arbitrary but finite number of copies of her/his system into an array
made of an integer number of obits. This feature is evidently satisfied by clas-
sical and quantum theory, and it does not rule out scenarios that are relevant

1Here, “o” stands for operational.
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from a foundational perspective, such as non-local boxes [80, 81]. The latter
is the prototypical example of a theory where the various notions of entropy
exhibit odd features, such as violation of strong subadditivity, subadditivity
and concavity, and where they are also proven to be not equivalent [55, 56, 82].
Moreover, this assumption can also be applied to theories without local tomog-
raphy, fermionic information theory (that we will analyse later) and BCT, that
will be discussed in chapter 6.

After introducing the notion of information content in a general OPT, we
prove some of its main properties and, as special cases, we analyse classical
and quantum theory, where our definition boils down to Shannon’s and von
Neumann’s entropy, respectively. We then analyse in detail when the infor-
mation content can be understood as a measure of purity for states and, as a
byproduct, we also show that the optimised accessible information [55, 56, 82]
generally provides a lower bound for it.

4.1 Definition of information content

In this section we present an operational definition of information content,
which is essentially based on a generalisation of the compression task reviewed
in detail in chapter 2. We first give the notion of digitisable OPT, that in
turn set the stage for the introduction of the information content, which we
define immediately after. The main ingredient of the definition is the figure of
merit, that establishes how much the original message emitted by the source
is distorted by compression protocols. We then show that in theories that
satisfy conditioning and steering (properties 2 and 3) the figure of merit can be
computed according to simplified expressions, bringing them closer to the error
quantifiers already introduced in the classical and quantum settings. We then
show that in the latter cases the information content reduces to the Shannon
and von Neumann entropy respectively.

4.1.1 Digitisable theories

In a general physical theory of information, information plays of course a cen-
tral role. It is then reasonable to expect that one has a way to quantify it,
and this in turn has to come along with a unit. In classical and quantum
theories, the output of any physical source is digitised in terms of bits and
qubits, respectively. In particular, focusing on the case of classical information
theory, any string of length N , say i := i1 . . . iN , where each i is extracted from
an alphabet of d symbols, can be perfectly encoded on a distinct array of a
suitable number of bits. The bit is indeed the reference system that we usually
adopt as a unit for assessing the amount of information of a given classical
source; an analogous role is played by the qubit in quantum information the-
ory. Moreover, notice that one can actually choose any other system for the
digitisation of the outputs of a classical or quantum information source, with
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4.1. Definition of information content

the only difference being that the entropy function, which numerically quan-
tifies the information content, must be rescaled by a suitable multiplicative
factor.

In order to elaborate more on this, let us focus on QT. Consider two dif-
ferent qudits with dimension d1 and d2 respectively. Generally, the equa-
tion dk1

1 = dk2
2 may have no integer solutions (for instance, when both d1

and d2 are prime). However, such equation tells us that the smallest inte-
ger k2 := Mmin(k1) such that we can isometrically embed H⊗k1

1 into H⊗k2
2 is

trivially given by
Mmin(k1) = dk1 logd2

d1e, (4.1)

which is such that

lim
k1→∞

dk1 logd2
d1e

k1

= logd2
d1. (4.2)

Similarly, dk2 logd1
d2e is needed for an isometric embedding of H⊗k2

2 into H⊗k1
1 ,

and one has that

lim
k2→∞

dk2 logd1
d2e

k2

= logd1
d2 =

1

logd2
d1

=
1

limk1→∞
dk1 logd2 d1e

k1

. (4.3)

This simple observation tells us that any pair of qudit systems A1 and A2

are asymptotically equivalent systems according to the following definition.

Definition 4.1.1 (Asymptotical equivalence). Two systems A1 and A2 are asymp-
totically equivalent if

1. there exists a pair of integers k1, k2 < ∞, E ∈ Transf1(A k1
1 → A k2

2 )
and D ∈ Transf1(A k2

2 → A k1
1 ) such that DE = I

A
k1

1
;

2. there exists a pair of integers h1, h2 < ∞, G ∈ Transf1(A h2
2 → A h1

1 )
and F ∈ Transf1(A h1

1 → A h2
2 ) such that FG = I

A
h2

2
;

3. let Mmin
2 (k1) be the smallest k2 such that item 1 is satisfied for a given

k1, and similarly for Mmin
1 (h2) with reference to item 2. The following

assumption is made:

lim
k1→∞

Mmin
2 (k1)

k1

= k, lim
h2→∞

Mmin
1 (h2)

h2

= k−1. (4.4)

We can summarise the observations that we have made up until now as
follows:

1. given any quantum system A, associated with an Hilbert space HA, there
exists at least an elementary system Q and an integer M such that there
exists a left-reversible quantum channel E : A → Q⊗M ;

2. if Q1 and Q2 are two elementary systems, then they are asimptotically
equivalent.
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4. The information content in OPT

These two simple considerations can be thoroughly made into a requirement
that a theory must abide by, thus setting the stage for a meaningful definition
of compression rate in the OPT framework. This is formalized as follows.

Assumption 1 (Digitisability). We say that an OPT is digitizable if there exists
a system B (called obit) such that for any system X there exists k < ∞ and
a pair of maps C ∈ Transf1(X → B k) and F ∈ Transf1(B k → X) such that
F ◦ C = IX. Moreover, if B1 and B2 are two such systems, then they are
asymptotically equivalent.

In any theory satisfying the assumption of digitisability an agent can always
encode the state of her/his system on the parallel composition of a sufficiently
large number of elementary systems, which we can think of as a generalisation
of the qubit system for quantum theory. The request of digitisability comes
from the need of a unit for the amount of information required in order to store
a given source. In classical information theory we use bits, in the quantum
counterpart the qubits, and for a generic OPT satisfying digitizability we use
obits, whose existence must then be postulated.

Remark 4.1.1. We want to stress the fact that the assumption of digitisability
is extremely weak, to the extent that every theory in the literature abides by
it, and it is very hard to imagine a theory that violates it. Indeed, a non-
digitizable theory should contain infinitely many inequivalent system types,
even asymptotically (see def. 4.1.1), and this immediately brings us into an
unexplored territory of wild theories.

Remark 4.1.2. The non-local boxes [80] provide us with a non trivial example
of an OPT satisfying the digitisability assumption, and with a strong depar-
ture from the quantum one. There exists a unique single system, whose state
space is described by a square, and multipartite systems are obtained by using
only this one, therefore it is trivially digitizable. In the literature—with a few
remarkable exceptions [41, 83]—non-local boxes are presented in terms of the
geometry of their state space, and focusing on the correlations that measure-
ments can produce, disregarding the behaviour of transformations. However
one can straightforwardly make them into an OPT by assuming that every
collection of linear maps on the state space that map preparations to prepa-
rations is allowed. A similar construction was carried out e.g. in Ref. [41].
Non-local boxes provide a scenario where the wealth of the known entropy
notions is manifest. Moreover, the fact that we are only referring to the con-
version of finitely many copies of the system at hand is not constraining from a
conceptual point of view. For the present purposes, namely taking a first step
towards a Shannon theory for generic physical systems, this level of analysis is
sufficient. However, the composition of a countable number of systems can be
suitably defined (see [63]) opening the route to a generalization of this property
in the infinite case.
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4.1. Definition of information content

4.1.2 The definition

We now introduce the definition of information content in terms of a compres-
sion task, where the procedure is defined in terms of a block-coding strategy
where we allow for an error at the decoding, mimicking the scenario that we
have described at length in chapter 2. An information source is characterized
by a system A and a state ρ ∈ St(A). Repeated uses of the source then gener-
ate a message that, generalizing the i.i.d. setting of the classical and quantum
scenario, has the form of a factorized state, ρ N . A compression map is given
by a pair of maps E ∈ Transf1(A N → B M) and D ∈ Transf1(B M → A N),
that we name encoding and decoding respectively; we also call C := DE the
codec map.

Now, we need a figure of merit that establishes the goodness of the codec
map C := DE or, in other words, we must define a quantity that gauges
how much error the codec map C introduces. Our choice comes as a conse-
quence of the two following elementary observations: (i) the output message
to which we have local access may be correlated with an ancilla, and (ii) it
could be prepared in different ways. These considerations come from classical
and quantum Shannon theory, which taught us that faithfully transmitting
information amounts to distorting both preparations and correlations as little
as possible. Therefore, since the aim is to preserve all the possible information
gathered in the message, we use the following quantity

D(ρ N ,C ) := sup
Ψ∈D

ρ N

sup
{Γi}∈R(Ψ)

X
i

kC I (Γi) − Γikop, (4.5)

as the error quantifier. In other words, it is an optimization of the average
error over all the possible decompositions of any dilation of the message.

Accordingly, we can now give the following definitions

Definition 4.1.2. An (ε,N)-reliable compression scheme (E ,D) is a compres-
sion scheme such that D(ρ N ,C ) < ε where D(ρ N ,C ) is computed according
to formula (4.5). For fixed N , M we denote with EN,M,ε(ρ) the set of ε-reliable
compression schemes, i.e.

EN,M,ε(ρ) = {(E ,D)|D(ρ N ,C ) < ε}. (4.6)

Definition 4.1.3 (Information Content). Let ρ ∈ St1(A). We define the smallest
achievable compression rate for length N to tolerance ε as follows

RN,ε(ρ) :=
min{M : EN,M,ε(ρ) 6= ∅}

N
. (4.7)

The information content of the state ρ is defined as

I(ρ) := lim
ε→0

lim sup
N→∞

RN,ε(ρ). (4.8)

In the following proposition we show that in any digitisable theory the
information content in well-defined.
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4. The information content in OPT

Proposition 4.1.1. I(ρ) is well defined for every ρ ∈ St1(A) and every system
A.

Proof. Firstly, we show that for any choice of the elementary system, I(ρ) is
a finite number for any state ρ. By the digitizability assumption we know
that for any N there exists a positive integer K < ∞ and a pair of maps
E ∈ Transf1(A N → B K), D ∈ Transf1(B K → A N) such that DE = IA N .
Therefore, for any N , ε the set EN,K,ε(ρ) is not empty, and the minimum in
eq. (4.7) is always finite. Moreover, it is immediate to realise that K does
not need to grow more than linearly versus N , just considering N repetitions
of the encoding for one copy A. Thus, the ratio in eq. (4.7) is bounded and
one can take the lim supN→∞ safely. The existence of limε→0 follows by the
fact that EN,M,ε(ρ) ⊆ EN,M,ε0(ρ) 6= ∅ whenever ε ≤ ε0, which, in turn, implies
monotonicity of the function lim supN→∞RN,ε(ρ) versus ε.

What is left to prove is that using two different obits we are not led to
two incomparable notions of information content. First of all, fix N, ε, let
ρ ∈ St1(A), and let

M1,N := min{M : E1
N,M,ε(ρ) 6= ∅},

M2,N := min{M : E2
N,M,ε(ρ) 6= ∅},

be the minimum number of obits B1 and B2 needed for an ε-optimal encod-
ing, respectively. Rephrasing the first equation in (4.4), there exists a se-

quence δ1(M1) such that Mmin
2 (M1) = kM1 + δ1(M1) with limM1→∞

δ1(M1)
M1

= 0.

Given the encoding E of item 1 in definition 4.1.1 from M1,N to Mmin
2 (M1,N)

(see item 3 in definition 4.1.1), we have an ε-optimal encoding of ρ N onto
Mmin

2 (M1,N) obits B2, therefore M2,N ≤Mmin
2 (M1,N) and this implies

lim sup
N→∞

M2,N

N
≤ lim sup

N→∞

Mmin
2 (M1,N)

N

= lim sup
N→∞

kM1,N

N
+
δ1(M1,N)

N

≤ lim sup
N→∞

kM1,N

N
+ lim sup

N→∞

δ1(M1,N)

M1,N

M1,N

N

= k lim sup
N→∞

M1,N

N
.

The last line follows by limM1→∞
δ1(M1)
M1

= 0 along with the fact that M1,N+1 ≥
M1,N . Taking limε→0 we end up with I2(ρ) ≤ kI1(ρ). A similar argument can
be used to show the reverse inequality, and we have that, for any ρ ∈ St1(A),
I2(ρ) = kI1(ρ).

4.1.3 Alternative figure of merits

As it is clear, the definition of I(ρ) strongly depends on the choice of the figure
of merit D(ρ N ,C ). The one that we have introduced takes into account all
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4.1. Definition of information content

possible refinements of any dilation of ρ N . Alternatively, one can consider the
pure convex refinements of any dilation of ρ N and define

Dpur(ρ N ,C ) := sup
Ψ∈D

ρ N

sup
{pi,Ψi}∈P(Ψ)

X
i

pikC I (Ψi) − Ψikop. (4.9)

When the theory satisfies strong causality (property 2), and if any state is
proportional to a determistic one, D and Dpur can be equivalently used to
define the information content via the formula (4.8).

Proposition 4.1.2. Consider an OPT satisfying strong causality and where ev-
ery state σ ∈ St(B) is proportional to a deterministic one for every system B.
Let ρ ∈ St1(A) and consider

Ipur(ρ) := lim
ε→0

lim sup
N→∞

min{M : Epur
N,M,ε(ρ) 6= ∅}
N

, (4.10)

where Epur
N,M,ε(ρ) is the following set

Epur
N,M,ε(ρ) = {(E ,D)|Ddil(ρ N ,C ) < ε}. (4.11)

Then I(ρ) = Ipur(ρ).

Proof. On the one hand, we trivially have Ipur(ρ) ≤ I(ρ). On the other hand,
let {Ψi}i∈X be a refinement of Ω ∈ Dρ N . Any element in the refinement is
proportional to a deterministic state, so that there exists {Γi}i∈X ⊆ St1(A NE)
and a probability distributions such that {(pi,Γi)}i∈X is a convex refinement.
Conditioning implies that for every Γi there exists a convex refinement made
of pure states, namely there exists a probability distribution {qj|i}j∈Yi and

a set of pure states {Φ
(i)
j }j∈Yi such that {qj|iΦ(i)

j }j∈Yi is a refinement of Γi.

Moreover, conditioning also implies that ∪i∈X{(pi, qj|iΦ
(i)
j )}j∈Yi is a pure convex

refinement of Ω. Thus, by the triangle inequality one hasX
i∈X

k[(D ◦ C ) I ]Ψi − Ψikop

≤
X
i∈X

X
j∈Yi

piqj|ik[(D ◦ C ) I ]Φ
(i)
j − Φ

(i)
j kop.

