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Abstract

Motivation: The transition from evaluating a single time point to examining the entire dynamic evolution of a
system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes
the definition of an explanatory procedure for data fitting and clustering challenging.

Results: We developed CONNECTOR, a data-driven framework able to analyze and inspect longitudinal data in a
straightforward and revealing way. When used to analyze tumor growth kinetics over time in 1599 patient-derived
xenograft growth curves from ovarian and colorectal cancers, CONNECTOR allowed the aggregation of time-series
data through an unsupervised approach in informative clusters. We give a new perspective of mechanism interpret-
ation, specifically, we define novel model aggregations and we identify unanticipated molecular associations with
response to clinically approved therapies.

Availability and implementation: CONNECTOR is freely available under GNU GPL license at https://gbioturin.github.
io/connector and https://doi.org/10.17504/protocols.io.8epv56e74g1b/v1.

1 Introduction mechanistic models, in which all relations are specified (Kendall

In the biological and medical fields, longitudinal data are valuable et al. 1999). The statistical approach makes few assumptions and

to explore the evolution of a given event and are expected to have
higher predictive power than cross-sectional studies, in which varia-
bles are collected at a single time point across a sample population.
The investigation of the evolution of a system delivers useful insights
into (i) how the measurements change over time within samples; (ii)
the time span of relevant events; and (iii) how time evolution is asso-
ciated with clinical surveillance.

Longitudinal data come in many forms. However, their main
characteristic is that they consist of portions of functions or curves,
with quantities observed as they evolve through time. In regard to
the modeling of temporal data, the state of the art of mathematical
methodologies can be classified into two types of approaches: statis-
tical models, in which no biological mechanisms are specified, and
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provides no information about the underlying mechanisms of the
system under study. Conversely, mechanistic models are more suited
to yield biologically aware knowledge since they are based on a the-
oretical framework imposed by the modelers. In this context, we
propose a workflow based on statistical methods for Functional
Data Analysis (FDA; Ramsay and Silverman 2005; Ferraty and Vieu
2006). The fundamental aims of FDA are those of classical statistics
for simple points in a general but finite dimension. However, the
classical methods developed for finite dimension and independent
observations cannot be directly applied to functions or curves.
Indeed, being functional data, the sampled variables are strongly
correlated and the problem becomes ill-conditioned in the context
of multivariate linear models. By analyzing data that vary over time,
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FDA statistics provide the analytical ground to interpret longitudin-
al data.

Here, we present CONNECTOR, a data-driven and flexible
framework to analyze and inspect longitudinal data through FDA,
with the aim of offering a new perspective of mechanism interpret-
ation. CONNECTOR provides several graphical visualizations,
which support users throughout all the analytical steps and required
parameter optimizations. CONNECTOR is able to fit and cluster
temporal data with great flexibility and with an accuracy that high-
lights differences in the dynamics. To the best of our knowledge, no
other available tools support users without advanced expertise in
the statistical analysis of complex temporal data in such an inform-
ative and interpretative manner as our proposed software.

To illustrate the effectiveness of CONNECTOR, we leveraged
cancer growth data. The collection of cancer growth data from pre-
clinical models to investigate the mechanisms underlying cancer pro-
gression and to identify effective treatments for specific patients’
subsets has steadily increased in the last years. These data are
retrieved from different types of biological material, i.e. cancer cell
lines (Sharma et al. 2010), patient-derived xenografts (PDXs), and
organoids (Hidalgo et al. 2014; Rizzo et al. 2021). In particular,
PDXs are used to monitor tumor growth kinetics by evaluating the
average percentages of tumor volume variations, and hence they rely
on the repetition of measurements that are presumed independent.
The analysis of these data is commonly limited to the analysis of
variance or to cross-sectional evaluations using t-tests focused at a
single time point, which investigate the punctual time effect among
all study arms and lose longitudinal correlation. In some cases, a cat-
egorical system in which the average percentages are classified into
clinical categories is implemented. Among the common approaches
to statistically analyze tumor growth datasets, in Oberg et al.
(2021), a linear mixed effects regression model was used to fit and
compare the tumor area, after natural logarithm transformation.
From a mechanistic perspective, a broad variety of mechanistic mod-
els can be used to fit growth data (Benzekry et al. 2014; Sarapata
and De Pillis 2014; Kareva and Karev 2018). All these approaches
do not consider data as a timeline of cancer progression but as inde-
pendent points revolving around a knowledge-based reduction of
the system’s convolution. The FDA-based methods from which
CONNECTOR stems overcome this limitation.

