
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2023-07-25

 
Deposited version:
Publisher Version

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Bruno Gonçalves, Paulo Costa & Botelho, L. (2008). Context-awareness. In Michael Schumacher,
Helko Schuldt, Helkki Helin (Ed.), CASCOM: Intelligent service coordination in the semantic web:
Conference proceedings. (pp. 105-123). Zurich: Birkhäuser.

 
Further information on publisher's website:
10.1007/978-3-7643-8575-0_5

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Bruno Gonçalves, Paulo Costa & Botelho, L.
(2008). Context-awareness. In Michael Schumacher, Helko Schuldt, Helkki Helin (Ed.), CASCOM:
Intelligent service coordination in the semantic web: Conference proceedings. (pp. 105-123). Zurich:
Birkhäuser., which has been published in final form at https://dx.doi.org/10.1007/978-3-7643-8575-
0_5. This article may be used for non-commercial purposes in accordance with the Publisher's Terms
and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/978-3-7643-8575-0_5


Chapter 5

Context-Awareness
Bruno Goņcalves, Paulo Costa and Luis Miguel Botelho

5.1 Introduction

Context-aware computing has increasingly gained the attention of the research
community because, as it is the case with human interactions, context information
provides the background against which it is possible to more accurately interpret
communicative acts without the need to explicitly state everything that might
be relevant. If, within an agent negotiation for buying some specific service, the
service provider says “the price is 20 Euros”, the receiver would not be capable of
fully interpreting the meaning of the message without using the context created by
the whole conversation. Context information provides the basis for more efficient
information processing mechanisms due to the possibility of discarding irrelevant
information in early stages of information processing. For instance, if some pa-
tient’s personal assistance agent is looking for a service that would sell him or her
a specific medicine and deliver it in the patient’s home, this would be achieved
through the creation of a compound service consisting of an on-line pharmacy and
a medicine transportation service. Using context information about the patient’s
location, the service composition process may discard service providers located
far away from the client and create the compound service considering only a very
small number of all existing services of the relevant categories. Context informa-
tion also enables better adapted behavior since, being context-aware, it may be
more directed towards clients requirements in the circumstances of the interaction.
For instance, if a personal assistance agent is looking for an internet movie critique
service for its owner, having to choose between services displaying a German, an
Italian, or anEnglish user interface, the use of context information regarding the
user’s profile, will enable the agent to choose the service whose interface language
is preferred to the client.

Context-aware computing increasing importance is manifest in the emergence
of a growing number of applications that use context information captured by soft-
ware and hardware sensors, such as the current time, the current temperature and



110 Chapter 5. Context-Awareness

humidity, the user’s location, current traffic in alternative internet connections,
availability and load of some service provider.

The CASCOM Project designed and implemented an architecture for context-
aware agent-based service coordination for static and mobile users. Context-aware
service coordination agents may adapt their behavior to their clients taking into
account the context in which interactions take place. For the sake of efficiency,
modularity and specialization, service coordination agents should not have to care
about the problems of acquiring context information from the large diversity of
sources actually existing or coping with the enormous variety of representation
and encoding formats used in these sources.

This chapter provides an overview of selected topics of context-aware com-
puting, focusing the problems of context information acquisition, modeling, and
management, which are those related with context acquisition and management
systems. Context information acquisition refers to the process of acquiring infor-
mation that is considered to be part of the context. Often, context acquisition is
implemented through software sensors (e.g., user spoken languages) or hardware
sensors (e.g., room temperature). Context modeling consists of creating the model
according to which context is represented. Context modeling allows to convert
raw data read from the sensors into something with meaning, generally following
a given ontology. For instance, the string “English” provided by a software sensor
implemented in the user’s personal assistance agent might mean “user spoken lan-
guages = {English}”. Context management refers to the whole activity of context
processing within the context system including storing context information, taking
care of context clients and their requests, and knowing when to discard particular
pieces of context information. The chapter will review context definitions, theories
and principles for context system design, context modeling, and context system
architectures. There is of course much more about context, for instance, about
the way context information may be used by context-aware systems. However, the
chapter will not address such topics in detail.

Maybe the first idea of context information was the user location however,
simultaneously with the effort to clarify and adequately extend its definition [2, 12,
13, 29], other kinds of information were used in context dependent applications,
such as the state of network connections, the existing devices available to the user,
and the social environment.

Several definitions of context can still be found, which does not contribute to
creating a clear picture of context-aware applications and context acquisition and
management systems. In spite of this diversity, maybe, the most accepted definition
of context is the one proposed by Dey and Abowd [13], according to which “context
is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and application themselves”.
Although the proposal by Dey and Abowd is still the most accepted, the definition
by Anagnostopoulos et al. is increasingly gaining more adepts [13]. They use the
definition of Dey and Abowd but they circumscribe the notion of context to a



5.2. Context Definitions 111

set of situations, which describe humans, applications, and environment related to
specific activities.