This implies that Epur
N,M,ε(ρ) ⊆ EN,M,ε(ρ), and in turn that I(ρ) ≤ Ipur(ρ)

Therefore I(ρ) = Ipur(ρ).

If a theory also satisfies steering (property 3), along with strong causality,
one can use a figure of merit that is further simplified

Ddil(ρ N ,C ) := sup
Ψ∈D

ρ N

kC I (Ψ) − Ψkop. (4.12)

This is proved in proposition 4.1.3, but we need the following two lemmas
first.
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4. The information content in OPT

Lemma 4.1.1. Let {ci}i∈X ⊆ Eff(B) be an observation test and {A}i∈X ⊆ Eff(A)
a collection of effects. If causality holds, then

P
i∈X Ai ci ∈ Eff(AB).

Proof. This is a straightforward consequence of conditioning. For any i ∈ X,
there exists an observation test {Ã(i)

j }j∈Yi such that Ai ∈ {Ã(i)
j }j∈Yi . Thus, if

we consider the test {IB ci}i∈X and the collection of effects {Ã(i)
j ci}(i,j)∈X×Y

we have
A

Ã
(i)
j

B
ci

=

A

Ai

A
Bi
j

I

B
, (4.13)

with Ai := IA ci and Bi
j := Ã

(i)
j . Therefore, strong causality implies that

{Ã(i)
j ci}(i,j)∈X×Y is an observation test, and

P
i∈X Ai ci ∈ Eff(AB), being a

coarse graining of effects from the same test.

Lemma 4.1.2. Let ρ ∈ St1(A), C ∈ Transf1(A) and ε > 0. If kC I (Ψ)−Ψk <
ε for any Ψ ∈ Dρ and assumption 3 holds, then one hasX

i∈X

kC I (Σi) − Σikop < ε,

for any refinement {Σi}i∈X of an element of Dρ.

Proof. Let {Σi}i∈X be the refinement of an element Ω of Dρ. By Property 3
there exists Γ ∈ DΩ ⊆ Dρ and an observation test {ci}i∈X such that

Σi

A

B = Γ

A

B

C
ci

, ∀i ∈ X.

For any i ∈ X, let Ai ∈ Eff(AB) be the effect achieving the norm, namely such
that

kC I (Σi) − Σikop = (Ai|[(C − I ) I ]|Σi).

Since
P

i∈X Ai ci is an effect (by lemma 4.1.1), we have thatX
i∈X

kC I (Σi) − Σikop =

X
i∈X

Γ

A
C

A

AiB

C
ci

− Γ

A

AiB

C
ci

≤ kC I (Γ) − Γkop < ε,

which straightforwardly leads to the thesis.
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4.1. Definition of information content

Proposition 4.1.3. Let ρ ∈ St1(A) and consider

Idil(ρ) := lim
ε→0

lim sup
N→∞

min{M : Edil
N,M,ε(ρ) 6= ∅}
N

, (4.14)

where Edil
N,M,ε(ρ) is the set of the compression schemes (E ,D) such that

Edil
N,M,ε(ρ) = {(E ,D)|Ddil(ρ N ,C ) < ε} (4.15)

Then I(ρ) = Idil(ρ).

Proof. This is a straightforward consequence of lemma 4.1.2. Indeed, all the
dilations are a refinement of themselves, so that EN,M,ε(ρ) ⊆ Edil

N,M,ε(ρ) and
therefore Idil(ρ) ≤ I(ρ). The inclusion EN,M,ε(ρ) ⊇ Edil

N,M,ε(ρ) follows by
lemma 4.1.2, and this implies the thesis.

In quantum information theory, we have seen that the entanglement fidelity
(see equation (2.30)) is the figure of merit that assesses the reliability of a chan-
nel in trasmitting entanglement. In a theory that satisfies conditioning and
steering, thanks to the above proposition, one can define a quantity analogous
to entanglement fidelity by generalizing equation (2.32).

Definition 4.1.4. Let ρ ∈ St(A) and C ∈ Transf1(A → C). We define the
correlation fidelity as follows

F (ρ,C ) = inf
Ψ∈Dρ

F [Ψ,C I (Ψ)]2, (4.16)

where the fidelity F [Ψ,C I (Ψ)] on the right hand side is that of definition
3.3.1.

The generalised Fuchs-van der Graaf inequalities readily imply the following
proposition, showing the equivalence between the fidelity defined in (4.16) and
the figure of merit of equation (4.12).

Proposition 4.1.4. Let ρ ∈ St1(A) and define

IF (ρ) := lim
ε→0

lim sup
N→∞

min{M : EF
N,M,ε(ρ) 6= ∅}
N

,

where
EF
N,M,ε(ρ) := {(E ,D)|F (ρ N ,DE ) > 1 − ε},

then Idil(ρ) = IF (ρ).

Proof. This is a straightforward consequence of proposition 3.3.1. Let (E ,D) ∈
Edil
N,M,ε(ρ). By the first inequality in (3.46) we have that

F [Ψ, (C I )(Ψ)]2 ≥ 1 − ε+
ε2

4
,

67



4. The information content in OPT

for any Ψ ∈ Dρ N , and this implies

F (ρ N ,C ) > 1 − ε.

Therefore (E ,D) ∈ EF
N,M,ε(ρ), namely Edil

N,M,ε(ρ) ⊆ EF
N,M,ε(ρ), whence IF (ρ) ≤

Idil(ρ).
Now let (E ,D) ∈ EF

N,M,ε, then by definition

F (ρ N ,C ) > 1 − ε.

By the second inequality in proposition 3.3.1 we have that

k(C I )(Ψ) − Ψkop

≤ 2
p

1 − F [Ψ, (C I )(Ψ)]2,

for any Ψ ∈ Dρ N , which means that (E ,D) ∈ Edil
N,M,2

√
ε
(ρ), and the reverse

inequality IF (ρ) ≥ Idil(ρ) follows.

4.1.4 The information content in classical and quantum infor-

mation theory

The reduction of the information content of definition 4.1.3 to Shannon and
von Neumann entropy mostly depends on the reduction of our figure of merit
to the corresponding cases of classical and quantum information theory. In
this respect, conditioning and steering seem to be two key features that cause
the boiling down of our definition to the desired cases.

Before considering the quantum case, we prove the following lemma con-
cerning the correlation fidelity defined in 5.1.2 in theories with purification.

Lemma 4.1.3. Let ρ ∈ St1(A) and C ∈ Transf1(A). If every state has a purifi-
cation (definition 6), then one has

F (ρ,C ) = inf
Φ∈Pρ

F [Φ,C I (Φ)]2. (4.17)

Moreover, in an OPT with essential uniqueness of purification (axiom 7) and
purity of parallel composition of states (def. 1), for any Φ ∈ Pρ one has

F (ρ,C ) = F [Φ,C I (Φ)]2. (4.18)

Proof. If Pτ 6= ∅ for every state τ , then for any Ψ ∈ Dρ one has that there
exists Γ ∈ PΨ ⊆ Pρ. Therefore, by monotonicity of the fidelity (prop. 3.3.2)
we have

F [Ψ,C I (Ψ)]2 ≥ F [Γ,C I (Γ)]2 ≥
≥ inf

Φ∈Pρ
F [Φ,C I (Φ)]2.
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4.1. Definition of information content

Since this holds for any Ψ ∈ Dρ, it implies F (ρ,C ) ≥ infΦ∈Pρ F [Φ,C I (Φ)]2.
The reverse inequality is trivial, since Pρ ⊆ Dρ.

Now, recall that if all the purifications of ρ with the same purifying system
are connected through a reversible transformation U and atomicity of parallel
composition of pure states also holds (see property 1 and axiom 7), then, by
proposition 3.2.1 for any fixed purification Φ in Pρ, and any other Γ in Pρ,
there exists a channel A ∈ Transf1(B,C) such that

Γ

A

C = Φ

A

B
A

C . (4.19)

By monotonicity one has F (ρ,C ) ≥ F [Φ,C I (Φ)]2 and the reverse inequality
is trivial, as Φ ∈ Pρ.

The following proposition establishes that, in quantum information theory,
the information content is computed via the von Neumann entropy. As we have
already said, most of the work has been already done with the simplification
of the figure of merit. Indeed, as we have recalled in chapter 3, QT satisfies
existence and uniqueness of purification as well as the steering and conditioning
properties. Therefore, in QT, the fidelity F (ρ,C ) of definition 5.1.2 can be
computed according to equation (4.18), where the r.h.s. trivially corresponds to
the Uhlmann fidelity. In the proof of the following proposition we see explicitly
that the limiting procedure corresponds to the noiseless coding theorem of
quantum information theory that we have seen in section 2.2.

Proposition 4.1.5. Let ρ ∈ St1(A) be a quantum state and denote with S(ρ) its
von Neumann entropy. Then I(ρ) = S(ρ).

Proof. We start by showing that IF (ρ) ≤ S(ρ). Let δ > 0 and ε > 0. By
the direct part of the Schumacher theorem 2.2.4 there exists a N0 such that
for any N ≥ N0 there is a (N, ε)-reliable compression scheme with rate R ∈
(S(ρ), S(ρ) + δ]. Thus, we have EF

N,NR,ε(ρ) 6= ∅ for any N ≥ N0. This implies

lim sup
N→∞

min{M : EF
N,M,ε(ρ) 6= ∅}
N

≤ lim sup
N→∞

NR

N
= S(ρ) + δ.

Since the argument holds for any ε > 0, we get IF (ρ) ≤ S(ρ) + δ, and being
delta arbitrary, we find IF (ρ) ≤ S(ρ).

Now let δ > 0 and consider M/N such that S(ρ) − δ ≤ M/N < S(ρ).
By the converse part of Schumacher theorem, given a fixed ε > 0, any ε,N -
compression scheme with rateM/N one has F (ρ⊗N ,DE ) ≤ 1−ε. In particular,
since any compression scheme from kN copies of the system to kM qubits has
ratio M/N , one has

EF
kN,kM,ε

(ρ) = ∅, ∀k ∈ N.
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4. The information content in OPT

Therefore, for any 0 < ε < ε and k

S(ρ) − δ ≤ M

N
<

min{L : EF
kN,L,ε

(ρ) 6= ∅}
kN

≤

≤
min{L : EF

kN,L,ε
(ρ) 6= ∅}

kN
.

Thus, by taking the lim supk→∞ we find that

S(ρ) − δ ≤ lim sup
k→∞

min{L : EF
kN,L,ε

(ρ) 6= ∅}
kN

≤ lim sup
N→∞

min{L : EF
N,L,ε(ρ) 6= ∅}
N

,

for any 0 < ε < ε. By taking the limε→0 and the arbitrariness of δ we finally
get S(ρ) ≤ IF (ρ). The statement then follows by the fact that in quantum
theory one has IF (ρ) = I(ρ) (prop. 4.1.3 and 4.1.4).

Let us now turn our focus to the classical case. Recall from chapter 2 that,
in this setting, the input and the output of the compression scheme are given
by strings of N letters drawn from an alphabet X. Each letter xi appears with
a given probability pi and the probability that the overall string xi1 . . . xiN
is emitted is given by the joint probability pi1,...,iN . If we assume that each
symbol is independently and identically distributed, then pi1,...,iN = pi1 . . . piN .
Now consider the unique pure decomposition of some dilation Π ∈ Dp⊗N .
This is given by Π =

P
i,j Πijei ⊗ ej with

P
j Πij = pi (the pure states of

the composite system are the tensor product vectors of the pure ones of the
composing systems). Then we findX

i,j

Πijk(C ⊗ I)ei ⊗ ej − ei ⊗ ejk1

=
X
i,j

Πijk(C − I)ei ⊗ ejk1

=
X
i,j

Πijk(C − I)eik1

=
X

i

pik(C − I)eik1 = 2p(C , ρ⊗N),

having used the fact that for any j

k(C − I)ei ⊗ ejk1 = k(C − I)eik1. (4.20)

Summarizing, we have proved that for any dilation Π ∈ Dp⊗N

p(ρ,C ) =
1

2

X
i,j

Πijk(C ⊗ I)ei ⊗ ej − ei ⊗ ejk1. (4.21)
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Namely, in the classical case, the error probability is equivalent to the figure
of merit in equation (4.9). This is enough, since CT satisfies conditioning and
every state is proportional to a determinstic one. Notice that the steps outlined
above, which have led us to the equality in formula (4.21), are a consequence
of two features of CT: the uniqueness of the pure state decomposition, and
local discriminability, whereby any bipartite state is separable (according to
theorem 3.2.1).

The proof of the fact that the information content, in classical information
theory, is computable via the Shannon entropy of the state that represents the
source, is completely analogous to the one we have exhibited in the proof of
proposition 4.1.5.

4.2 Properties

In the first section we have presented the definition of digitisable theory, that
identifies a wide class of theories in which the definition of information content
is well-posed, and we have discussed how certain features can help to simplify
its computation. In this section we analyse some properties that are shared by
the Shannon and von Neumann entropy, such as invariance under reversible
operations acting on the system and subaddivity. We also investigate to what
extent the information content can be interpreted as a measure of state purity.

4.2.1 First consequences of the definition

Subadditivity is a property of Shannon and von Neumann entropy (item 2 in
theorem 2.1.1) and, in turn, a property of information content in the respective
theories. It tells us that the information content of a bipartite state is generally
smaller than the sum of the information content of marginals. Informally
speaking, forgetting about correlations obviously increases uncertainty. For
the classical and quantum information content, this property is inherited by
the fact that they coincide with the respective entropic functions. Generally,
this property does not hold for none the three entropies already introduced
in the literature on GPTs (their properties have been discussed in detail in
section 3.3) as we will observe in chapter 6, but it holds for the information
content as defined in (4.8), independently of how systems are composed in
parallel, as shown in the following proposition.

Proposition 4.2.1 (Subadditivity). Let Ψ ∈ St1(AB) and let ρ ∈ St1(A), σ ∈
St1(B) be its marginals. Then the following property holds

I(Ψ) ≤ I(ρ) + I(σ).