We employed CONNECTOR to inspect the evolution of more
than 1500 growth curves of PDXs derived from metastatic colorec-
tal cancer (mCRC) and treated with the clinically approved anti-
EGFR monoclonal antibody cetuximab. The clusters generated by
CONNECTOR allow the identification of a subset of cetuximab-
resistant tumors associated with previously unrecognized molecular
and phenotypic features.

Nevertheless, we also report an extensive comparison of
CONNECTOR versus classical growth models (Benzekry et al.
2014) and other functional clustering methods (Jacques and Preda
2014). Moreover, we distribute a Docker image to guarantee full re-
producibility of the presented analyses and for ease of use.

2 Materials and methods

2.1 The CONNECTOR framework
CONNECTOR s a tool for the unsupervised analysis of longitudinal
data, it can process any sample consisting of measurements
collected sequentially over time. CONNECTOR is built on the
model-based approach for clustering functional data presented in
James and Sugar (2003), which is particularly effective when observa-
tions are sparse and irregularly spaced, as growth curves usually are.

Hereafter, an overview of the software is illustrated (Fig. 1),
while the full description is reported in the Section 2. Any collection
of observations recorded at several different time points, describing
a system evolution, is accepted as a longitudinal dataset. These data,
together with the description of each sample through a set of rele-
vant features, are the input datasets of CONNECTOR.

The CONNECTOR framework is based on the following steps:
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Figure 1. The framework pipeline of the CONNECTOR package. The four main
stages of data processing are illustrated. The input data are the sampled curves,
associated with annotation features. Data are pre-processed and curves are plotted.
The heatmap of the full time grid is also provided. The model selection is supported
with the cross-validated log-likelihoods and the positions of the knots for the choice
of the dimension of the spline basis, and with violin plots for fDB (see Equation (5))
and the total tightness (see Equation (4)). Stability matrices are reported for the
choice of the number of clusters. The output of the process is illustrated with the
plots of the clustered curves.

* The ‘pre-processing step’ consists of the visualization of the lon-
gitudinal data with a line plot and a heat map of the time points
distribution to help in the inspection of the sparsity of the time
points.

* The sampled curves are processed by CONNECTOR with a
functional clustering algorithm based on a mixed-effect model.
This step requires a ‘model selection phase’, in which several
measures are computed to help the user properly set the two free
parameters of the model: (i) the dimension of the spline basis vec-
tor, determined by the ‘cross-log-likelihood’ and the *knots distri-
bution’; (ii) the number of clusters, determined by the ‘total
tightness’, the ‘functional Davies-Bouldin (fDB) index’ jointly
with the stability matrices.

* As ‘output’, the data dynamics are plotted in CONNECTOR
clusters. The discriminant plot offers a visualization of the sam-
ple separation in the CONNECTOR clusters, projected on a
plane. The discriminant function plot shows the discriminant
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CONNECTOR

power of each time point. The estimated curve, the confidence
intervals, and the observations are reported for each sample.

2.2 Theoretical background

2.2.1 Functional clustering model

The functional clustering method implemented in CONNECTOR is
based on the functional clustering model presented in James and
Sugar (2003). Let us denote as g;(¢) the curve of the ith selected indi-
vidual. In practice, we observe g;(¢) with measurement errors and
only at few discrete time points. Let Y, be the vector of observed val-
ues of g;(2) at times #;;,...., #;, . Then we have

Yi =g+,

where g; and &; are the vector of true values and measurement errors
at time grid, respectively. As there are only finite numbers of obser-
vations, individual curves are modeled using basis functions, in par-
ticular cubic splines. Let

&i(t) =s(t)n;, (1)

where s(#) is a p—dimensional spline basis vector and #; is a vector
of spline coefficients. The n,’s are treated with a random-effects
model. In particular, the spline coefficients are modeled using a
Gaussian distribution,

n=u, +vi, v~N(QOI),

where z; denotes the unknown cluster membership. Let G
denote the true number of clusters. Cluster means are furthermore
rewritten as

w, = Ao + Ay,

where 49 and o, are p— and h— dimensional vectors, A is a (p, )
matrix and » < min(p, G — 1). Thus, b represents the dimension of
the mean space, allowing a further lower-dimensional representation
of the curves with means in a restricted subspace (for b < G —1).