A context-aware system is a set of services that adapt to environmental
factors, such as the location in which the system is used, nearby people and objects,
as well as the changes that occur in these objects over time. With the appearance of
mobile devices, context became increasingly important to improve the performance
and effectiveness of applications for mobile users [17]. There are several projects [1,
5, 6, 3, 4, 16, 21, 33] that investigate how context information can be useful to
improve existing services and to create new services for the next generations of
mobile networks.

One of these projects is the WWI Ambient Networks [1]. This project is
aimed at creating solutions beyond the third generation, promoting a scalable
and low cost network that allows an easy access to the offered services. These
solutions include the use of the context-aware computing paradigm to select the
best connection, location services and geographical orientation among others.

Other project presented by Chalmers and Sloman [5] proposes the use of a
framework that allows the management of the quality of service in mobile networks,
using context information to analyze the user characteristics.

Several architectures and approaches that deal with context [2, 8, 9, 6, 10, 11,
22, 24, 27, 28] have been discussed over time, however there is still no normalized
solution that satisfies all possible uses of context information.

This chapter presents some definitions of context given by several authors.
Following, it presents several context models focusing context acquisition, context
modeling and context processing. Next, it describes some of the developed archi-
tectures of context-aware systems. Finally, overall comments about this subject
are presented.

5.2 Context Definitions

Context definitions, in computer applications, have been adapted from the way
context is used in everyday language. Since there are many everyday language uses
for context, an adequate and generally accepted definition of context information
and context-aware applications still does not exist. The meaning of context in
everyday language is related with the interpretation of written and spoken text.
Text is not an encapsulated representation of a specific meaning. Rather, it is an
indication that allows the anticipated construal of a meaning. That construal is
based on what comes with the text, namely its context. In a sentence, each word
has a meaning but the sentence global meaning can only be determined by doing
inferences over its context [31]. For instance, if someone looking from a window
at a car being stolen, says “isn’t that our neighbor’s car?” the pronoun “that”
can only be understood if the listener is also looking at the same scene, that is,
if the listener shares at least part of the same context with the speaker. “Our
neighbor” can also be understood by the listener depending on the context. If the



112 Chapter 5. Context-Awareness

listener leaves in the same place as the speaker, then the expression gains a certain
meaning. However the meaning would be different if the listener knows the speaker
is talking about him and his wife.

Linguists and philosophers have made a big effort to identify the several
context elements that give meaning to words. When trying to adjust everyday
context definitions to computer sciences, several authors have created their own
definitions of context for their applications, which lead to different views of context
and different approaches to acquire context information from the environment.

Winograd [31] defines context as not only the data structures in the operating
system (such as Windows and applications), but also something far beyond the
application being used. Context is an operational term; something is considered
context if it is used in an interaction.

For Schilit and Theimer [29], context consists of the identities of people, the
objects near the application, as well as their changes. Dey [12] adds to the definition
of context the emotional states, the user attention, location and orientation, date
and time, and objects and persons in the user environment. The meaning of the
noun phrase “the car that has just appeared in front of you” depends on the time
in which the phrase is uttered, it depends on the direction the listener is headed
to and on his or her location, and of course, on the objects (i.e., the car) on the
listener’s environment.

For Anagnostopoulos et al. [2], context is a set of situations that describe
people, applications and environment related with a specific activity. This provides
context to the context, which will enable to constrain the whole array of objects,
people and events that may be considered context to only those related to a
given activity. For instance, only the set of potential threats related to driving
in a particular road in a given moment, not the set of all possible threats in the
universe, is relevant to interpret the danger traffic sign.

The most accepted definition of context, for the scientific community, is the
one by Dey and Abowd [13] which states that context is defined as any information
that characterizes a situation or entity.

According to Schmidt et al. [30], context can be divided in two categories:
human factors and physical environment. Human factors include user, social envi-
ronment (people near the user, the relations among them, between them and the
user, and between them and the application) and task (which plays a similar role
to that played by the activity put forth by Anagnostopoulos and colleagues). The
physical environment includes location, infrastructure (supporting the application,
the user, the social context and the task) and conditions (e.g., current date and
time).

Analyzing current definitions, we conclude that they are either too restrictive
or too wide scoped, failing to distinguish context-aware computing from other
kinds of computing.