Proof. Let (E ρ,Dρ) ∈ EN,K,ε(ρ), (E σ,Dσ) ∈ EN,L,ε(σ) with K := min{M :

EN,M,ε(ρ) 6= ∅} and similarly for L. Now let {Γi}i∈X be such that
P

i∈X Γi ∈
DΨ N and consider {(C ρ I )(Γi)}i∈X, where C ρ := DρE ρ. Since C ρ is a
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channel and DΨ N ⊆ Dρ N , DΨ N ⊆ Dσ N we have that
P

i∈X(C ρ I )(Γi) is
a dilation of both ρ N and σ N . Similarly for C σ := DσE σ. This implies the
following bound X

i∈X

k(C ρ C σ I )(Γi) − Γikop

=
X
i∈X

k(C ρ C σ I )(Γi) − (C ρ I )(Γi)

+ (C ρ I )(Γi) − Γikop
< 2ε,

where we used the triangle inequality for the operational norm. Thus

EN,K+L,2ε(Ψ) 6= ∅, (4.22)

and this implies that

min{M : EN,M,2ε(Ψ) 6= ∅}
N

≤ K

N
+
L

N
.

Finally, by taking the lim supN→∞ and then limε→0 on both sides we get the
thesis.

In classical and quantum theories it is true that the information content is
additive (because of the additivity of the respective entropic functions). It is
still an open question whether additivity on factorised states , i.e. states of
the form ρ σ, is a general property.

In quantum information theory, another property of the information con-
tent due to the von Neumann entropy is the invariance under reversible oper-
ation. This is due to the fact that they leave the spectrum untouched. This
turns out to be true in full generality, as it is easily proved in the following
porposition.

Proposition 4.2.2. Let ρ ∈ St1(A) and U ∈ Transf1(A) be a reversible channel,
then I(ρ) = I(U (ρ)).

Proof. We show that EN,M,ε(U (ρ)) 6= ∅ =⇒ EN,M,ε(ρ) 6= ∅. Let (E ,D) ∈
EN,M,ε(U (ρ)) and let {Ψi}i∈X be such that

P
i∈X Ψi ∈ Dρ N . It is clear thatP

i∈X(U N I )(Ψi) ∈ DU (ρ) N and thereforeX
i∈X

k[(DE − I ) I ](U N I )(Ψi)kop < ε.

Upon defining Ẽ := E U N and D̃ := (U −1) ND , recalling that U is reversible
and that the operational norm is invariant under reversible transformations,
the above inequality can be rewritten as follows

ε >
X
i∈X

k(U N I )[(D̃Ẽ I )(Ψi) − (Ψi)]kop

=
X
i∈X

k[(D̃Ẽ I )(Ψi) − (Ψi)]kop,
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namely, since {Ψi}i∈X is arbitrary, (Ẽ , D̃) ∈ EN,M,ε(ρ) 6= ∅. This implies that
RN,ε(ρ) ≤ RN,ε(U (ρ)), and then I(ρ) ≤ I[U (ρ)]. The reverse inequality is
now trivial

I(ρ) = I[U −1U (ρ)] ≥ I[U (ρ)],

where we have used the previous result along with the fact that U −1 is also
reversible.

4.2.2 Information content versus pure states

Information content in classical and quantum information theory has the prop-
erty that it is vanishing if and only if the state is pure. Here we see that this
correspondence may not be generally true for all OPTs.

In the following we will assume that (E ,D) is a compression scheme with
M obits,

E : A N → B M , D : B M → A N .

We will denote by {Ψi} any preparation test of A NC such thatX
i

(e|C|Ψi)A NC = ρ N .

Finally, for every observation-test {aj} of A NC, and for any pair (E ,D), let
us define the two probability distributions

pi,j := Ψi

A N

ajC , (4.23)

and

qi,j := Ψi

A N

E N
B M

DN
A N

ajC . (4.24)

We can then introduce the following functions that represent the Shannon
mutual information between classical random variables X and Y , distributed
according to P (X = xi, Y = yj) = pi,j or X and Ỹ , distributed according to
P (X = xi, Ỹ = yj) = qi,j

H(X : Y ) :=
X
i,j

pi,j log2

pi,j
pXi p

Y
j

H(X : Ỹ ) :=
X
i,j

qi,j log2

qi,j

qXi q
Ỹ
j

,

where pYj , qỸj and qXi = pXi denote the elements of the marginal distributions.
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4. The information content in OPT

Definition 4.2.1. Let {Ψi} denote a preparation test such that
P

i Ψi ∈ Dρ N .
We denote by EN,M,δ(ρ) the set of those compression schemes such that

sup
C,{Ψi},{aj}

L−1|H(X : Y ) −H(X : Ỹ )| < δ,

with L = log2(mn− 1) where n is the cardinality of the preparation test {Ψi}
and m that of the test {aj}. We then define the following quantities

RC
δ,N(ρ) :=

min{M | EC
N,M,δ(ρ) 6= ∅}
N

, (4.25)

RC
δ (ρ) := lim sup

N→∞
RC
δ,N(ρ), (4.26)

IC(ρ) := lim
δ→0

RC
δ (ρ). (4.27)

The last quantity above satisfies the two following lemmas.

Lemma 4.2.1. Let ρ ∈ St1(A). Then I(ρ) ≥ IC(ρ).

The proof can be found in appendix A. In proving the second lemma and
the subsequent proposition we assume that when we compose systems, the size
does not increase more than exponentially. More precisely, we formulate the
following assumption that will hold in the remainder.

Assumption 2 (Regular scaling). For every type of system A, there exist con-
stants kA > 0 and D > 0 such that the size D(N) := DA N of the compound
system A N satisfies D(N) ≤ kAD

N for any N .

Lemma 4.2.2. Let ρ ∈ St1(A) be a mixed state, then IC(ρ) > 0.

The proof can be found in appendix B. The proof of this lemma also shows
the following bound between I(ρ) and the optimised accessible information
defined as in equation (3.49)

I(ρ) ≥ S2(ρ)

log2 D
, (4.28)

where D is the constant introduced in the regular scaling assumption 2, where
A in this case is the obit system chosen for the definition of I(ρ). This bound
is saturated in classical and quantum information theory (where D = 2), as
well as in fermionic information theory, as we will see in chapter 5. In chapter
6 we will see that in BCT such inequality holds without being saturated.

Proposition 4.2.3. Let ρ ∈ St1(A). If I(ρ) = 0 then ρ is a pure state.

Proof. Let ρ be mixed. By 4.2.1 and 4.2.2

I(ρ) ≥ IC(ρ) > 0,

whence the thesis.
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Proposition 4.2.4. Let us consider strongly causal OPT satisfying regular scal-
ing. Then the requirements of essential uniqueness of purification and purity
of parallel composition of states imply that I(φ) = 0 for any φ ∈ PurSt(A).
Conversely, if I(φ) = 0 for any φ ∈ PurSt(A), purity of parallel composition
of states holds.

Proof. By proposition 4.1.2 we have I(φ) = Ipur(φ). Now, let us fix N and
consider a dilation Ω of φ N . Let {Ψi}i∈X be a pure decomposition of Ω, then
by purity of φ N we must have

pi φ N
AN

= Ψi

AN

B
e
, ∀i ∈ X. (4.29)

Now, let η ∈ PurSt(B) and consider φ N η. This is still a pure state, hence
a purification of φ N . Therefore, by essential uniqueness of purifications

Ψi

A N

B = pi
φ N

A N

η
B

Ui

B , ∀i ∈ X, (4.30)

where Ui are reversible channels on B.
Now let us consider a compression scheme defined by a measure and prepare

one, as follows
E :=

A N

e , D := φ N
A N

. (4.31)

It is clear that for any dilation Ω of φ N , the above scheme is such that
(DE I )(Ψi) − Ψi = 0 and this implies that for any N and ε we have
Epur
N,0,ε(ρ) 6= ∅ and then I(ρ) = Ipur(ρ) = 0.

Now, let us assume that for any A and for any φ ∈ PurSt(A) we have
I(φ) = 0. Let ρ ∈ PurSt(A) and σ ∈ PurSt(B). By proposition 4.2.1 we have
that

I(ρ σ) ≤ I(ρ) + I(σ) = 0.

Thus I(ρ σ) = 0, and by proposition 4.2.3 ρ σ is pure, namely, item 2 of
property 1 holds.

The above result establishes a non trivial relation between purity of states
and their informational-theoretic interpretation. On the one hand, in almost
full generality, whenever a state has vanishing information content it must be
pure, or, in other words, any mixed state has strictly positive information con-
tent. On the other hand, sufficient conditions to have null information content
on all the pure states are essential uniqueness of purification and purity of par-
allel composition of states. Remarkably, in any theory where all pure states
φ ∈ PurSt(A) for any system A are such that I(φ) = 0, parallel composition
must be purity-preserving. When we will compute the information content in
BCT we will see explicitly that in a theory violating item 2 of property 1 pure
states do not necessarily have vanishing information content.
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CHAPTER5

The information content in
Fermionic Theory

From the previous chapter, we understand that a crucial point in a compression
protocol is to quantify the reliability of the codec map C := DE , which in
the asymptotic limit of N → ∞ must coincide with the identity map. In QT
checking the reliability of the codec map looking only at its local action, namely
via the input-output average fidelity between states C (|φii hφi|) and |φii hφi|,
or at the effects on correlations, namely via entanglement fidelity, is equivalent.
In addition, we know that QT satisfies the local process tomography, namely
that given a map C on system A one has

(C ⊗ IC)(Ψ) =Ψ ∀Ψ ∈ St(AC)

⇔
C (ρ) =ρ ∀ρ ∈ St(A).

(5.1)

This equivalence is due to local discriminability of QT, where the discrimina-
tion of bipartite quantum states can always be performed using local measure-
ments only (see in particular equation (3.23)). However, in the absence of local
discriminability, a map preserving local states still can affect correlations with
remote systems [52]. This raises a crucial issue if one aims at studying the
compression task beyond quantum theory, where the reliability of a protocol
generally needs to be verified on extended systems. Indeed, in general, testing
a compression scheme using ancillary systems is strictly stronger than testing
them with local schemes.
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5. The information content in Fermionic Theory

As a first example of an information theory without local discriminability,
in this chapter we consider the case of fermionic systems as carriers of informa-
tion. Fermionic computation has been proposed in Ref. [84] and later studied in
several works [85, 86, 87, 73, 88]. Differently from quantum systems, fermions
obey the parity superselection rule. As a consequence, fermionic information
theory does not satisfy local discriminability, thus providing a physically rele-
vant example of a theory where the task of compression is not straightforward.
Indeed, in the case of study, a map C that acts as the identity on local states
ρ⊗N could still destroy the correlations with remote systems, and then be mis-
takenly considered as a reliable codec map.

Exploiting the properties of fermionic quantum information, we prove that
the entanglement fidelity is a valid criterion for the reliability of a fermionic
codec map. We then show an analogous of the quantum source coding the-
orem in the fermionic scenario, showing that the minimal compression rate
for which a reliable compression scheme exists is the von Neumann entropy
of the fermionic state. We conclude therefore that the von Neumann entropy
provides the informational content of the state also in the case of fermionic
theory, namely in the presence of parity superselection.

5.1 Preliminary considerations

The goal of this chapter is to analyse the behaviour of the information con-
tent I(ρ) of a fermionic source of information, and the claim is that it equals
the von Neumann entropy of a fermionic state. To prove this claim, we rely
on the Jordan-Wigner isomorphism defined in (3.35), in order to take advan-
tage of the Schumacher scheme, which turns out to be a legitimate fermionic
protocol, as we will see later. Therefore, in this section, we first define all
the information-theoretic quantities in the fermionic setting via their Jordan-
Wigner representatives, to exploit the quantum machinery reviewed in section
2.2, and we must first check their independence of the Jordan-Wigner isomor-
phism.

5.1.1 Setting the problem and the fermionic von Neumann en-
tropy

The main difference between fermionic and quantum information lies in the
notion of what Kraus operators correspond to local maps. While in the case
of qubit systems local maps acting on the i-th qubit of a composite system
have Kraus operators that can be factorized as a non trivial operator on the
i-th tensor factor C2 of the total Hilbert space, in the case of the fermionic
Fock space FL a local transformation on the i-th mode can be represented in
the Jordan-Wigner isomorphism by operators that act non trivially on factors
C2 different from the i-th one. This fact is the source of all the differences
between the theory of qubits and fermionic theory, including superselection
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and features that it affects, such as the notion of entanglement [60] and local
states discrimination protocols [89, 90]. Due to parity superselection, fermionic
theory does not satisfy local process tomography, namely the property stating
that two transformations C1,C2 ∈ Transf(LF → MF) are equal iff they act in
the same way on the local states in St(LF), namely C1(ρ) = C2(ρ) for every
ρ ∈ St(LF) . As a consequence, fermionic theory also violates local tomography
(see proposition 3.1.1).

Remark 5.1.1. A typical example of a transformation that is locally equivalent
to the identity but differs from it when extended to multipartite systems is
the parity transformation, as shown in the following. Let us consider a sin-
gle fermionic mode system 1F, whose possible states are constrained to be of
the form J(ρ) = q0 |0i h0| + q1 |1i h1| by the parity superselection rule. Let
P0 and P1 be the projectors on |0i and |1i respectively, namely on the even
and odd sector of the Fock space. The parity transformation P, that in the
Jordan-Wigner representation J(P) has Kraus operators P0 and P1, acts as
the identity I1F

when applied to states in St(1F). However, taking the system
2F and considering the extended transformation P I1F

on St(2F) one notices
that P differs from the identity map I1F

. Indeed, the state J−1(|Ψi hΨ|), with
|Ψi = 1√

2
(|00i + |11i) is a legitimate fermionic state in St(2F), and one can

straightforwardly verify that

(P I1F
)[J−1(|Ψi hΨ|)] =

1

2
J−1(|00i h00| + |11i h11|)

6= J−1(|Ψi hΨ|).

That being said, in order to tackle the fermionic noiseless coding problem
we consider a top-down approach, that hinges upon the setting described in
chapter 4, which also embraces the case of theories that do not satisfy local
discriminability.

Let LF be a fermionic system and let ρ ∈ St1(LF) be a generic state of such
system. According to the definitions of the previous chapter, the source of
fermionic information is supposed to emit N independent copies of the state ρ.
Notice that FT is trivially digitisable, since there is essentially a unique system,
corresponding to 1F, and all the others can be thought of as a composition of
it. A fermionic compression scheme (EN ,DN) consists of the following two
steps:

1. Encoding: Alice encodes the system L N
F via a channel EN : St(L N

F ) →
St(MF), where the target system is generally a system of M -LFMs. The
map EN produces a fermionic state E (ρ N) with support Supp(E (ρ N)) on
a Fock space FM of dimension dFM (N) smaller than the one of the original
state ρ N . The compression rate is defined in the obvious way as the number
of modes divided by the length of the message

R :=
M

N
=

log2 dFM (N)

N
.
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Alice sends the system MF to Bob using the M noiseless fermionic channels.