With this formulation, the functional clustering model can be
written as

Y,':Si-(lo+[\azl+’}’i)+8i, i=1,...,n,

&~ N(O,R), 3, ~N(0,T), @

where S; = (s(#;,),...,s(s;, )T is the spline basis matrix for the i—th
curve. There are many poésible forms for R and I'. For now, we use
R = ¢%I and a common T for all clusters, as we are interested in
sparse datasets, for which the smallest number of parameters is
advisable.

2.2.2 Model selection
Two free parameters have to be properly chosen before fitting: the
dimension of the spline basis p and the number of clusters to fit G.

The dimension of the spline basis can be chosen as the one corre-
sponding to the largest cross-validated likelihood, as proposed in
James (2000). CONNECTOR uses a 10-fold cross-validation, which
involves splitting data into 10 roughly equal-sized parts, fitting the
model to 9 parts and calculating the log-likelihood on the excluded
part. Repeat 10 times and combine log-likelihoods. Notice that, the
resulting plot of the mean tested likelihoods versus the dimension of
the basis, should be treated as a guide rather than an absolute rule,
keeping in mind that working with sparse data pushes to spare
parameters. Moreover, as the position of the knots depends on their
number, CONNECTOR returns a plot with this information as the
parameter p varies.

The number of clusters G must be chosen. CONNECTOR pro-
vides two different plots to properly guide in one of the most diffi-
cult problems in cluster analysis. As in the finite-dimensional case,
where data are points in place of curves, we need some proximity
measures to validate and compare the results of a clustering
procedure.

We chose to follow Ferraty and Vieu (2006) and rely on the par-
ameterized family of semi-metrics between curves defined as

Dy(f.g) = \/J f@(s) —g@(s)P’ds, q=0,1,2, (3)

where f and g are two curves and @ and gl@ are their gth deriva-
tives. Note that for ¢ =0, Equation (3) is the distance induced by the
classical L*—norm. It turns out that D, can be reliably calculated in
our setting where we are interested in proximity measures between
each curve in a cluster and the center-curve of the cluster (tightness
of the cluster), as well as proximity measures between each center-
curve and the center-curves of different clusters (separateness of
clusters). Hence, we may have f being the estimated ith curve and g
being the estimated mean curve of cluster k, or f and g being both
mean curves. In any case, D, can be calculated by taking advantage
of the spline representation of the estimated curves and mean curves,
see Equation (1). Indeed, the computation of successive derivatives,
which is numerically sensitive, can be performed by differentiating
their analytic form. Finally, the integral can be computed by numer-
ical method. As the proper calculation of D, is a basic condition for
the tools shown below, all details are illustrated in Supplementary
Material S1.

We define a first quantity to infer the appropriateness of the data
partition, which we call total tightness. It is the dispersion measure
given by

G n
T =
k=

> Do(&:,2"), (4)
i=1

1

where g, is the estimated i~th curve given in Equation (S4) and g* is
the center of k-th cluster given in Equation (S3), see Supplementary
Material S2. As the number of clusters increases, the total tightness
decreases to zero, the value which is attained when the number of
fitted clusters equals the number of sampled curves. In this limiting
case, any k-th cluster mean curve coincides with an estimated curve
and Dy(g;,g*) = 0 for any i and k. A proper number of clusters can
be inferred as being large enough to let the total tightness drop
down to relatively little values but small enough so that the total
tightness does not decrease substantially. Hence, we look for the lo-
cation of an “elbow” in the plot of the total tightness against the
number of clusters.