Taken together, the points of view of Schilit and Theimer [29], and of Anag-
nostopoulos et al. [2] mean context includes applications, environment, and people
related with a given activity, and their changes. Dey’s proposal [12] also includes



5.3. General Design Principles and Context Modeling Approaches 113

the emotional states, the user attention, location and orientation, date and time,
and the user environment. In a strict sense, these definitions would rule out for
instance current traffic conditions in a given network connection, the average wait-
ing time per request and the current number of requests of a given application. In
a broad sense, this definition would include almost everything.

For Dey and Abowd [13], context is defined as any information that charac-
terizes a situation or entity. For Winograd [31], something is considered context if
it is used in an interaction. These are obviously too broad definitions. Winograd’s
definition would include even the messages exchanged in the interaction. And for
Dey and Abowd, almost any information would be considered context. This way,
context-aware computing would be basically information processing which is not a
useful definition since it does not allow us distinguishing context-aware computing
from other kinds of computing.

The proposal of Schmidt et al. [30] identifies different classes of context infor-
mation but it also cannot distinguish context-aware computing from other kinds
of computing.

We propose that often the decision of considering or not a specific infor-
mation as context should be a design task. For instance, some applications would
consider the user location to be part of the context, while for others, location would
not be relevant. In any case, context information should be processed differently
from other classes of information or else it would not make sense to be concerned
about context-aware computing. A suggestion regarding the way context infor-
mation should be handled could be “in an interaction between the initiator and
the participant, it is the responsibility of the participant to acquire relevant context
information even if the participant has to ask the initiator to provide (part of) it”.

5.3 General Design Principles and Context Modeling
Approaches

The design principles reviewed in this chapter are important to evaluate spe-
cific context system architectures presented in the next section. Ideally, specific
architectures should comply with reviewed design principles. Whatever informa-
tion is considered context in an application, it must be acquired, modeled and
processed, which will transform context into something useful [2, 23]. According
to Anagnostopoulos and his colleagues [2], a context system should implement a
set of functionalities, such as acquisition, aggregation (creating new meaningful
compound data structures integrating context information from different types
of sources), discovery (discovering the relevant sources of context), and context
search (discovering the relevant context information), among others.

The acquisition stage is normally associated with sensors. A great amount of
context information is acquired from sensors implemented in software or hardware.
Several approaches have been proposed that focus on the task of creating an



114 Chapter 5. Context-Awareness

interpretation of the acquired context information that makes sense for the specific
application. This interpretation process is usually guided by a context ontology
conceptually close to the application. An example of context acquisition might be
the reading “001A” from a given temperature sensor placed inside a pool. The
result of context interpretation, in this case, could be “pool water temperature in
Tom’s place = 26 C”.

From the reviewed approaches we have identified several important aspects to
be considered when developing context systems. First, we have to separate context
information acquisition from context information interpretation. This separation
allows context interpretation to be independent of sensor interface details. Context
information acquisition can be done by software or hardware sensors. Context
interpretation normally requires tools and ontologies defined in or used by the
context system.

Context acquisition is not limited to only capturing context information in
the moment in which it is required. Context acquisition also includes the storage
of acquired context information as well as its changes over time. The variation of
context information over time is usually called historic context information [19].

During acquisition, we should take into account the errors and delays intro-
duced by processing this information. A way to avoid these errors is to use data
fusion [16] (i.e., using information from several sensors to try to identify and cor-
rect possible errors). For instance, if we have time readings from several clocks,
errors pertaining the reading of one of the clocks may be overcome if we use the
readings of the other clocks.

Some of the acquired context information is static, while other kinds of con-
text information may change over time. Examples of static context information
are the time schedule of a given service or the nationality of a given user. Exam-
ples of dynamic context information are the user location, current time and date,
and current temperature. According to Henricksen et al. [19], context information
is considered static when it does not vary much over time. Static context may
be directly acquired from the user or a service and stored in a central repository.
Dynamic context information should be acquired by sensors and locally stored in
the sensors themselves.

The proposal of Cortese et al. [8] shows the complexity of managing a large
number of sensors. The proposed model assumes that the whole interaction with
the user is made through sensors. This implies that the used context model has
to be extensible so it can be applied to different situations with more, less, or
with different sensors. These authors define two methods to get information from
sensors - the methods push and pull. Using these methods, the sensors can be
both proactive, always sending information to the system, or passive, sending the
information only when a request is received.

Context interpretation should draw upon the definition of context ontologies.
Context ontologies allow representing context information following a structure
and a level of abstraction independent from context sensors and other used sources
of information. Any entity that receives context information represented according



5.3. General Design Principles and Context Modeling Approaches 115

to some specified context ontology can understand it, if it knows the ontology [15].
Context ontologies may be organized according to several aspects, such as used
devices, application, and location, among others. The way context is acquired
(from software and hardware sensors) also represents a context aspect [18].