2. Decoding: Finally Bob sends the system MF through a decompression chan-
nel DN : St(MF) → St(L N

F ).

The scheme (EN ,DN) overall transforms the L N LFMs, with a codec map
CN := DNEN . The latter can be more or less “good”, in the sense specified
by definition 4.1.2, at preserving the information which is contained in the
system, depending on ρ itself.

We start by defining the von Neumann entropy of a fermionic state ρ ∈
St1(LF) in terms of the Jordan-Wigner representative J(ρ) and we then prove
the well-posedeness of this definition, namely the independence of the partic-
ular isomorphism J .

Definition 5.1.1. Given a fermionic state ρ, its von-Neumann entropy is defined
as

Sf (ρ) := S(J(ρ)) = −Tr(J(ρ) log2 J(ρ)). (5.2)

Lemma 5.1.1. For any femionic system LF and any ρ ∈ St1(LF), Sf (ρ) is well
defined.

Proof. Recall that the operator J(ρ) log2 J(ρ) for a density matrix J(ρ) is
defined in terms of the eignevalues {λi} of J(ρ) as

J(ρ) log2 J(ρ) :=
X
i

λi log2 λi |xii hxi| (5.3)

with the usual convention that 0 log2 0 ≡ 0. It is clear that, if J̃ is the Jordan-
Wigner corresponding to a different ordering, then

J̃(ρ) log2 J̃(ρ) = UJ(ρ) log2 J(ρ)U †. (5.4)

Since U is unitary, it trivially follows that

Sf (ρ) := S[J(ρ)] = S[J̃(ρ)]. (5.5)

Since it will be useful later, when we will define the fermionic entanglement
fidelity, we also introduce the square root of a fermionic state and we prove its
consistency.

Lemma 5.1.2. The square root of a fermionic state ρ ∈ St1(ρ), defined as

ρ
1
2 := J−1[J(ρ)

1
2 ], (5.6)

is always well defined.
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Proof. If J̃ is the Jordan-Wigner isomorphism associated to a different order-
ing, then consider X := J̃−1[J̃(ρ)

1
2 ]. We can now prove that X = ρ

1
2 and then

independence of the square root from the ordering. Indeed, one has

J̃(X)2 = J̃(ρ) = UJ(ρ)U †, (5.7)

with U unitary. It follows that

J(ρ) = U †J̃(X)UU †J̃(X)U = J(X)2 =⇒ J(X) = J(ρ)
1
2 . (5.8)

Since J is an isomorphism, by taking J−1 we finally get

X = J−1[J(ρ
1
2 )] = ρ

1
2 . (5.9)

Notice that J(ρ
1
2 ) = J(ρ)

1
2 .

5.1.2 Entanglement fidelity

In chapter 4 we have set a formalism within we have furnished a proper oper-
ational definition of I(ρ), in terms of a figure of merit that suitably generalises
the error probability of classical information theory and the entanglement fi-
delity of quantum information theory. Precisely, what we want to do is to
compute I(ρ) as defined in equation (4.8) in terms of the fermionic von Neu-
mann entropy Sf (ρ). This task turns out to be hugely simplified, thanks to the
fact that FT satisfies both the steering property1 and conditioning, therefore,
I(ρ) = IF(ρ) according to proposition 4.1.4. On top of that, FT also satisfies
existence and uniqueness of purification (axioms 6 and 7) as we now prove. As
a consequence of this fact, the fidelity F (ρ,C ) is further simplified to equation
(4.18), according to lemma 4.1.3. First, we need to prove the following two
lemmas.

Lemma 5.1.3. Consider a quantum state ρ ∈ St(HL) and two purifications
Ψ,Φ ∈ St(HLHM) with definite parity. Then it is alway possible to find a
unitary channel U that maps states of definite parity into states of definite
parity and such that (I ⊗ U )(Ψ) = Φ.

Proof. Let |Ψi ∈ Hp
LM and |Φi ∈ Hq

LM , for p, q ∈ {0, 1}. Since the two states
are purification of the same state ρ ∈ St(HL) their Schmidt decomposition can
always be taken as follows

|Ψi =
X
i

λi |ii |Ψii , |Φi =
X
i

λi |ii |Φii ,

where {|ii} ∈ HL is the same orthonormal set for the two states, while
{|Ψii}, {|Φii} ∈ HM are two generally different orthonormal sets. Notice

1This is a consequence of the fact that FT trivially satisfies the perfect disciminability
axiom 2.
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that, since Ψ and Φ are pure states of definite parity, any element in the
above orthonormal sets must be a vector of definite parity. Within the set
{|ii} = {{|i0i}, {|i1i}} one can separate even {|i0i} and odd {|i1i} parity
vectors, and then write Ψ and Φ (respectively of parity p and q) as

|Ψi =
X
i0

λi0 |i0i Ψp
i0

+
X
i1

λi1 |i1i Ψp̄
i1
,

|Φi =
X
i0

λi0 |i0i Φq
i0

+
X
i1

λi1 |i1i Φq̄
i1
,

where r̄ = r⊕1, and in the orthonormal sets { Ψp
i0
, Ψp̄

i1
} and { Φq

i0
, Φq̄

i1
}

we separated vectors according to their parity. We can now complete the above
two sets to orthonormal bases in such a way that all vectors in both bases have
definite parity. Let us take for example the basis { Ψp

i0
, Ψp̄

i1
}, |Ψr(k)

k i} and

{ Φ1
i0
, Φq̄

i1
, |Φt(k)

k i} with r(k), t(k) ∈ {0, 1}. It is now straightforward to see
that the unitary map U having Kraus operator

U =
X
i0

Ψp
i0

Φq
i0

+
X
i1

Ψp̄
i1

Φq̄
i1

+
X
k

|Ψr(k)
k ihΦt(k)

k |

is such that (I⊗U) |Ψi = |Φi. Moreover U maps states of definite parity into
states of definite parity.

Lemma 5.1.4. Let NF := LFKF and C ∈ Transf(NF → NF) be a single Kraus
transformation with Kraus operator C having Jordan-Wigner rapresentative
J(C) = U ⊗ IKF , U acting on the first L qubits. Then C is local on the first
L modes.

Proof. Due to Proposition 3.2.2, the Kraus operator of C can be written as C =P
iCi, where either each Ci is a product of an even number of field operators,

or each Ci is a product of an odd one. The set {Ci} can be taken to be linearly
independent without loss of generality. Let us assume by contradiction that C
is not local on the first Lmodes. Therefore, since a set of independent operators
generating the algebra of the j-th mode is {ϕj, ϕ†

j, ϕ
†
jϕj, ϕ

†
jϕj + ϕjϕ

†
j}, there

exists at least one product Ci that contains one of the factors ϕj, ϕ
†
j, or ϕjϕ

†
j,

for some mode j of the system KF. Let j(i) be the mode with largest label
in the chosen ordering of the N = L+K modes, such that the corresponding
factor in the product Ci is not the identity (i.e. ϕ†

jϕj + ϕjϕ
†
j). Accordingly,

one has that the Jordan-Wigner representative of Ci is of the form

J(Ci) = K ⊗Oj(i) ⊗

 NO
l=j(i)+1

Il

 ,

where K is an operator on the first 1, . . . , j(i) − 1 qubits, and Oj(i) is one of the
factors σ+

j(i), σ
−
j(i), σ

+
j(i)σ

−
j(i) on the j-th qubit. This contradicts the hypothesis

on the form of J(C).
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We are now in the position to prove that, also in FT, any state admits a
purification that is unique modulo channels on the purifying system.

Proposition 5.1.1 (Purification of states). For every ρ ∈ St(LF), there exists a
purification Ψρ ∈ PurSt(LFMF) of ρ for some system MF. Moreover, the purifi-
cation is unique up to channels on the purifying system: if Ψρ ∈ PurSt(LFMF)
and Φρ ∈ PurSt(LFKF) are two purifications of ρ then there exists a channel
V ∈ Transf1(MF → KF) such that (ILF

V )(Ψρ) = Φρ.

Proof. It can easily be verified that every purification of ρ ∈ St(LF), hav-
ing even part ρe and odd part ρo, can be obtained in terms of the minimal
one J−1(|F iihhF |) ∈ PurSt(LFMF), with F = J(ρ)

1
2 , M = dlog2 2re and r =

max(rank(ρe), rank(ρo)). Now, let Ψρ ∈ PurSt(LFMF) and Φρ ∈ PurSt(LFKF)
be two purifications of ρ. If M = K, let us choose the ordering defining the
Jordan-Wigner isomorphism of Eq. (3.34) in such a way that the modes in the
purifying systems MF precede the modes of LF. Then, using the quantum pu-
rification theorem, we know that there exists a reversible map U with unitary
Kraus operator U such that |Fρii = (U ⊗ I)|Pρii, where

|FρiihhFρ| = J(Φρ), |PρiihhPρ| = J(Ψρ).

The unitary U can be chosen in such a way that J−1(U ) is an admissible
fermionic map, namely in such a way that it respects the parity superselection
rule (see Lemma 5.1.3). Moreover, due to Lemma 5.1.4, J−1(U ⊗ I) cannot
contain field operators on the modes in LF, and is then local on the purifying
system KF. Now, let K > M . Then, we can consider a pure state ω on the K−
M modes and take the parallel composition Ψρ ω. This is still a purification
of ρ, and by the previous argument, there exists a reversible channel U ∈
Transf1(KF → KF) such that Φρ = (ILF

U )(Ψρ ω) = (ILF
V )(Ψρ)

where V is the channel defined by the sequential composition V = U (I ω).
If K < M , we consider Φρ ω, where ω is any pure state on N = M − K
modes system, and we have Φρ ω = (ILF

U )(Ψρ). Now we discard the
additional modes, and the channel connecting the purifications is the sequential
composition of U and the discarding map: V := (IKF

TrfNF
)U .

We now define the fermionic entanglement fidelity Ff (ρ,C ) as follows

Definition 5.1.2 (Fermionic entanglement fidelity). Let ρ ∈ St1(LF), C ∈
Transf1(LF → MF) and Φρ ∈ PurSt(LFKF) be any purification of ρ. The
fermionic Uhlmann’s fidelity is defined as

Ff (ρ, σ) := Tr[J(ρ1/2σρ1/2)1/2]. (5.10)

Accordingly, the fermionic entanglement fidelity between the states ρ, σ ∈ St1(LF)
is defined as

Ff (ρ,C ) = Ff [Φρ, (C I )(Φρ)]
2. (5.11)
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5. The information content in Fermionic Theory

A crucial point is that the above formula makes sense if and only if the
fidelity F (ρ, σ), as defined in equation (3.45), namely as a minimization over
fermionic POVMs of the classical fidelity, can be actually computed via equa-
tion (5.10). This is ensured by the following proposition.

Proposition 5.1.2. Let ρ and σ be two fermionic states. The Uhlmann fidelity
Ff (ρ, σ) of equation (5.10) is well defined and it coincides with F (ρ, σ) given
in definition 3.3.1.

Proof. We have already proved that the square root of a fermionic state is well
defined in lemma 5.1.2. Moreover, since a reordering of the modes corresponds
to a unitarily change of basis, the trace is Jordan-Wigner independent, and
so is Ff (ρ, σ). What is left to prove is that Ff (ρ, σ) = F (ρ, σ), and this
is done by showing that the POVM that achieves the minimum is made of
fermionic effects. Indeed, by remark 2.2.3, we know that the POVM such that
Ff (ρ, σ) = F (ρ, σ) is made of the eigenvectors of the following operator

M := J(ρ)−
1
2

q
J(ρ)

1
2J(σ)J(ρ)

1
2J(ρ)−

1
2 . (5.12)

This is a positive operator whose eigenvectors |mi hm| have definite parity,
since ρ and σ are fermionic states, and this entails that J−1(|mi hm|) is a
linear combination of even products of fermionic field operators. The thesis
then follows by corollary 3.2.1

This establishes that F (ρ,C ) = Ff (ρ,C ). In the following proposition we
finally prove that Ff (ρ,C ) can be computed with a formula analogous to the
quantum one.

Proposition 5.1.3. Let ρ ∈ St1(LF), C ∈ Transf1(LF → LF) and Φρ ∈ PurSt(LFKF)
be any purification of ρ. Entanglement fidelity has the following properties.

1. F (ρ,C ) is independent of the particular choice for the purification Φρ.

2. If the ordering is chosen in such a way that the L modes are all before the
purifying ones, the following identity holds:

F (ρ,C ) =
X
i

|Tr[J(ρ)Ci]|2 (5.13)

for arbitrary Kraus decomposition J(C ) =
P

iCi ·C
†
i of the Jordan-Wigner

representative J(C ).

Proof. Let Φρ ∈ PurSt(LFKF) be a purification of ρ. If we choose the trivial
ordering for the LFMs, the Kraus operators of J(C I ) are of the form Ci⊗I.
Moreover, since the minimal purification |F iihhF | (introduced in the proof of
proposition 5.1.1) and J(Φρ) both purify the same quantum state, they are
connected through an isometry V . Recalling that for quantum states |ψi hψ|
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5.2. The coding theorem

and σ the quantum Uhlmann fidelity is given by F (|ψi hψ| , σ) = hψ|σ |ψi1/2

(equation (2.26)), we find

F (ρ,C ) =
X
i

Tr(|FV T iihhFV T |CiFV T iihhCiFV T |)

=
X
i

|Tr(|CiFV T iihhFV T |)|2 =

=
X
i

|Tr[J(ρ)Ci]|2,

namely, the claimed formula in (5.13). Since Φρ is arbitrary, this also implies
independence from the choice of the purification.

5.2 The coding theorem

In this section we define the fermionic typical subspace of a state ρ ∈ St1(LF)
as the typical subspace of the Jordan-Wigner representative J(ρ), and we then
prove the noiseless coding theorem for fermionic information theory. The
key point is that the typical projector is an admissible kraus operator for
a fermionic map, and this fact enables us to use the Schumacher quantum
protocol.

5.2.1 Fermionic typical subspaces

When we use the orthonormal decomposition for J(ρ) =
P

xi
pi|xiihxi|, this

reduces to the Shannon entropy of the classical random variable X that takes
values in Rng(X) = {x1, x2, . . . xn}, called range of X, with probability distri-
bution (p1, p2, . . . , pn): Sf (ρ) = H(X) = −

P
i pi log2 pi. We remind that N

i.i.d. copies of the state ρ are represented as

J(ρ N) = J(ρ)⊗N =
X

xi∈Rng(X)N

pi|xiihxi|. (5.14)

With TN,ε(ρ) we will denote the typical set of the random variable X.