We define a second index, which is a cluster separation measure.
Following Davies and Bouldin (1979), we extend the well-known
Davies-Bouldin (DB) index to the functional setting. Let us call the
new index fDB. It is defined as follows

18 {sk, + sk}
fDB, = = ) max
a G ; k'#k My

where for each cluster k and &’

(5)

and Mk’k :Dq(gk/7§k)7

with G the number of curves in the k-th cluster. The significance of
Equation (5) remains unchanged with respect to the finite-
dimensional case. It is the average of the similarity measures of each
cluster with its most similar cluster. The “best” choice of clusters
will be that which minimizes this average similarity. It should be
noted that My, is the distance between centroids (mean-curves) of
k’-th and k-th cluster. It serves to weight the sum Sy + Sy, which is
the total standard deviation of the clusters: k’-th and k-th clusters
dispersion is measured compared to their relative distance.
CONNECTOR returns the violin plots of both the total tight-
ness and the fDB index for a given repetition of runs and for differ-
ent choices of the number of clusters G. To support this decision,
CONNECTOR also returns the consensus matrix for the most fre-
quent clustering at each given number of clusters. The plot informs
about the stability of the final clustering across different runs.
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Indeed, each cell of the matrix is colored proportionally to the fre-
quency of the two corresponding curves belonging to the same clus-
ter across different runs. Hence, the larger the frequencies (which
correspond to warmer colors of the cells in the plot), the more stable
is the final clustering. Motivated by its meaning, we refer to such a
matrix as the stability matrix. The observation of the fDB violin
plots, the total tightness violin plots together with the stability ma-
trix allows the user to properly set the free parameter G, which rep-
resents the number of clusters to be fitted. Notice that the functional
clustering method allows for a lower dimensional representation of
the curves through the parameter 4. This reduction is often needed
as data could not be enough to estimate a large number of parame-
ters of the functional clustering model. CONNECTOR optimizes
the choice of the parameter h by returning the largest value for
which the estimation of the parameters is successful with a reason-
able frequency set by the user. Hence, the value of / is not chosen
directly but returned by CONNECTOR.

2.2.3 Functional clustering tools

Three tools to analyze the clustering are presented: the discriminant
plot, the discriminant function, and the estimation of the entire
curve for each single subject.

The ‘discriminant plot’ is a low-dimensional plot of the curves
dataset. It helps to visualize the clusters, as each curve is projected in
a low-dimensional space so that it can be plotted as points. In par-
ticular, each curve is represented by its projection onto the h-dimen-
sional space spanned by the means p,.

The ‘discriminant functions’ are plots of the weights ATSTEZ !,
versus time, to apply to each dimension for determining cluster
membership. The term SA is a measure of average separation be-
tween clusters and X is a measure of their variability. There will be »
discriminant functions and each curve shows the times with higher
discriminatory power, which are the times corresponding to largest
absolute (positive or negative) values on the y-axis. The functional
clustering procedure predicts unobserved portions of the true curves
for each subject. The ‘estimated curves’ are returned by
CONNECTOR and plotted with confidence intervals as well.
Supplementary Material S3 is reported an exhaustive review on the
performance of different procedures with respect to the results

obtained by CONNECTOR.

2.3 Details on the computational methods and further

experiments

In Supplementary Material S1, a complete overview of the
CONNECTOR framework can be found, as well as the computa-
tional details, see Supplementary Material S5 and S6. An evaluation
of CONNECTOR performances is reported in Supplementary
Material S7 and a comparison with different functional clustering
method is presented in Supplementary Material S8. All methods and
materials referred to validating xenograft experiments are included
in Supplementary Materials S2.

3 Results

3.1 Application of CONNECTOR to PDX curves of

metastatic colorectal cancer

To show the full potential of CONNECTOR in a complex use case,
we analyzed a large dataset of tumor growth curves of PDXs from
mice treated with cetuximab, an anti-EGFR antibody that is
approved for clinical use in patients with RAS/RAF wild-type
mCRC. Results from these xenotrials were obtained from a continu-
ously expanding collection of ~400 mCRC PDXs, part of which
had been used in previous studies (Bertotti et al. 2011, 2015;
Zanella et al. 2015; Isella et al. 2017; Lupo et al. 2020). Tumor vol-
umes were measured weekly after tumor implantation and over the
course of treatment. In previous projects, we categorized PDX re-
sponse to cetuximab based on parameters that are loosely inspired
by the RECIST clinical criteria (Bertotti et al. 2011; Ko et al. 2021).
This classification includes three classes, based on the average tumor

volume variation at the endpoint compared with tumor volume at
baseline (the day before treatment initiation): partial responses (PR)
are defined as tumors that regress by 50% or more during treatment;
progressive diseases (PD) are defined as tumors that increase their
volume by 35% or more, despite treatment; tumor volume changes
above PR or below PD thresholds are defined as stable diseases
(SD). To allow a direct comparison of CONNECTOR’s clustering
results with our historical annotation, we decided to analyze, for
each tumor, the available measurements between the day before
treatment initiation and the following 3 weeks. The selected dataset
was extracted from the laboratory LIMS (Baralis et al. 2012) and
comprises measurements from 1563 individual mice, collected from
2012 to 2020 and representing 173 original engraftments from par-
ental tumors in patients.