The proposal of Anagnostopoulos [2] and his colleagues concerning context
modeling states that context should be represented by classes with associations.
These associations connect context elements and deal with both dynamic and
static context. Additionally, the context model should allow the definition of de-
pendencies between context elements. Christopoulou et al. [7] present a similar
type of association, the synapse. These associations represent preferences and
needs of the associated elements. According to this proposal, the context model
should be defined by an ontology with two levels. The first level defines the model
used to describe the context ontology. Following this very proposal, the first level
would include the definition of “context element”, and “synapse”. The second level
describes the context ontology using the model defined in the first level. Sticking to
the same example, the second level would be the particular context elements and
the particular synapses in a given application domain. The context information
models presented by Anagnostopoulos and his colleagues and by Christopoulou et
al. are very comprehensive models. Both synapses and dependencies are important
aspects to focus when identifying the context elements.

A context acquisition and management system should be presented to appli-
cations as an abstract (i.e., hardware independent) context capturing and storage
component ensuring the independence of the application with respect to the used
context acquisition sensors [20]. The context system core can be built of compo-
nents that implement its functionalities. Each sensor can also be built as a com-
ponent that implements an abstract interface. This allows using the advantages of
the component-based systemsparadigm such as modularity and the unification of
sensor access in a single nterface [14]. As an example of a sensor implementing an
abstract interface, we could think of a temperature sensor that extracts the read-
ing “001E” from the environment but converts this into “environment temperature
= 30 C” before making this information available to its clients.

The storage of context information in a system can be implemented by a cen-
tralized repository modeled following a given ontology. This repository allows the
centralized access to context by context information producers and consumers [31].
The context system can also be presented as a peripheralware in a service net-
work [26]. Generally, peripheralware consists of additional software layers placed
between the middleware and services, and between the middleware and the client.
Those layers perform tasks transparent to the services and to the clients. Using
peripheralware allows context-awareness in services that are not prepared to deal
with context. All the context information processing is done by the peripheralware
in a transparent way to the services and the clients.

Prekop and Burnett [25] define a context model centered on the user activity,
which is significant only when the activity takes place. This vision differs signif-
icantly from those previously mentioned because, in the previous ones, context



116 Chapter 5. Context-Awareness

Figure 5.1: Context System Architecture Levels

information relates to entities, while in this one, context information relates to
activities in which the entities participate. For instance, in previous mentioned
models, the price of a book is context information relating to the book, and the
available money to buy it is context information related to the client; in this model,
both are context information of the book buying activity. This model assumes the
context definition of Anagnostopoulos et al. [2], according to which, context is a
set of situations that describe people, applications and environment related with
a specific activity.

Several architectures were developed from the models described in this sec-
tion.

5.4 Context Dependency Architectures

Context systems architectures may have two levels: operational and informative
levels, as presented in Figure 5.1. The operational level comprises the system
modules such as sensors, mediators that convert sensor data into higher level in-
formation, intelligent agents that gather the system knowledge, and context-aware
applications (if a global perspective is adopted that views both the context sys-
tem and its clients as unique system). The informative level comprises the acquired
context information and knowledge. This knowledge can be represented in a sim-
ple data model, in an object-oriented model, or in an ontology model [2]. Context
information is acquired by sensor networks and further subject to processes that
convert it into higher level representations, usually following a context ontology,
which might be more abstract or more specific of the application that requires



5.4. Context Dependency Architectures 117

it. Sensors can be used simply as data acquisition mechanisms but they can also
be more sophisticated. Often sensors are coupled with adaptation mechanisms
that create context information representations independent of the specific type
of sensor. This is called sensor adaptation. Pure sensor architectures only have
the operational level, since the way context information should be presented is
not defined in sensor networks. However, if context adaptation performed by the
sensors is done according to a given ontology, the informative level will also be
present.

This section starts with sensor network architectures such as the Smart-
Its Architecture. These simple architectures are totally distributed context sys-
tems consisting of a network of sensors that exchange context information packets
among them. Each sensor may create new context information packets or add in-
formation to received packets. When completed, packets are sent to the context
clients that have requested them.

The Merino architecture represents a sophistication of pure sensor networks
because it has three kinds of sensors of different sophistication; and it includes a
centralized context repository, and a user model.

All of the other reviewed architectures use similar ontology-based context
modeling techniques for providing a sensor-independent abstract view of context
to their clients. Besides providing sensor abstraction, all other architectures have
a central repository for context information. Besides the instantaneous context,
often the context repository stores historic context information. In addition to
these common features, each of these reviewed architectures introduce specific
differences with respect to the others.