Definition 5.2.1 (Typical subspace). Let ρ ∈ St(LF) with orthonormal decom-
position J(ρ) =

P
xi∈Rng(X) pi|xiihxi|. The δ-typical subspace FδN(ρ) of H⊗N

L is
defined as

FδN(ρ) := Span{|xii | xi ∈ Tδ
N(X)}, (5.15)

where |xii := |xi1i |xi2i . . . |xiN i, and X is the random variable with Rng(X) =
{xi} and P (xi) := pi.

It is an immediate consequence of the definition of typical subspace that

FδN(ρ) := Span |xii | 1

N
log2

1

pi

− Sf (ρ) ≤ δ ,
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where pi = pi1 . . . piN . We will denote the projector on the typical subspace as

P δ
N(ρ) :=

X
xi∈TδN (X)

|xiihxi|

=
X

xi∈TδN (X)

|xi1ihxi1| ⊗ · · · ⊗ |xiN ihxiN |,
(5.16)

and we have that dim(FδN(ρ)) = Tr[P δ
N(ρ)] = |Tδ

N(X)|.
Notice that some of the superpositions of vectors in the typical subspace

might not be legitimate fermionic pure states, as their parity might be different.
However, up to now, we only defined the typical subspace as a mathematical
tool, and it does not need a consistent physical interpretation. We will come
back to this point later (see Lemma 5.2.1), when we will discuss the physical
meaning of the projection PN,ε(ρ). Now, it is immediate to see that

Tr[P δ
N(ρ)J(ρ)⊗N ] =

X
xi∈TδN (X)

pi. (5.17)

As in quantum theory, also the fermionic typical subspace has the following
features:

Proposition 5.2.1 (Typical subspace). Let ρ ∈ St(LF). The following state-
ments hold:

1. For every ε > 0 and δ > 0 there exists N0 such that for every N ≥ N0

Tr[P δ
N(ρ)J(ρ)⊗N ] ≥ 1 − ε. (5.18)

2. For every > 0 and δ > 0 there exists N0 such that for every N ≥ N0 the
dimension of the typical subspace FδN(ρ) is bounded as

(1 − ε)2N(Sf (ρ)−δ) ≤ dim(FδN(ρ)) ≤ 2N(Sf (ρ)+δ). (5.19)

3. For given N , let SN denote an arbitrary orthogonal projection on a subspace
of F⊗N

L with dimension Tr(SN) < 2NR, with R < Sf (ρ) fixed. Then for
every ε > 0 there exists N0 such that for every N ≥ N0 and every choice of
SN

Tr[SNJ(ρ)⊗N ] ≤ ε. (5.20)

The proof of the above properties is exactly the same as the one of quantum
theory (see for instance [26, 27]). However, in order to exploit the same scheme
proposed by Schumacher for the quantum case (see also remark 2.2.5), one has
to check that the encoding and decoding channels given in the constructive part
of the proof are admissible fermionic maps. In particular, the encoding channel
makes use of the projector P δ

N(ρ) as a Kraus operator, therefore, we have to
show that it is a legitimate Kraus operator for a fermionic map. This is proved
in the following lemma based on characterization of fermionic transformations
of Proposition 3.2.2.
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5.2. The coding theorem

Lemma 5.2.1. Let ρ be a fermionic state. The projector P δ
N(ρ) of equation 5.16

is the Kraus operator of an admissible fermionic transformation.

Proof. By proposition 3.2.2 the projector on the typical subspace P δ
N(ρ) is a

legitimate fermionic Kraus operator if it is the sum of products of either an
even or an odd number of fermionic fields. Let us consider the single projection
|xii hxi|. This is given by the tensor product |xi1i hxi1| ⊗ · · · ⊗ |xiN i hxiN |,
where each |xiki is an eigenvector of the density matrix J(ρ) representing the
fermionic state ρ, and, as such, it has a definite parity. Thus, each factor in
the above expression of |xii hxi| is the Jordan-Wigner representative of an even
polynomial in the field operators, and also the projection |xii hxi| is thus the
representative of an even polynomial for every i, which is given, in detail, by
the product J−1(|xii hxi|) =

QN
j=1 J

−1( xij xij ). Now, by Proposition 3.2.2,

P δ
N(ρ) is the Jordan-Wigner representative of a legitimate fermionic Kraus

operator.

5.2.2 The fermionic noiseless coding theorem

We can now prove the source coding theorem for fermionic information theory.

Theorem 5.2.1 (Fermionic source coding). Let ρ ∈ St1(LF) be a state of system
LF. Then, for any δ > 0 and ε > 0 there exists N0 such that for any N ≥
N0 there exists a comrpession scheme with rate R ∈ (Sf (ρ), Sf (ρ) + δ] and
F (ρ N ,CN) > 1 − ε. Moreover, given any rate R < Sf (ρ) and ε > 0 there
exists N0 such that any compression scheme (EN ,DN) with rate R and N ≥ N0

is such that F (ρ N ,CN) ≤ ε.

The proof follows exactly the lines of the original proof for standard quan-
tum compression, that we have discussed in-depth in chapter 2. As the direct
proof is constructive, we only need to take care of the legitimacy of the compres-
sion protocol as a fermionic map. To this end, we recapitulate the construction
here.

1. Encoding: Perform the measurement {P δ/2
N (ρ), I−P δ/2

N (ρ)}. If the outcome

corresponding to P
δ/2
N (ρ) occurs, then leave the state unchanged. Otherwise,

if the outcome corresponding to I − P
δ/2
N (ρ) occurs, replace the state by a

standard state |SihS|, with |Si ∈ F
δ/2
N (ρ). Such a map is described by the

channel MN : L N
F → L N

F given by

J(MN)(σ) :=

PN,ε(ρ)σPN,ε(ρ) + Tr[(I − PN,ε(ρ))σ] |Si hS| .

Notice that this is a well defined transformation since by Lemma 5.2.1 the
projector on the typical subspace is a legitimate fermionic Kraus operator.
The second term is a measure and prepare channel, which is also a legitimate
fermionic transformation. Then consider a system MF made ofM LFMs and
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5. The information content in Fermionic Theory

the (partial) isometric embedding V : FδN(ρ) → HM such that V †V = IFδN (ρ).
Since the first stage of the protocol never produces states in the complement
of FδN(ρ), we can complete the map V · V † to a fermionic channel VN . The
encoding is then given by the composite map EN := VNMN .

2. Decoding: For the decoding channel, we simply choose the co-isometry V †,
which inverts V on FN,ε(ρ).

Recall that the fermionic entanglement fidelity F (ρ N ,CN) can be computed
according to formula (5.13). As for the converse statement, the proof for
quantum compression is based on item 3, which we proved for fermionic theory
as well. Thus, the quantum proof applies to the fermionic case (see also remark
2.2.5).
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CHAPTER6

A case study: Bilocal Classical
Theory

As we saw in section 3.3, there are three possible ways of generalising the
Shannon and von Neumann entropy as quantifiers of information in OPT, and
generally these quantities are inequivalent. A non-trivial issue, at this point, is
which of the entropic functions, if any, is an exact quantifier corresponding to
the best achievable compression rate of a source. Classical and quantum the-
ory are rather special and fortunate examples of information theories where the
three entropic functions coincide, whence they are both monoentropic, and the
unique entropy exactly matches the information content of a source, as defined
in chapter 4. As we saw in chapter 5, also fermionic information theory is a
monoentropic theory where the unique entropy equals the information content.
In this scenario, one can then ask two crucial and independent questions: i)
what are the features that make a theory monoentropic; ii) under what condi-
tions is the information content quantified by at least one of the three possible
entropies—or a regularised version of them.

In this chapter, relying on the minimal framework that we developed in
chapter 4, we study the above questions in the Bilocal Classical Theory (BCT) [44]
described in subsection 3.2.3. In particular, we show that, while BCT is mo-
noentropic, the information content of its states does not coincide with its
entropy. Moreover, in BCT pure states actually have non-null information con-
tent. The latter feature can be understood considering that the independent
preparation of two systems in pure states does not correspond to a pure state
for the composite system. Such a preparation thus introduces some ignorance
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about the whole system, even if the outcomes of independent experiments on
its components are fully predictable. The latter result can be extended to any
theory of classical systems where the rule for composing systems is such that
the composition of pure states is not necessarily pure. Therefore, thinking
of pure states as representing complete knowledge of the physical system is
inaccurate if the composition law is not purity-preserving.

6.1 Information content in Bilocal Classical Theory

In this section we prove a noiseless coding theorem in BCT, which in turns
yelds a simple formula for the information content of a state in such theory.
The result is given in terms of the Shannon entropy of the state describing
the source. After having checked that digitisability holds in this theory, thus
enabling us to use the apparatus developed in chapter 4, we see how the figure
of merit can be simplified thanks to the properties of the theory. Finally, we
conclude by showing the main result and discussing some of its consequences.

6.1.1 Checking digitisability

The first fact that must be checked is that BCT is a digitizable theory, in the
sense of definition 1. This is a mandatory step that allows for a meaningful
operational definition of information content.

Lemma 6.1.1. BCT is a digitisable theory.

Proof. We show that any system B of any size DB can serve as obit for BCT.
Indeed, let A be any other system of the theory, denote by DA its size and set

k = log2DB
2DA . (6.1)

Then, let h : {1, · · · , DA} → {1, · · · , DB}k × {+,−}k−1 be an injiective func-
tion. The action of the encoding E and the decoding D are defined by two set
of probability distributions, λ

(i)
js,τ

and µ
(js)
i,τ respectively. We then set λ

(i)
h(i),+ = 1

∀i ∈ {1, · · · , DA} for the encoding. For the decoding, ∀js such that ∃!i satisfy-

ing h(i) = js we define µ
(js)
i,+ = 1, while for every other js we can freely choose

any probability distribution. It is now easy to realize that, for any i, j and E,
the following holds

(ij)s

A
DE

A

E = (ij)s

A

E .

Now consider two systems of BCT, say B1 and B2. For any integer number
k1 of systems B1, the minimal number Mmin

2 (k1) of B2 that are needed is given
by formula (6.1)

Mmin
2 (k1) =

l
k1 log2DB2

2DB1

m
,
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and similarly

Mmin
1 (k2) =

l
k2 log2DB1

2DB2

m
.

Therefore

lim
k1→∞

Mmin
2 (k1)

k1

= log2DB2
2DB1 = lim

k2→∞

Mmin
1 (k2)

k2

−1

,

as required.

In BCT, as in classical and quantum theory, any type of system can serve
as obit. Here we choose the type of system with D = 2, that we will call bibit
from now on. Given that the pure states are the vertices of a simplex, any
other state can be uniquely decomposed in terms of pure ones. According to
postulate 5, each time we compose in parallel a state with itself, a uniformly
distributed sign appears. This entails that a message of length N that is
emitted from a source, described by

P
i pi|i)A = |ρ)A ∈ St1(A), can be written

as follows

|ρ N)AN =
X
i,s

pi
1

2N−1
|is)AN , (6.2)

where i and s collectively denote the string of N local indices and of N − 1
signs respectively. Notice that, according to the rule of Eq. (3.44), the string
of signs s depends on the order in which the N systems are associated. If the
order of composition changes, however, one just has a change in the string of
signs s0 = f(s), according to Eq. (3.44), which is immaterial since s is a dummy
index and f is an invertible function. Anyway, for the sake of clarity, we will
ubiquitously adopt the convention that the expression in Eq. (6.2) refers to the
composite system (. . . ((A1A2)A3) . . .AN−1)AN .

6.1.2 Existence of a mother dilation

The major obstacle in computing the information content of a given state is
the complexity of the figure of merit. The greater is the set of states on which
we must validate the codec maps, the more difficult is to devise one that works
as we wish. However, BCT satisfy both conditioning and steering, and every
state is proportional to a deterministic one, so that the figure of merit can
be computed according to either equation (4.1.2) or equation (4.12). In other
words, the following equations hold

I(ρ) = Idil(ρ) = Ipur(ρ). (6.3)

Furthermore, for any state ρ ∈ St1(A) of BCT, there exists a “mother” dilation
Π ∈ St(AE) from which we can compute all the other ones by applying a
suitable channel on the ancillary system E, as it is proved in the following
proposition.
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Proposition 6.1.1. Let
P

i pi|i)A = |ρ)A ∈ St1(A) and let
P

ijs qijs|(ij)s)AF =
|Ψ)AF ∈ St1(AF) be a dilation of ρ. Let E ∼= A and

P
iks piks|(ik)s) = |Π)AE ∈

St1(AE) be the dilation of ρ with joint probability distribution defined as

piks :=

(
δikpi, s = +;

0, s = −.

Then, there exists a channel C ∈ Transf1(E,F) such that

Ψ

A

F = Π

A

E
C

F .

Proof. Any deterministic transformation C ∈ Transf1(E,F) acts on the set of
pure states of AE as follows

(ik)s

A

E
C

F =
X
j,τ

λ
(k)
jτ (ij)τs

A

F ∀i, k, s,

where, for any k, λ
(k)
jτ is a probability distribution. By applying this to the

state |Π)AE defined in the statement, expanding and suitably recollecting the
signs, one finds

Π

A

E
C

F =
X
i,j,s

 X
τ,k

pikτλ
(k)
j(sτ)

!
(ij)s

A

F .

Since the set of states is a simplex, the pure ones are affinely independent,
and this entails that the condition IA C |Π)AE = |ΨAF) is satisfied iff the
following equation holds for any i, j and s

qijs =
X
τ,k

pikτλ
(k)
j(sτ). (6.4)

For pikτ as in the statement

qijs =
X
τ,k

pikτλ
(k)
j(sτ) = qijs =

X
k

δikpiλ
(k)
js = piλ

(i)
js (6.5)

and, since
P

j,s qijs = pi, λ
(i)
js =

qijs
pi

is an admissible solution.

The above statement, along with equations (6.3), straightforwardly implies
the following proposition, which drastically simplifies the task of devising a
compression scheme.
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Proposition 6.1.2. Given a state ρ ∈ St1(A) and a compression scheme (E ,D)
for a message of length N , the figure of merit can be computed according to
the following formula

D̃(ρ N ,C ) =
X

i

1

2N−1
pik(C − IAN ) IAN )|(isis)+)ANANkop. (6.6)

In other words, defining Ĩ(ρ) analogously to I(ρ) (equation (4.8)) by replacing
D(ρ N ,C ) with D̃(ρ N ,C ), it holds that I(ρ) = Ĩ(ρ).