The PDX curves were analyzed by CONNECTOR to achieve a
widespread overview of the distribution of the individual parental
tumor after drug administration. When running CONNECTOR,
based on the results from the model selection phase, the optimal
value of the base spline was 4. To perform a thorough analysis, we
evaluated fDB and tightness for a broad range of cluster numbers,
starting with three, which corresponds to the number of clinical re-
sponse classes. We chose to compare the results obtained with 3, 4,
and 5 clusters, as the fDB index worsened for larger values, see
Supplementary Fig. STA.

We studied how the PDX growth curves are distributed ‘intra-
parameter setting’, among the number of CONNECTOR tumor
growth classes (CTGCs) selected for each run, and ‘inter-parameter
setting’, exploring how the curves move among the CTGCs along
the three runs (Fig. 2A). We observed that by increasing the number
of CTGCs, the curves that were separated were mainly those charac-
terized by a sudden volume increase. Based on such analysis, the
dataset was optimally described by three primary classes, namely
CTGC-A, -B, and -C, leading to an average stability matrix of 1. We
then assessed whether a higher resolution could be achieved by seg-
regating the larger CTGCs into subclasses. We thus processed again,
as independent datasets, the CTGCs composed by >200 curves
(namely CTGC-A and -B, see Supplementary Fig. S1B and C, re-
spectively). Through this, we obtained a final number of 9
CTGCs—where CTGC-A and B are further split into Aa, Ab, Ac,
Ad, Ae, and Ba, Bb, and Bc—which are represented in Fig. 2B. See
Supplementary Material S3 for a detailed description of this step of
the analysis.

We assigned each parental tumor to a specific CTGC by means
of a Naive Bayesian classifier, using the membership probabilities
returned by CONNECTOR for each PDX curve. By calculating the
Shannon index, representing the consistency of such assignment of
the parental tumor to a CTGC from the CTGCs of the PDX curves,
we observed that in most cases there is high agreement (mean-
=1.54, s.d. =0.52). For the sake of clarity, an additional graphical
visualization, based on the t-distributed stochastic neighbor embed-
ding (t-SNE) is proposed (Fig. 2C). Observing the scatter plot, it is
appreciable that distinctly isolated CTGCs, by focusing on the color
and the size of the dots, suggest their coherence. See Supplementary
Material S4 for the computational details.

3.2 CONNECTOR clusters reveal a subgroup of non-
responder tumors that express high levels of stratified

epithelium keratins

Different CTGCs were evaluated with respect to our three-class
cetuximab response annotation and the molecular characteristics of
the classified tumors (Fig. 3A).

As expected, CTGCs were associated with RECIST-like response
classes. Indeed, PR tumors were enriched in CTGC-Aa (Fisher
P-value 2.4 x 107'3), and SD tumors were enriched in CTGC-Ab
(Fisher p-value 8.0 x 107%). Notably, CONNECTOR segregated
PD tumors in multiple clusters (p values: CTGC-Ac 5.5 x 1072
CTGC-Ba 1.9 x 104 CTGC-Bb 7.5 x 10~%; CTGC-Bc 1.7 x 107 ;
CTGC-C 4.6 x 107%), indicating that CONNECTOR can distin-
guish different growth patterns within the PD standard response
category.
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Figure 2. CONNECTOR results. (A) CONNECTOR tumor growth classes (CTGCs) for three, four, and five clusters. The circos plots show the repositioning of the curves as
the number of CTGCs changes. (B) CONNECTOR tumor growth classes with 2-fold clustering. The nine boxes result from a first run with a number of clusters equal to three
followed by second runs on the CTGC-A (with five sub-classes) and on the CTGC-B (with three sub-classes). To make more appreciable the differences among the clusters the
y-axis reaches the maximum value of 2500 mm®. (C) t-SNE visualization of the CTGCs induced on the parental tumors. Each dot corresponds to a parental tumor. The color
of the dots matches the color of the assigned CTGC, see Panel B. The dimension of the dots is inversely proportional to the Shannon Index calculated on the distribution of the

curves of the same parental tumor across CTGCs (large dots—small entropy).