WASP, CoBrA, Context Taylor architectures as well as the one proposed by
Cortese and colleagues separate sensor information capturing from its processing.
In all of them, the lower level layer extracts context information from sensors.
Then, a higher level layer adapts the acquired information according to a defined
ontology. This abstract representation of the context information is then subject
to diverse kinds of information processing such as context fusion and inference,
which result in additional pieces of context. Acquired and generated context in-
formation is stored in a repository. WASP and CoBrA have a system manager
that has knowledge about all elements belonging to the architecture, manages
context information requests, acquires information from the repositories and the
context interpreters, and delivers it to context clients. CoBrA manager, denomi-
nated Context Broker, is a distributed agent that communicates with client agents,
using an agent communication language. Besides context fusion and inference, the
Context Broker also supports privacy by imposing access policies defined by each
client, using a declarative language. Context Taylor has learning mechanisms that
extract patterns from the context information. These patterns may be used in
future context information requests.

Often, context acquisition and management architectures support both con-
text information requests and context information subscription (push and pull).
Information request mechanisms allow context clients to acquire context infor-



118 Chapter 5. Context-Awareness

Figure 5.2: Merino Architecture

mation when needed (on demand); information subscription mechanisms allow
context clients to receive desired context information whenever it changes.

5.4.1 Smart-Its Architecture

The decentralized architecture proposed by Michachelles and Samulowitz [24] is
ideal for mobile environments and ad hoc networks. It stores the context infor-
mation acquired by sensors (Smart-its) in packets that are passed from sensor to
sensor. These packets are denominated sCAP (Smart Context-Aware Packets).
This architecture does not have a central control mechanism. Instead, sensors get
to know the information acquired by their neighbors through the context packets
they receive from them. A sensor only adds the context information to a packet it
receives if this information has some similarity with the context contained in the
packet. Each packet is organized in three parts: the acquisition plan, the probable
context, and the acquisition path. The acquisition plan is a plan based on an initial
model that is adapted each time the packet visits a sensor. The probable context
is the information retrieved from the sensors. The acquisition path represents the
list of sensors already visited. After visiting all the sensors specified in the acqui-
sition plan, the packets are directly sent to the user or system that has requested
them. The architecture proposed by Samulowitz et al. [28] also uses packets, in a
similarly way as the Smart-its architecture.

5.4.2 Merino Architecture

The Merino architecture presented by Kummerfeld et al. [22] integrates three
classes of sensors: normal sensors, intelligent sensors, and environment agents.
The architecture also has a context information repository and a user model (see
Figure 5.2). Sensors in higher layers produce higher level information, promoting
a more complex vision of context. Sensors in lower level layers are confined to
acquiring information from the environment. The repository stores the context
information acquired from the sensors. Agents retrieve context information from



5.4. Context Dependency Architectures 119

Figure 5.3: WASP Architecture

the repository and produce new context information. The user model, which is
controlled by an intelligent personal assistant, represents the needs of the user.

5.4.3 Architecture proposed by Cortese et al.

The architecture proposed by Cortese et al. [8] defines a logical model of architec-
ture with two layers. This division separates sensor information capturing from its
processing. In the lower layer, denominated sensors layer, the sensor information
is extracted. In the upper layer, denominated semantic layer, the acquired infor-
mation is adapted according to a defined ontology. The information is published
in a repository where fusion agents generate additional information with a higher
abstraction level.

5.4.4 WASP Architecture

The WASP architecture (Web Architectures for Service Platforms) [9] defines a
general development environment that supports the execution of mobile services
with context dependency (see Figure 5.3). The fundamental idea of this architec-
ture is to hide the complexity introduced by context acquisition and processing
from the context clients. This is done using interpretation modules that offer
context to applications. These modules gather context information and make it
available for the remaining platform. The platform includes repositories to support
the monitoring component, which has knowledge about all elements belonging to
the system. This monitoring component is responsible for the integration of WASP



120 Chapter 5. Context-Awareness

applications, for managing context information subscription requests, and for ac-
quiring information from the repositories and the context interpreters. Context
information is subscribed by the services registered in the platform, being fur-
ther processed in the context interpreter. Ontologies are used to model context,
enabling the architecture components to share knowledge among them. In order
to obtain more complex context, different context supplying entities must share
the same context representation. The presented architecture enables applications
to obtain context information in a transparent way. Context processing problems
are solved within the architecture. However, context information acquisition must
be handled by the services that provide that information. The idea of hiding the
context information processing complexity is an important feature of a context
system.