Proof. Given any state ρ ∈ St1(A), define the following dilation of ρ N (see
also equation (6.2)) .

|ΠN) :=
X
i,s

1

2N−1
pi|(isis)+)ANAN . (6.7)

Moreover, for the sake of clarity let us set

ẼN,M,ε(ρ) = {(E ,D)|D̃(ρ N ,C ) < ε}. (6.8)

Denote by Ĩ(ρ) the corresponding quantity defined in a way analogous to (4.8).
The purpose is to show that I(ρ) = Ĩ(ρ). We already know that I(ρ) =
Ipur(ρ) = Idil(ρ). Since it is clear that D̃(ρ N ,C ) ≤ Dpur(ρ N ,C ), it follows
that Epur

N,M,ε(ρ) ⊆ ẼN,Mε(ρ), whence Ĩ(ρ) ≤ Ipur(ρ) = I(ρ). On the other hand,
by proposition 6.1.1, lemma 3.1.1 (monotonicity of the operational norm with
respect to channels), and the triangle inequality one also has, for any Ψ ∈ Dρ N

and (E ,D) ∈ ẼN,M,ε(ρ)

kC IE|Ψ)ANE − |Ψ)ANEkop =

=kIAN A (C IE|ΠN)ANE − |ΠN)ANE)kop

≤kC IE|ΠN)ANE − |ΠN)ANEkop ≤
≤D̃(ρ N ,C )

whence Ddil(ρ N ,C ) ≤ D̃(ρ N ,C ). This implies the inequality Idil(ρ) ≤ Ĩ(ρ).
We have then proved that I(ρ) = Ĩ(ρ).

At this point, we are in the position to prove a noiseless coding theorem
for BCT, whose proof can be found in appendix C.

Theorem 6.1.1. Let A ∈ Sys(BCT) and
PDA

i=1 pi|i)A = ρ ∈ St1(A). Then

I(ρ) =
H(p) + 1

2
. (6.9)

A first corollary of formula (6.9) is that the information content is additive
in BCT. Indeed, if

P
i pi|i)A = |ρ)A ∈ St(A) and

P
j qj|j)B = |σ)B ∈ St(B)

then the factorised state is given by

|ρ)A |σ)B =
X
i,j,s

1

2
piqj|(ij)s)AB,
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a straightforward application of equation (6.9) then gives

I(ρ σ) =
[H(p) +H(q) + 1] + 1

2

=
H(p) + 1

2
+
H(q) + 1

2
= I(ρ) + I(σ).

We then deduce that atomicity of parallel composition of states is not a nec-
essary condition for the additivity of information content when independent
systems are considered. In particular, not even local discriminability is a nec-
essary condition for additivity of I(ρ). The latter fact, however, was already
known from the previous chapter, where we proved that the information con-
tent of a fermionic source is given by the von Neumann entropy of the state
representing the source.

Another interesting feature of the information content in this theory is that
it is strictly positive for all states of any system. In particular, the Shannon
entropy of any sharp probability distribution is vanishing, whence, for any
system A, it holds that

I(ρ) =
1

2
, ∀φ ∈ PurSt(A). (6.10)

This is in contrast with what we know from classical, quantum and fermionic
theory, where the information content is vanishing if and only if the state is
pure. In this respect, one is led to stick to the notion of purity an operational
meaning by saying that we have maximal knowledge about a physical system
whenever it is in a pure state. In proposition 4.2.4, it has been shown that
purity of parallel composition of states and the uniqueness of purifications up to
reversible transofrmations on the ancillary system, are sufficient conditions for
this interpretation. Notably, a converse is also true, namely that if I(φ) = 0
whenever the state φ is pure then state purity is preserved under parallel
composition. Here we explicitly see that in a theory with a parallel composition
law that is not purity preserving, also pure states can have non vanishing
information content.

6.2 Relationship with other entropies

While in the previous section we computed the information content of a state,
in the present one we compare it with the three entropies defined in secition
3.3, and with their regularisations. The result finally establishes that, in the
OPT framework, none of them can be used as a quantifier of the information
content, or, in other words, none of them can hope to satisfy a generalised
noiseless coding theorem in the absence of further assumptions on the structure
of the theory.
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6.2.1 Regularised entropies

Here we consider a regularisation of the three entropic functions obtained by
computing such entropies on N copies of a given state, the dividing by N a fi-
nally letting N go to infinity. These kind of regularisations are often considered
in the literature on quantum information theory [27].

Definition 6.2.1. Let ρ ∈ St1(A) for some system A. For any i = 1, 2, 3 we
introduce the regularized Sreg

i as follows:

Sreg
i (ρ) := lim sup

N→∞

Si(ρ
N

)

N
. (6.11)

In classical, quantum and fermionic theory, we already know that all the
Si’s reduce to the Shannon and von Neumann entropy respectively, and they
are all additive, whence they coincide with Sreg

i as well. As we have seen in the
foregoing section, the relation between the information content of a state and
the Shannon entropy of the associated probability distribution is not trivial,
as a consequence of the violation of purity of parallel composition of states.
The latter property has also a remarkable consequence on the behaviour of the
regularized entropies with respect to their single-system counterparts, which
is stated in the proposition below.

Proposition 6.2.1. In any classical theory, for any system A and
P

i pi|i)A =
|ρ)A ∈ St(A), one has Si(ρ) = H(p). Moreover, whenever purity of parallel
composition of states (property 1) is violated, there exists a state Σ ∈ St(C)
for some system C such that the strict inequality Sreg

i (Σ) > Si(Σ) holds for
any i = 1, 2, 3.

Proof. By hypothesis, there exist systems A and B and |i)A ∈ PurSt(A), |j)B ∈
PurSt(B) such that

Σ

A

B :=
i

A

j
B =

X
k

p
(ij)
k k

A

B ,

where {p(ij)
k }k∈Iij is a non-trivial probability distribution and {|k)AB}k∈Iij is a

set of pure states of AB. Now consider |Σ 2)AB, that can be decomposed as
follows

Σ

A

B

Σ

A

B

=
X
k,k0

pkpk0

k

A

B

k0

A

B

.
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6. A case study: Bilocal Classical Theory

If |k)AB |k0)AB is pure, then one has a contradiction in that

i
A

j
B =

k

A
i

B

k0

A

B
j

.

and, while the left hand side is mixed by hypothesis, by lemma 3.2.1 the right
hand side must be pure, since the whole state is pure. We then conclude that
|k)AB |k0)AB must be necessarily mixed. Therefore, Σ 2 has the following
decomposition in terms of pure states

Σ

A

B

Σ

A

B

=
X
k,k0

pkpk0q‘|k,k0 ‘

A

B

A

B

.

where at least one of the conditioned probability distributions {q‘|k,k0}‘ is non-
trivial. Now, notice that for any system A and any state |ρ)A =

P
i pi|i)A one

has Si(ρ) = H({p}) for any i. The argument that we give here is the same as
the one proposed in [54] for classical theory (see in particular proposition 13
and theorem 3(i)), but since states are separating for effects in any OPT it also
applies to the case of any classical theory defined according to definition 3.2.3.
The case of S3 is pretty obvious, given the uniqueness of the decomposition
in terms of pure states. Now, since states are separating for effects, any other
atomic effect is proportional to an effect of the perfectly discriminating test,
i.e., (a|A = λ(i|A for some i. Thus, for any state ρ of a classical theory, it follows
that any other atomic observation test {ai} is such that H(ai(ρ)) ≥ H(p), by
concavity of the function x log x, and the equality is achieved for the perfectly
discriminating test, whence S1(ρ) = H(p). Finally, notice that for any state ρ
of a classical theory one has

S2(ρ) = H(p) − inf
{ai}∈Oat

H(X|J)

and H(X|J) = 0 for the perfectly discriminating test. Now, a trivial compu-
tation shows that

Si(Σ
2) = −

X
k,k0,‘

pkpk0q‘|k,k0 log2(pkpk0q‘|k,k0) =

= 2Si(Σ) −
X
k,k0‘

pkpk0q‘|k,k0 log2(q‘|k,k0)

> 2Si(Σ).
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Finally, notice that the subsequence Si(Σ
2k)/2k is increasing, since

Si(Σ
2k)

2k
≥ Si(Σ

2k−1
)

2k
+
Si(Σ

2k−1
)

2k
=
Si(Σ

2k−1
)

2k−1
,

and the result follows since the lim sup of the whole sequence is greater than
the lim sup of any of its subequence

lim sup
N→∞

Si(Σ
N)

N
≥ lim

k→∞

Si(Σ
2k)

2k
≥ Si(Σ

2)

2
> Si(Σ).

As a corollary of the above proposition, we can also notice that, for classical
theories where states purity is not preserved, each entropy, in addition to being
superadditive, also violates additivity when factorized states are considered.
Indeed, if there exist |i)A ∈ PurSt(A) and |j)B ∈ PurSt(B) such that |i) |j)
is mixed, we immediately see that

Si(|i) |j)) > 0 = Si(|i)) + Si(|j)). (6.12)

where Si is given by the Shannon entropy of the respective decompositions,
according to proposition 6.2.1.

6.2.2 Comparison with known entropic functions

While in classical and quantum theory all the Si’s and their regularized version
collapse to the Shannon and von Neumann entropies, respectively, thus boiling
down to the same operational interpretation given by the noiseless coding
theorems, much less is known about their operational meaning in a general
theory. In BCT the regularized entropies are related to the Shannon entropy
of the state according to the following proposition.

Proposition 6.2.2. Let
P

i pi|i)A = |ρ)A ∈ St1(A), where A is a BCT system.
Then Sreg

i (ρ) = Si(ρ) + 1 = H(p) + 1.

Proof. BCT is a classical theory, therefore we immediately have that Si(ρ) =
H(p) for any i = 1, 2, 3 (by proposition 6.2.1). For Sreg

i , we just notice that
Si(ρ

N) is the Shannon of the factorized joint distribution pi,s = pi
1

2N−1 where
pi = pi1 . . . piN , thus

Si(ρ
N)

N
=
NH(p) + (N − 1)H(1

2
)

N
= H(p) + 1 − 1

N

and the result follows by taking the limit.
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6. A case study: Bilocal Classical Theory

A remarkable corollary of this proposition is that, in general, none of the
Si’s nor the Sreg

i ’s can be understood as the minimal compression rate. Notice
that, while the additivity property for factorized states is violated by all the
entropies, it is satisfied by the regularized versions. The result of proposition
6.2.2 is by far intuitive if we think of the particular compositional rule on
states that BCT satisfies. Indeed, at the level of single systems, there is no
difference with respect to standard classical theory, and this is true for any
classical theory that does not satisfy atomicity of parallel composition of states.
The effect of this violation shows up when we consider N copies of the same
state, the latter operation giving an extra flat bit, one for each additional
copy of the original state, and the appearence of this extra bit is captured by
the regularized entropies. The factor 2 in the information content can also
be intuitively expected, since also when we compose bibits we get additional
space that can be used to allocate the message. Therefore, the departure of
I(ρ) from Sreg

i (ρ) can be essentialy ascribed to the weird compositional rule
for systems.

We notice that the results of theorem 6.1.1 and proposition 6.2.2 are con-
sistent with the following bound from subsection 4.2.2 (in particular, see the
proof of lemma 4.2.2),

I(ρ) ≥ S2(ρ)

log2 D
, (6.13)

where D is a costant such that DB M ≤ kDM for some k. Indeed, in the
case of BCT DB M = 1

2
4M , whence D = 4 (in other words, BCT satisfies the

assumption 2 of regular scaling, saturating the inequality). Actually, in the
present case such a bound is saturated with S2(ρ) replaced by Sreg

2 (ρ).

Remark 6.2.1. By the result of proposition 6.2.2, in the case of BCT there is
a precise relation between the regularized entropy Sreg

2 (ρ) and the information
content of the following form

I(ρ) =
Sreg

2 (ρ)

log2 D
, (6.14)

where D is the constant such that the relation DB M ≤ kDM holds for some k.
As already noticed, in the case of BCT, this relation is saturated just by taking
k = 1

2
and D = 4, whence the equation above trivially holds. One might be

tempted to conjecture that a result of this form holds for any classical theory,
but it is not difficult to realise that this is not the case. Let us consider a
classical theory with only one type of system, say the bit (whose size is 2),
satisfying local discriminability and, consequently, purity of parallel composi-
tion of states. Now, restrict the allowed tests of the theory to be preparation
tests, observation tests, and all possible permutations of bits, when more bits
are composed in parallel. It is easy to figure out that there are no protocols
that allow one to compress a source represented by a mixed state of a single
bit, so that I(ρ) = 1. But proposition 6.2.1 implies that Si(ρ) = h(p) where
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6.2. Relationship with other entropies

h(p) is the binary entropy of the bit state ρ, and so is for Sreg
i (ρ) by local

discriminability, whence the conjecture is false.
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CHAPTER7

Conclusions and outlook

The purpose of the present dissertation was to provide a unified framework
in which to study the notion of information content, without assuming any
feature of classical and quantum theory ab initio. To this purpose, the OPT
framework enabled us to provide an operational definition of the information
content, by lifting the noiseless coding theorems of classical and quantum Shan-
non theory to a definition . This has been made giving the due care when
generalising the compression task in the absence of features such as existence
and/or uniqueness of purification, or steering of ensembles. On the one hand,
this allows to identify which properties of such a measure of information hold
in full generality, and what is the interplay of its features with properties per-
taining the fundamental structure of a theory. On the other hand, it lets us
to study the behaviour of the information content in toy-theories adopting a
top-down approach, that is also helpful to circumscribe a set of conditions
that may be sufficient to prove the equivalence between our definition and one
of the entropic function introduced in the literature. The present work is a
preliminary study of a quantity that can be used to explore the possibility of
a reformulation of physical principles in purely informational terms—e.g. a
form of holographic principle in context in which space and time are emergent
structures—by relying on a notion of entropy that is fully operational.