Each CTGC is associated with the transcriptional subtypes iden-
tified by a PDX-based cancer cell-intrinsic (CRIS) classifier (Isella
et al. 2017). In detail, the classification is based on the expression
levels of different sets of subtype-specific genes via the nearest tem-
plate prediction algorithm (Hoshida 2010). This association showed
interactions  between the growth patterns detected by
CONNECTOR and specific biological traits.

In line with the observation that cetuximab-responsive tumors
are enriched in the CRIS-C subtype (Isella et al. 2017), CRIS-C
tumors were associated with the CTGC-Aa cluster. However, the
enrichment of CRIS-C tumors within CTGC-Aa (Odds Ratio CRIS
C/Aa 4.63) was stronger than that observed when considering all
responders (Odds Ratio CRIS-C/PR 3.38). This suggests that
CONNECTOR is able to recognize the specific subset of responders
sustained by the CRIS-C phenotype.

The finding that CTGCs accurately captured specific molecular
features prompted us to investigate whether the diversification of
cetuximab-resistant cases in multiple CTGCs could relate to

different biological substrates of resistance. Even if, as expected, all
variants known to cause resistance to cetuximab in CRC (Bertotti
et al. 2015) were depleted from CTGC-Aa (Fisher P value
1.3 x 1072) and, albeit to a non-significant extent, from CTGC-Ab
(Fisher P value 0.22), we did not observe an enrichment for specific
resistance mutations in any of the PD-associated CTGCs, suggesting
that the tumor growth patterns recognized by CONNECTOR in
non-responders were not driven by specific resistance genotypes.

To further explore the functional characteristics of the different
PD-enriched CTGCs, we mined a set of RNA-seq data that was gen-
erated in the context of an independent study performed on the
same cohort (Perron et al. in preparation). Analysis of differentially
expressed genes (DEGs) between all PD-enriched CTGCs and
CTGC-Aa, used as a common reference, uncovered a very specific
Gene Ontology (GO) enrichment related to stratified epithelial
differentiation and keratinization, which was guided by keratin-
encoding genes significantly upregulated in CTGC-Ba and CTGC-
Bb, but not in CTGC-Ac (Fig. 3B; Supplementary Table S1;
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Figure 3. CONNECTOR clusters molecular annotation and transcriptomic analyses. (A) Molecular and phenotypic characterization of the CONNECTOR clustered mCRC
xenografts: each sample was annotated according to CRIS subtype, response to cetuximab and somatic alteration known to determine cetuximab resistance or sensitivity. (B)
Differential expression of genes in the “keratinization” GO in CTGCs: volcano plot showing the magnitude of expression differential (x-axis, Log2 FoldChange) and signifi-
cance (y-axis, —Log10 adjusted P value) of “keratinization” genes when comparing CTGCs enriched in PD versus Aa. Only comparisons involving CTGCs enriched in PD
with at least nine total samples are reported for clarity. The top five upregulated genes in Bb are labeled (SPRR a family of proteins induced during the differentiation of kerati-
nocytes). (C) HOPX expression in keratin-high and keratin-low samples: the y-axis shows DESeq2 corrected counts. (D) Survival analysis of TCGA COAD-READ (colon and
rectum adenocarcinoma) patients stratified by HOPX expression levels: survival time is in months, 134 (high) and 237 (low) patients. Log-rank P-value 8.6 x 1073,

Supplementary Fig. S2E-F). This was not simply driven by the en-
richment of non-responder tumors in CTGC-Ba and CTGC-Bb.
Indeed, the same functional enrichments for CTGC-Ba and CTGC-
Bb tumors versus CTGC-Ac tumors were observed also when limit-
ing the analysis to PD tumors only (see Supplementary Table S2 and
Supplementary Fig. S2A-C). Hence, CTGC unveiled two distinct
phenotypes associated with cetuximab resistance, one of which is
characterized by markers of keratinized stratified epithelia.