5.4.5 CoBrA Architecture

The CoBrA architecture (Context Broker Architecture) [6] is an agent-based archi-
tecture that supports context awareness in intelligent systems, such as the systems
that make up an intelligent house, or an intelligent vehicle (see Figure 5.4). This
architecture has a central element - the context broker - that supplies a general
picture of the context to the remaining agents. The context broker also supports
privacy by imposing access policies defined by each client agent. The architecture
incorporates the operational level in its design. The informative level is repre-
sented by the context information model. The CoBrA architecture requires the
definition of a collection of ontologies to model the context. The CoBrA architec-
ture provides a declarative language of policies that users and devices may use to
limit the access to protected information. CoBrA architecture uses OWL [32] as
ontology language. The context broker is an agent created to manage the shared
context model. It is associated to the smart space in which the system operates,
for example an intelligent house. This agent aggregates several other agents that
represent smaller parts of the space.

Using this decentralized approach, communication overhead problems related
with the access to a centralized mediator can be avoided. The context broker can
also infer context information that cannot be easily acquired by sensors, which can
be used to complete missing context elements. The context agent main function
is the acquisition of context information from several sources, the fusion of this
information in a coherent model and the subsequent sharing of this model with
other entities in the environment. This architecture is ideal to agent networks.
The use of an agent as a context broker enables CoBrA to communicate with
other agent architectures, using an agent communication language. The distributed
context broker results in a highly robust system, since the failure of one of the
mediators does not compromise the functioning of the remaining system parts.



5.4. Context Dependency Architectures 121

Figure 5.4: CoBrA Architecture

5.4.6 Context Taylor

This architecture proposed by Davis et al. [10, 11] is a component-based architec-
ture that has a context service that acquires data from a set of context generation
sources. The acquired context information is stored in a repository and made avail-
able to applications via an API. Learning mechanisms extract patterns from the
context information. These patterns may be used in future context information
requests. The components in the architecture include generation sources, a con-
text history repository, a learning engine, a context patterns repository, a context
patterns activator, and a server that coordinates the interaction between these
components. The context service works as a middleware repository that provides
context about specified entities. This service manages the connection with each
source of context, providing context information to applications. The structure of
this architecture is presented in Figure 5.5. The server registers the context re-
quests sent by context clients and stores all the provided context information in the
context repository service. Each context entry is composed of four fields: temporal
mark, user id, context type, and context state. The temporal mark allows selecting
context information pertaining to a specified time interval. The user identification
allows to store and access context information for different users. Each type of con-
text corresponds to a specific representation format. The context state contains
information about context of a certain type, which was observed in a certain mo-



122 Chapter 5. Context-Awareness

Figure 5.5: Context Taylor Architecture

ment. The learning mechanism applies learning algorithms to context information
in the repository to abstract context patterns. These patterns are then stored in
the patterns repository. Each pattern is composed of a condition, a pre-condition,
a likelihood level (a value between 0 and 1 that represents the probability that
the precondition predicts the condition) and a support. The conditions and pre-
conditions define sets of events, and each event represents an instance of context
attributes.

5.5 Summary

From the presented set of definitions, models and architectures, we conclude that
a definitive solution to deal with context still does not exist. None of the described
proposals addresses the whole context subject, only presenting solutions to some
of the several problems related with context.

Some context definitions are too restricted ruling out important aspects of
context. However most of them are too general failing to provide criteria for distin-
guishing context information from other kinds of information. We propose that a
suitable definition of context, in the scope of context-aware computing, must allow



5.5. Summary 123

domain and application dependent context information to be identified at design
time (since particular information would righteously be considered and treated as
context information in some applications but not in others); and most importantly,
it should provide a clear basis for distinguishing context information from other
kinds of information in terms of the way context information, but not other kinds
of information, is processed. That is, definitions must have something to say about
the way context information is processed in context-aware applications.

Work of more theoretical nature especially focused on context modeling and
on general principles regarding context acquisition and processing proposes that
context acquisition should be clearly separated from context interpretation. This
work also proposes that static context information should be directly acquired
from the user or other applications and may be stored in centralized repositories;
while dynamic context information should be acquired by sensors and should be
locally stored.

According to some authors, context representation, as specified by context
ontologies, should contain several dimensions, the most important of which are en-
tities, context elements, activities, and several kinds of associations between these
(e.g., dependencies and needs). Besides individual samples of context information,
it is also useful to keep historic context information.

Domain independence, improved interoperability, and the possibility to dy-
namically extend the context model (context ontology) are desirable properties
of the context representation framework. These goals can be achieved if context
ontologies have two levels: the first level describing the model that is used to repre-
sent the context ontology; and the second level representing the context ontology
using the representation model defined in the first level.

Context acquisition and management systems play an important role in
context-aware computation because they provide an abstraction of the context
acquisition and management processes, hiding low level domain and hardware de-
pendent details from context users and client applications. These systems should
also support the two main modes of information conveying - push and pull - allow-
ing context clients to passively receive context information whenever it changes or
to receive it only upon request.