The first original contribution is in chapter 4, where we defined the informa-
tion content for a source of information of a nearly arbitrary operational proba-
bilistic theory. The only assumption needed is that of digitisability: a theory is
digitisable if any system of the theory can be asymptotically perfectly mapped
into finitely many copies of a reference system, called “obit”, playing the role
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7. Conclusions and outlook

that “bit” and “qubit” play in classical and quantum theory, respectively. The
information content of a source is defined as the minimum number of obits
needed to store the output of the source in such a way that it can be recovered
with arbitrary accuracy. The figure of merit for establishing accuracy, indepen-
dently of the features of the theory, is robust against any distortion effect that
a compression scheme could induce on the state of the source, on its admissible
preparations and on the correlations with external systems. Accordingly, the
figure of merit meets the following two criteria: i) any preparation of ensembles
that average to the considered state must be indistinguishable from leaving the
preparation untouched, ii) the compression scheme must preserve decomposi-
tions of dilations of the state of interest, namely joint states of the system and
arbitrary external systems such that the state that one obtains after averaging
and discarding the external system is the one at hand. We first proved that the
information content is always a well defined quantity. Moreover, for strongly
causal theories satisfying steering of ensembles, we show that the information
content can be computed using simple figures of merit, e.g. a generalisation
of entanglement fidelity here denoted by correlation fidelity. Then we show
that the present notion of information content coincides with the Shannon
and von Neumann entropies in the classical and quantum case, respectively.
Like Shannon’s and von Neumann’s entropy, we proved that the information
content is subadditive and invariant under reversible transformation, and can
be used to measure the purity of a state. Moreover, we investigated to what
extent the information content can be understood as a measure of purity on
the set of states: while it is always true that a source with null information
content corresponds to a pure state, the opposite implication is satisfied in the
presence of atomicity of parallel composition (the parallel composition of any
two pure states is pure) and unique purification (if a state has a purification,
then the latter is unique up to reversible channels on the remote system).

In chapter 5 we studied information compression for fermionic systems,
showing the fermionic counterpart of the quantum source coding theorem. In
spite of parity superselection rule, which implies strict bilocality, and the non-
locality of the Jordan-Wigner representation of fermionic operators, the von
Neumann entropy of fermionic states can still be interpreted as their infor-
mation content, providing the minimal rate for which a reliable compression
is achievable. Given the absence of local discriminability, in FT there exist
fermionic admissible maps whose action is equivalent on local states, but they
actually differ when local fermionic modes are added and states on extended
systems are considered. This suggests that we cannot straightforwardly use
the information-theoretic quantities of QT, but it is more appropriate to rely
on the apparatus that we established in chapter 4. Remarkably, despite the
sensible differences between the quantum and the fermionic case, there are no
dissimilarities from the point of view of the source coding.

Finally, in chapter 6 we presented a full computation of the information con-
tent in BCT, a strictly bilocal theory where all systems are classical. The result
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is given in terms of the Shannon entropy of the probability distribution defin-
ing the state, namely, if |ρ) =

P
i pi|i), it turns out that I(ρ) = (H(p) + 1)/2.

In the special case of BCT, the calculation is simplified by the fact that, for
any state, there exists a “mother” dilation from which we can obtain all the
other ones by applying a suitable channel on the ancilla. With respect to stan-
dard classical Shannon theory, the information content shows two differences
that can be both ascribed to the violation of purity of parallel composition of
states in BCT: i) there is an overhead given by +1 in the numerator. This is
due to the appearance of a bit each time that we compose in parallel a new
copy of the same state. Since each bit is uniformly distributed we end up
with the maximum overhead, that is indeed +1; ii) there is a factor 2 in the
denominator. This follows from the fact that, when we compose bibits into
registers, their dimension is given by the formula DB M = 2M−1DM

B , thus the
room for allocating messages per single bibit is almost “double” with respect
to the size of the register. Notice that the factor 2 in the denominator is
then related to meaning of information content in the specific theory at hand,
where the elementary systems for physical encoding are bibits. If we had to
evaluate the classical information content, i.e. the ability of the source to en-
code classical information, then the regularized mutual information would be
the right quantifier. Along with the information content we also analysed the
behaviour of three different entropic functions that have been considered in
the literature. At the level of single system there is no difference with respect
to standard classical theory, and they all coincide with the Shannon entropy
of the state ρ. As a consequence, any classical theory is monoentropic [55].
The regularised entropies are clearly sensible to the extra bit that arises when
systems are composed, and they all turn out to be equal to H(p) + 1. This
result then establishes the existence of theories of information where none of
the proposed generalisations of entropy can be interpreted as the information
content of the source, and neither their regularized versions do. Remarkably,
this is true in a theory that is monoentropic. The departure of the regularised
version from the single-system counterpart is not peculiar of the BCT, but it
actually takes place in any classical theory (in the sense of the definition 3.2.3)
whenever atomicity of parallel composition of states is violated.

Still, there are open questions that are worthy of further investigations.
Concerning the general properties of the information content, we noticed that
in BCT it is additive on factorized states—i.e. states of the form ρ σ—and
this means that atomicity of parallel composition is not a necessary condition
for additivity. A relevant question that is still awaiting an answer is: under
which hypotheses, given two states ρ, σ ∈ St1(A), is it possible to prove that
I(ρ σ) = I(ρ) + I(σ)? It might be also the case that additivity is a feature
of I(ρ) that holds in full generality, as it would be desirable for measure of the
information content. The results of chapter 6 seem to suggest that atomicity of
parallel composition plays a marginal role for this property. Moreover, it is left
open for further studies what happens if one considers non-local classical theo-
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ries with a no-restriction hypothesis on the allowed transformations. It might
be the case that a relation very similar in form to equation (6.14) holds. An-
other interesting question is what happens in the case of the Popescu-Rohrlich
boxes [80]. It is possible that one of the entropies is equal to the information
content, with a strong prejudice in favor of the optimised mutual information
S2(ρ). On the one hand, we already know that I(ρ) ≥ S2(ρ), therefore the
missing part is achievability, i.e. the direct part of a noiseless coding theorem.

The main lesson that we learn from the results presented in this thesis is
that a treatment of the notion of information content, from a foundational
point of view, cannot ignore the compositional structure of a physical theory,
as we have seen that the latter heavily marks its behaviour also in a classical
theory. Moreover, as we argued in chapter 6, also the allowed transformations
play a significant role, as they might severely restrict the freedom of com-
pressing. We conclude by stressing the relevance of the fundamental questions
about information content and entropic functions from the perspective of the
extension of area laws or formulations of a general holographic principle, as
both these laws rely on entropy, which in turn owes its importance to its oper-
ational interpretation as a quantifier of uncertainty (or information content).
We think that understanding to what extent these laws can be generalised
independently of the nature of information carrying systems can shed new
light on the relation between microscopic and large-scale physical phenomena
involving the flow of information and its localization [91, 10, 11].
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APPENDIXA

Proof of lemma 4.2.1

The following theorem will be useful in the proof of the lemma.

Theorem A.1 ([92], theorem 2). Let X,Yand X’,Y’ be two pairs of random
variables taking values on the same range, with joint probability distributions
pi,j and qi,j for i = 1, . . . ,m and j = 1, . . . , n respectively, and let γ := kp−qk.
If γ ≤ 1 − 1

mn
, then it holds that

|I(X : Y) − I(X0,Y0)| ≤ 3γ log2(mn− 1) + 3H(γ). (A.1)

Now, we start by defining the following number

ζ(N, δ) := sup{ε | EN,M,ε(ρ) ⊆ EC
N,M,δ(ρ)}. (A.2)

Firstly, we can observe that in the above definition we can safely take the
maximum, since the following inclusion holds

EN,M,ζ(N,δ)(ρ) ⊆ EC
N,M,δ(ρ).

Indeed, let (E ,D) ∈ EN,M,ζ(N,δ)(ρ). By definition of EN,M,ζ(N,δ)(ρ) we of have

sup
C,{Ψi}

X
i

k[(DE − I ) IC]Ψikop < ζ(N, δ)

then there exists ε0 < ζ(N, δ) such that supC,{Ψi}
P

ik[(DE −I ) IC]Ψikop <
ε0. Thus, by definition of ζ(N, δ), one has (E ,D) ∈ EN,M,ε00(ρ) with ε0 < ε00 <
ζ(N, δ) and EN,M,ε00(ρ) ⊆ EC

N,M,δ(ρ). Finally, since EN,M,ε0(ρ) ⊆ EN,M,ε00(ρ),
we have (E ,D) ∈ EC

N,M,δ(ρ), and consequently EN,M,ζ(N,δ)(ρ) ⊆ EC
N,M,δ(ρ).
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A. Proof of lemma 4.2.1

This inclusion has another consequence, which is our starting point for
proving the lemma. Indeed, by definition one has

lim sup
N→∞

Rζ(N,δ),N(ρ) ≥ RC
δ (ρ)

We now have the following two possibilities

1. ∃δ0 > 0 such that, ∀0 < δ < δ0, lim infN→∞ ζ(N, δ) = 0;

2. ∀δ > 0 one has lim infN→∞ ζ(N, δ) =: ζ(δ) > 0.

Let us start analysing case 2. In this case, by definition of limit inferior, one
has

∀δ, γ > 0(
∃N0, ∀N ≥ N0, ζ(N, δ) > ζ̄(δ) − γ,

∀N0, ∃N ≥ N0, ζ(N, δ) < ζ̄(δ) + γ.

This implies that for every δ > 0 and every positive γ, for suitably large N
it is Rζ(δ)−γ,N(ρ) ≥ Rζ(N,δ),N(ρ), and consequently, for suitably large N it is
Rζ(δ)/2,N(ρ) ≥ Rζ(N,δ),N(ρ). In turn, this implies

Rζ(δ)/2(ρ) ≥ lim sup
N→∞

Rζ(N,δ),N(ρ) ≥ RC
δ (ρ),

and finally, being ζ(δ) increasing as a function of δ, taking the limit for δ → 0
one has some value ε ≥ 0 such that

I(ρ) ≥ lim
ζ→ε

Rζ(ρ) = lim
δ→0

Rζ(δ)(ρ) ≥ IC(ρ).

We now turn to case 1, and show that this is not possible. The hypotheses
imply indeed that there exists δ0 > 0 such that lim infN→∞ ζ(N, δ0) = 0, and
the same is then true of every 0 < δ ≤ δ0. This means that for every γ > 0
and every N0 there exists N ≥ N0 such that ζ(N, δ) < γ for all 0 < δ ≤ δ0. By
definition, this means that for every γ there exists a scheme (E ,D) ∈ EN,M,γ(ρ)
such that (E ,D) /∈ EC

N,M,δ(ρ). More explicitly

sup
C,{ψi}

X
i

k[(DE − I ) IC]ψikop < γ,

sup
C,{ψi},{aj}

L−1|H(X : Y) −H(X : Ỹ)| > δ,

where L has been introduced in def. 4.2.1. First of all we remark that if
m = 1 or n = 1, then H(X) = 0 or H(Y) = H(Ỹ) = 0, respectively, and
thus H(X : Y) = H(X : Ỹ) = 0, since H(A : B) ≤ min{H(A), H(B)}. The
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minimum relevant value of L is thus log2 3. Now according to theorem A.1, for
kp − qk < γ < 1 − 1/mn one has

L−1|H(X : Y) −H(X0 : Y0)|
≤3γ + 3L−1H2(γ)

≤3γ +
3

log2 3
H2(γ)

where X,Y and X0,Y0 are distributed according to pi,j and qi,j, respectively.
We can then conclude that for every γ > 0 one has

δ < 3γ +
3

log2 3
H(γ).

However, our hypotheses imply that the latter condition must hold for some
δ > 0, which is absurd.
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APPENDIXB

Proof of Lemma 4.2.2

We premise the following theorem, that will be useful in the proof of the lemma.

Theorem B.1 ([93], theorem 2). Let A be a system of an OPT with size DA,
and ρ ∈ St1(A). Then the maximised accessible information is bounded as
follows

S2(ρ) ≤ log2(DA).

Let us take δ > 0, and consider (E ,D) ∈ EC
N,M,δ(ρ). Let us consider first a

single use of the source associated with ρ corresponding to the decomposition
{Ψi}, and let {aj} be the observation test such that I(X0 : Y0) is maximum,
where X0 is the classical variable corresponding to the outcome i of the prepara-
tion test, and Y0 that of the observation test. Notice that by Krein-Millman’s
theorem and Caratheodory’s theorem one can always find the supremum of
mutual information considering atomic decompositions and observation-tests
with a bounded number of elements, and thus the optimisation problem has a
compact domain. Let now {Ψi} be the decomposition of ρ N defined by

Ψi := Ψi1 Ψi2 · · · ΨiN ,

and {Ψi} be the decomposition that maximises I(X0 : Y0), with m0 outcomes.
Let now {bj} be the observation test on N copies of the system that maximizes
H(X : Y) where X is the i.i.d. classical variable given by the preparation event
i and Y by the outcome j. Since {bj} maximizes the mutual information it is
clear that the test {(bj|DE } will provide a mutual information H(X : Ỹ) no
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B. Proof of Lemma 4.2.2

larger than H(X : Y). Thus we can write

δ >
H(X : Y) −H(X : Ỹ)

log2 m
N
0 D(N) − 1

≥ H(X : Y) −H(X : Ỹ)

N log2 m0D0 + log2 k
,

where in the first bound we used the fact that the number of outcomes for
the observation test maximising the mutual information does not exceed the
dimension of the space of effects D(N), while in the second bound we used the
hypothesis that there exist k,D0 such that D(N) ≤ kDN

0 . Now, by definition
of H(X : Y) we have H(X : Y) ≥ NH(X0 : Y0), while by the result of theorem
B.1 we have

H(X : Ỹ ) ≤ log2 D(M) ≤ log2k
0 +M log2 D1,

where we think of the scheme given by the decomposition {E |Ψi)} and the
observation test given by {(bj|D}, involving M obits. We can then write the
following inequality

δ >
NH(X0 : Y0) −M log2 D1 − log2 k

0

N log2 m0D0 + log2 k
,

and consequently

M

N

log2 D1 + log2 k
0/M

log2 m0D0 + log2 k/N
+ δ

>
H(X0 : Y0)

log2 m0D0 + log2 k/N
.

In particular, if the scheme (E ,D) has the minimum M for fixed N, δ we can
then conclude that

RC
δ,N

log2 D1

log2 m0D0 + log2 k
N

+ δ

+
1

N

log2 k
0

log2 m0D0 + log2 k
N

>
H(X0 : Y0)

log2 m0D0 + log2 k
N

.

Taking the limit superior for N → ∞ on both sides we have

RC
δ

log2 D1

log2 m0D0

+ δ ≥ H(X0 : Y0)

log2 m0D0

,

and finally, in the limit δ → 0 we obtain

IC(ρ)
log2 D1

log2 m0D0

≥ H(X0 : Y0)

log2 m0D0

,
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namely

IC(ρ) ≥ H(X0 : Y0)

log2 D1

.