To validate this observation, we stratified the full cohort of
cetuximab-resistant PDXs for which RNAseq data were available
(n=140) based on the expression of genes that were robustly upre-
gulated in CTGC-Ba or CTGC-Bb and associated to
“keratinization” according to GO annotations (details in
Supplementary Material S3) and we identified 42 keratin-high sam-
ples and 15 keratin-low samples. H&E sections of four keratin-low
and four keratin-high PDXs were subjected to blinded histopatho-
logical evaluation, which confirmed the existence of two clearly dis-
tinct subpopulations (see Supplementary Fig. S3). The first included
tumors displaying histological features that resembled the glandular
organization typical of the large intestine. Tumors belonging to the
second group were less differentiated, with round or columnar pleo-
morphic cells that formed solid fields and rare luminal spaces.
Intriguingly, in three out of four tumors of the latter group, we
observed a variable degree of squamous differentiation. Indeed, after
unblinding, three of the selected keratin-high tumors were found to
belong to the second group, confirming that CTGC-B gene expres-
sion traits were likely associated with the acquisition of histological
traits typical of squamous epithelia.

DEG analyses comparing keratin-high and keratin-low tumors
confirmed the GO enrichments previously observed in CTGC-B
tumors (see Supplementary Table S3 and Supplementary Fig. S4).
Furthermore, novel associations to terms related to cell motility,
wound healing, and angiogenesis emerged. This may indicate that
the keratin-high subset is endowed with more aggressive and inva-
sive properties with respect to keratin-low tumors. Interestingly, we
found a robust enrichment for CRIS-B (fisher P value 2.09 x 107%)
among keratin-high tumors. CRIS-B was previously reported as an
aggressive transcriptional subtype associated with poor prognosis

(Isella et al. 2017) and undefined etiology. Our data may indicate
that the CRIS-B phenotype is sustained by an aberrant differenti-
ation pattern toward epithelial cornification.

The keratinocytic transdifferentiation of CTGC-B tumors may
be driven by the activation of a stemness-related pathway sustained
by the transcription factor HOPX, which is indeed upregulated in
our keratin-high subgroup (Log-fold change 3.1, adjusted P value
4.23 x 107°, Fig. 3C). Although the role of HOPX in CRC is con-
troversial (Yamashita et al. 2013; Dmitrieva-Posocco et al. 2022),
the assumption that its activation could contribute to the progres-
sion of a subset of aggressive tumors is in agreement with the obser-
vation that high expression of HOPX is significantly associated with
bad prognosis in CRC (overall survival Log Rank P value 8.6 x
1073 in the TCGA colorectal cohort (Fig. 3D; Liu and Zhang 2020).

4 Discussion

The main goal of this study was to develop a tool for the exploration
of longitudinal data with an unsupervised approach. Hence, we
worked on a tool to aggregate curves into classes, which can suggest
directions and hypotheses for the in-depth examination of different
datasets.

We reviewed the current literature on FDA and chose to build
CONNECTOR based on the functional clustering method proposed
by James and Sugar (2003). Indeed, depending on the sampling
strategy (high frequency or sparse, regular, or irregular), different
methods have been proven efficient for the clustering task. We were
interested in curves that are observed at sparse and irregular times,
as it usually occurs when data collection is laborious and time limits
are constrained by ethical protocols. On these premises, and consid-
ering the results illustrated in Jacques and Preda (2014), we com-
pared the best reported methods on sparse and irregularly sampled
curves. The tests indicated that James and Sugar (2003) was the best
performing method. The method has been studied to solve the main
problems that arise when clustering sparse and irregularly sampled
functional data: large numbers of missing observations on the dis-
cretized time grid (sparsity) and different covariances of the
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coefficients (curves are measured at different time points). Indeed,
the method uses basis functions to project each curve onto a finite-
dimensional space and considers a random-effect model for the coef-
ficients. This allows to take advantage of all the sampled curves.
The model is extremely flexible and computes estimates, confidence
intervals, and prediction intervals for individual curves.

The performances of the functional clustering model are strongly
dependent on the choice of several free parameters. CONNECTOR
includes a toolset to choose each free parameter appropriately. With
this aim, two new indexes have been introduced—fDB index and
total tightness. The two indexes, together with the cross-log-
likelihood plot, the visualization of the positions of the time knots
and the stability matrix of the final clustering, provide the user with
all the information needed to choose suitable values of the free
parameter.