Several context acquisition and management system architectures have been
proposed. These may be organized in two groups: the sensor network systems,
which are more focused on the context acquisition problem; and the complete
architectures, addressing both the context acquisition stage and the context pro-
cessing stage, which should be totally separate processes.

Each of the proposed architectures addresses specific aspects of context ac-
quisition and processing. For instance, sensor network architectures, such as the
Smart-its, are focused on context acquisition and representation. The Merino ar-
chitecture main innovation is the organization of sensors according to their level
of sophistication / intelligence. It also proposes to use a context repository. Other
proposals such as the WASP architecture emphasize the interaction with other
applications instead of the context acquisition process.



124 References

The described complete architectures focus on important aspects that should
be taken into account when designing a context system (e.g., independence of con-
text processing from context acquisition, fusion and inference over context infor-
mation, learning, and context delivery). The CoBrA architecture is more adequate
for agent networks, since it provides an agent-based interface with applications,
through context broker agents. The access to context information, by applications,
in the other architectures is ensured by APIs. Ideally, these APIs should be flexible
enough to allow adding several types of information and sensors, and to support
flexible types of context searching requests. Unfortunately this is not the case.

The described architectures propose different solutions to deal with specific
aspects of context-aware computing. However, none of them addresses the whole
array of relevant problems. A more complete context acquisition and management
system should be based on the integration of ideas put forth by the described
proposals. Most of the presented architectures store all context information in
central repositories which might not be a good idea, especially when there are
many different sources of context acquiring a huge amount of information, and
many client applications competing for system resources. A new proposal should
give more attention to the integration of the sensors layer, allowing the existence
and management of several types of sensors, with the context processing layer. The
acquired context information should be stored in a distributed fashion. Static con-
text information may be stored in centralized repositories; while dynamic context
information should be stored locally in the sensors.

None of the architectures can be dynamically extended with new sensors
of new classes of context information, in run-time. None of them supports the
dynamic addition of new ontology definitions in run-time either. This is also an
important feature of the context acquisition and management system developed
in the CASCOM architecture.

Finally, each of the described architectures provides only one type of interface
(e.g., agent-based, or API). Since context systems should be independent of their
client applications, it would be a good idea to implement at least the most common
types of interface.

References

[1] Ambient Networks Consortium. Ambient Networks. http://www.ambient-
networks.org, 2006.

[2] C. Anagnostopoulos, A. Tsounis and S. Hadjiefthymiades: Context Awareness
in Mobile Computing Environments: A Survey. Mobile e-conference, Informa-
tion Society Technologies, 2004.

[3] L. Capra, W. Emmerich and C. Mascolo: Reflective Middleware Solutions
for Context-Aware Applications. Proceedings of the Third international Con-



References 125

ference on Metalevel Architectures and Separation of Crosscutting Concerns
LNCS, Vol. 2192. Springer-Verlag, London, 126-133. 2001.

[4] L. Capra, W. Emmerich and C. Mascolo: CARISMA: Context-Aware Re-
flective mIddleware System for Mobile Applications. IEEE Transactions on
Software Engineering, vol. 29, no. 10, pp. 929-945, Oct., 2003.

[5] D. Chalmers and M. Sloman: QoS and Context Awareness for Mobile Com-
puting. Proceedings of the 1st international Symposium on Handheld and
Ubiquitous Computing, LNCS Vol. 1707. Springer-Verlag, London, 380-382.
1999.

[6] H. Chen, T. Finin and A. Joshi: An Intelligent Broker for Context-Aware
Systems. Adjunct Proceedings of Ubicomp 2003, Seattle, Washington, USA,
October 12-15, 2003.

[7] E. Christopoulou, C. Goumopoulos, I. Zaharakis and A. Kameas: An Ontology-
based Conceptual Model for Composing Context-Aware Applications. In Re-
search Academic Computer Technology Institute, 2004.

[8] G. Cortese M. Lunghi and F. Davide: Context-Awareness for Physical Service
Environments. Ambient Intelligence, IOS press, 2004.

[9] P. D. Costa, J. G. P. Filho and M. van Sinderen: Architectural Requirements
for Building Context-Aware Services Platforms. IFIP workshop on Next Gen-
eration Networks, Balatonfured, Hungary, 8-10 September, 2003.

[10] J. S. Davis, D. M. Sow, M. Blount and M. R. Ebling: Context tailor: Towards
a programming model for context-aware computing. Proceedings of the first
International Workshop on Middleware for Pervasive and Ad Hoc Computing
(MPAC)., pages 68-75, Rio De Janeiro, Brazil, 16-20 June, 2003.

[11] J. S. Davis, D. M. Sow and M. R. Ebling: Context-sensitive Invocation Using
the Context Tailor Infrastructure. System Support for Ubiquitous 94 Com-
puting Workshop at the Fifth Annual Conference on Ubiquitous Computing,
October 2003.