For a mixed state, H(X0 : Y0) > 0 and this implies the thesis.

111



B. Proof of Lemma 4.2.2

112



APPENDIXC

Proof of Theorem 6.1.1

We premise the following lemma in order to make the proof of the main theorem
a bit less long. The proof makes extensive use of standard techniques from
classical information theory.

Lemma C.1. Let S(N) be any collection of strings (i, s), with i ∈ {1, . . . , DA}N
and s ∈ {+,−}N−1, such that |S(N)| = 22NR−1 with R < H(p)+1

2
fixed. Then,

for any η > 0 there exists N0 such that for any N ≥ N0 one hasX
(i,s)∈S(N)

pi
1

2N−1
< η

Proof. Let S be the set of all the possible strings s, ∆ := H(p) + 1 − 2R > 0
and define

S1 := (TN∆
2

(p) × S) ∩ S(N),

S2 := (TN∆
2

(p) × S) ∩ S(N),

where A denotes the complementary set of A. Then considerX
(i,s)∈S(N)

pi
1

2N−1
=

X
(i,s)∈S1

pi
1

2N−1
+
X

(i,s)∈S2

pi
1

2N−1
.

The first term is bounded as follows thanks to the equipartition property in
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equation (2.11) X
(i,s)∈S1

pi
1

2N−1
≤ 2−N [H(p)−∆

2
]−N+1|S(N)|

= 2−N [H(p)−∆
2

]−N+1+2NR−1

= 2−N [H(p)+1−2R−∆
2

] < η/2

provided that we take N ≥ N1 with N1 sufficiently large. For the term with
S2 we use item 1 of theorem 2.1.2, which implies that for η/2 > 0 there exists
N2 such that for any N ≥ N2 we have

P
i∈TN∆

2

(p)
pi <

η
2
. We then have

X
(i,s)∈S2

pi
1

2N−1
≤

X
i∈TN∆

2

(p)

pi <
η

2
.

Setting N0 = max{N1, N2} we have the thesis.

Proof of theorem 6.1.1. We first prove the achievability, namely that I(ρ) ≤
H({pi})+1

2
. Let δ > 0, and for any N consider the following number of bibits

M = N
H(p) + 1

2
+ δ

by item 2 of theorem 2.1.2 and the above choice of M we have that, ∀N ∈ N

|TNδ (p)|2N−1 ≤ 2N [H(p)+1+δ]−1 ≤ 22M−1 = DB M .

This bound entails the existence of a subset PN ⊆ PurSt(B M) with cardinality
equal to |TNδ (p)|2N−1. Denote by SPN the set of strings tn associated with PN .
This allows us to define the following (E ,D) compression scheme for any N :

1. The encoding E is defined by a set of probability distributions λ
(is)
tnτ , one

for each multi-index is. Let h : TNδ (p)×{+,−}N−1 → SPN be any injec-
tive function that associates each typical string is with a distinct element
tn of SPN . Then, for any such is we set λ

(is)
h(is)+ = 1. In particular, for any

i ∈ TNδ (p) and any s ∈ {+,−}N−1 we have the following diagrammatic
equation

(isis)+

A N

E
A N

A N = (h(is)is)+

B M

A N .

If i 6∈ TNδ (p), for any s set λ
(is)

t̄s̄+
= 1 for a fixed t̄s̄ ∈ SPN . Diagrammati-

cally the action of E is represented as follows

(isis)+

A N

E
A N

A N = (̄ts̄is)+

B M

A N .
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Notice that, having defined λ
(is)
tnτ for any tn and τ and for any is, we have

fully specified the action of E on all the pure states of A N A N even if
not all of them directly intervene in the evaluation of the figure of merit.

2. Let {µ(tn)
isτ

} be the probability distributions defining the decoding D . For

any tn ∈ SPN we simply set µ
(tn)

h−1(tn)+ = 1, namely, we invert the action

of the encoding. Indeed, for any typical string is = h−1(tn) we have

(tnis)+

B M

D
A N

A N = (h−1(tn)is)+

A N

A N .

If tn 6∈ SPN , take a fixed string īs̄ and define µ
(tn)

īs̄+
= 1. This implies, for

any is

(tnis)+

B M

D
A N

A N = (̄is̄is)+

A N

A N .

Now, with this scheme and using item 1 of theorem 2.1.2, we have that for any
η > 0 there exists N0 such that for any N ≥ N0 the following holds

D(ρ N ,C ) =X
i6∈TN

δ (p),s

1

2N−1
pik|(̄is̄is)+)ANAN − |isis)+)ANANkop

≤ 2
X

i6∈TN
δ (p),s

1

2N−1
pi ≤ 2

X
i6∈TN

δ (p)

pi ≤ 2η

which in turns implies that, given = 2η, for any N ≥ N0 holds true that
EN,M, (ρ) 6= ∅. Therefore, for such values of N we have MN, (ρ)/N ≤ M/N ,
and this implies, by taking the lim supN→∞ and then the lim →0

I(ρ) ≤ H(p) + 1

2
+ δ,

and the thesis follows by the arbitrariness of δ.
Now we prove the minimality of H(p)+1

2
, namely that I(ρ) ≥ H(p)+1

2
. Fix

an arbitrary δ > 0 and let M and N be such that

H(p) + 1

2
− δ ≤ M

N
<
H(p) + 1

2
. (C.1)

We then show that there exists N0 such that for any k satisfying kN > N0 it
holds that EkN,kM, (ρ) = ∅ for any ∈ (0, ] for some . Let (E ,D) be a com-

pression scheme for messages of length kN with kM bibits and let λ
(is)
tnτ , µ

(tn)
isτ
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C. Proof of Theorem 6.1.1

be the probability distributions defining the action of E and D respectively
on pure states of A NA N . By using the normalization condition the figure of
merit can be rewritten in the following form

D(ρ N ,DE ) = 2

 
1 −

X
is

1

2N−1
pi

X
tn,τ

λ
(is)
tnτµ

(tn)
isτ

!
. (C.2)

Since all the terms λ
(is)
tnτµ

(tn)
isτ 0

are non-negative, we can upper bound the sum
over τ = τ 0 by a sum over independent indices τ, τ 0, obtainingX

is

1

2N−1
pi

X
tn,τ

λ
(is)
tnτµ

(tn)
isτ

≤
X
is

1

2N−1
pi

X
tn

λ
(is)
tn
µ

(tn)
is

where λ
(is)
tn

:=
P

τ λ
(is)
tnτ and similarly for µ

(tn)
is

. Now we see that the right hand
side of the inequality written above is the sum over a number of strings is at
most 22kM−1; set pis = pi

1
2N−1 and considerX

is

pis

X
tn

λ
(is)
tn
µ

(tn)
is

. (C.3)

By repeatedly using the inequality
P

k akbk ≤ maxk{bk} valid for bk ≥ 0 andP
k ak = 1 we find the following boundX

is

pis

X
tn

λ
(is)
tn
µ

(tn)
is

≤
X
is

pisµ
(̄tn̄(is))
is

=
X
tn

X
is :̄tn̄(is)=tn

pisµ
(̄tn̄(is))
is

≤
X
tn

pis(tn)

(C.4)

In the last sum we have one is for any tn, therefore the sum is over at most

22M−1 terms. Notice that our choice of Mk = kM entails 22Mk−1 = 22M
N
Nk−1 <

2NkH(p)+Nk−1. Thus, by lemma C.1, given η > 0 there exists N0 such that for
any k satisfying kN > N0 we have

P
is

1
2N−1pi < η. This implies that, for any

∈ (0, 2(1 − η)]

EkN,kM, = ∅ ∀k > N0

N

Therefore, for any such k, we have the following chain of inequalities

H(p) + 1

2
− δ ≤ kM

kN

≤ lim sup
k→∞

MkN, (ρ)

kN

≤ lim sup
N→∞

MN, (ρ)

N

Taking the lim →0 we have H(p)+1
2

− δ ≤ I(ρ) and the thesis follows by the
arbitrariness of δ.
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[86] Mari-Carmen Bañuls, Juan Ignacio Cirac, and Michael M. Wolf. En-
tanglement in fermionic systems. Physical Review A, 76(2):022311, Au-
gust 2007. URL: https://link.aps.org/doi/10.1103/PhysRevA.76.

022311, doi:10.1103/physreva.76.022311.

[87] Nicolai Friis, Antony R. Lee, and David Edward Bruschi. Fermionic-mode
entanglement in quantum information. Physical Review A, 87(2):022338,
February 2013. URL: https://link.aps.org/doi/10.1103/PhysRevA.
87.022338, doi:10.1103/physreva.87.022338.

[88] Tiago Debarba, Fernando Iemini, Geza Giedke, and Nicolai Friis. Tele-
porting quantum information encoded in fermionic modes. Phys. Rev.
A, 101:052326, May 2020. URL: https://link.aps.org/doi/10.1103/
PhysRevA.101.052326, doi:10.1103/PhysRevA.101.052326.

[89] Matteo Lugli, Paolo Perinotti, and Alessandro Tosini. Fermionic
state discrimination by local operations and classical communica-
tion. Phys. Rev. Lett., 125:110403, Sep 2020. URL: https://

link.aps.org/doi/10.1103/PhysRevLett.125.110403, doi:10.1103/

PhysRevLett.125.110403.

[90] Matteo Lugli, Paolo Perinotti, and Alessandro Tosini. Unambiguous
discrimination of fermionic states through local operations and clas-
sical communication. Phys. Rev. A, 103:012416, Jan 2021. URL:
https://link.aps.org/doi/10.1103/PhysRevA.103.012416, doi:10.

1103/PhysRevA.103.012416.

[91] Leonard Susskind. The world as a hologram. Journal of Mathematical
Physics, 36(11):6377–6396, 1995. arXiv:https://doi.org/10.1063/1.

531249, doi:10.1063/1.531249.

[92] Zhengmin Zhang. Estimating mutual information via kolmogorov dis-
tance. IEEE Transactions on Information Theory, 53(9):3280–3282, 2007.
doi:10.1109/TIT.2007.903122.

[93] Samuel Fiorini, Serge Massar, Manas K Patra, and Hans Raj Tiwary. Gen-
eralized probabilistic theories and conic extensions of polytopes. J. Phys.
A: Math. Theor., 48(2):025302, January 2015. doi:10.1088/1751-8113/
48/2/025302.

125

https://link.aps.org/doi/10.1103/PhysRevLett.96.010404
https://link.aps.org/doi/10.1103/PhysRevLett.96.010404
https://link.aps.org/doi/10.1103/PhysRevLett.96.010404
https://doi.org/10.1103/physrevlett.96.010404
https://doi.org/10.1103/physrevlett.96.010404
https://link.aps.org/doi/10.1103/PhysRevA.76.022311
https://link.aps.org/doi/10.1103/PhysRevA.76.022311
https://doi.org/10.1103/physreva.76.022311
https://link.aps.org/doi/10.1103/PhysRevA.87.022338
https://link.aps.org/doi/10.1103/PhysRevA.87.022338
https://doi.org/10.1103/physreva.87.022338
https://link.aps.org/doi/10.1103/PhysRevA.101.052326
https://link.aps.org/doi/10.1103/PhysRevA.101.052326
https://doi.org/10.1103/PhysRevA.101.052326
https://link.aps.org/doi/10.1103/PhysRevLett.125.110403
https://link.aps.org/doi/10.1103/PhysRevLett.125.110403
https://doi.org/10.1103/PhysRevLett.125.110403
https://doi.org/10.1103/PhysRevLett.125.110403
https://link.aps.org/doi/10.1103/PhysRevA.103.012416
https://doi.org/10.1103/PhysRevA.103.012416
https://doi.org/10.1103/PhysRevA.103.012416
http://arxiv.org/abs/https://doi.org/10.1063/1.531249
http://arxiv.org/abs/https://doi.org/10.1063/1.531249
https://doi.org/10.1063/1.531249
https://doi.org/10.1109/TIT.2007.903122
https://doi.org/10.1088/1751-8113/48/2/025302
https://doi.org/10.1088/1751-8113/48/2/025302


BIBLIOGRAPHY

126



List of publications

❼ P. Perinotti, A. Tosini, and L. Vaglini,“Shannon theory beyond quantum:
Information content of a source”, Phys. Rev. A 105, 052222 (2022).

❼ P. Perinotti, A. Tosini, and L. Vaglini, “Shannon theory for quantum sys-
tems and beyond: information compression for fermions”, arXiv:2106.04964
(2021);
(accepted for publication in the special issue: The Quantum-Like Revo-
lution: A Festschrift for Andrei Khrennikov, 2023, edited by Springer);

❼ P. Perinotti, A. Tosini, and L. Vaglini, “Which entropy for general physi-
cal theories?”, arXiv:2302.01651 (currently under review for the Quantum
journal).

127


	Introduction
	Symbols and acronyms

	Noiseless coding in classical and quantum information theories
	Classical Shannon theory
	Summary of Classical Theory
	A measure of uncertainty: the Shannon entropy
	Weak tipicality and the first Shannon theorem

	Quantum Shannon theory
	Compendium of Quantum Theory
	Distinguishability measures in quantum theory and the von Neumann entropy
	Quantum weak typicality and the noiseless coding theorem


	The Operational Probabilistic Theories framework
	General description
	Primitive notions and the operational language
	The probabilistic structure
	Different degrees of locality: n-local discriminability

	Special instances of the framework: Quantum Theory, Fermionic Theory and classical theories
	The axioms of Quantum Theory
	Review of Fermionic Theory
	Classical Theories

	Fidelity and entropic-like quantities in OPT
	Fidelity
	Measurement entropy
	Accessible information
	Mixing entropy


	The information content in OPT
	Definition of information content
	Digitisable theories
	The definition
	Alternative figure of merits
	The information content in classical and quantum information theory

	Properties
	First consequences of the definition
	Information content versus pure states


	The information content in Fermionic Theory
	Preliminary considerations
	Setting the problem and the fermionic von Neumann entropy
	Entanglement fidelity

	The coding theorem
	Fermionic typical subspaces
	The fermionic noiseless coding theorem


	A case study: Bilocal Classical Theory
	Information content in Bilocal Classical Theory
	Checking digitisability
	Existence of a mother dilation

	Relationship with other entropies
	Regularised entropies
	Comparison with known entropic functions


	Conclusions and outlook
	Proof of lemma 4.2.1
	Proof of Lemma 4.2.2
	Proof of Theorem 6.1.1