Oberg et al. (2021) have recently proposed a linear mixed-effects
regression model for the analysis of PDX data obtained for repeated
measurements. The model was able to fit different treatment designs
and randomization schemes. However, their model is limited in the
prediction of the trajectories since only monomials up to cubic de-
gree are considered to describe time dependency, after log trans-
formation. Conversely, the core of the CONNECTOR package is a
general mixed-effects model, where both fixed-effects term and
random-effects term are considered on a cubic spline basis, which
makes the model as flexible as needed.

The versatility of CONNECTOR was also assessed by analyzing
the spontaneous growth patterns of 21 PDX lines propagated from a
single chemotherapy-naive high-grade serous epithelial ovarian can-
cer tumor sample. We observed uneven growth rates in PDX lines
derived from the same original tumor. This is consistent with the no-
tion that ovarian cancers show a high degree of intratumor hetero-
geneity. These results are reported in the Supplementary Material.

CONNECTOR allowed us to perform an in-depth study of the
growth dynamics of a vast cohort of mCRC PDXs treated with
cetuximab, with validation and discovery aspects. First, the reliabil-
ity of the unsupervised and data-driven identification of CTGCs is
supported by the observation that clusters were properly enriched in
the three classes by which cetuximab response was previously anno-
tated. Moreover, our analysis adds new insights into how
cetuximab-resistant tumors can be stratified according to their mo-
lecular diversification. Specifically, CTGC-based categorization
allowed us to identify a subset of cetuximab-resistant tumors
(CTGC-B) with transcriptional and morphological features of meta-
plastic differentiation toward cornified epithelia (keratin-high
tumors). CTGC-B tumors were also enriched for the CRIS-B tran-
scriptional subtype, which was reported as a poor-prognosis tumor
subgroup, composed of highly invasive tumors that are resistant to
currently available therapeutic options (Isella et al. 2017).

Through CONNECTOR, we identified a previously unnoticed
characteristic of such tumors, which may—at least partially—ex-
plain their aggressiveness and, at the same time, their keratinized
phenotype. A literature search suggested the transcription factor
HOPX as a potential regulator of the transdifferentiation process
experienced by the keratin-high subgroup of cetuximab-resistant
tumors (Takeda et al. 2013). HOPX is involved in the modulation
of stem cell renewal both in the intestine and in the epidermis
(Mariotto et al. 2016). In the latter, HOPX is responsible for the
production of keratin 6-positive cells, which contribute to the post-
injury regeneration of cornified epithelia by entering proliferation at
the wound edge (Moll et al. 2008).

HOPX proved to be strongly upregulated in keratin-high,
CTGC-B CRC tumors, and we provide evidence that HOPX expres-
sion correlates with poor prognosis in CRC patients. On this
ground, we speculate that the same program that regulates the re-
generation of keratinized epithelia may be aberrantly activated in
CRC by HOPX overexpression, thus committing cancer cells to-
ward an aggressive phenotype with traits of epithelial cornification.
In this regard, it is worth noting that high expression of keratin 80,
one of the markers of the keratin-high subgroup, has been associated
with poor prognosis in CRC and with CRIS-B specific phenotypic
traits, such as epithelial to mesenchymal transition and cell invasion

(Li et al. 2018). This finding may have substantial implications.
Indeed, if functionally validated, the notion that HOPX is a driver
for the maintenance of keratin-high tumors with keratinocytic meta-
plastic differentiation may pave the way for the development of new
therapeutic approaches aimed at interfering with HOPX function.
We also note that keratinization did not stand out as a predominant
characteristic of CRIS-B in the original study (Isella et al. 2017),
possibly because the phenotype is specifically associated with the
subpopulation of CRIS-B tumors that are resistant to anti-EGFR
therapy. This makes CONNECTOR a versatile tool for discerning
relevant trends from longitudinal data, which are harder to detect
using more classical sources of molecular and phenotypic
annotation.

Preclinical cohort studies involving the collection of longitudinal
high-dimensional data are being increasingly conducted to evaluate
drug activities and to explore disease evolution, and results from
such efforts show potential to be translated into experimental trials
and clinical practice. Disease monitoring over time is also an already
well-established method that is routinely incorporated in several
clinical trials. The CONNECTOR framework was designed and
implemented as a user-friendly tool to streamline gathering this kind
of information, while providing hints to increase interpretability and
molecular accuracy.

Supplementary data

Supplementary data are available at Bioinformatics online.
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