[12] A. K. Dey: Context-Aware Computing: The CyberDesk Project. AAAI 1998
Spring Symposium on Intelligent Environments, Technical Report SS-98-02,
pp 51-54, 1998.

[13] A. K. Dey and G. D. Abowd: Towards a better understanding of context
and context awareness. In GVU Technical Report GIT-GVU-99-22, College of
Computing, Georgia Institute of Technology, 1999.

[14] A. K. Dey, D. Salber and G. D. Abowd: A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications. Human
Computer Interaction, 2001.



126 References

[15] J. G. P. Filho and M. van Sinderen: Web Service architectures, semantics
and context-awareness issues in Web Services platforms. WASP/D3.3, 16-26,
2003.

[16] H. W. Gellersen, A. Schmidt and M. Beigl: Multi-sensor context-awareness
in mobile devices and smart artifacts. Mobile Networks Applications 7, 5,
341-351, October, 2002.

[17] R. Gold and C. Mascolo: Use of Context-Awareness in Mobile Peer-to-Peer
Networks. Proceedings of the 8th IEEE Workshop on Future Trends of Dis-
tributed Computing Systems. IEEE Computer Society, Washington, DC, 142,
2002.

[18] K. Goslar, S. Burchholz, A. Schill and H. Vogler: A Multidimensional ap-
proach to Context-Awareness. In Proceedings of the 7th World Multiconfer-
ence on Systemics, Cybernetics and Informatics (SCI2003), 2003.

[19] K. Henricksen, J. Indulska and A. Rakotonirainy: Modeling Context Infor-
mation in Pervasive Computing Systems. In Pervasive ’02: Proceedings of the
First International Conference on Pervasive Computing, pp. 167-180, 2002.

[20] J. I. Hong and J. A. Landay: An Infrastructure Approach to Context-Aware
Computing. Human-Computer Interaction, 16:287-303, 2001.

[21] P. Korpipää and J. Mäntyjärvi: An Ontology for Mobile Device Sensor-Based
Context Awareness. Fourth International and Interdisciplinary Conference on
Modeling and Using Context (CONTEXT 2003): 451-458. Stanford, California
(USA), June 23-25, 2003.

[22] B. Kummerfeld, A. Quigley, C. Johnson and R. Hexel: Merino:Towards an
intelligent environment architecture for multigranularity context description.
User Modeling for Ubiquitous Computing, 2003.

[23] H. Laamanen and H. Helin: Contex-Awareness, Overview and State-of-Art.
CASCOM project Technical Report, TeliaSonera, 2004.

[24] F. Michahelles and M. Samulowitz: Smart CAPs for Smart Its Context
Detection for Mobile Users. Personal Ubiquitous Computing 6, 4, 269-275.
January, 2002.

[25] P. Preko and M. Burnett: Activities, context and ubiquitous computing.
Elsevier Science PII: S0140-3664(02)00251-7, 2002.

[26] M. Ritchie: Pre and Post Processing for Service Based Context-Awareness.
Technical Report Equator-02-023, University of Glasgow / Department of
Computing Science, 2002.

[27] H. K. Rubinsztejn, M. Endler, V. Sacramento, K. Gonalves and F. Nasci-
mento: Support for Contex-Aware Collaboration. Mobility Aware Technologies
and Applications, LNCS 3284, pp. 37-47, 2004.



References 127

[28] M. Samulowitz, F. Michahelles and C. Linnhoff-Popien: Adaptive interaction
for enabling pervasive services. Proceedings of the 2nd ACM international
Workshop on Data Engineering For Wireless and Mobile Access (Santa Bar-
bara, California, United States). S. Banerjee, Ed. MobiDe ’01. ACM Press,
New York, NY, 20-26. 2001.

[29] B. Schilit and M. Theimer: Disseminating Active Map Information to Mobile
Hosts. IEEE Network, 8(5):22-32, 1994.

[30] A. Schmidt, M. Beigl and H. W. Gellersen: There is more to Context than Lo-
cation. Proceedings of the International Workshop on Interactive Applications
of Mobile Computing (IMC98), Rostock, Germany, November 1998.

[31] T. Winograd: Arquitectures for Context. HI Journal, 2001.

[32] World Wide Web Consortium. OWL-S 1.0 Release.
http://www.daml.org/services/owl-s/1.0, 2005.

[33] S. S. Yau and F. Karim: Reconfigurable Context-Sensitive Middleware for
ADS Applications in Mobile Ad Hoc Network Environments. In Proceedings
of the Fifth international Symposium on Autonomous Decentralized Systems.
ISADS. IEEE Computer Society, Washington, DC, 319. March, 2001.



128 References


